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Machine Learning in HEP

¢ Huge, fast growing field, with new applications being proposed every day

¢ Here restrict ourselves to a few representative examples: if you want to learn more about other
applications, don’t hesitate to ask!

¢ For further overviews of ML applications to HEP and related fields please see e.g.:

M Big data tools in Physics and Astronomy (Amsterdam, https:/ /indico.cern.ch /event/622093/)

[ Machine learning for Phenomenology (Durham, https:/ / conference.ippp.dur.ac.uk/event/660/)

[ Inter-Experimental LHC Machine Learning WG (https:/ /iml.web.cern.ch/)

M Accelerating searches for Dark Matter with Machine Learning (https:/ /indico.cern.ch/event/664842 /)

[ CERN Data Science seminars (https:/ /indico.cern.ch / category /9320/)
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Outsta,ndmg questlons m Pa,rtlole Physms

Huge ¢ap, 1017, between Higegs and Plank scales
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[M Elementary or composite? Additional Higgs

bosons?

[ Coupling to Dark Matter? Role in cosmological
phase transitions?

[ Is the vacuum state of the Universe stable?
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With radiative corrections,
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Higgs mass is Planck scale
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Outstandmg questlons in Pa,rtlcle Physms

[ Huge gap, 1077, between Higgs and Plank scales
[ Weakly interacting massive particles? Sterile
[ Elementary or composite? Additional Higgs neutrinos? Extremely light particles (axions)?
bosons?
[ Interactions with Standard Model particles?
[ Coupling to Dark Matter? Role in cosmological
phase transitions? [ What is the structure of the Dark Sector? Is

Dark Matter self-interacting?
[ Is the vacuum state of the Universe stable?

Bullet cluster

Mass density
contours
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Outstanding questions in Particle Physics

" The Higgs boson 1‘

[ Huge gap, 1077, between Higgs and Plank scales
[ Weakly interacting massive particles? Sterile

[ Elementary or composite? Additional Higgs neutrinos? Extremely light particles (axions)?
bosons?
[ Interactions with Standard Model particles?
[ Coupling to Dark Matter? Role in cosmological
phase transitions? [ What is the structure of the Dark Sector? Is

Dark Matter self-interacting?
[ Is the vacuum state of the Universe stable?

Forces

[ Why three families? Can we explain masses . s ‘
and mixings? . Y
[ Origin of Matter-Antimatter asymmetry in . -

the Universe?

[ Are neutrinos Majorana or Dirac? CP
violation in the lepton sector?

Leptons
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Outstanding questions in Particle Physics

[ Huge gi
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bosons?
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¢ The LHC will provide crucial inputs to these open puzzles ...

¢ ...however we may need to search for subtle signals (e.g. deviation
with respect SM) in the very messy environment of hadron collisions

¢Requires not only state-of-the-art theory calculations but also
exploiting recent developments in Data Science and Machine
Learning techniques

¢The LHC is an amazing machine: let’s make sure we extract the best
possible physics output from it!!
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Machine Learning for HEP

Higgs

The structure self-interactions

of the proton at the LHC

t@\&ii QCD-aware NNs
IR o for jet physics

Automated bSM I Boosting
exclusion limits bSM searches

HEP detector simulation
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Machine Learning for HEP

Higgs

‘ The structure : : :
' self-interactions

: of the proton at the LHC }

E{u QCD-aware NNs
= For jet physics

e
Automated bSM %@3 Boosting
exclusion limits bSM searches

HEP detector simulation
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The inner life of protons with
artificial neural networks

- -

Nikhef Topical Lectures on Machine Learning, 6/6/2018



Artificial Neural Networks

Inspired by biological brain models, Artificial Neural Networks (ANNs) are mathematical algorithms
widely used in a wide range of applications, from HEP to targeted marketing and finance forecasting

From biological to artificial neural networks

Hidden nodes layer

Input nodes layer

Output nodes layer

.
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f‘ N\ . \ \ A " J >
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A

Input x3
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Artificial neural networks aim to excel where domains as their evolution-driven counterparts
outperforms traditional algorithms in tasks such as pattern recognition, forecasting, classification, ...
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ANNSs - a marketing example

A bank wants to offer a new credit card to their clients. Two possible strategies:
& Contact all customers: slow and costly

@ Contact 5% of the customers, train a ANN with their input (gender, income, loans) and their
output (yes/no) and use the information to contact only clients likely to accept the product

Cost-effective method to improve marketing performance!

