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 Huge, fast growing field, with new applications being proposed every day

 Here restrict ourselves to a few representative examples: if you want to learn more about other 
applications, don’t hesitate to ask!

 For further overviews of ML applications to HEP and related fields please see e.g.:

Machine Learning in HEP

 Big data tools in Physics and Astronomy (Amsterdam, https://indico.cern.ch/event/622093/)  

Machine learning for Phenomenology (Durham, https://conference.ippp.dur.ac.uk/event/660/)

 Inter-Experimental LHC Machine Learning WG (https://iml.web.cern.ch/)

 Accelerating searches for Dark Matter with Machine Learning (https://indico.cern.ch/event/664842/)

 CERN Data Science seminars (https://indico.cern.ch/category/9320/)
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Why we need ML in HEP?
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Outstanding questions in Particle Physics

Huge gap, 1017, between Higgs and Plank scales

Elementary  or  composite?  Additional  Higgs 
bosons?

Coupling to Dark Matter? Role in cosmological 
phase transitions?

Is the vacuum state of the Universe stable?

The Higgs boson

1 GeV (Proton mass)
125 GeV (Higgs mass)

1017 GeV (Planck scale)

With radiative corrections,
the  natural  value  of  the 
Higgs mass is Planck scale

 4

Degrassi et al 12
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 The LHC will provide crucial inputs to  these open puzzles …

 …however we may need to search for subtle signals (e.g. deviation 
with respect SM) in the very messy environment of hadron collisions

Requires  not  only  state-of-the-art  theory  calculations  but  also 
exploiting  recent  developments  in  Data  Science  and  Machine 
Learning techniques

The LHC is an amazing machine: let’s make sure we extract the best 
possible physics output from it!!



Machine Learning for HEP
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The structure 
of the proton at the LHC

Higgs 
self-interactions

Boosting 
bSM searches

Automated bSM 
exclusion limits

HEP detector simulation

QCD-aware NNs 
for jet physics
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The inner life of protons with 
artificial neural networks
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Artificial Neural Networks

Artificial  neural  networks  aim  to  excel  where  domains  as  their  evolution-driven  counterparts 
outperforms traditional algorithms in tasks such as pattern recognition, forecasting, classification, ...

Inspired by biological brain models, Artificial Neural Networks (ANNs) are mathematical algorithms 
widely used in a wide range of applications, from HEP to targeted marketing and finance forecasting

From biological to artificial neural networks
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A bank wants to offer a new credit card to their clients. Two possible strategies:

Contact all customers: slow and costly

Contact 5% of the customers, train a ANN with their input (gender, income, loans) and their 
output (yes/no) and  use the information to contact only clients likely to accept the product

Cost-effective method to improve marketing performance!

% of customers contacted
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Random client selection

ANN-based client selection

ANNs - a marketing example
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ANNs can enable an autonomous vision-control drone to recognise and follow forest trails
Image classifier operates directly on pixel-level image intensities 

If a trail is visible, the software steers the drone in the corresponding direction

Giusti et al, IEEE Robotics and Automation Letters, 2016

ANNs and pattern recognition

Similar algorithms at work in self-driving cars!
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Lepton vs Hadron Colliders
In high-energy lepton colliders, such as the Large Electron-Positron Collider (LEP) at CERN, the 
collisions involve elementary particles without substructure

Cross-sections  in  lepton  colliders  can  be  computed  in  perturbation  theory  using  the 
Feynman rules of the Standard Model Lagrangian
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Anatomy of a proton-proton collision

Parton Distributions
Non-perturbative 
From global analysis

Quark/gluon collisions
Perturbative
From SM Lagrangian
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In high-energy hadron colliders the collisions involve composite particles (protons) with internal 
substructure (quarks and gluons): the LHC is actually a quark/gluon collider!

Calculations of cross-sections in hadron collisions require the combination of perturbative 
cross-sections with non-perturbative parton distribution functions (PDFs)



In high-energy hadron colliders the collisions involve composite particles (protons) with internal 
substructure (quarks and gluons): the LHC is actually a quark/gluon collider!

