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Summary

The purpose of this thesis is to study the dependence of Parton Distribution Functions (PDFs)
determination on the systematic uncertainties of experimental data. In fact, PDFs cannot be
determined from first principles, but need a fitting procedure of experimental data in order to
be computed.

In Chapter 1 we explain what is a PDF, how it can be used for QCD computations, such as
cross sections, and how PDFs at different scales can be related. Then we briefly recall the recent
history of PDFs determination.

In Chapter 2 we present the main procedures for the determination of a PDF set and the relative
uncertainties, with particular attention to the Hessian method [9] and the Monte Carlo method
[1]. While the first is often used in fitting procedures based on standard parametrization of the
PDFs, the second is preferred when one has to deal with a large number of parameters in the
fit. For exemple, in this work we use a neural network parametrization, for which a Monte Carlo
method to determine PDFs uncertainties is mandatory. We also provide a series of criteria in
order to evaluate the goodness of a fitting procedure.

In Chapter 3 we present the results we got in the developed fit simulations. The basic idea of the
work is the following: we produce a reference fit with experimental datasets taken from charged
lepton beam experiments and neutrino beam experiments; then, we introduce an inconsistency
into these datasets, by rescaling the systematic uncertainties of the data by hand, and we fit
again the datasets, comparing the new results with the reference by mean of suitable criteria.
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Chapter 1

Parton Distribution Functions

Parton Distribution Functions (PDFs) are a powerful ingredient to study and understand the
physics of processes at hadrons colliders, such as LHC. For instance, a PDF set allows one to
calculate the cross section of scattering processes between hadrons, and make other predictions
about strong interactions physics. In this chapter we briefly describe what is a PDF, what it
can be used for, and how a PDF set can be computed, which is still an open issue.

1.1 The main characters of Quantum Chromodynamics

The substructure of hadrons, and in particular of nucleons, can be expressed in terms of the basic
fields, or degrees of freedom of the theory that describes the strong interactions between them,
i.e. quantum chromodynamics (QCD). These fields are classified into 6 different flavour quarks
(each of them coming with its anti-flavour partner), and a gluon, the gauge boson which carries
out the interaction between quarks; quarks and gluon represent the fundamental constituents of
the nucleon. Quarks feature an internal degree of freedom, the colour, which is the analogous of
the electric charge but, differently from this (which can be only positive or negative), the colour
charge can have three different states, identified with three colours blue, red and green. In this
picture, all known particles have neutral colour charge: for example, protons and neutrons (and
in general barions) have three quarks of different colours (blue, red and green), while mesons
have two quarks, one of one colour and the other of the relative anti-colour. The gluon carries
out the interaction between coloured quarks, so it shows two coloured components, one colour
and one anti-colour; in this way, there exist 8 independent gluons, which can be combined to
give different basis. The next tables report the family of the quarks and a possible basis for the
gluons.

Flavour Symbol Mass (MeV/c2) Anti-flavour Symbol

Up u 1.7− 3.3 Antiup ū
Down d 4.1− 5.8 Antidown d̄

Strange s 101+29
−21 Antistrange s̄

Charm c 1270+70
−90 Anticharm c̄

Bottom b 4190+180
−60 Antibottom b̄

Top t (172± 1.3) · 103 Antitop t̄

Gluon basis rḡ rb̄ gb̄ gr̄ br̄ bḡ rr̄−gḡ√
2

rr̄−gḡ−2bb̄√
6
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1.2 Factorization in QCD

In this section we present a basic property holding in QCD, i.e. the factorization, which will
lead us to the definition of a PDF.

A fundamental property of QCD is factorization, which separates the cross section of a process
into two parts: a process-dependent parton cross section, and a set of universal functions which
are convolved with parton cross sections in order to obtain the cross section of a process. For
instance, factorization for hadroproduction processes allows to express the cross section of a
process at a scale M2

X as

σX(s,M2
X) =

∑
a,b

∫ 1

xmin

dx1dx2fa/h1
(x1,M

2
X)fb/h2

(x2,M
2
X)σ̂ab→X(x1x2s,M

2
X)

= σ0
ab

∑
a,b

∫ 1

τ

dx1

x1

∫ 1

τ/x1

dx2

x2
fa/h1

(x1,M
2
X)fb/h2

(x2,M
2
X)C

(
τ

x1x2
, αS(M2

X)

)
,

(1.2.1)

where fa/hi(xi) is the distribution of partons of type a in the i-th coming hadron, σ̂qbqb→X is the

parton-level cross section for the production of the final state X, and xmin = τ :=
M2
X
s . In the

next step, the partonic cross section is replaced by σ0C
(
τ, αS(M2

X)
)

where the hard coefficient
function C

(
τ, αS(M2

X)
)

is defined by viewing σ̂qbqb→X as a function of the hard scale M2
X and

the dimensionless ratio of this scale to the centre-of-mass energy ŝ of the partonic subprocess in

terms of the scaling variable
M2
X
ŝ = τ

x1x2
.

Another exemple of factorization the standard factorization for the deep-inelastic structure func-
tions Fi(x,Q

2):

Fi(x,Q
2) = x

∑
a

∫ 1

x

dz

z
Ci,a

(x
z
, αS(Q2)

)
fa(z,Q

2) , (1.2.2)

where x = Q2

2p·q is the standard Bjorken variable, Ci,a is the structure function computed with

an incoming parton, and fa(z,Q
2) is the distribution of the parton a in the only incoming

hadron. Structure functions are then used in factorization for electroproduction to parametrize
the inclusive deep-inelastic scattering cross section:

d2σNC,`
±

dxdQ2
(x, y,Q2) =

2πα2

xQ4

[
Y+F

NC
2 (x,Q2)∓ Y−xFNC3 (x,Q2)− y2FNCL (x,Q2)

]
, (1.2.3)

for neutral-current charged lepton `± DIS, where the longitudinal structure function is defined
as

FL(x,Q2) := F2(x,Q2)− 2xF1(x,Q2) , (1.2.4)

and

Y± := 1± (1− y)2 y :=
p · q
p · k =

Q2

xs
, (1.2.5)

where p and k are respectively the incoming proton and lepton momenta, q is the virtual photon
momentum (q2 = Q2) and s is the centre-of-mass energy of the lepton-proton collision (last step
holds neglecting the proton mass). Similar expressions hold for charged-current charged and
neutral lepton scattering.
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So in all these expressions we observe the presence of parton distribution functions, which
actually have big importance in this framework: we will describe them in detail in the next
section.

1.3 Definition of a Parton Distribution Function

In this section we define a parton distribution function, we explain how to relate PDFs at
different energy scales, and we give some constraints which PDFs have to satisfy.

At the leading order of QCD theory, we can say that the Parton Distribution Function fi(x,Q
2)

is the probability density of finding in the proton a parton flavour i (quarks or gluon) carrying
a fraction x of the proton momentum, where Q is the energy scale of the hard interaction.
This definition is not well-posed at every order of QCD theory, in the sense that a PDF is not a
probability distribution as much as, say, the square module of the wave function of a state; in fact,
a PDF can also be negative, while a probability distribution must be positive defined. However,
the definition makes sense when we consider PDFs not insulated, but convolved with partonic
cross sections in factorized expressions such as eq.(1.2.1) and eq.(1.2.2). By this definition, it’s
clear that a PDF set includes 13 functions (6 quarks, 6 anti-quarks and a gluon), each of them
defined between x = 0 and x = 1. Fig. 1.1 shows a typical PDF set, including some parton
flavours at two different scale energies.
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Fig. 1.1: MSTW 2008 NLO PDF set (68% C.L.) at Q2 = 10 GeV2 and Q2 = 10 GeV4.

An important feature of PDFs is that they are universal, in the sense that they are process-
independent; so, if we have a PDF set, we can calculate expressions such as eq.(1.2.1) for every
process, provided we know the parton cross section for that specific process (partonic cross
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sections are computed in perturbation theory using the quark and gluon degrees of freedom of
the QCD Lagrangian).

An interesting fact of PDFs is that, computing the fraction of momentum carried by quarks,
one finds

pquark
pproton

=

∫ 1

0
dx

∑
i∈quark

xfi(x,Q
2) ≈ 1

2
, (1.3.1)

so quarks carry only half of the total momentum of the proton, with the rest being carried by the
gluon. This expectation is confirmed by experimental observations in deep inelastic scattering
(DIS) experiments with hadrons, and it is a good evidence of the existence of gluon.