100 7------ PESEEEE pemmmes e

% of positive answers

. o
.’0
B e

10 20 3¢ 4 50 60 70 80 30 100

% of customers contacted
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ANNs and pattern recognition

& ANNSss can enable an autonomous vision-control drone to recognise and follow forest trails
& Image classifier operates directly on pixel-level image intensities

¢1If a trail is visible, the software steers the drone in the corresponding direction

: ‘ .. -
\'- e ' ‘ ~

.
o .
D

- !
Control Signal!

|

Tum GO Turn
Left Straight Right

Giusti et al, IEEE Robotics and Automation Letters, 2016
Similar algorithms at work in self-driving cars!
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Lepton vs Hadron Colliders

In high-energy lepton colliders, such as the Large Electron-Positron Collider (LEP) at CERN, the
collisions involve elementary particles without substructure

Cross-sections in lepton colliders can be computed in perturbation theory using the
Feynman rules of the Standard Model Lagrangian
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Anatomy of a proton-proton collision

In high-energy hadron colliders the collisions involve composite particles (protons) with internal
substructure (quarks and gluons): the LHC is actually a quark/gluon collider!

v
Parton Distributions
Non-perturbative
From global analysis
_|_
7

Quark/gluon collisions
Perturbative
From SM Lagrangian

Calculations of cross-sections in hadron collisions require the combination of perturbative
cross-sections with non-perturbative parton distribution functions (PDFs)

15
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Anatomy of hadronic collisions

In high-energy hadron colliders the collisions involve composite particles (protons) with internal
substructure (quarks and gluons): the LHC is actually a quark/gluon collider!

DGLAP evolution kernel
(perturbative)

v/

o™ ({a;}) = 5:;(Q*) @ Tij 1 (Q% Q) ® ar (Qo, {ai}) ® ¢ (Qo, {a;})

T N\ /

PDFs at input
parametrisation scale
(non-perturbative)

Hard-scattering partonic
cross-sections (perturbative)

Calculations of cross-sections in hadron collisions require the combination of perturbative
cross-sections with non-perturbative parton distribution functions (PDFs)
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Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton

Distribution Functions (PDFs)

Q: Energy of the quark/gluon collision
g Q/I; 9 > Inverse of the resolution length

g(x,Q): Probability of finding a gluon inside
a proton, carrying a fraction x of the proton

momentum, when probed with energy Q

Juan Rojo

N\

x: Fraction of the proton’s momentum
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Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton

Distribution Functions (PDFs)

Q: Energy of the quark/gluon collision
g t/I; 9 > Inverse of the resolution length

g(x,Q): Probability of finding a gluon inside
a proton, carrying a fraction x of the proton

momentum, when probed with energy Q

N\

x: Fraction of the proton’s momentum

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first
principles, and need to be extracted from experimental data with a global analysis

Juan Rojo
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Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton

Distribution Functions (PDFs)

/g

g(x,Q): Probability of finding a gluon inside
a proton, carrying a fraction x of the proton

momentum, when probed with energy Q

N\

Q: Energy of the quark/gluon collision
t/I; 9 > Inverse of the resolution length
,...M .