Anatomy of hadronic collisions

Calculations of cross-sections in hadron collisions require the combination of perturbative 
cross-sections with non-perturbative parton distribution functions (PDFs)

 16

DGLAP evolution kernel 
(perturbative)

PDFs at input 
parametrisation scale 

(non-perturbative)

Hard-scattering partonic 
cross-sections (perturbative)
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Parton Distributions
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The distribution of energy that quarks and gluons carry  inside the proton is quantified by the Parton 
Distribution Functions (PDFs)

g(x,Q): Probability of finding a gluon inside 
a proton, carrying a fraction x of the proton 
momentum, when probed with energy Q

x: Fraction of the proton’s momentum

Q: Energy of the quark/gluon collision
Inverse of the resolution length
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The distribution of energy that quarks and gluons carry  inside the proton is quantified by the Parton 
Distribution Functions (PDFs)

x: Fraction of the proton’s momentum

Q: Energy of the quark/gluon collision
Inverse of the resolution length

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first 
principles, and need to be extracted from experimental data with a global analysis
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The distribution of energy that quarks and gluons carry  inside the proton is quantified by the Parton 
Distribution Functions (PDFs)

x: Fraction of the proton’s momentum

Q: Energy of the quark/gluon collision
Inverse of the resolution length

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first 
principles, and need to be extracted from experimental data with a global analysis

Energy conservation

Dependence with quark/gluon collision energy Q determined in perturbation theory

g(x,Q): Probability of finding a gluon inside 
a proton, carrying a fraction x of the proton 
momentum, when probed with energy Q
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The Factorization Theorem
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The QCD Factorization Theorem guarantees PDF universality: extract them from a subset of process 
and use them to provide pure predictions for new processes

Determine PDFs in lepton-proton collisions ….

And use them to compute cross-sections 
in proton-proton collisions at the LHC
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Beyond BSM discovery 

Unless we improve PDF uncertainties, even if we discover New Physics, it 
will be extremely difficult to characterise the underlying BSM scenario

Gluino pair production at the LHC

PDF uncertainties in the production of New Physics heavy resonances can be al large as 100%!

Crucial i.e. in searches for supersymmetry and any BSM scenario that predicts new heavy particles 
within the reach of the LHC

Beenakker, Borchensky, Kramer, Kulesza, Laenen, Marzani, Rojo 15
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ANNs provide universal unbiased interpolants to parametrize the non-perturbative dynamics that 
determines the size and shape of the PDFs from experimental data

ANNs as universal unbiased interpolants
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Traditional approach

NNPDF approach

ANNs  eliminate  theory  bias  introduced  in  PDF  fits 
from choice of ad-hoc functional forms

NNPDF  fits  used  O(400)  free  parameters,  to  be 
compared  with  O(10-20)  in  traditional  PDFs.  Results 
stable if O(4000) parameters used!

not from QCD!
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Machine Learning for PDF fits
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Theory calculations

APFEL, HOPPET, QCDNUM, …

External (N)NLO codes

The global QCD fitStatistical framework

Experimental data

Fast NLO grids 
NNLO QCD &  

NLO EW K-factors

Fixed-target & collider DIS 
Tevatron and LHC measurements 

Jets, DY, top, Z pT, ….

PDF parametrisation,  
PDF uncertainties and propagation 

Model and theory uncertainties

NNLO DGLAP evolution 
DIS structure functions

MCFM, NLOjet++, FEWZ, 
DYNNLO, private codes…

Minimise figure of merit (*) and  
determine PDF parameters

APFEL WEB

LHAPDF

on-line plotting toolbox 

standard interface for  
public PDF delivery

http://apfel.mi.infn.it/

lhapdf.hepforge.org

fit validation, statistical  
estimators, diagnosis tools

APPLgrid, FastNLO, aMCfast….