The dependence of PDFs on the scale of the process can be evaluated with a set of perturba-
tive evolution equations, which in fact are integro-differential equations, known as the DGLAP
equations; a way to write them is the following [2]:

∂

∂ lnQ2

(
Σ(x,Q2)
g(x,Q2)

)
=

∫ 1

x

dy

y

PSqq (xy , αS(Q2)
)

2nfP
S
qg

(
x
y , αS(Q2)

)
PSgq

(
x
y , αS(Q2)

)
PSgg

(
x
y , αS(Q2)

) (Σ(y,Q2)
g(y,Q2)

)
,

(1.3.2)

∂

∂ lnQ2
qNSij (x,Q2) =

∫ 1

x

dy

y
PNSij

(
x

y
, αS(Q2)

)
qNSij (y,Q2) , (1.3.3)

where g is the gluon and Σ denotes the singlet quark distribution defined as

Σ(x,Q2) :=

nf∑
i=1

[
qi(x,Q

2) + q̄i(x,Q
2)
]
, (1.3.4)

while the nonsinglet quark distributions are defined as any linearly independent set of 2nf − 1
differences of quark and antiquark distribution

qNSij (x,Q2) := qi(x,Q
2)− q̄j(x,Q2) . (1.3.5)

The splitting functions Pab describe the b→ a parton splitting probability, and they are perturba-
tive series in the strong coupling constant αS , starting at order αS at leading-order computations:

Pab(αS , z) = PLOab (z) + αSP
NLO
ab (z) + α2

SP
NNLO
ab (z) + . . . (1.3.6)

In this way, all PDF sets are parametrized at a fixed reference scale Q2
0, and the solution to the

evolution equations provides tables of PDFs as a function of x and Q2.

Finally, it must be said that typical conservation laws give some constraints on the distribution
functions: for instance, the conservation of baryon number (nu = 2, nd = 1, ns,c,b,t = 0) implies∫ 1

0
dx
(
qi(x,Q

2)− q̄i(x,Q2)
)

= ni , (1.3.7)

while the conservation of total energy-momentum implies∫ 1

0
dxx

[ nf∑
i=1

(
qi(x,Q

2) + q̄i(x,Q
2)
)

+ g(x,Q2)

]
= 1 . (1.3.8)
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1.4 Progress in PDF determination

In this section we briefly recall the recent history of the PDF determination.

At the current stage of knowledge of strong interactions, PDFs cannot be computed from first
principles (this would be equivalent to knowing the whole wave function of the proton), so they
are determined by comparing the PDF-dependent predictions for one or more physical processes,
such as cross sections, with their actual measured value, in a quite complex fitting procedure.
Obviously, this procedure is non trivial because one has to fit a finite discrete ensemble of
experimental data, and extract from that a set of functions, which are defined everywhere in
[0, 1] (that is, in principle, a mathematically ill-posed problem). This procedure to determine a
PDF set involves that every function comes out with an uncertainty band that arises from three
sources: the underlying data to fit (which are affected by statistical and systematic errors),
the theory which is used to describe them (which is typically based on the truncation of a
perturbative expansion) and the procedure which is used to extract the PDFs from the data; in
next chapters we will focus on the first and the last of them.

The determination of PDFs has gone through various stages, depending both on theretical and
phenomenological understanding of QCD, and on experiments in DIS and “hard” proton-proton
(or proton-antiproton) high-energy collisions, with ever increasing precision. After some early
attempts to determine a semi-quantitative set of PDFs [4], based on model assumptions and first
results on DIS, the determination of the gluon distribution in 1982 [5] allowed to produce the
first PDF set [6], based on the data-theory comparison for a set of different lepton-hadron and
hadron-hadron scattering processes. These analyses were all performed at leading order (LO),
i.e. using, in QCD calculations, the lowest perturbative order of the expansion in the strong
coupling constant αS(Q2), which was accurate enough for those sets of data.

In the next decade high-precision deep-inelastic scattering and hadron collider data became
avaliable and, thanks in particular to DIS data from HERA collider, determination of PDF sets
including NLO theory, which at the time was well understood, was possible; so, combination of
more accurate experimental data and full knowledge of theory led to global parton sets showing
agreement with NLO QCD computations, such as CTEQ5 [7] and MRST2001 [8]. Despite some
differences in technical details, these PDF sets are based on similar determination approaches: a
functional form for PDFs is assumed, parametrized by a relatively small number of parameters,
that are determined by optimizing the fit of the computed observables to the experimental data.

Soon, as precision in experimental data and theoretical QCD computations increased, an es-
timate of the uncertainty in PDF sets became needed. A first attempt to obtain a PDF set
with uncertainties was made in the late 90’s fitting to a subset of DIS experiments but retaining
all the information on the correlated uncertainties in the underlying data and propagating it
through the fitting procedure. However, the need of a more systematic and consistent approach
to determine PDF uncertainties was recognized.

As we will explain in more details in the next chapter, in the 2000s two main ways of determing
PDF uncertainties developed. The first approach is based on a conventional methodology which
uses a least squares style method in order to determine “error” PDF sets along with the central
best-fit, with the determination of a 1-σ contour in parameter space about the best fit. This
method is used by two groups that have produced widely used PDF sets, MSTW [9] and CTEQ
[10].
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A second approach was proposed in [11] and produced, by the NNDFP collaboration, a first PDF
set based on DIS data [12] and then a PDF set from a global fit [13]. This approach differs in two
main aspects from the previous one: first, PDFs are represented as a Monte Carlo sample, from
which the central value and uncertainty can be computed respectively as a mean and standard
deviation, rather than from a best-fit and error sets; second, the functional form used for the
PDF parametrization, based on neural networks, has a very large number of parameters (more
than 250, to be compared to about 30 for sets based on a standard parametrization). More
details, also regarding the determination of uncertainties, will be given later.

Finally, in the late 2000s the increasing availability of calculations to next-to-next-to-leading
order (NNLO) in QCD led the various groups to produce PDF sets using NNLO QCD theory in
their determination, and also to include heavy-quark mass effects, with all these sets available
for a variety of values of the strong coupling. All the sets cited above, MSTW, CTEQ and
NNPDF, include these features.



Chapter 2

PDF fitting methodologies

In this chapter we describe two PDF fitting methodologies and how they deal with the problem
of determining PDF uncertainties; then, we’ll illustrate a method for the validation of a fitting
procedure.

As we said in previous chapter, PDFs are not computable from first principles because that
would involves the knowledge of the proton wave function. So, in order to determine a PDF set,
a fitting procedure must be adopted, and it consists of comparing factorized expressions such as
eqs.(1.2.1)–(1.2.2) with experimental data, while minimizing a suitable measure of goodness-of-
fit.

Also, we said that this is not a well-posed problem, because we have to solve an infinite-
dimensional problem (determining a set of functions1) with a finite set of experimental data.
The task is simplified by the observation that parton distributions are expected to be smooth
functions of the variable x ∈ [0, 1], so they can be represented in terms of a finite basis of func-
tions or, which is equivalent, with a finite set of parameters. The problem is then reduced to the
choice of an optimal parametrization that, for given accuracy, minimizes the number of param-
eters without introducing a bias; given a parametrization of PDFs, fitting procedure involves
computing a number of physical processes with them, and minimizing a suitable figure of merit,
such as a χ2 or likelihood function in the parameters’ space in order to determine a best-fit set
of PDFs. Obviously, this procedure can be developed at a single reference scale Q2

0, because
PDFs at other scales are related to these ones by the evolution equations (1.3.2)–(1.3.3).

There exist various strategies for parametrization and fitting of a PDF set, but typical choices
are a standard parametrization (inspired by various QCD arguments), with a relatively small
number of parameters, or a parametrization based on a large number of parameters, such as
a neural network parametrization. Having chosen a parametrization, different approaches are
possible in order to determine PDF uncertainties: typically, with standard parametrization a
“Hessian” approach is adopted, in which the best-fit result is given in the form of an optimal
set of parameters and an error matrix centered on this optimal fit to compute uncertainties;
with neural network parametrization a Monte Carlo approach is preferred, in which the best
fit is determined from the Monte Carlo sample by averaging and uncertainties are obtained

1In principle thirteen functions: six quarks, six antiquarks and a gluon. However, in practice, charm and
heavier quark PDFs are not independently determined in all current PDF sets, and are instead assumed only to
be generated by QCD radiation, so the standard for current precision studies is to have a set of seven independent
PDFs.
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as variances of the sample. However, these choices are not exclusive, for exemple one could
use a parametrization based on neural networks and a Hessian approach for determination of
uncertainties.

2.1 Hessian approach

In this section we describe a fitting methodology based on standard parametrization, in which
the form of PDFs is assumed to be polynomial. Then, we will present the Hessian approach for
the determination of PDF uncertainties, which is often combined to standard parametrizations.

Once a suitable basis of PDFs has been chosen (we can choose a flavour basis, or the singlet
combination eq.(1.3.4)), we must adopt a parametrization of PDFs at a reference scale Q2

0; a
standard choice is the following:

fi(x,Q
2
0) = xαi(1− x)βigi(x) , (2.1.1)

where gi(x) tends to a constant for both x → 0 and x → 1 and usually is a polynomial or the
exponential of a polynomial in x or

√
x. This choice is motivated by the expectation that PDFs

behave as a power of x as x→ 0 due to Regge theory, and as a power of (1−x) as x→ 1 due to
quark counting rules (see [14] for details). Typical contemporary PDF sets based on this choice
of functional form are parametrized by about 20–30 parameters.

