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Issue and Standard Approach

Given a set of data points we must determine a set of functions with error.

We need an error band in the space of functions, i.e. a
in the space of PDFs, q(x). For an observable F depending on
PDFs :

(Fla()]) = / [Dq] Fla(:)IPla(x)]

Standard approach, choose a basis of functions and project PDFs on it:
the co-dimensional space of function reduces to a -dimensional space
of parameters.

Issues:

@ Non trivial propagation of errors: non-gaussian errors and incompatible data.
@ The error associated to the choice of parametrisation is difficult to assess.
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9 determination of errors:

After fitti h f b: bl
ter -|tt|ng, the error of an observable O'}‘[q(x)] — \/<f[q(x)]2> _ <f[q(X)]>2
depending on PDFs —

@ Neural Networks as and parametrisation of PDFs:
* Each neuron receives input from neurons in

preceding layer.

P

‘/C\ ;\ Output.
& ) oute R . .
A\ b, * Activation determined by weights and thresholds
Hidden according to a non linear function:

b
@ & =g(d_ wig —0),  &lx)= =

J

criterion in order to fit data and not statistical noise.

)

* Divide data in two sets: and validation.

* Minimisation is performed only on the set. : e
The validation x? for the set is computed. ]

* When the x? still decreases while the = —
validation x?2 stops decreasing — STOP. P P VO O P s
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Singlet fit

@ NLO fit.
@ ZM-VFN treatment of heavy quarks.

@ All DIS data included.
@ Flavor Assumptions:
- Symmetric strange sea s(x) = 5(x)
- Strange sea proportional to
non-strange sea
5(x) = $(a(x) + d(x) (¢

0.5)

@ Parametrization of

NNPDF DIS fit: kinematic range
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combinations of PDFs at Q2 = 2 GeV?:

Singlet : ¥(x) — NNs(x) 2-3-2-1 20 pars

Gluon : g(x) — NN (x) 2-3-2-1 20 pars

Total valence : V(x) = uy(x) + dv(x) —— NNy(x) 2-3-2-1 20 pars

Non-singlet triplet : T3(x) — NN73(x) 2-3-2-1 20 pars

Sea asymmetry : As(x) = d(x) — i(x) +—— NNa(x) 2-3-1 13 pars
parameters
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Some Very Preliminary Results
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Conclusions

@ Standard approaches to PDFs fitting might lead to underestimation of
errors associated with parton densities.

@ Combination of Monte Carlo techniques and Neural Networks as unbiased
interpolating functions has proved to be a fast and robust alternative
method.

@ A non singlet fit has been published [ ] and a full DIS fit
will be published very soon.
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MC replicas of experimental data

@ Generate a Nyep Monte Carlo sets of artificial data, or " pseudo-data” of
the original Ng,, data points
= 1,.., Nyata
k = 1,.., Neep

according to:

, experimental errors;
, zero mean gaussian random numbers distributed according to the
experimental correlation matrix.
@ Validate MC replicas according to experimental data (statistical estimators, faithful
representation of errors, convergence rate increasing Nrep ).

Central values Comelations

How many replicas do we need? s

replicas are enough to - / -
reproduce correlation to percent ,/'
accuracy. 2 & - =
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Explicit functional form of a NN

@ Each neuron receives input from neurons in
preceding layer.
/@ output @ Activation determined by weight and threshold
/e according to a non linear function:

@ Hidden

N e o o A 1
@) e & = g(z wig — 0, 8(x) ==
J
@ In a simple case (1-2-1) we have,
(3) _ 1
51 - @) ()
()‘ﬂ— 11 — 12 —
1 PIC IO 0@ _M,M
1+e 1te 1 1 711 1+e 2 1 “21

@ NNs are just another set of basis functions.

@ Thanks to non linear behaviour, any function can be represented by a
sufficiently big NN.
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Statistical Estimators |: observables

@ Central value of the i-th experimental point
Nrep

<Fi(art)> N Z F (art)(
rep

rep T

@ Variance of the i-th experimental point

2 2
O_I(art) — \/< (Fi(art)) > _ <Fi(art)> )
rep rep

@ Associated covariance:

<F‘(art) Fl(art)> _ <F‘(art)> <F‘(art)>
(art) _ ! J rep ! rep J rep

ij O_I(art)a_(art)
(art) _ (art) (art) _(art)
cov;" = p; o oM
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Statistical Estimators Il: replicas vs data

@ Mean variance and percentage error on central values over the Ny, data points.

<V [<F(m)> pD _ Nl Ndz“ (<Fi(art)> p_Fi(exp))Z 7
rep] / dat dat T re

i

<PE |:<F(art)>rep:| >dat = Ndat Z F.(QXP)

i=1 i

° <V [<U(art)>rep] >dac’ <V [<p(art)>rep] >dac' <V [<COV(MC)>Y9P] >dat

(PE [ ]}y (PE [0 D] )y (PE [N ],

relative to errors, correlations and covariances are defined in the same way.