(*) 
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robust error estimate and 
propagation
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Machine Learning for PDF fits
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Minimisers/Optimisers: Genetic 
Algorithms, Stochastic Gradient Descent, 

Covariance Matrix Adaptation …
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PDF Replica Neural Network Learning

x 
g(

x,
 Q
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2 
G
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x

The minimisation of the data vs theory 𝛘2 is performed using Genetic Algorithms
Each green curve corresponds to a gluon PDF Monte Carlo replica
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Artificial Neural Networks vs Polynomials
 Compare a benchmark PDF analysis where the same dataset is fitted with Artificial Neural Networks  

and with standard polynomials, other settings identical)

 ANNs avoid biasing the PDFs, faithful extrapolation at small-x (very few data, thus error blow up)

Polynomials Neural Networks

PDF error

PDF error

No Data No Data
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Avoiding overfitting
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Example"1d"
regression)

""""""""""is"now"a"1d"funcNon"
"of"a"1d"variable"x"

6"

EsNmate"funcNon"using""
polynominals"

Problem"is"to"determine"
“best”"model"parameters"
This"is"done"by"defining"an"
“error"funcNon”"or"loss"funcNon"
which"is"then"“minimized”."

! Easy"to"solve""
"
However:"Which"order""
of"the"polynomial"?"

For a flexible enough input functional form for the PDF, one might end up fitting statistical 
fluctuations rather than the underlying physical law! 
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Avoiding overfitting
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 Separate the input measurements into a training and a validation sample

 The validation sample is never trained, only used to monitor the quality of the fit to the training sample

 The optimal stopping point is at the global minimum of the validation χ2

Undertrained Overtrained

Optimal stopping point
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Closure testing the fitting methodology
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Generate pseudo-data based on a known theory  and test fitting methodology in this fully controlled 
environment, free of the noise and other complications (imperfect theory, data inconsistencies) of real world 
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Closure testing the fitting methodology
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Carefully benchmark which training 
strategy is more efficient

Robust statistical interpretation of PDF 
uncertainties

(from repeating ``runs of the world!’’)

Generate pseudo-data based on a known theory  and test fitting methodology in this fully controlled 
environment, free of the noise and other complications (imperfect theory, data inconsistencies) of real world 



Machine Learning for HEP
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The structure 
of the proton at the LHC

Higgs 
self-interactions

Boosting 
bSM searches

Automated bSM 
exclusion limits

HEP detector simulation

QCD-aware NNs 
for jet physics



Unravelling the Higgs Self-Coupling 
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Current measurements (couplings in single Higgs production) probe Higgs potential close to minimum

Double Higgs production essential to reconstruct the full Higgs potential and clarify EWSB mechanism

Higgs SM potential is ad-hoc: not fixed by the SM symmetries, many other EWSB mechanisms conceivable

!35

Higgs mechanism Coleman-Weinberg mechanism

single h prod double h prod

Each possibility associated to completely different EWSB mechanism, with crucial implications for the 
hierarchy problem, the structure of quantum field theory, and New Physics at the EW scale

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.06495

Probing Electroweak Symmetry breaking
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Each possibility associated to completely different EWSB mechanism, with crucial implications for the 
hierarchy problem, the structure of quantum field theory, and New Physics at the EW scale

Current measurements (couplings in single Higgs production) probe  Higgs potential close to minimum

Double Higgs production essential to reconstruct the full Higgs potential and clarify EWSB mechanism

The Higgs potential is ad-hoc: many other EWSB mechanisms conceivable

!36

Higgs mechanism Coleman-Weinberg mechanism

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.06495

Probing Electroweak Symmetry breaking
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hh->bbbb: selection strategy

Juan Rojo                                                                                                                     DRSTP, Trends in Theory 2017, 12/05/2017

Exploit 4b final state: highest signal yields, but overwhelming QCD background (by orders of magnitude!)

Carefully chosen selection strategies ensure that all relevant event topologies can be reconstructed 

b

b

b

b

b
b

b
b

Recent progress in jet substructure 
techniques important to reduced QCD 

background in the boosted regime
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Jet substructure

Juan Rojo                                                                                                                     DRSTP, Trends in Theory 2017, 12/05/2017

The rich substructure of jets offers a powerful discriminant between QCD and BSM production dynamics

Several variables have been introduced to maximise the discrimination potential

Recent progress also from the analytical point of view has improved our understanding of substructure

Example: N-subjetiness

pT of jet constituent k

Distance from subjet i to constituent k

Jet radius
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di-Higgs kinematic distributions
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di-Higgs kinematic distributions

Many kinematic variables can be used to disentangle signal and background

How do we select which ones to use? And the optical cuts? And the cross-
correlations among variables? 