Once adopted a parametrization of PDFs, the task becomes determining best fit values and
uncertainty ranges for the parameters and this is done, in Hessian approach, by minimizing a
figure of merit such as

χ2(~a) =
1

Ndat

Ndat∑
i,j=1

(
di − d̄i(~a)

)
covij

(
dj − d̄j(~a)

)
, (2.1.2)

where di are experimental data with experimental covariance matrix covij (including all corre-
lated and uncorrelated statistical and systematic uncertainties); d̄i(~a) are theoretical predictions,
obtained by evolving the starting PDFs at any scale Q2 with the evolution equations (1.3.2)–
(1.3.3) and folding the result with known partonic cross sections using factorized expressions
eqs.(1.2.1)–(1.2.2); the vector ~a denotes the full set of parameters on which the PDFs at scale
Q2

0 depend, and it lies in a k-dimensional space, where k is the number of parameters. So χ2 is
a function of the parameters ~a in which the dependence is expressed by the predictions d̄i(~a).
Hence, the best fit set of parameters can be identified with the absolute minimum of the χ2 in
parameter space.

2.1.1 Uncertainties with Hessian approach

Once the best-fit has been determined, a confidence level (C.L.) about it is determined by ex-
panding the χ2 in parameter space about its minimum to lowest nontrivial order. The desired
confidence level is obtained as the volume in parameter space about the minimum that corre-
sponds to a fixed increase of the χ2 . For Gaussian uncertainties, the 68%, i.e. 1-σ, confidence
level corresponds to the volume enclosed by the χ2 = χ2

min + 1 surface. Obviously, the first
order expansion of χ2 is zero (we expand about a minimum), so the lowest nontrivial order is
the second, and hence the confidence level is determined by the covariance matrix in parameter
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space, which actually is the inverse of the matrix of second derivatives (from which Hessian
name) of χ2 with respect to the parameters, evaluated at the minimum, i.e.

σ−1
ij = ∂i∂jχ

2|min . (2.1.3)

An advantage of the Hessian method is that it provides a simple tool for computing PDF
uncertainties, which consists in finding eigenvectors of the Hessian matrix and rescale them by
their respective eigenvalues; in other words, uncertainties on PDFs, or any observables that
depend on them, are found by adding in quadrature the variation along the direction of each
eigenvector. So in a Hessian approach one delivers a central set of PDFs S0, and Npar 1-σ error
sets Si, corresponding to the variation of each eigenvector in turn. The best-fit value of any
quantity F (S) which depends on the PDF set (such as a cross section, or a PDF itself), and its
1-σ uncertainty, are respectively:

F0 = F (S0), σF =

√√√√Npar∑
i=1

[F (Si)− F (S0)]2 . (2.1.4)

The disadvantage of this procedure is that the computation of the Hessian matrix and its diag-
onalization rapidly become unmanageable if the number of parameters is too large.

2.1.2 The tolerance problem

In practice, in actual PDF fits involving large numbers of experimental data points from different
experiments, it turns out that the criterion of varying χ2 by ∆χ2 = 1 in order to determine the
1-σ contour leads to unrealistic results. For example, in [15] it was shown, by comparing the
parameter values that provide the best fit to each set of experimental data, that these best-
fit values fluctuate much more than one would expect if ∆χ2 = 1 did actually provide a 68%
confidence level in parameter space. This behaviour emerges from the fact that if the fit involves
a large number of experiments, the best-fit is not simultaneously a best-fit for individual datasets.
The idea to solve this problem is to determine the desired confidence level for the global fit, say
1-σ contour, while simultaneously checking the degree of agreement of individual experiments
with it: this is performed by introducing the concept of “tolerance”.

Tolerance is computed as follows. First, the Hessian matrix is diagonalized. Then, each eigenvec-
tor is moved away from the minimum of the global fit in either direction, and a χ2 is computed
for each experiment. Then, for each experiment one determines both the position of the mini-
mum of the χ2 and the 1-σ interval2 (or another confidence level) about it. Finally, one takes
the envelope of the error bands for individual experiments at the the 1-σ interval. For example,
at the 68% confidence level one determines the range of variation in parameter space along this
eigenvector about the minimum such that the 1-σ interval of each experiment overlaps with this
range. This gives a tolerance interval for the given eigenvector, whose width can be measured
in units of the variation of the χ2 of the global fit. The tolerance, defined as

T 2 = ∆χ2 , (2.1.5)

is the width of the envelope of the error bands for individual experiments at the desired confidence
level, and it gives the uncertainty band (for instance 1-σ for 68% confidence level) for each

2Corresponding to the ∆χ2 = 1 variation about the minimum.
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eigenvector, i.e for each parameter. This procedure makes the uncertainty determination much
more reliable, in the sense that if new experiments show a behaviour similar to experiments
already included in the fit, then they are expected to fall within the 1-σ band in 68% of cases;
by comparing results of the different strategies, it has been found that this happen if the 1-σ
band is defined in this way, while if the 1-σ band was defined on the basis of standard statistics
then probability of measurements falling outside the band would be much higher. The problem
with tolerance is that typical values of T are 5-10, and it seems quite unlikely that every source of
experimental uncertainty is underestimated by such a large factor, so the real origin of tolerance
is still unclear.

2.2 Monte Carlo approach

In this section we present a fitting procedure based on a neural network parametrization, which
uses a large number of parameters. When a neural network parametrization is adopted, using
a Hessian approach for uncertainty determination can be unmanageable: we will present an
advantageous alternative to Hessian approach, the Monte Carlo approach.

The main difference between Hessian and Monte Carlo approach is in the way the uncertainties
are propagated from parameters to observables. In a few words, in this approach the probability
distribution of PDFs is given by assigning a Monte Carlo sample of a large number of PDF repli-
cas. The advantage of Monte Carlo approach is that it makes the computation of uncertainties
much easier when a “non standard” parametrization is adopted, for instance a parametrization
less manageable with respect to eq.(2.1.1), or a parametrization with a very large number of
parameters. As Monte Carlo approach has often been used together with neural networks as a
parton parametrization (in particular in this work), we describe this choice of parametriation,
and then come back to the problem of uncertainty determination.

2.2.1 Neural network parametrization

Neural networks provide another functional form with a very large number of parameters, which
can fit any continous function in the limit of infinite number of parameters; a finite-dimensional
truncation of the neural network parametrization is adequate to fit a very wide class of func-
tions (for instance, both periodic and non periodic) without the need to adjust the form of
the parametrization to the desired problem. A neural network can be constructed by iterating
recursively a response function on nodes arranged in layers which feed forward to the next layer,
with the first (last) layer containing the input (output) variables. For exemple, if we choose
g(x) = 1

1+eθ−βx
as response function, and adopt a 1-2-1 iterative architecture (one iteration at

the first node, two at the second, one at the third), we get the following function:

f(x) =
1

1 + e
θ
(3)
1 −

ω
(2)
11

1+e
θ
(2)
1 −xω(1)

11

−
ω

(2)
12

1+e
θ
(2)
2 −xω(1)

21

, (2.2.1)

where θ
(i)
n and ω

(i)
nm are free parameters.

NNPDF group uses PDFs parametrized with 2-5-3-1 neural networks, with 37 free parameters,
for six flavours, six antiflavours and the gluon, hence in total 259 free parameters, much more
than in standard parametrization. An obvious advantage in using neural networks is that, as
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they have a large number of parameters, they provide a much more flexible parametrization,
that can handle different behaviours of the experimental data at different regions of the fit. But
the large number of parameters is not the only advantage of neural networks: in fact, in principle
we could use a standard parametrization with a very high degree polynomial, reaching in this
way an equal number of parameters as in neural network parametrization; however, if we fit a
dataset with, say, a 259th degree polynomial, typically we get a very oscillating function, which is
not very sensible. Conversely, neural network parametrizations start with a very simple, smooth
functional form, which gets progressively complicated as the fitting procedure goes on, without
showing rapidly oscillating behaviour as high degree polynomials do.

The price to pay for having a large number of parameters is that if the best fit is determined as
the absolute minimum of the χ2 one may end up fitting data fluctuations, which is clearly not
desirable. This problem is solved by using a cross-validation method, which works as follows. The
data are randomly divided into two sets (“training” and “validation”); the χ2 is then computed
for both sets separately, but only the χ2 of the training set is minimized. Initially both the
training and validation χ2 decrease, but at some point the training χ2 keeps decreasing while
the validation χ2 starts increasing. The point at which this happens defines the best fit. Picking
a different partition of the data into training and validation sets for each replica ensures that
there is no information loss, though of course this is only true in the limit of a large number of
replicas. This procedure is shown in Fig. 2.1, in which a cross-validated fit is compared with a
non-cross-validated one: while in the former the minimization algorithm stops as the validation
χ2 starts increasing, determining the best fit, in the latter it goes on, reaching an “overlearning”
point as data fluctuations are being fitted.