.

x: Fraction of the proton’s momentum

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first
principles, and need to be extracted from experimental data with a global analysis

1
¢ Energy conservation / dx (Q(CL‘,Q) + E q(a},Q)> =1
0
q

¢ Dependence with quark/gluon collision energy Q determined in perturbation theory

dg(x, Q)
0ln(Q

Juan Rojo

= P, (a;5) ® g(z,Q) + Py (as) ® q(z,Q)
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The Factorization Theorem

The QCD Factorization Theorem guarantees PDF universality: extract them from a subset of process
and use them to provide pure predictions for new processes

Olp = glq (0437 O‘) & q(x, Q>

Lept
Lepton Riath

Scattered
Quark

={q(x)

IDetermine PDFs in lepton-proton collisions ....

N ‘} And use them to compute cross-sections
= lin proton-proton collisions at the LHC

Juan Rojo

~

Opp = Uq(j (&87 Oé) & Q(wla Q) & Q(x27 Q)
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Beyond BSM discovery

PDF uncertainties in the production of New Physics heavy resonances can be al large as 100%!

Crucial i.e. in searches for supersymmetry and any BSM scenario that predicts new heavy particles

within the reach of the LHC

Knvo+nLL(pp — g9 + X)
1.80 | /5 — 13 TeV T )

HF = PR =M

NNPDF3.0NLO

2.00
g g
7600000000000} 5666 pP .
kl : 1 .
: 1.40
E 1.20
: 1.00
k2 :a P2
gqﬁﬁmmﬁmmﬁ" 5666 n 5 0.80
0.60
1000

Gluino pair production at the LHC

1500

2000 2500 3000 3000
m(j = mg =m [GGV]

Beenakker, Borchensky, Kramer, Kulesza, Laenen, Marzani, Rojo 15

2|
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Unless we improve PDF uncertainties, even if we discover New Physics, it

will be extremely difficult to characterise the underlying BSM scenario
L—
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ANNs as universal unbiased interpolants

ANN’s provide universal unbiased interpolants to parametrize the non-perturbative dynamics that
determines the size and shape of the PDFs from experimental data

Traditional approach

NNPDF approach

, v
M not from QCD!

g(x,Qo) = Ay(1 — )92~ " (14 cgVs+dgx+...)

g(x, Qo) = AJANN,(x)

ANN(2) = €9 = F [¢0), {0}, (60)]

ni—1

) _ (I=1) «(I1-1) (1)
fi — g Z Wi fj — 97;
j=1

Juan Rojo

g(L) & ANNSs eliminate theory bias introduced in PDF fits
from choice of ad-hoc functional forms

@ NNPDF fits used O(400) free parameters, to be
compared with O(10-20) in traditional PDFs. Results
stable it O(4000) parameters used!
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Machine Learning for PDF fits

-

\_

Experimental data

Fixed-target & collider DIS
Tevatron and LHC measurements
Jets, DY, top, Z pT, ....

(Statistical framework\

PDF parametrisation,
PDF uncertainties and propagation
Model and theory uncertainties

- Y,

4 N
Theory calculations

- Y,

NNLO DGLAP evolution R

DIS structure functions

APFEL, HOPPET, QCDNUM, ...

Juan Rojo

a )
fit validation, statistical
estimators, diagnosis tools
\_ v,
( )
APFEL WEB
a ) http://apfel.mi.infn.it/
The global QCD fit pelfapietmLinin.
g on-line plotting toolbox
Minimise figure of merit (*) and
L determine PDF parameters y a LHAPDF )
Ihapdf.hepforge.org
standard interface for
\_ public PDF delivery y
(*) Ngat
Cah) = Y (o™ = o ({ai})) (covexp + covan) , (057 = ol ({ai}))
m,n=1
. APPLgrid, FastNLO, aMCfast....
)
Fast NLO grids External (N)NLO codes
NNLO QCD & €|  LICFM, NLOjet++, FEWZ,
NLO EW K-factors DYNNLO, private codes...

J
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Machine Learning for PDF fits

e N

r

\_

. )
Experimental data N N P D F fit validation, statistical
Fixed-target & collider DIS estimators, diagnosis tools

Tevatron and LHC measurements
Jets, DY, top, Z pT, ....