We don’t need to! Use ML methods to identify automatically the combination of 
kinematical variables with the highest discrimination power!
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Multivariate techniques

Artificial Neural Network

Trained on signal and background MC events
Higgs pT

Higgs m

di-Higgs m

ECF

𝛕12

Subjet pT

…..

Input

Output

Signal? 

Background?

Juan Rojo                                                                                                                  Nikhef Topical Lectures on Machine Learning, 6/6/2018

NN optimisation based
on Genetic Algorithm

Caveat: in a measurement, training of classifier should be done on real data based on control regions
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Multivariate techniques
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The optimisation of the classifier is based on the minimisation of the cross-entropy function

Number of MC events 
used for the training

Probability that the event i 
originates from signal process

True classification of event: y’i=0 
for background, y’i=1 for signal 

aims to achieve the best possible separation between signal and background events
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Multivariate techniques
Combining information from all kinematic variables in MVA: excellent signal/background discrimination

Background 
rejected

Signal 
accepted
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ML techniques allow to substantially improve the signal significance for this process observe Higgs 
pair production in the 4b final state at the HL-LHC. Observation (maybe discovery) within reach!

!44

Discovering Higgs self-interactions

Pre-MVA

Post MVA

Juan Rojo                                                                                                                  Nikhef Topical Lectures on Machine Learning, 6/6/2018



ML techniques allow to substantially improve the signal significance for this process observe Higgs 
pair production in the 4b final state at the HL-LHC. Observation (maybe discovery) within reach!

!45

Discovering Higgs self-interactions

Pre-MVA

Post MVA

Juan Rojo                                                                                                                  Nikhef Topical Lectures on Machine Learning, 6/6/2018

Need to ensure also a high enough signal/background ratio, else experimental 
systematic errors would kill the signal significance
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Opening the Black Box
ANNs are sometimes criticised by being black boxes, with little understanding of what happens inside them

 But ANNs are simply a set of combined kinematical cuts, nothing mysterious in them!

 Kin distributions after and before the ANN cut allow determining the effective kinematic cuts being 
optimised by the MVA, which would allow a cut-based analysis
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Opening the Black Box
ANNs are sometimes criticised by being black boxes, with little understanding of what happens inside them

 But ANNs are simply a set of combined kinematical cuts, nothing mysterious in them!

 Kin distributions after and before the ANN cut allow determining the effective kinematic cuts being 
optimised by the MVA, which would allow a cut-based analysis

Juan Rojo                                                                                                                     DRSTP, Trends in Theory 2017, 12/05/2017

The MVA sculpts a Higgs peak 
in the QCD background!



A useful feature of these kind of classifiers is that they made possible verifying our physical intuition about 
which variables are more important for the discrimination and which ones are irrelevant

!48

Some physical insight!
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Total associated weight for each
of the input variables



Machine Learning for HEP
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The structure 
of the proton at the LHC

Higgs 
self-interactions

Boosting 
bSM searches

Automated bSM 
exclusion limits

HEP detector simulation

QCD-aware NNs 
For jet physics



Automated BSM limits with 
machine learning 
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arXiv:1605.02797

SUSY-AI in the pMSSM

7

93.2% accuracy @ 8TeV 
92.7% accuracy @ 13 TeV

http://www.susy-ai.org for online demo!

Sascha Caron, Jong Soo Kim, Krzysztof Rolbiecki,  
Roberto Ruiz de Austri, Bob Stienen
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Harvesting the LHC data for BSM signals
In the absence of new particles and/or interactions, LHC searches for BSM physics are used to derive 
exclusion ranges for specific scenarios

Results presented typically as excluded ranges in a subset of the full parameter space of the bSM theory

However this is only a small part of the information contained by the LHC measurements, ideally we would 
like the exclusion ranges in the full parameter space of the theory: e.g. 19 params in the pMSSM
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Harvesting the LHC data for BSM signals
One problem is that exploring the full parameter space of the theory is in general very CPU time consuming
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Harvesting the LHC data for BSM signals
One problem is that exploring the full parameter space of the theory is in general very CPU time consuming
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Harvesting the LHC data for BSM signals

By using Machine Learning tools one can speed-up the limit-setting procedure by orders of magnitude, 
making possible an efficient exploration of the full parameter space of the theory