Fig. 2.1: Cross-validation method: on the left it is applied, on the right it is not. The χ2 is shown as a
function of the number of iterations of the minimization algorithm.

2.2.2 Uncertainties with Monte Carlo approach

Whereas in a Hessian approach parameters are assumed to be gaussianly distributed with co-
variance matrix σij given by eq.(2.1.3), in Monte Carlo approach the probability distribution
of PDFs is given by assigning a Monte Carlo sample of PDF replicas, namely Nrep PDF sets
Sk. So, the best-fit value of any quantity F (S) which depends on the PDF set (such as a cross
section, or a PDF itself) and its 1-σ interval are now determined as the mean value and the
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standard deviation over the replicas, respectively:

F0 =
1

Nrep

Nrep∑
k=1

F (Sk) , σF =

√√√√ 1

Nrep − 1

Nrep∑
k=1

[F (Sk)− F0]
2
. (2.2.2)

The obvious advantage of the Monte Carlo method is that it does not require assumptions to be
made on the form of the probability distribution in parameter space, and also that it provides
a direct representation of the probability distribution.

A way of constructing a Monte Carlo sampling of parameter space is to construct a Monte Carlo
representation of the original data. In this way, instead of having experimental data Di with
their covariance matrix, one constructs a set of Nrep data replicas Dk

i with i = 1, . . . , Ndat and
k = 1, . . . , Nrep, that reproduce the probability distribution of the data, such as

〈Di〉 :=
1

Nrep

Nrep∑
k=1

Dk
i , (2.2.3)

covij :=
1

Nrep − 1

Nrep∑
i=1

Nrep∑
j=1

(
Dk
i − 〈Di〉

)(
Dk
j − 〈Dj〉

)
(2.2.4)

tend respectively to the experimental data points and to the experimental covariance matrix in
the limit of Nrep large enough. The Monte Carlo sample of PDFs is then determined by fitting
a PDF set Sk to each data replica, which can be done by minimizing a suitable figure of merit;
in this way the set of data replicas is mapped onto a set of PDF replicas. This procedure is
very advantageous when the PDF parametrization uses a very large number of parameters, as
in the neural network methodology, because in this case determination and diagonalization of
the Hessian matrix may be impractical or impossible. On the other hand, when a large number
of parameters is adopted, a cross-validation procedure is also implemented as above.

For a typical set of data used in a fit the number of replicas required turns out to be surprisingly
small: Fig. 2.2 shows a scatter plot of the averages vs. central values and variances vs. standard
deviations for the set of Ndat = 3372 data points included in the NNPDF1.2 [16] parton fit,
computed using Nrep = 10, 100, 1000 Monte Carlo replicas. The deviations from experimental
data are a few percent already for Nrep = 10 as far as central values is concerned; however,
increasing the number of replicas is useful for a more accurate determination of uncertainties.

Another way to deliver a Monte Carlo sampling is to start from a Hessian fit and construct the
PDF replicas Sk by generating a multi-Gaussian distribution of parameter values, centered at
the best fit and with width provided by the Hessian matrix itself:

F (Sk) = F (S0) +

Npar∑
j=1

[F (Sj)− F (S0)]Rkj (2.2.5)

where Rkj is a random number taken from a Gaussian with mean zero and variance one, and
S0 and Sj are the usual best-fit and eigenvector PDF sets. In this case, it is possible to verify
a posteriori that constructing 50–100 Monte Carlo PDF replicas is enough to reproduce the
original central value and Hessian covariance matrix.
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Fig. 2.2: Scatter plot of central values (left) and uncertainties (right) of a Monte Carlo sample compared
to the data for the dataset of the NNPDF1.2 parton fit [16].

We can conclude this section with two reasons why it is useful to construct a Monte Carlo
representation of a PDF set, even if it has been determined in a Hessian approach. The first
reason is that if a Monte Carlo representation of a PDF set is available, new data can be
added without performing a new fit, through Bayesian reweighting; in this case, a weight is
associated to the original Monte Carlo replicas in order to deal with the effects of the new
data. The second reason is that with a Monte Carlo representation of a PDF set it is possible
to combine results obtained by different groups, especially if they arrive at independent PDF
determinations using the same (or almost the same) data and theory, but different methodologies;
an effective way of combining results, while keeping into account the possibility of methodological
differences, and thus arriving at a more reliable result, is to simply produce a Monte Carlo
set in which an equal (or conveniently weighted) fraction of replicas comes from each of the
various groups. Furthermore, a Monte Carlo set can be transformed into a Hessian set, and
viceversa: an advantage in having a Hessian set is that if one can diagonalize the Hessian
matrix, every eigenvector represents an indipendent source of uncertainties, and this can be
useful in experimental data analysis.

2.3 Closure testing

In this section we describe a procedure that is used in order to validate a fitting methodology,
the closure testing, and we will consider it when applied to the Monte Carlo methodology de-
scribed above. As we said in Sect.1.4, one of the sources of uncertainties in PDF determination
lies in the methodology chosen to fit experimental data: the aim of the closure test is right to
eliminate methodological uncertainty, so that the only uncertainties in PDFs are experimental
and theoretical. The idea of the closure test is the following: we take a given assumed form for
the PDFs (for example MSTW08 [9]), a given theoretical model (for example NLO perturbative
QCD), and with them generate a set of global pseudo-data with known but realistic statistical
properties determined with the covariance matrices of the real datasets. So these pseudo data
have known statistical properties, no internal inconsistencies, and full agreement with the the-
oretical model used to produce them, therefore if we fit them we should get a set of PDFs that
reproduce the assumed underlying PDFs, within the correct uncertainties, and criteria such as
the quality of the matching between the input (fin) and the fitted (ffit) PDFs, or the agree-
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ment between respective uncertainties, give a measure of how valid is our fitting methodology
(including uncertainty determination).

As already explained, the fitting procedure is performed by minimizing a figure of merit, such
as

χ2[T [f ],D] =
1

ND

∑
I,J

(TI [f ]−DI)C
−1
IJ (TJ [f ]−DJ) , (2.3.1)

where D = {DI} is the set of pseudo-data, T [f ] = {TI [f ]} is a set of theoretical predictions
delivered for the PDF f being fitted, CIJ is the covariance matrix of the data and ND is
the total number of data points of the dataset. It’s important to note that the procedure
used in fitting the pseudo-data is exactly the same as in fitting the real data: same figure of
merit eq.(2.3.1) (evaluated with the real data replaced by pseudo-data), same covariance matrix,
same fitting methodology. If we change by hand the level of uncertainties incorporated within
the pseudo-data, we can use this test to study different sources of uncertainties related to the
fitting procedure, or inconsistencies affecting the dataset. In particular, we can add different
amounts of stochastic noise to the psuedo-data generated with the input PDF set; in order to
have fluctuations and correlations of the pseudo-data reproducing precisely those of the real
experimental data, the stochastic noise is generated using the experimental covariance matrix.
So we define three different levels of closure test, Level 0, Level 1 and Level 2, each of them with
an increasing amount of stochastic noise added to the pseudo-data.

2.3.1 Level 0 closure test

In Level 0 closure test no stochastic noise is added to pseudo-data D0 = {D0
I} generated with

the input PDF set. Then we perform Nrep fits with the same set of pseudo-data, minimizing the
error function χ2[T [f ],D0] (computed with the covariance matrix of the data) for each fit, and
for each fit we use a different seed to initialize random numbers used in minimization procedure.
This produces an ensemble of PDF replicas {fkfit}, where k = 1, . . . , Nrep.

As pseudo-data have no inconsistencies by construction, and no stochastic noise is added, it’s
clear that in a Level 0 closure test the fit quality can be arbitrarily good. So, if the functional
form used for parametrizing the fitted PDFs is flexible enough, the value of the χ2 should
decrease monotonically towards zero for each replica as the fit proceeds, as well as the best-fit
χ2, i.e. the χ2 evaluated for the average of all replicas. In this way, the Level 0 closure test is a
highly non-trivial test of the efficiency of the minimization.

2.3.2 Level 1 closure test

In Level 1 closure test we use the pseudo-data generate in Level 0 closure test, and add to them
stochastic fluctuations as follows:

D1
I = (1 + rnor

I σnor
I )

(
D0
I +

Nsys∑
p=1

rsys
I,pσ

sys
I,p + rstat

I σstat
I

)
, (2.3.2)

where σstat
I , σsys

I,p and σnor
I are the statistic, systematic and normalization uncertainties for each

dataset, and the random numbers rnor
I , rsys

I,p and rstat
I are generated with the appropriate distribu-

tion to reproduce the experimental covariance matrix. These pseudo-data are used to fit all the
Nrep replicas but, as in Level 0 closure test, we use a different seed to initialize the minimization
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procedure for each replica. No other stochastic fluctuations are added to these pseudo-data, so
experimental uncertainties are not propagated into the uncertainties of the fitted PDFs, and
hence the ensemble of PDF replicas {fkfit} resulting from the Level 1 fits is expected to underes-
timate the PDF uncertainties.