- _J

( )
APFEL WEB

| http://apfel.mi.infn.it/
l

Arttﬁcml Neuml Networks i

on-line plotting toolbox

PDF parametrisation, h PDF t . \_
‘ PDF uncertainties and propagation : or the arametr; Satzon
254 Model and theory uncertainties &% M f o 7 p R & LHAPDF R
} - ) 7 Ihapdf.hepforge.org
a standard interface for
\_ public PDF delivery y
Theory calculations o
N, dat
N J o Pdah =Y (0% = ol ({ai}) (covexp + covan) o, (057 = o ({ai}))
m,n=1
T . APPLgrid, FastNLO, aMCfast....
) ) ( ) (
NNLO DGLAP evolution Fast NLO grids External (N)NLO codes
DIS structure functions
NNLO QCD & €|  \ICFM, NLOjet++, FEWZ,
APFEL, HOPPET, QCDNUM, ... ) L NLO EW K-factors ) L DYNNLO, private codes...
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Machine Learning for PDF fits

T '/xperimental data

Fixed-target & collider DIS
| Tevatron and LHC measurements
. Jets, DY, top, Z pT, ....

PDF parametrisation,
PDF uncertainties and propagation

(Statistical framework\

\ Model and theory uncertainties )
~ )
Theory calculations
\_ J
~
NNLO DGLAP evolution

DIS structure functions

APFEL, HOPPET, QCDNUM, ...

ropa atzon
“ ' _ 8

Monte Carlo method for |
robust error estimate and

~

fit validation, statistical

-

\

estimators, diagnosis tools
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~
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APFEL WEB
( . http://apfel.mi.infn.it/
The global QCDfit |/ _» L
g on-line plotting toolbox
Minimise figure of merit (*) and
L determine PDF parameters y 4 LHAPDF )
Ihapdf.hepforge.org
standard interface for
\_ public PDF delivery y
(*) Nyat
Cah) = D (o5 = ol ({a:})) (covexp + covin) o, (017 = o™ ({a:}))
m,n=1
: APPLgrid, FastNLO, aMCfast....
( )
Fast NLO grids External (N)NLO codes
NNLO QCD & €|  MCFM, NLOjet++, FEWZ,
NLO EW K-factors DYNNLO, private codes...
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Machine Learning for PDF fits

r

\_

Experimental data |

Fixed-target & collider DIS
Tevatron and LHC measurements
Jets, DY, top, Z pT, ....

= W——e———,-;?.q—w =

(Statistical framework\

PDF parametrisation,

|
f

= — = — — = - e

e — = - ===

!

thmzsers/Optzmzsers. Genetic “
Algorithms, Stochastic Gradient Descent, 'n
Covamance Matrtx Adaptatton :

e ==

Minimise figure of merit (*) and
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fit validation, statistical
estimators, diagnosis tools

\ _J
- )

APFEL WEB

http://apfel.mi.infn.it/

on-line plotting toolbox

-

J
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PDF uncertainties and propagation .
\ Model and theory uncertainties y SRR H2) S TR (- L H A PD F R
Ihapdf.hepforge.org
( ) standard interface for
\_ public PDF delivery y
Theory calculations "
N dat
N J o e =Y (08 =0l ({a:})) (covesp + covan)nh (00 — o ({a:}))
m,n=1
T . APPLgrid, FastNLO, aMCfast....
) ) ( )
NNLO DGLAP evolution Fast NLO grids External (N)NLO codes
DIS structure functions
NNLO QCD & MCFM, NLOjet++, FEWZ,
APFEL, HOPPET, QCDNUM, ... NLO EW K-factors DYNNLO, private codes...
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PDF Replica Neural Network Learning

The minimisation of the data vs theory %2 is performed using Genetic Algorithms

Each green curve corresponds to a gluon PDF Monte Carlo replica

X g(Xx, Q2= 2 GeV?2)

27/
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Artificial Neural Networks vs Polynomials

¢ Compare a benchmark PDF analysis where the same dataset is fitted with Artificial Neural Networks
and with standard polynomials, other settings identical)

& ANNSs avoid biasing the PDFs, faithful extrapolation at small-x (very few data, thus error blow up)

Fit vs HIPDF2000, Q° = 4. GeV?