One problem is that exploring the full parameter space of the theory is in general very CPU time consuming
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Harvesting the LHC data for BSM signals

By using Machine Learning tools one can speed-up the limit-setting procedure by orders of magnitude, 
making possible an efficient exploration of the full parameter space of the theory

One problem is that exploring the full parameter space of the theory is in general very CPU time consuming

i) Learn from training examples which points in parameter 
space are allowed/excluded

ii) Inter/Extrapolate to regions of parameter space not used 
for training

Caveat: a smooth interpolation might miss special phase 
space points, e.g. resonances
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Generalised BSM limits

 

This is a classical example of a discrete Classification problem: a given point in bSM parameter space can be 
either allowed or excluded, with no options in between

Decision Trees classifiers, such as Random Forest classifier, exhibit good performance here

Procedure starts by presenting parameter sets and class labels, to learn patterns that the input data follow. 

 Same principle for all classification algorithms, specific implementation depending on the particular problem

http://www.susy-ai.com
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Generalised BSM limits

 

 A Decision Tree consists of multiple nodes, each node specifies a test performed on the arriving attribute

 The result of this test determines to which node the attribute set is sent next. 

 Process is repeated until the final leaf node is reached, i.e. the node with no further nodes connected to it. 

 At the final node a class label is assigned to the set, specifying its class according to the classifier. 

 The tree works on the entire parameter space: every test performed interpreted as a cut in this space.

 The parameter space is split into disjunct regions, each having borders defined by the cuts in the root and 
internal nodes, and a classification defined by a leaf node.

http://www.susy-ai.com
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Harvesting the LHC data for BSM signalsSUSY-AI in the pMSSM

7

93.2% accuracy @ 8TeV  
92.7% accuracy @ 13 TeV

http://www.susy-ai.org for online demo!

 Very efficient reproduction of the full bSM parameter space

 Can be projected in any of the dimensions of the 19-parameter space of the pMSSM

 Generalise to points of parameter space not used for the classifier training in O(ms) as opposed to O(h)

Compare classification (allowed vs excluded) in real data vs the ML-trained classifier
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Harvesting the LHC data for BSM signals

www.susy-ai.com

http://www.susy-ai.com


 60Juan Rojo                                                                                                                  Nikhef Topical Lectures on Machine Learning, 6/6/2018

Harvesting the LHC data for BSM signals

www.susy-ai.com
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http://www.susy-ai.com
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(Un)natural supersymmetry

 
arXiv:1612.06333

 Natural regions of the 
SUSY parameter space still 
allowed by current 
constraints …

Being able to assess this 
requires a full efficient 
exploration of the theory 
parameter space

http://www.susy-ai.com
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Parametrised Neural Networks for HEP 
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arXiv:1601.07913

Pierre Baldo, Kyle Cranmer, Taylor Faucet,  
Peter Sadowski, Daniel Whiteson



Parametrised ML for HEP
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Individual networks trained with examples with a single value of some parameter θ (same the 
mass of some new BSM particle), xi are the event kinematic variables 

The individual networks are purely functions of the input features. 

Problem: performance for intermediate values of θ is not optimal nor does it necessarily vary 
smoothly between the networks. 

As shown for the Higgs Pair 
Production case, NNs are often 
used as classifiers

 Input variables are event 
kinematics, ie, four-momenta or 
some other higher-level variables



Parametrised ML for HEP
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Individual networks trained with examples with a single value of some parameter θ (same the 
mass of some new BSM particle), xi are the event kinematic variables 

The individual networks are purely functions of the input features. 

Problem: performance for intermediate values of θ is not optimal nor does it necessarily vary 
smoothly between the networks. 

Signal: 5 TeV Z’
Background: QCD   

Signal: 50 GeV Z’ (dark photon)
Background: QCD   

Performance of 
classifiers will be very different

in the two cases!   