If we make the pseudo-data fluctuate around the Level 0 by one standard deviation, we expect
that the best-fit χ2 will be around one. Moreover, there exist some “perfect” fits for which the
χ2 of the fitted PDFs coincides exactly with the χ2 computed with the input PDFs used for the
generation of the pseudo-data, i.e. such that χ2[T [ffit],D1] = χ2[T [fin],D1]. Actually, not all
fits will feature this property, so, while in Level 0 the distribution of the fitted PDFs was close
to a delta, here the distribution will spread a bit, but still remain too narrow.

2.3.3 Level 2 closure test

In Level 2 closure test we start from the pseudo-data generated in Level 1 closure test and
construct Nrep Monte Carlo replicas producing, for each replica k, a set of pseudo-data Dk2 =

{D2,k
I } as follows:

D2,k
I =

(
1 + rnor,k

I σnor
I

) (
D1
I +

Nsys∑
p=1

rsys,k
I,p σsys

I,p + rstat,k
I σstat

I

)
, (2.3.3)

where the set of random numbers is different for each replica. Then, the pseudo-data are fitted
in same way of real data, as already explained above. So in Level 2 fits, each Monte Carlo replica
represents a fluctuation around the Level 1 pseudo-data, and the fluctuations of pseudo-data, due
to experimental statistical, systematic and normalization uncertainties, are correctly propagated
into the fitted PDFs, hence the ensemble of PDF replicas {fkfit} contains all the information on
PDF uncertainties and correlations.

In this way, each replica contains two fluctuations, one from Level 1 pseudo-data generation,
and one from Level 2, so the χ2[T [fkfit],Dk2 ] computed for Level 2 is expected to be close to two.
Finally, we expect the input PDFs fin to lie within the 1-σ band of the fitted PDFs ffit with a
probability of around 68%.

2.3.4 PDF uncertainties in closure tests

The different way to construct the pseudo-data in Level 0, Level 1 and Level 2 closure tests
provide a different, increasing size of uncertainty on the fitted PDFs. In Level 0 there is only an
interpolation and extrapolation uncertainty; in Level 1, the fluctuations added to the pseudo-
data, the same for each replica, imply that different functional forms can produce equally good
fits, yielding a source of uncertainty; in Level 2, as the fluctuations added to the pseudo-data
are different for each replica, there is a real uncertainty on the data.

The uncertainty from Level 0 closure test is due to the fact that experimental data used in the fit
has finite kinematical coverage, so, even if the fit can be arbitrarily good, between one point and
another (i.e. in the interpolation region) and outside the data coverage (i.e. in the extrapolation
region) the uncertainty of the fit will never tend to zero. In particular, in regions where x→ 0
and x → 1 there is no experimental information, so here the uncertainties remain very large.
This source of uncertainty is referred to as extrapolation uncertainty.



2.3. Closure testing 18

In Level 1 closure test the central values of the data fluctuate around the theoretical prediction,
so, if the PDF parametrization is flexible enough, the minimization algorithm should find a large
number of different functional forms that yield an equally good χ2[T [ffit],D1] ≈ 1, adding to
extrapolation uncertainty a new component, the functional uncertainty.

In Level 2 closure test, starting from Level 1 pseudo-data, we generate a set of Nrep Monte
Carlo replicas that reflects the statistical and systematic errors given by the experimental mea-
surements. As we said, in a Level 2 closure test we expect χ2[T [ffit],Dk2 ] ≈ 2. The fit will
give us an ensemble of fitted PDFs {fkfit} whose statistical properties are a faithful propagation
of the fluctuations in the underlying dataset. The increase in the uncertainty from Level 1 to
Level 2 fits represents a new component in the amount of uncertainties, which we call the data
uncertainty.

If we compare Level 0, Level 1 and Level 2 closure tests with the same initial conditions, we
can estimate the size of the three sources of uncertainties, extrapolation from Level 0, functional
from Level 1 and data from Level 2. This is precisely what is done in Fig. 2.3, which shows the
ratios of the uncertainty of the fitted PDFs to the respective central values in each case, with the
MSTW08 NLO set used as input PDF fin, at the input parametrization scale of Q2 = 1 GeV2;
for the three fits, the PDF uncertainty bands are defined as the 68% confidence interval from
the sample of Nrep = 100 fitted replicas; PDFs for quark up, quark down and gluon are shown
(other flavours feature similar behaviour). We can see that Level 0 uncertainties are smaller
than Level 1 and in turn these are smaller than those at Level 2, confirming that raising up
the level of the closure test increases the amount of uncertainties. We also observe that in the
small-x and large-x regions the extrapolation uncertainty dominates, and hence Level 1 and
Level 2 don’t add a significative and new contribution to the uncertainty. An interesting thing
is that in regions where we have a good coverage from available data, the three components are
roughly of similar size, so the extrapolation, functional and data components are all significative
for a correct determination of uncertainties. In general, we can conclude that a fit which misses
out one of these three components will underestimate the overall PDF uncertainty.

Finally, the overall error of PDFs is computed as standard deviation over replicas, with the
central value given by the average over replicas:

〈ffit〉 =
1

Nrep

Nrep∑
k=1

fkfit , σ2
fit = 〈(f2

fit − 〈ffit〉)2〉 =
1

Nrep

Nrep∑
k=1

(
fkfit − 〈ffit〉

)2
. (2.3.4)

2.3.5 Quantitative criteria for closure test validation

We now want to provide some quantitative criteria in order to validate a closure test and give
an estimate of the goodness and stability of the fit; some of them will be used for the purpose
of this work.

As in Level 1 and Level 2 closure test we expect the central χ2, computed averaging the fitted
PDFs, to reproduce the χ2 of the input PDFs, we can define the following estimator:

∆χ2 :=
χ2[〈T [f ]〉,Di]− χ2[T [fin],Di]

χ2[T [fin],Di]
, (2.3.5)

which quantify the difference between the central χ2 of the closure test fit, computed with an
average over replica PDFs, and the χ2 of the input PDF set, both computed with respect to the
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Fig. 2.3: Comparison of relative PDF uncertainties obtained from Level 0, Level 1 and Level 2 closure
test fits with MSTW2008 NLO as input. The plots show the 68% confidence level PDF uncertainty band
for each of the fits, normalized to the corresponding central value of each fit.

same closure test dataset; hence this estimator measures how close the closure test fit reproduces
the theoretical predictions of the input PDFs, giving a quantitative measure of the success of
the test. In particular, ∆χ2 > 0 arises from the situation in which the optimal χ2 has not been
reached yet (underlearning), while ∆χ2 < 0 indicates that the fit is following the fluctuations
of the data (overlearning); obviuosly, ∆χ2 = 0 corresponds to perfect learning of the underlying
law.

We now define an estimator to evaluate the accuracy with which PDF uncertainties are re-
produced. If we assume gaussianity, the n-σ interval about a prediction can be interpreted as
confidence levels for the true value, in the sense that the true value will fall within 1-σ band in
68.3% of cases, within 2-σ band in 95.5% of cases, within 3-σ band in 99.7% of cases, and so on.
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Hence we define the following estimator:

ξnσ :=
1

NPDF

1

Nx

1

Nfits

NPDF∑
i=1

Nx∑
j=1

Nfits∑
l=1

I
[−nσi(l)fit (xj),nσ

i(l)
fit (xj)]

(
〈f i(l)fit (xj)〉 − f iin(xj)

)
, (2.3.6)

where n is a positive integer, NPDF, Nx and Nfits are the number of PDF flavours, x values
and fits respectively, over which averages are performed, IA(x) is the indicator function of the
interval A (which is one, if its argument lies in the interval A, and zero for all other values of

its argument), 〈f i(l)fit 〉 and σ
i(l)
fit are the average PDFs and the corresponding standard deviation

of the i PDF flavour for fit l, computed over the sample of Nrep = 100 replicas of fit l. The
PDFs can be sampled at various values of x. The estimators ξ1σ, ξ2σ, . . . provide the fraction
of those fits for which the input PDF falls within one sigma, two sigma, etc of the central PDF

f̄
i(l)
fit , averaged over PDF flavours and values of x. In a successful closure test we should thus

find that ξ1σ ≈ 0.68, ξ2σ ≈ 0.95, etc. In principle, in order to calculate ξ1σ we would need to, for
instance, generate 100 closure test fits each one with Nrep = 100 replicas. However performing
this very large number of fits is very computationally expensive, and we would instead like to
obtain an estimate of ξ1σ which involves fewer fits. To achieve this, we can approximate the

mean of each fit, 〈f i(l)fit 〉, by fitting a single replica to each set of closure test data at Level 1,
i.e. without additional replica fluctuations. We can also replace the individual values of σi(l) in
with the corresponding values taken from a single 100 replica fit, making use of the fact that
the variation in the PDF uncertainties between different closure test fits is small.