@ These estimators indicate how close are the averages over generated data and
the experimental values.
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Stability estimators IlI: replicas vs data

@ Scatter correlation:

= <F(exp) <F(art)>rep> - <F(exp)>d&t <<F(a“)>rep>dat

art) ’

dat

r [,_—(m)]

a_gexp) O'g

where the scatter variances are defined as

at™P) = \/<(/E(exp))2>dat — ((Fle®) )2,
o= (), )

o r[o(at)] r[p(a)] r [cov(®)] are defined in the same way.

@ The scatter correlation indicates the size of the spread of data around a straight
(exp)

i

line. Specifically r [g(a”)} =1 implies that <U§art)> is proportional to o
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Stability estimators and theoretical error

@ Difficult to give a statistical measure of theoretical error: check that the
final result depend within 20 on theoretical assumptions.

9 E.g. choice of the initial parametrisation:

dla] < ) >
al= T Mya 4 @2 )
(@) + (012 / e
[ )]

qfl), qf2) predictions for the j-th data point in the two fits, Uf . O;
predictions for the corresponding statistical uncertainties.

@ The results of the first and second fit are statistically equivalent if
d[g] =1 on average.

@ The same must be done for the choice of kinematical cuts, random seeds,
preprocessing exponents...
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Neural Network and Training Algorithm

o

Set neural network parameters randomly.
Make clones of the parameter vector and mutate them.

(7

Evaluate the figure of merit for each clone:

[

@ Select the best ones and iterate the procedure until a stability is reached.

PROs CONs
- The possibility of getting - It is monotonically decreasing
trapped in a local minimum is by construction.
reduced. - It risks to converge slowly if the
- Allows to minimise the fully parameters ar not properly
correlated 2. tuned.
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Proper Fitting avoiding Overlearning: an example

" Dataset
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Proper Fitting avoiding Overlearning: an example
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Proper Fitting avoiding Overlearning: an example
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Proper Fitting avoiding Overlearning: an example
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9 Need a redundant parametrization to avoid excessive constraining

@ Need a way of stopping the fit before overlearning sets in
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How to avoid Overlearning?

Stopping criterion based on Training-Validation separation

* Divide data in two sets: and validation.
* Minimisation is performed only on the set. The validation x? for
the set is computed.

* When the x? still decreases while the validation x? stops
decreasing — STOP.
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The Evolution Code

@ Observables are a convolution over x of PDFs and Coefficient Functions.

@ Each observable is a particular linear combination of (2n¢ + 1) parton
distributions.

@ Data are given at various scales — Solve DGLAP eqns and evolve from
the initial parametrisation scale Q2 to the experimental one.

@ Theory: higher perturbative orders, resummations, higher twists, nuclear
corrections, heavy quark threshold...

We want — Mellin space evolution.

F(N, a:(Q?), a=(@5)) = C(N, as(@)) T(N, as(Q?), as(@5))

We do not want — Complex neural networks.

a(x, @) = / %f(y,as(oz),as(oé))q(g,oé)

Frnos(@). sl @) = 57 [ VT F(V.0,(@). (@)
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Evolution
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Lo ./c+0c dN T(N)

c—ico 2mi 1 —N

X
- /O dy T(y, as, ap)-

X erel(uy) erel(dyv) ere1(X) erel(8)
.10~ 7 76-10° | 45.10=7 | 1.3-10°% | 1.2-107 7
.1076 83-107% | 3.2.107% | 1.2.107% | 1.7.-107°
.1075 47-107% | 1.4.107% | 1.5.107% | 2.2.107°
.1074 33.107% | 33.107% | 1.4.107> | 48.107°
.1073 1.3-107 | 97-107% | 26-107% | 1.5.107°
.1072 29.107% | 1.6-107° | 555.107% | 4.9.107°
79.107% | 1.1.107% | 52.107° | 3.8.107°
.1071 1.4.107° | 27-107> | 1.8.107% | 3.6.107°
-1071 28-1077 | 1.0-107°% | 1.7-107°% | 6.4-107°
-1071 9.0-107% | 7.3.-107% | 8.7.-107°% | 7.6-10"°
.1071 1.1-107% | 6.0-107% | 1.0.-107% | 7.0.107°
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Table: LH benchmark vs NNPDF output for u,, dy, ¥ and g distributions.
NLO accuracy, VFN scheme, truncated solution. Inversion with FT algorithm.
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Non singlet fit

@ Determination of
Ts(x, Qg) =(u+10—-d-dx, Qg)
at Q2 = 2GeV? at LO, NLO, NNLO.
@ DATA SETS: FP(x, @) — F§(x, Q*) BCDMS and NMC
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See hep-ph/0701127 for all technical details
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