Parametrised ML for HEP
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 A single network trained with input features as well as an input parameter θ

 Such a network is trained with examples at several values of the parameter θ

 Superior performance in predicting/describing values of θ not used during the training

also ensures smooth interpolation and allows one imposing physical constraints



Parametrised ML for HEP
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 The addition of the input parameter θ introduced extra considerations in the training

  The distribution of θ used for the training is only relevant in how it affects the quality of the 
resulting parameterized network: it does not imply that the resulting inference is Bayesian

 Also, for some components of the training sample the values of θ might not be meaningful at all, 
for example the specific value of a bSM particle mass does not affect the SM background samples

Toy example: the parametrised NN smoothly interpolates for values of the parameter not used in training

Use random values of the bSM parameters when training on the SM samples   



A word on Deep Neural Networks
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 A Deep Neural Network (DNN) is nothing but a standard multi-layer feed-forward perceptron 
with a large number of internal layers

 All types of neural nets eg Recursive, Convolutional, Parametrised etc can be made “deep” by 
adding more hidden layers

 For several applications, the increased complexity achieved this way leads to a significant  
improvement in performance



Application to bSM searches
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 The goal here is to produce an optimised classifier that allows discriminating between signal and 
background events, without any prior assumption on the value of mX

 Parameterized deep neural network models were trained on GPUs using the Blocks framework

 The architectures contain five hidden layers of 500 hidden rectified linear units with a logistic 
output unit, with stochastic gradient descent used for the NN training

Consider a new heavy bSM particle that decays into top quarks pairs



Application to bSM searches
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 Compare discrimination (AUC) for parameterised network and single network trained at 1000 GeV

 The AUC score decreases for single network as the mass deviates from the trained value,  
parameterised network improved performance; 

 Performance a single network trained with an unlabelled mixture of signal samples at all masses is 
inferior to that of the parametrised network

Compare performance of parametrised NNs with traditional NNs

Unlabelled mass in 
training samples

AUC: area under ROC



Application to bSM searches
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 Compare discrimination (AUC) for parameterised network and single network trained at 1000 GeV

 The AUC score decreases for single network as the mass deviates from the trained value,  
parameterised network improved performance; 

 Performance a single network trained with an unlabelled mixture of signal samples at all masses is 
inferior to that of the parametrised network

Compare performance of parametrised NNs with traditional NNs

Unlabelled mass in 
training samples

AUC: area under ROC

Same performance since m=1000 
used in training of both networks



More  on DNNs for BSM searches

Juan Rojo                                                                                                                  Nikhef Topical Lectures on Machine Learning, 6/6/2018

Compare the performance of the discrimination between shallow and deep neural networks

Here use a five-layer NNs with 300 hidden units in each layer

Compare also with the performance of the Boosted Decision Tree



More  on DNNs for BSM searches
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Signal: heavy Higgs production (eg 2HDM)

Background: QCD top-quark pair

Signal: Chargino pair production in SUSY

Background: W pair production



More  on DNNs for BSM searches
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Higgs benchmark scenario

SUSY benchmark scenario

Using the right classifier can make 
a difference between ``evidence’’ 

and ``discovery’’

The improvement by using
deep networks is moderate here



Machine Learning for HEP
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Simulating HEP detectors with 
Generative Adversarial Networks
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arxiv:1712.10321
Paganini, de Oliveira, Nachman



The name of the game
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Modelling accurately the response of detectors with the propagation of high energy particles is an 
essential task for present and future HEP experiment

 Detector simulation at the LHC is a very CPU-intensive task, dominated by modelling of particle 
showers inside calorimeters

 Generative Adversarial Networks can speed up detector simulation by orders of magnitude 

Task: to efficiently model the 
propagation of high energy 

particles (and their 
interaction) within the layers 

of electromagnetic and 
hadronic calorimeters















A word on GANs
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  New architecture for an unsupervised neural network training (unlabelled samples) 

 Based on two independent nets that work separately and act as adversaries: 

 the Discriminator (D) undergoes training and plays the role of classifier, and 

 the Generator (G) and is tasked to generate random samples that resemble real samples with a 
twist rendering them as fake samples.



CaloGANs
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  Use GANs as a tool to speed up full simulation of particle showers in a HEP calorimeter

  The generator G learns a map from a latent space to the space of generated samples for training

 Carefully understanding the underlying physics of particle propagation in a detector is crucial to set up 
and optimise the training strategy, e.g. relationships between neighbouring detector layers

Output: generated samples 
to be used for training DGenerator Network



CaloGANs
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  Use GANs as a tool to speed up full simulation of particle showers in a HEP calorimeter

  The generator G learns a map from a latent space to the space of generated samples for training

 Carefully understanding the underlying physics of particle propagation in a detector is crucial to set up 
and optimise the training strategy, e.g. relationships between neighbouring detector layers

Input: generated samplesDiscriminator Network

Output:
i) Is sample real or fake?
ii) What is the reconstructed particle 

energy as function of true energy?



