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Parton Distributions for LHC Run II

¢ PDFs have been an essential ingredient for Run I phenomenology, and will be so even more at the
upcoming Run II at 13 TeV

¢ Many crucial LHC analysis benefit from improved PDFs, from precision Standard Model
measurements, like the W mass determination, and Higgs boson characterization to BSM searches

¢ NNPDF3.0 is the new forthcoming PDF release from the NNPDF Collaboration, a major upgrade that
accounts for recent progress in experimental constraints, theory calculations and methodological
improvements. To be released in the next few weeks.

¢ In this talk I present for the first time the final NNPDF3.0 sets, including:

[ New experimental data: HERA-II structure functions, ATLAS and CMS jets, CMS W-+charm,
ATLAS and CMS Drell-Yan production, top quark production ....

[ Improved theory calculations: Approximate NNLO K-factors for jets, electroweak effects for Drell-
Yan data, APPLgrid /FastNLO/aMCfast for all hadronic observables ...

[ Fitting methodology: C++ rewriting of the code, fitting strategy validated on closure tests,
extended positivity, optimized Genetic Algorithms minimization ......

[ Results and implications for LHC phenomenology
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New experimental data

NNPDF3.0 NLO dataset

¢ More than 1000 new data points from

new HERA and LHC data — ,
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All these datasets already reasonably well described by NNPDF2.3
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Motivation for new data

¢ Top quark total cross-sections allow to constrain the large-x gluon PDF

NNPDF2.3

NNPDF2.3 + Top Data
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¢ Jet cross-sections pin down medium and large-x gluon and large-x quarks
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CMS
T

Motivation for new data

W+charm production data:
directly sensitive to the strange PDF
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Fast interfaces for NLO calculations

¢ (N)NLO QCD calculations are too CPU-time intensive to be used directly into PDF analysis

¢ In the recent years, various approaches have been proposed to provide fast interfaces to NLO
calculations, that can be used directly in PDF analysis, the main ones being;:

M APPLgrid: interface to MCFM and NLOJet++ (arxiv:0911.2985)
M FastNLO: interface to NLOJet++ (arxiv:1109.1310)
M aMCfast: interface to Madgraph5_aMC@NLO using the APPLgrid library (arxiv:1406.7693)
[ FastKernel: NNPDF internal (arxiv:1002.2312)
& In NNPDF3.0 we systematically use these fast NLO calculations for all collider data:

# NLOjet++/FastNLO: CDF and CMS jet data
@ NLOjet++/APPLgrid: ATLAS jet data

i MCFM/APPLgrid: ATLAS, CMS and LHCb electroweak gauge boson production, CMS W+charm
production, ATLAS and CMS top quark data

B Madgraph5_aMC@NLO/aMCfast: Higgs xsec in gluon fusion for positivity constraints

¢ For the NNLO fits, the NLO calculation are supplemented with bin-by-bin C-factors from the
corresponding NNLO calculations: top++ for top data, FEWZ/DYNNLO for Drell-Yan data,...

5NNLO o, /NNLO

C fact — rr*\.LO L"_\IZ\'LO '
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Jets in NNLO global fits

& The recent calculation of the gluon-gluon channel NNLO jet cross sections (arxiv:1310.3993) is an
important milestone for inclusion of jet data in NNLO fits: O(20-25%) enhancements wrt NLO results

& On the other hand, the gg channel is small at medium and large pr at the LHC energies

¢ While full NNLO result becomes available, approximate NNLO results can be derived from the
improved threshold calculation: reasonable approximation to exact at large pr, breaks down at small pr
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Our strategy is the following;:

%k Compute, for all jet data, the
NNLOexact and NNLOapprox in the
gg channel

2k Use the exact -calculation to
determine the range of validity of the
threshold calculation

sk With this information, restrict the
range of fitted jet data and use the
NNLOapprox calculation accounting
for all partonic channels

2k To be conservative, we only include
data points for which:

NNLOapprox < ( 1.15 NLOexact )
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Jets in NNLO global fits

¢ Therefore, comparison with exact gg NNLO can determine for which values of jet pr and n the
NNLOthres calculation can be trusted (assumption: NNLO K-factor similar in all channels)