Another useful estimator is the distance between the fitted PDFs and the input PDFs, measured
in units of the standard deviation of the fitted PDFs:

dσ [fi,fit, fi,in] (x,Q) :=

√(
f̄i,fit(x,Q)− fi,in(x,Q)

)2
σ2 [fi,fit] (x,Q)

, (2.3.7)

where i stands for the PDF flavour.



Chapter 3

Simulations and results

The purpose of this work is to study and analyze how the fitting procedure responds to the
introduction of an inconsistency into the data; this inconsistency will be introduced by biasing
the systematic uncertainties of the datasets, and we will discuss how the fitted PDFs and their
uncertainties get modified with respect to a reference fit with no inconsistencies. In the next
sections we explain the procedure we adopted to do this, the data used in the simulations, and
the results we got.

3.1 Methodology

In this section we present the methodology we adopted in order to study how the fitting procedure
responds to the introduction of an inconsistency into the data, i.e. which fitting procedure and
datasets we used, how we introduced an inconsistency into the data, which criteria we used in
comparing the results.

First of all, for all our simulations we use NNPDF group Monte Carlo fitting procedure [3],
with a 2-5-3-1 neural network parametrization, and perform a series of Level 2 closure tests, as
explained in Sect.2.3. For parametrization, we don’t use the flavour basis, but the basis which
diagonalize the DGLAP eqs.(1.3.2)–(1.3.3), because it directly relates physical observables to
PDFs; this basis is the following:

Σ(x,Q2
0) =

(
u+ ū+ d+ d̄+ s+ s̄

)
(x,Q2

0) (3.1.1)

T3(x,Q2
0) =

(
u+ ū− d− d̄

)
(x,Q2

0) (3.1.2)

T8(x,Q2
0) =

(
u+ ū+ d+ d̄− 2s− 2s̄

)
(x,Q2

0) (3.1.3)

V (x,Q2
0) =

(
u− ū+ d− d̄+ s− s̄

)
(x,Q2

0) (3.1.4)

V3(x,Q2
0) =

(
u− ū− d+ d̄

)
(x,Q2

0) (3.1.5)

V8(x,Q2
0) =

(
u− ū+ d− d̄− 2s+ 2s̄

)
(x,Q2

0), (3.1.6)

and then the gluon PDF g(x,Q2). Each basis PDF at the reference scale is parametrized in
terms of a neural network times a preprocessing factor:

fi(x,Q0) = Ai x
−αi(1− x)βi NNi(x) (3.1.7)

where Ai is an overall normalization constant, and the preprocessing term x−αi(1 − x)βi is
introduced to speed up the minimization, without biasing the fit; finally, NNi(x) is obviously
the neural network.
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Chosen an ensemble of experiments, i.e. of datasets, we adopt an existing PDF set as our “true
theory” for producing pseudo-data in the closure test framework, as explained in Sec.2.3; details
on which datasets and PDF set are used will be given in the next section. So, we perform a first
level 2 closure test with the pure unmodified data, and this test will be our reference for all the
other simulations. We do this because we want to have a reference with which we can compare
the results of the fits with biased datasets.

Of this reference fit, we compute some estimators, in particular: a χ2
TD between the true PDF

set and the generated pseudo-data, a χ2
FD between the fitted PDFs and the generated pseudo-

data, and a χ2
FT between fitted and input PDFs. Moreover, we compute the criterion eq.(2.3.6)

in order to evaluate the fraction of fits for which the theory falls within 1-σ, 2-σ, 3-σ band of
the central fitted PDF (this implies that for this reference level 2 closure test, and in general
for every level 2 closure test, we perform also 100 level 1 closure tests with a single replica, as
explained in Sec.2.3.5). The fits are evaluated on the PDFs of gluon, up, down, strange, anti-up,
anti-down and anti-strange, at x = 0.05, x = 0.1 and x = 0.2.

Then, we introduce an inconsistency into the data generated for the closure test (obviously
using the same theory as before): we take the level 2 pseudo-data eq.(2.3.3) and we rescale the
systematic uncertainties by a suitable factor (2, 5 and 10), leaving unmodified the covariance
matrix of the data used for the fit; in this way, we are increasing the fluctuations of the pseudo-
data, but the uncertainties for the fit are remaining equal, and hence they will be underestimated.
So, we perform the level 2 closure test with these biased data and evaluate the criteria explained
above: the χ2

TD will tell us how much the pseudo-data have moved from the theory, while χ2
FD

and χ2
FT will show if the fit has followed the data or the theory; the criterion eq.(2.3.6) will tell

us how the distribution of the fits has changed with respect to the reference fit.

The systematic uncertainties of the experimental data are of two types, additive and multiplica-
tive. While the former represents a shift to the data and do not depend on them, the latter
depend on the data, in the sense that the bigger is the value of the data and the bigger is the
associated multiplicative systematic uncertainty. In this work we have studied both of them,
introducing the bias separately into each one.

Another way of introducing an inconsistency into the data is to conversely rescale the covari-
ance matrix, i.e. dividing the matrix entries by the same factor, but leaving unmodified the
fluctuations of the pseudo-data in eq.(2.3.3); in this way we are directly underestimating the
uncertainties for the fit; this second way has been exploited only for additive systematic uncer-
tainties.
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3.2 Input PDF set and datasets used in closure tests

In this section we present the datasets we used in all our tests, and which PDF set we adopted
in the closure test procedure.

For all our closure tests, we use MSTW08 NLO PDF set [9] as input PDFs fin. As far as
datasets is concerned, we use fixed-target deep inelastic scattering (DIS) data from experiments
with charged lepton beams (NMC, SLAC, BCDMS) and neutrino beams (CHORUS, NuTeV);
we use this small ensemble of datasets because we are not interested in producing an accurate
determination of a PDF set, but we want to study how the fitting procedure responds to the
introduction of an inconsistency into the datasets, and for this purpose few datasets are enough.
Table 3.1 shows in details the datasets of each experiment, with reference and number of available
data.

Experiment Dataset Reference Ndat

NMC NMC d/p [17] 121
NMC σNC,p [18] 204

SLAC SLAC p [19] 33
SLAC d [19] 34

BCDMS BCDMS p [20] 333
BCDMS d [21] 248

CHORUS CHORUS ν [22] 416
CHORUS ν̄ [22] 416

NuTeV NuTeV ν [23, 24] 39
NuTeV ν̄ [23, 24] 37

Table 3.1: Experiments and datasets used in this work.

The physical processed involved in these experiments are listed in the Table 3.2.

Process Subprocess Partons x range Experiment

`± {p, n} → `±X γ∗q → q q, q̄, g x ≥ 0.01 NMC, SLAC, BCDMS
`± n/p→ `±X γ∗ d/u→ d/u d/u x ≥ 0.01 NMC, SLAC, BCDMS

ν(ν̄)N → µ−(µ+)X W ∗q → q′ q, q̄ 0.01 ≤ x ≤ 0.5 CHORUS, NUTEV
ν N → µ−µ+X W ∗s→ c s 0.01 ≤ x ≤ 0.2 CHORUS, NUTEV
ν̄ N → µ+µ−X W ∗s̄→ c̄ s̄ 0.01 ≤ x ≤ 0.2 CHORUS, NUTEV

Table 3.2: Processes involved in experiments of Table 3.1.
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In Table 3.3 we report, for each dataset, the measured observable, the most significant systematic
uncertainty and its size with respect to the observable.

Dataset Observable Most Significant Systematic Uncertainty Size

NMC d/p F 2
d /F

2
p radiative corrections and functional form of the ratio

F 2
d /F

2
p parametrizations

1%

NMC σNC,p d2σp
dxdQ2 , d2σd

dxdQ2 acceptance 1–2%

SLAC p F 2
p overall normalization of the combined SLAC data 2%

SLAC d F 2
d overall normalization of the combined SLAC data 2%

BCDMS p F 2
p normalization uncertainty correlated for all data

points
3%

BCDMS d F 2
d normalization uncertainty correlated for all data

points
3%

CHORUS ν
dσ(νµN→µ−µ+X)

dxdy correction factor to obtain differential cross-sections
corrected for QED radiation effects

1–10%

CHORUS ν̄
dσ(ν̄µN→µ+µ−X)

dxdy correction factor to obtain differential cross-sections
corrected for QED radiation effects – 1-10%

NuTeV ν
dσ(νµN→µ−µ+X)

dxdy overall sys. unc. obtained from different contribu-
tions

5–10%

NuTeV ν̄
dσ(ν̄µN→µ+µ−X)

dxdy overall sys. unc. obtained from different contribu-
tions

5–10%

Table 3.3: Most significant systematic uncertainties for experiments of Table 3.1.