CaloGANs
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  Use GANs as a tool to speed up full simulation of particle showers in a HEP calorimeter

  The generator G learns a map from a latent space to the space of generated samples for training

 Carefully understanding the underlying physics of particle propagation in a detector is crucial to set up 
and optimise the training strategy, e.g. relationships between neighbouring detector layers

Input: generated samples

Effectively parametrises detector simulation into a map:

Real particle energy => Reconstructed particle energy

Output:
i) Is sample real or fake?
ii) What is the reconstructed particle 

energy as function of true energy?
Discriminator Network



CaloGANs
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  Compare real training samples with the corresponding ``fake’’ (generated) samples from the GAN, 
identified with some nearest neighbours criterion

 To optimisation of the GAN aims to generate fake samples indistinguishable close to the real ones

 The training of the GANs ends when the Classifier is not able any more from tell apart the real samples 
from the fake ones that the Generator is producing



CaloGANs vs full detector simulation
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Still room for improvement but very promising results!



CaloGANs vs full detector simulation
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Speed-up by several orders of magnitude, specially when running in GPUs



The many uses of GANs
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arXiv:1710.10196

Which one of these images are real and which ones are fake (generated by the GANs)?
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QCD-aware recursive neural networks
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1702.00748
Louppe, Cho, Becot, Cranmer



From image recognition to jetography
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  In the context of HEP applications of Machine Learning, jets from hadron collisions have been 
extensively studied

 Topics include quark/gluon discrimination, jet substructure, jet charge, and other jet properties

 Progress in these ML applications has been driven by analogy between images and hadron calorimeters

Eg arxiv:1612.01551
Deep convolutional NNs

for quark/gluon jet 
discrimination



From image recognition to jetography
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  In the context of HEP applications of Machine Learning, jets from hadron collisions have been 
extensively studied

 Topics include quark/gluon discrimination, jet substructure, jet charge, and other jet properties

 Progress in these ML applications has been driven by analogy between images and hadron calorimeters

Eg arxiv:1612.01551
Deep convolutional NNs

for quark/gluon jet 
discrimination

``QCD Image’’

``color 
separation’’



Convolutional Neural Networks
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 Convolutional Neural Networks (CNNs) have convolutional layers based on filters

 Each filter maps a group of numbers into a number, reducing the dimensionality of the data

 Specially useful for pattern recognition (eg for self-driving vehicles)

mathworks.com

http://mathworks.com


Convolutional Neural Networks
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 Convolutional Neural Networks (CNNs) have convolutional layers based on filters

 Each filter maps a group of numbers into a number, reducing the dimensionality of the data

 Specially useful for pattern recognition (eg for self-driving vehicles)

mathworks.com

Assign probability that this
Image corresponds to a flower

Training on labelled samples

http://mathworks.com


CNNs for Dark Matter Searches
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 Use CNNs to discriminate point sources (astrophysical origin) versus diffuse flux (dark matter) 
in galactic centre images

Isotropic"or"point"sources:"A"Deep"
ConvoluNonal"Network"approach"

Luc)Hendriks,"S."Caron"et"al."Fermi@LAT"cat."2"paper" arXiv:1708.06706" 39"

Output"of"the"5"convoluNonal"layers"can"be"“visualized”"per"event."