S. Carrazza and J. Pires, in preparation
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¢ We discard jet data in the kinematic range where the NNLO threshold calculation cannot be trusted
¢ This restriction will be superseded as soon as full exact NNLO results available

¢ This approximation allows to keep a maximum of jet data in the NNLO fit, without this data PDF
uncertainties in the large-x gluon are much larger
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BElectroweak corrections

¢ Electroweak corrections are important for W and Z production specially at large invariant masses
and/or transverse momentum

& In NNPDF3.0, full NLO electroweak corrections for all neutral current Drell-Yan datasets have been
computed with FEWZ3.1

¢ As an illustration, high-mass Drell-Yan from CMS 7 TeV:
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Electroweak corrections up to
25% at the highest dilepton
masses

QED corrections also large, but
affected by the large
uncertainties of y(x,Q)

QED corrections not included
in the NNPDF3.0 QCD-only fit
(NNPDF3.0 QED to follow)

For 14 TeV, including EW
corrections for most datasets
will be mandatory
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Methodology
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Closure Testing




NNPDF3.0 is really NNPDF++

Completion of a major software development project: rewriting of most of the NNPDF fitting framework from
Fortran 77 to C++ and Python

Lines of code by language in NNPDEF3.0 fitting framework

Language files blank comment code
(o 106 6993 6048 26551
Fortran 77 113 115 10161 20872
C/C++ Header 134 1183 857 3920
make 34 792 447 1699
ASP.Net 1 511 0 1390
Bourne Shell 23 261 202 802
Python 8 187 168 565
Fortran 90 1 32 43 117
Bourne Again Shell 3 7 11 34
SUM: 423 10081 17937 55950

[ Modular structure: each dataset is an individual object, with the associated theory encapsulated in
individual FK tables: easy to include new measurements and to upgrade theory for existing ones

[4] Greatly improved fitting efficiency: main bottleneck for PDF fits is convolution between input PDFs and
theory, performed here with assembly-like structure

[ Fits can now be easily parallelized to run in clusters and in Graphical Processing Units

[4] Guarantees robustness and stability for NNPDF development in the medium and long term
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Closure Testing

Validation and optimization of fitting strategy performed on closure test with known underlying PDF set

Try harder!

NNPDF3.0 Closure Test

> New Fitting Methodology

Fail?

/

Define Underlying Physical Law
ie input PDFs from MSTWO08, CTI10, NNPDF2.3...

/

Generate random pseudo-data for the NNPDF3.0 dataset
from info of experimental uncertainties and correlations

f
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Validate resulting PDF set:
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Three levels of closure tests:

Closure Testing

Validation and optimization of fitting strategy performed on closure test with known underlying PDFs

3k Level 0: no fluctuations on pseudo-data, no Monte Carlo replica generation

3k Level 1: with fluctuations on pseudo-data, no Monte Carlo replica generation

3k Level 2: with fluctuations on pseudo-data, with Monte Carlo replica generation

Example: Level 0 closure tests - Fit results successfully converge towards underlying law: central x? to pseudo-
data tends to zero, same for PDF uncertainties on predictions (all replicas converge on same underlying law)
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PDF reweighting

¢ Statistically identical results should be obtained when refitting or when reweighting, even more so in a

closure test

& Thus Bayesian inference can be used as the ultimate closure test, sensitive to all the moments of the
refitted / reweighting PDFs, not only central value and error

¢ As an illustration, compare effects of CDF, DO and ATLAS jet data included by refitting and by

reweighting. Compare both NNPDF and Giele-Keller prescriptions.

