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Introduction

Motivation

PDF uncertainties will affect all areas of phenomenology at
hadron colliders.

Past experience showed that sometimes a discrepancy between
theory predictions and experimental results is not a signal of "new
physics", rather "old physics" we don’t fully understand

High-ET jets at Tevatron,
leptoquarks at HERA,
B-production at Tevatron.

Recent updates of parton fits caused shifts in observables’
predictions outside the previously quoted error bands.

Need for faithful estimation of errors associated with parton
distribution functions.
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Introduction

Problem
Faithful estimation of errors

Single quantity: 1-σ error

Multiple quantities: 1-σ contours

Function: need an "error band" in the space of functions (i.e. the
probability density P[f ] in the space of functions f (x))

Expectation values are Functional integrals

〈F [f (x)]〉 =

∫
DfF [f (x)]P[f (x)]

Determine an infinite-dimensional object (a function) from a finite set of
data points ... mathematically ill-defined problem.
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Introduction

Solution
Standard Approach

Introduce a simple functional form with enough free parameters

q(x , Q2) = xα(1− x)βP(x ;λ1, ..., λn).

Fit parameters minimizing χ2.

Open problems:

Error propagation from data to parameters and from parameters to
observables is not trivial.

Theoretical bias due to the chosen parametrization is difficult to
assess.
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Introduction

The Strategy
Bayesian Inference Method

[Giele, Keller and Kosower, hep-ph/0104052]

Generate a Monte-Carlo sampling of the function space according
to a reasonable prior distribution.

Compute observables as functional integrals with the probability
measure defined by the sampling.

Update probability using Bayesian inference on the MC sample.

Iterate until convergence is reached.

The originally "infinite dimensional" problem is made finite by choosing
a prior, but the final result should not depend on this choice.
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The Neural Network Approach

The Neural Network Approach

1 Generate Nrep Monte-Carlo replicas of the experimental data.

2 Train a Neural Network on any of the replicas, defining a
probability density on the space of the observable.

3 Expectation values for observables are sums over nets

〈F [f (x , Q2)]〉 =
1

Nrep

Nrep∑
k=1

F
(

f (net)(k)(x , Q2)
)
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The Neural Network Approach

Monte Carlo replicas generation

Generate Nrep Monte-Carlo replicas of the data according to

F (art)(k)
i = (1 + r (k)

N σN)

0@Fi(exp) +

NsysX
p=1

r (k)
p σi,p + r (k)

i σi,s

1A
Validate Monte-Carlo replicas against experimental data.
(statistical estimators, faithful representation of errors, convergence rate
increasing Nrep)

O(1000) replicas needed to reproduce correlations to percent
accuracy.

A. Guffanti (UoE) NNPDF 8 / 16



The Neural Network Approach

Neural Networks

Neural Networks are a class of algorithms suitable to fit noisy or
incomplete data.

[for HEP applications see ACAT 2007]

Any continuous function can be approximated with neural network
with one internal layer and non-linear neuron activation function.

[K. Hornik, M. Stinchcombe and H. White (1989)]
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The Neural Network Approach

Neural Networks
Training

Set network parameters randomly.
If there are different inputs, normalize them.
Define a figure of merit E (i.e. χ2).
Define a criterion of convergence (i.e. χ2 ∼ 1).
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The Neural Network Approach

Neural Networks
Training Method

Which training algorithm should we use?

Genetic Algorithm

1 Set network parameters randomly.
2 Make clones of the set of parameters.
3 Mutate each clone.
4 Evaluate χ2 for all the clones.
5 Select the clone that has the lowest χ2.
6 Back to 2, until stability in χ2 is reached.

Pros:
Allows to minimize the fully correlated χ2.
Explores the full parameter space, reducing the risk of being trapped in a
local minimum.

Cons:
Slow convergence.
χ2 decreases monotonically - need to find a suitable stopping criterion.
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The Neural Network Approach

Neural Networks
Stopping criterion

When to stop a fit to avoid overlearning?

Stopping criterion based on Training-Validation separation
Divide the data in two sets: Training and Validation.

Minimize the χ2 of the data in the Training set.

Compute the χ2 for the data in the Validation set.

When Validation χ2 stops decreasing, STOP the fit.
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PDFs from Neural Networks

Non Singlet Analysis
F NS

2 determination

[L. Del Debbio et al., hep-ph/0701127]
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Compatible with results from other PDF determinations
(even when they are not in agreement)

Lager uncertainties both in the
Data region (MC error estimation)
Extrapolation region (functional form bias)
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PDFs from Neural Networks

NNPDF - The full set
Status report

Increased complexity related to:

Full DGLAP evolution
Training multiple Neural Networks at the same time

First preliminary fits run smoothly providing a proof-of-concept of
the feasibility of the whole project
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Conclusions & Outlook

Summary
Where we are ...

Standard approaches to PDF fitting might lead to underestimation
of errors associated with parton densities.

Combination of Monte-Carlo sampling techniques and Neural
Networks as unbiased interpolation functions recently proved to
be a reliable alternative.

The first results concerning the determination of the quark
isotriplet parton distribution have been published.
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Conclusions & Outlook

Instead of Conclusions
The way ahead ...

The extension of the results to a full global PDF fit is at an
advanced stage.

All major technical issues have been tackled and the first
preliminary results look encouraging.

First full NNPDF fit to be expected in Autumn 2007.
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