Caron, Hendriks et al arXiv:1708.06706



CNNs for Dark Matter Searches
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 Use CNNs to discriminate point sources (astrophysical origin) versus diffuse flux (dark matter) 
in galactic centre images

Caron, Hendriks et al arXiv:1708.06706

Our"convnet"

37"

Final classification: 
point sources vs diffuse flux



Recursive Neural Networks

Juan Rojo                                                                                                                  Nikhef Topical Lectures on Machine Learning, 6/6/2018

 One can build recursive NNs  that are ``aware’’ of the fact that QCD is the correct theory of the 
strong force in Nature

Recursive Neural Networks (RNNs) are deep neural networks where the same set of weights are 
applied recursively following a structured input



Recurrent Neural Networks
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Not to mix with Recurrent Neural Networks, which use the output of the current node as the input 
to the next node



Recurrent Neural Networks
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Lead to truly game-changer applications, such as random generation of country song lyrics

http://www.mattmoocar.me/blog/RNNCountryLyrics/



Recurrent Neural Networks
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RNNs use as inputs not just the current “training examples” but also what they have perceived 
previously: they have a built-in notion of time ordering useful for time-dependent functions

Feed"forward"or"recurrent"?"

"RNN"will"be"a"funcNon"with"inputs""x_t""(input"vector)"and"
previous"state""y(t−1)"."The"new"state"will"be""y(t)"."
The"recurrent"funcNon,""f""is"used"for"all"Nmes"t" 25"

RNN"take"as"their"input"not"just"the"current"input"example"
they"see,"but"also"what"they"have"perceived"previously"
# “NoNon"of"Nme"/"ordering”""
Useful"to"learn"“Nme"dependent"funcNons”"

The output of a RNN at time time, y(t), depends both on the current input example x(t) as well 
as of its previous output y(t-1) (or activation states of hidden neutrons at t-1)



QCD-aware NNs for jet physics
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 Each particle is represented by four-momentum vi

For each individual jet, the embedding h1jet (tj) is computed 
recursively from the root node down to the outer nodes of the 
binary tree tj

 The resulting embedding is chained to a subsequent classifier

 The topology of the network is distinct for each jet and is 
determined by a sequential recombination jet algorithm

QCD-motivated recursive jet embedding for classification

e.g. the anti-kT jet clustering algorithm leads to a different
NN topology than the Cambridge/Aachen one 
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The same strategy can be applied to the full event composed by many jets

Machine learning classification based on recursive neural networks can implement
physical features such as that the reconstructed jets will be infrared and collinear safe

QCD-aware NNs for jet physics
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Performance of classification 
of QCD vs non-QCD jets 

with different settings

Best results are achieved 
through nested recurrence 

over the jets and over its 
constituents, as motivated 

by QCD

Jet clustering here can be 
understood as a 

preprocessing of the input-
level data

Jet clustering also essential 
to isolate soft and semi-hard 

QCD physics that 
complicate the classification

vi:  particle four-momentum
 h1jet (tj): jet embedding, including “QCD” clustering information

QCD-aware NNs for jet physics



Machine Learning tools are everywhere!

Deep ML +FPGA 

FCN, Recurrent, 
LSTM NN 

 Convolutional DNN  

Interesting areas 
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Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

Deep Kalman 
RNNs 

Generative Models, 
Adversarial Networks 

Multiobjective Regression  

For many crucial applications, ML tools not just one option, but the only option

S. Glayzer
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S. Glayzer
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ML cheat sheet 
U N I V E R S I T Y O F C O P E N H A G E N

Machine Learning Workflow

Large-Scale Machine Learning in Astronomy
Slide 8/42
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Endless possibilities - but also many non-trivial hurdles to overcome



Take-away message
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Proficiency in ML applications requires a deep understanding of both the physical problem 
being addressed as well as of the inner workings of the specific algorithms used!



Machine Learning algorithms are already transforming our world, from the way we move, 
shop and heal ourselves, to our understanding of what makes us unique as humans

In the context of LHC data analysis and interpretation, ML tools are ubiquitous, from event 
selection deep in the detector chain (triggering) to bottom-quark tagging and automated BSM 
models classification (and exclusion)

Avoid using ML tools as black boxes: a detailed understanding of both the physical and the 
algorithmic aspects of the problem is essential

ANNs and LHC phenomenology
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The structure 
of the proton at the LHC

Higgs 
self-interactions

Boosting 
bSM searches

Automated bSM 
exclusion limits

HEP detector simulation

QCD-aware NNs 
For jet physics
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Fascinating times ahead at the high-energy frontier!

Ready to be exploited with our Machine Learning toolbox!
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Fascinating times ahead at the high-energy frontier!

Thanks for your attention!
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Ready to be exploited with our Machine Learning toolbox!