Fit wo jet data vs Fit with jet data
xg(x,Q%)
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PDF reweighting

¢ Statistically identical results should be obtained when refitting or when reweighting, even more so in a
closure test

¢ Thus Bayesian inference can be used as the ultimate closure test, sensitive to all the moments of the
refitted / reweighting PDFs, not only central value and error

& As an illustration, compare effects of CDFE, DO and ATLAS jet data included by refitting and by
reweighting. Compare both NNPDF and Giele-Keller prescriptions.
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xg(x,QQ)

The NNPDF3.0 parton distributions
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¢ Reasonable agreement between NNPDF2.3
and NNPDF3.0: as expected, since all the new
HERA and LHC data already well described in
NNPDF2.3

¢ Differences between PDFs at the 1-sigma level
at most: impact of new data and of updated
theory and methodology

¢ PDF uncertainties are reduced in many cases:
gluon,

small and
strangeness...

large-x down quarks,
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Impact of LHC data

1.25 preem

NNLO, ag =0.118, Q% = 10* GeV?
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¢ Compare global NNPDEF3.0 fit with a fit without
LHC data

¢ PDF uncertainties on large-x gluon reduced due
to top quark and jet data

¢ PDF uncertainties on light quarks reduced from
the Drell-Yan and W+charm data

¢ The description of all new LHC data, already
good in NNPDF2.3, is further improved in
NNPDF3.0
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¢ PDF luminosities are useful to translate

differences in PDFs into differences in LHC cross-

sections

¢ For quarks, luminosities are similar between 2.3
and 3.0. Antiquarks in 3.0 at large masses are harder

than in 2.3

¢ More differences for the gluon-gluon luminosity.

NNPDF3.0 softer by about 1-sigma wrt NNPDF2.3
for M< 500 GeV: implications for Higgs production
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Higgs production in gluon fusion

NNPDF3.0 settings, LHC 13 TeV, NNLO, iHixs1.3.3, «4=0.118
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¢ The softer gg luminosity in NNPDEF3.0 leads to a decrease in the ggH xsec at the LHC 13 TeV

¢ This effect arises from the combination of the improved methodology, based on closure tests, and the
new HERA-II and LHC data

¢ Remarkable stability of the NNPDF3.0 predictions with respect to the fitted dataset
¢ Interesting to compare with predictions of the upcoming updates from CT, HERAPDF and MSTW.

¢ In the pipeline: systematic comparison of NNPDF2.3 and NNPDEF3.0 for a wide range of LHC
observables using MadGraph5_aMC@NLO
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xg(x,QZ)

Impact of jet data

¢ Removing all jet data from the NNLO global fit (until exact NNLO available) is not an option:
substantial increase in large-x gluon PDF uncertainties

¢ Using the NNLO threshold calculation, benchmarked with the exact NNLO results the gg channel,
allows to make the most of the Tevatron and LHC jet data until full NNLO result available

& Remarkably, in NNPDEF3.0 the central value for g(x) in jetless fit is within 1-sigma of the global fit
result: consistency between jet data and all other datasets

NNLO, o, = 0.118, Q? = 2 GeV? NNLO, ag = 0.118, Q* = 2 GeV?
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Summary and outlook  g¥ENE WL

NNPDF3.0 is the new upcoming release from the NNPDF collaboration.
It represents a substantial improvement over NNPDF2.3 both in terms of data, theory and methodology:

[/ Data: all available H1 and ZEUS HERA-II data included, and many new LHC measurements from
ATLAS, CMS, LHCb including W asymmetry, W+charm, inclusive jets, high and low mass Drell-Yan,
top quark production, ...

[/ Theory: Improved approximate NNLO K-factors for jet data based on the partial exact NNLO
results, electroweak corrections included for all relevant data, FONLL-B for NLO sets

[/ Methodology: fitting strategy validated using closure tests, optimized Genetic Algorithms,
extended positivity, fast Bayesian regularization, PDF fitting basis independence ....

LO, NLO and NNLO sets for a range of as values will become available in LHAPDF6
Also PDF sets based on different datasets, PDFs sets in different VEN schemes, ...