All the systematic uncertainties of Table 3.3 are treated as additive systematics, while the only
multiplicative systematic uncertainties in fixed-target DIS experiments are normalizations.
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3.3 Reference closure test

Here we report the results of the reference closure test which, as said before, is performed with
datasets of Table 3.1 and all systematic uncertainties unmodified. We perform a reference closure
test fit in order to have a “perfect”, unbiased fit that we can compare with the fits in which we
will introduce an inconsistency.

Fig. 3.1 shows the three χ2
TD, χ2

FD and χ2
FT for the 5 fitted datasets, with global χ2 reported in

the title.
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Fig. 3.1: χ2
TD, χ2

FD and χ2
FT for the reference closure test, with global χ2 in blue line.

We see that with no inconsistencies in the datasets, the pseudo-data fluctuate around the theory
by 1-σ, as shown by χ2

TD; the fit follows more the theory than the data, as χ2
FT is almost

vanishing, while χ2
FD is quite similar to χ2

TD; so, as we can expect, the fit fluctuate less than the
data. Finally, we can use the criterion eq.(2.3.6) and construct the distribution of the deviations
of the fitted PDFs from the input PDFs, which is shown in Fig. 3.2 together with a suitably
scaled gaussian distribution with standard deviation 1.
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Fig. 3.2: Histograms for the difference between the input PDFs and the single replica fits in units of the
fitted PDFs standard deviation.
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We can see that the resulting distribution is very close to a gaussian one, but in order to give a
more quantitative evaluation, we can compute the fractions of fits which fall within 1-σ, 2-σ or
3-σ band from the input PDFs, i.e. the estimators ξnσ of eq.(2.3.5). Results are shown in Table
3.4, from which we see that the agreement with theory is good also from a more quantitatively
point of view.

Band Theory (%) Reference (%)

1-σ 68.3 69.8
2-σ 95.5 94.5
3-σ 99.7 99.0

Table 3.4: Fractions of fits falling within n-σ band from input PDFs.
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3.4 Rescaling of additive systematic uncertainties in closure test
fluctuations

In this section we present the results of the closure tests in which we have rescaled the systematic
uncertainties of Table 3.3 in the fluctuations of the pseudo-data eq.(2.3.3). As said, the rescaling
consists in multiplying the uncertainties by factors 2, 5 and 10, while keeping unmodified the
covariance matrix.

First of all, Fig. 3.3 shows the distributions of χ2
TD (between pseudo-data and true theory)

computed for the three simulations (scaling factor 2, 5 and 10) and compared to the reference
closure test; global χ2 is reported in the title.
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Fig. 3.3: χ2
TD for the closure tests after having rescaled by k the additive systematic uncertainties of all

datasets entering the fluctuations in pseudo-data; global χ2
TD in blue line.

We can see that the χ2
TD increases as the fluctuations in the pseudo-data are progressively in-

creased, and this is telling us that pseudo-data are moving away from the theory; if we rescale the
fluctuation by a factor 10, pseudo-data move away from the theory by almost 4 σ. Moreover, we
can see that χ2

TD doesn’t increase equally for every dataset: for exemple, the increase for SLAC
dataset is much greater than for BCDMS dataset; this is due to the fact that the fluctuations
added to the pseudo-data are not equally selected for every dataset, but they are weighted by a
random number, as explained in eq.(2.3.3); hence, if the random number for a given dataset is
small, then the dataset will not be sensitive to an increasing of the fluctuations, and this is the
case of BCDMS.

Now we can compute χ2
FD (between fit and data) and χ2

FT (between fit and true theory) in order
to see how the fit responds to the introduction of the inconsistency; the two χ2 distributions are
shown in Fig. 3.4 and Fig. 3.5.

We see that the distribution of χ2
FD is quite similar to χ2

TD for each scaled fit, while χ2
FT of each

scaled fit remains similar to the reference one, meaning that as we introduce an inconsistency
into the datasets, the pseudo-data move away from the theory, but the fit remains close to it.

Now, in order to understand what happens with the uncertainties on the final fit, we construct
the distributions of the deviations of the fitted PDFs from the input PDFs for each closure test,
which is shown in Fig. 3.6 together with the reference closure test. The fractions of fits which
fall within 1-σ, 2-σ or 3-σ band from the input PDFs are listed in Table 3.5.

From a qualitative point of view, we can see that the distributions get more peaked towards the
central bins as the fluctuations in the pseudo-data are increased. This fact is confirmed more
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Fig. 3.4: χ2
FD for the closure tests after having rescaled by k the additive systematic uncertainties of all

datasets entering the fluctuations in pseudo-data; global χ2
FD in blue line.
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Fig. 3.5: χ2
FT for the closure tests after having rescaled by k the additive systematic uncertainties of all

datasets entering the fluctuations in pseudo-data; global χ2
FT in blue line.
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Fig. 3.6: Histograms for the difference between the input PDFs and the single replica fits in units of the
fitted PDFs standard deviation, after having rescaled by k the additive systematic uncertainties of all
datasets entering the fluctuations in pseudo-data.

Band Theory (%) Reference (%) k = 2 (%) k = 5 (%) k = 10 (%)

1-σ 68.3 69.8 86.3 84.4 83.7
2-σ 95.5 94.5 99.3 98.8 98.8
3-σ 99.7 99.0 99.6 99.9 100

Table 3.5: Fractions of fits falling within n-σ band from input PDFs.

quantitatively by the fractions of fits falling in 1-σ band and 2-σ band, which increase with
respect to the reference fit. The explanation to this fact is that as we introduce an inconsistency
by increasing the fluctuations in the pseudo-data, the central fit remains close to the true theory,
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as confirmed by the χ2
FT distribution, however the final uncertainties on the fit get larger, so

the n-σ bands of the fitted PDFs are wider and they can accommodate the input PDFs in more
cases than in reference fit, resulting in increasing 1-σ fraction and 2-σ fraction. We can see this
in Fig. 3.7 which shows the PDFs of the gluon and the nonsinglet quark distribution T3 at high
x-value, for the k = 10 scaled fit in comparison to reference fit: the error bands of the scaled fit
are larger than those of reference fit by a factor up to 2-3. So if we rescale the fluctuations by
a factor 10, the final uncertainties on the fit increase, but not by the same factor, rather by a
factor 2-3; and even less the central fitted PDFs move from the theory.
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Fig. 3.7: Parton distribution functions for the gluon (top) and the nonsinglet quark distribution T3
(bottom): reference fit vs. k = 10 scaled fit on the left, k = 10 scaled fit vs. MSTW08 NLO on the right.
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3.5 Rescaling of multiplicative systematic uncertainties in clo-
sure test fluctuations

In this section we present the results of the closure tests in which we have rescaled the multi-
plicative systematic uncertainties of all datasets in the fluctuations of the pseudo-data eq.(2.3.3).
Again, the rescaling consists in multiplying the uncertainties by factors 2, 5 and 10, while keeping
unmodified the covariance matrix.

Fig. 3.8 shows the distributions of χ2
TD (between pseudo-data and true theory) computed for the

three simulations (scaling factor 2, 5 and 10) and compared to the reference closure test; global
χ2 is reported in the title.
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Fig. 3.8: χ2
TD for the closure tests after having rescaled by k the multiplicative systematic uncertainties

of all datasets entering the fluctuations in pseudo-data; global χ2
TD in blue line.

We can see that the increase in the χ2
TD, as the fluctuations are progressively increased, is

very small, compared to the case of additive systematics. This happens because multiplicative
systematic uncertainties are proportional to the data, so if we make pseudo-data fluctuate more,
their multiplicative uncertainties will fluctuate as well, they will get larger and hence the χ2

TD

between data and theory will not change very much. In other words, we are always moving the
data, but the farther we move the data and the bigger will be the uncertainties (keeping χ2

TD

stable).

This behaviour is confirmed also by χ2
FD (between fit and data) and χ2

FT (between fit and true
theory), whose distributions are shown in Fig. 3.9 and Fig. 3.10.
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Fig. 3.9: χ2
FD for the closure tests after having rescaled by k the multiplicative systematic uncertainties

of all datasets entering the fluctuations in pseudo-data; global χ2
FD in blue line.

We see that the fit follows the true theory, as the χ2
FT remains close to zero, but also the χ2

FD

doesn’t increase very much: also in this case, as the data are moved away from the theory
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Fig. 3.10: χ2
FT for the closure tests after having rescaled by k the multiplicative systematic uncertainties

of all datasets entering the fluctuations in pseudo-data; global χ2
FT in blue line.

by increasing the fluctuations coming from multiplicative systematics, the fit distances from
the data, but, as multiplicative uncertainties are proportional to the fluctuated data, the χ2

FD

between fit and data does not increase very much.

Finally, we construct the distributions of the deviations of the fitted PDFs from the input PDFs
for the k = 2 scaled closure test, which is shown in Fig. 3.11 together with the reference closure
test. The fractions of fits which fall within 1-σ, 2-σ or 3-σ band from the input PDFs are listed
in Table 3.6.
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Fig. 3.11: Histograms for the difference between the input PDFs and the single replica fits in units of the
fitted PDFs standard deviation, after having rescaled by k the multiplicative systematic uncertainties of
all datasets entering the fluctuations in pseudo-data.