In the medium and long term, NNPDF development plans:

¢ Include all relevant LHC Run I data: Complete set of 8 TeV measurements, high pT Z+jets, direct photon
production. Then from 2015 also add LHC Run II data

¢ Upgrade theory calculations as they become available: NNLO for top quark differential distributions,
exact NNLO for jets and for Z+jets

¢ Produce NNPDEF3.0 sets with QED corrections, intrinsic charm, threshold and high-energy
resummation, as well as PDF sets specific for NLO Monte Carlo event generators
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Motivation for new data in NNP]

DF3.0

¢ Top quark total cross-sections allow to constrain the large-x gluon PDF (NNLO for differential distributions
will be available soon, should be able to include as well differential top production measurements)
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Motivation for new data in NNP]

¢ W+charm production data directly sensitive to the strange PDF
¢ Measured by ATLAS (arxiv:1402.6263) and CMS (arxiv:13101138) with somewhat opposite (?) conclusions

ATLAS: light quark sea symmetric preferred

CMS: strange suppression in agreement with DIS data

L=50fb"at ys=7 TeV
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¢ However, only in the context of a global fit the optimal value for strangeness can be determined

¢ A recent analysis in the ABM framework (arxiv:1404.6469) suggest that fits with symmetric strangeness
cannot describe properly fixed target DIS and Drell-Yan data (see also R. Thorne in past PDFALHC) and that
one can fit ATLAS data with still a suppressed strangeness (same as found in NNPDF2.3 for incl W,Z)

¢ The NNPDF3.0 will perform a similar analysis, with the advantage of using a completely flexible
parametrization for s(x,Q), which in other analysis uses a very restrictive functional form
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Motivation for new data in NNPDF3.0

¢ Electroweak gauge boson production is an essential measurement for quark flavor separation
¢ The relevance of LHC W,Z production is even greater in collider-only fits

¢ Data on the Drell-Yan process at low and high masses allow to extend the kinematical coverage in Bjorken-x
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More data in the pipeline

¢ The plethora of new LHC data that is becoming available for PDF fitting makes any PDF fit somewhat outdated

shortly after it has been released

¢ At some point we need to put a cut-off about the data to include in NNPDF3.0

¢ Some important measurements that we might try to add in time for NNPDF3.0 include
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Independence of PDF fitting basis

¢ Predictions for physical observables should be independent of the specific choice of PDF fitting basis

¢ We have explored in closure tests that thanks to the improved NNPDF3.0 methodology, we achieve
almost statistically equivalent fits using two very different basis

NNPDF2.3 basis NNPDF3.0 basis
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Independence of PDF fitting basis

¢ Predictions for physical observables should be independent of the specific choice of PDF fitting basis

¢ We have explored in closure tests that thanks to the improved NNPDF3.0 methodology, we achieve
almost statistically independent fits using two very different basis

Fit in NNPDF2.3 basis vs Fit in NNPDF3.0 basis
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Positivity of physical cross-sections

¢ While PDFs are not positive definite beyond LO, physical cross-sections should always be positive

¢ Implementing this condition, without overconstraining PDFs with a too restrictive parametrization, is
essential for a reliable estimate of PDF uncertainties

¢ This is particularly crucial in the large-x region, production of BSM high-mass particles

Gluino Pair Production PDF Uncertainty
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PDF reweighting

¢ Statistically identical results should be obtained when refitting or when reweighting, even more so in a
closure test

¢ Thus Bayesian inference can be used as the ultimate closure test, sensitive to all the higher moments of
the refitted / reweighting PDFs

¢ As an illustration, compare effects of CDF, DO and ATLAS jet data included by refitting and by
reweighting. Compare also NNPDF and Giele-Keller prescriptions.

Distribution of distances between refit and RW
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Positivity of physical cross-sections

¢ While PDFs are not positive definite beyond LO, physical cross-sections should always be positive

¢ Implementing this condition, without overconstraining PDFs with a too restrictive parametrization, is
essential for a reliable estimate of PDF uncertainties

¢ This is particularly crucial in the large-x region, production of BSM high-mass particles
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Positivity of physical cross sections imposed at a low scale ~ 2 GeV, then maintained by evolution
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Preprocessing exponents

¢ In our PDF parametrization, the neural networks are complemented by polynomial prefactors whose
goal is to speed-up the NN minimization: preprocessing analysis, standard in machine learning

file,Q)=A; 2~ (1 — a:)di NN; ()

¢ These exponents are selected at random for each replica, in a wide range determined dynamically by
iterating the determination of the effective preprocessing exponents

Gluon alpha effective exponent
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These effective exponents are also useful to validate different models of non-perturbative QCD
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