Band Theory (%) Reference (%) k = 2 (%)

1-σ 68.3 69.8 68.0
2-σ 95.5 94.5 93.9
3-σ 99.7 99.0 98.6

Table 3.6: Fractions of fits falling within n-σ band from input PDFs.

Also with this criterion we see no big changes compared to reference: the shape of the distribution
remains quite gaussian, and the fractions of fits falling within 1-σ, 2-σ or 3-σ band from the
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input PDFs are similar to the reference ones. So we find that if we introduce an inconsistency
into the data by rescaling the multiplicative uncertainties, the fit doesn’t experience big changes,
because multiplicative uncertainties are proportional to data, and hence a bigger fluctuations
in the data will involve bigger uncertainties, so everything is rescaled in the same way. As a
matter of fact, the final uncertainties on the PDFs are similar to the reference ones (while in the
additive systematics case thery were much larger), as we can see from the PDFs of the gluon
and the nonsinglet quark distribution T3 at high x-value, for the k = 2 scaled fit in comparison
to reference fit, shown in Fig. 3.12.
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Fig. 3.12: Parton distribution functions for the gluon (top) and the nonsinglet quark distribution T3
(bottom): reference fit vs. k = 2 scaled fit on the left, k = 2 scaled fit vs. MSTW08 NLO on the right.



3.6. Rescaling of additive systematic uncertainties in covariance matrix 33

3.6 Rescaling of additive systematic uncertainties in covariance
matrix

In this section we present the results of the closure tests in which the inconsistency has been intro-
duced not by rescaling the fluctuations of the psuedo-data, but directly reducing the systematic
uncertainties entering the covariance matrix used for the fit. In this way we are underestimating
the additive systematic uncertainties, and hence we expect results similar to those obtained by
rescaling the additive systematic uncertainties entering the fluctuations.

Fig. 3.13 shows the distributions of χ2
TD (between pseudo-data and true theory) computed for

the three simulations (scaling factor 2, 5 and 10) and compared to the reference closure test;
global χ2 is reported in the title.
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Fig. 3.13: χ2
TD for the closure tests after having divided by k the additive systematic uncertainties of all

datasets entering the covariance matrix; global χ2
TD in blue line.

We see that the χ2
TD remains stable as the inconsistency is introduced: this is not surprising, as

we are not rescaling the fluctuations, i.e. we are not moving the data from the theory, but we
are reducing the uncertainties in the covariance matrix.

Fig. 3.14 and Fig. 3.15 show the distributions of χ2
FD (between fit and data) and χ2

FT (between
fit and true theory).
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Fig. 3.14: χ2
FD for the closure tests after having divided by k the additive systematic uncertainties of all

datasets entering the covariance matrix; global χ2
FD in blue line.

As expected, the χ2
FD doesn’t change significantly, and is quite similar to the χ2

TD; as a matter
of fact, the fit remains close the theory, with χ2

FT being stable and vanishing.

Finally, we construct the distributions of the deviations of the fitted PDFs from the input PDFs
for each closure test, which is shown in Fig. 3.16 together with the reference closure test. The
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Fig. 3.15: χ2
FT for the closure tests after having divided by k the additive systematic uncertainties of all

datasets entering the covariance matrix; global χ2
FT in blue line.

fractions of fits which fall within 1-σ, 2-σ or 3-σ band from the input PDFs are listed in Table
3.7.
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Fig. 3.16: Histograms for the difference between the input PDFs and the single replica fits in units of
the fitted PDFs standard deviation, after having divided by k the additive systematic uncertainties of all
datasets entering the covariance matrix.

Band Theory (%) Reference (%) k = 2 (%) k = 5 (%) k = 10 (%)

1-σ 68.3 69.8 80.0 80.0 77.7
2-σ 95.5 94.5 96.9 96.9 98.4
3-σ 99.7 99.0 99.7 99.8 99.8

Table 3.7: Fractions of fits falling within n-σ band from input PDFs.

From a qualitative point of view, we see that the tails of the distributions get lower and the
shape is more peaked, although not as much as we found by rescaling the fluctuations. This
behaviour is confirmed more quantitatively by the fractions of fits falling within 1-σ and 2-σ
band from the input PDFs, which are greater than the reference ones, as found by rescaling
the fluctuations (and also in this case the increase with respect to the reference is smaller than
in the “fluctuation case”). So we get results quite similar to those obtained by rescaling the
additive systematic uncertainties in the fluctuations, but this time the changes with respect to
the reference are a bit smaller. The reason why in this case the effects are a bit smaller when
we increase the inconsistency is that in the covariance matrix the uncertainties are summed in
quadrature, so if we halve the most significant uncertainty, this will not be significant anymore
(because there is not a big difference in size between the different sources of uncertainty), and if
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we keep dividing it by greater factors, we are doing nothing but reducing a source of uncertainty
which is already negligible with respect to the others, hence there will be no effects in the fit.

3.7 Final conclusions

To sum up the work, our task was to study how the NNPDF fitting procedure, featuring neural
network parametrization and Monte Carlo approach for uncertainties, responds to the introduc-
tion of an incosistency into the datasets.

We have used a Level 2 closure test procedure, in which we have introduced an inconsistency into
the datasets, performed a closure test fit and compared it to a reference closure test fit with no
bias. In all tests we have used only fixed-target deep inelastic scattering data from experiments
with charged lepton beams (NMC, SLAC, BCDMS) and neutrino beams (CHORUS, NuTeV).

Firstly, we have introduced the inconsistency by increasing the most significant additive system-
atic uncertainty of each dataset, widening in this way the fluctuations added to the pseudo-data
in the closure test, and keeping fixed the covariance matrix of the datasets (in this way, we are
underestimating the uncertainties on the datasets); fluctuations have been increased by factor 2,
5 and 10. In this way, we have obtained that pseudo-data generated by the level 2 closure test
procedure move from the true theory (with a χ2

TD between data and theory passing from 1.01
to 3.96), and the fit remains far from the data by the same quantity (χ2

FD between fit and data
passing from 0.97 to 3.92), and very close to the true theory (χ2

FT between fit and theory equal
to 0.03 for the reference and 0.28 for the k = 10 scaled fit). Moreover, the fraction of fits falling
within 1-σ band from the input PDF set increase when an inconsistency is introduced, passing
from the value of 69.8% for the reference fit to ∼85% for the scaled fits. This suggests that if we
increase the fluctuations coming from the additive systematics, the fit doesn’t move away from
the theory, but the final uncertainties on the fit will be larger, and the 1-σ band gets wider. So if
we introduce an inconsistency into the datasets, via additive systematics, the fit will respond to
the bias increasing the final uncertainties with no need to increase the covariance matrix of the
datasets; this suggests that the NNPDF methodology doesn’t need a tolerance, as the Hessian
approach, in order to account for inconsistencies introduced into the datasets, but it responds
to them by itself.

Second, we have done the same work with multiplicative systematic uncertainties, which are
proportional to the data. In this case, when we introduce the inconsistency by increasing the
fluctuations coming from multiplicative systematics, the pseudo-data generated by the level 2
closure test procedure remain quite close to the true theory (χ2

TD passing from 1.01 to 1.43),
and so does the fit with respect to data (χ2

FD passing from 0.97 to 1.61), and to theory (χ2
FT

passing from 0.03 to 0.13). Also the fraction of fits falling within 1-σ band from the input
PDF set remains stable (69.8% for the reference fit and 68% for the k = 2 scaled fit). In this
case, as multiplicative systematics are proportional to the data, if we make the data fluctuate
more, the uncertainties will increase as well, so even if the data move away from the theory, the
χ2

TD will not be very sensitive to this (because uncertainties are larger). We also find that final
uncertainties on the fit are quite similar to the reference ones, so if we introduce an inconsistency
into the datasets via multiplicative systematics, the fit doesn’t experience significant changes.

Finally, we have introduced the inconsistency in a different way, i.e. reducing the additive sys-
tematic uncertainties entering the covariance matrix used for the fitting procedure, and keeping
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unmodified the fluctuations for the closure test. In this framework, obviously the pseudo-data
don’t move away from the true theory (χ2

TD passing from 1.01 to 1.09), and the fit remains very
close to the true theory (χ2

TD = 0.03 as for the reference fit). We find a change in the fraction of
fits falling within 1-σ band from the input PDF set, which increases from the reference 69.8% to
∼80% of the scaled fits, with a behaviour quite similar to the first case, although with smaller
effects. Also in this case we are underestimating the uncertainties on the datasets, and we get a
final fit with wider bands of uncertainties, so the 1-σ fraction increases. The difference with the
first case is that in covariance matrix uncertainties are summed in quadrature, so if we reduce
only the most significative one, the others will produce the same effects, and hence the global
changes will be smaller.
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