Q 10j I | ||||||| | I ||||||I I | lllllll | I llllll: 10|
I 9 Polynomials - . Neural Networks
s
8| - i\
fL

PDF error

: PDF error

-No Data

10 107 12‘2 107 1
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Avoiding overfitting

For a flexible enough input functional form for the PDF, one might end up fitting statistical
fluctuations rather than the underlying physical law!

Or 1 Or

—

0 s | 0

Or 0t

0 s 1 0
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Avoiding overfitting

¢ Separate the input measurements into a training and a validation sample
¢ The validation sample is never trained, only used to monitor the quality of the fit to the training sample

¢ The optimal stopping point is at the global minimum of the validation X2

2.56

2.55 [

R

253 |

<BE>

2.52 ~

251 |

- Training
25~ Validation

2‘49 [ A A A ' l 'S A A A A A A A 'S i
500 1000 1500 + 2000 2500

neration/10

— —
=

Optimal stop poin

i e
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Closure testing the fitting methodology

Generate pseudo-data based on a known theory and test fitting methodology in this fully controlled
environment, free of the noise and other complications (imperfect theory, data inconsistencies) of real world

> ‘ New Fitting Methodology \

Define Underlying Physical Law
ie input PDFs from MSTWO08, CT10, NNPDF2.3...

Try harder!

/

Now you can fit
real exp data!

/

Generate random pseudo-data for the NNPDF3.0 dataset
from info of experimental uncertainties and correlations

Closure Test
Perform (NN)PDF fit successful!

Validate resulting PDF set:
[ Reproduce input PDFs oK!
[/] Both central values and uncertainties
1 Expected values of X2 are determined by pseudo-data
Fail? [/ PDF reweighting equal to refitting (Bayesian inference)
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Closure testing the fitting methodology

Effectiveness of Genetic Algorithm in Level O Closure Tests

I | I I I | I I LI I I I I | I | T I
107 —>¢— 0ld (2.3) genetic algorithm _
= —><— New genetic algorithm =
107 E
o - ]
X - —
10° =

1 0'4 | | | 1 | 11 1 I | | | 1 | 11 I

10* _ 10°
Number of Generations

— -
o —
w

Carefully benchmark which training
strategy is more efficient

0
Q0

-
—

c

Distribution of single replica fits in level 2 uncertainties

IIII|IIIIIIIIIIIIII|IIII|IIII1IIIIIIIII|IIIIIIII

Replica distribution

200
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I | | ] [ I | | | | | | | I I | | I Ll | bed | |
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Difference to theory (o)

Gaussian distribution

|III|III|IIIIIII|III|III|I[I|III|III|I

FTTTTTTTTTTTTTT T TT T TTTTT T T TTIT]ITTT
A L R R L R

o LI

Robust statistical interpretation of PDF
uncertainties
(from repeating " runs of the world!”)

Generate pseudo-data based on a known theory and test fitting methodology in this fully controlled
environment, free of the noise and other complications (imperfect theory, data inconsistencies) of real world

Juan Rojo
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Machine Learning for HEP
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The structure y : : :
¢ self-interactions §

of the proton at the LHC
QCD-aware NNs
for jet physics
Automated bSM Boosting
exclusion limits bSM searches

HEP detector simulation
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r X
Unravelling the Higgs Self-Coupling

- S -

Boosted Category, no PU

B Signal
107 EZZ1 Background| |
8
. 6f
a7
2077
8.0 0.2 0.4 0.6 0.8 1.0 34
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Probing Electroweak Symmetry breaking

& Current measurements (couplings in single Higgs production) probe Higgs potential close to minimum
¢ Double Higgs production essential to reconstruct the full Higgs potential and clarify EWSB mechanism

¢ Higgs SM potential is ad-hoc: not fixed by the SM symmetries, many other EWSB mechanisms conceivable

single h prod double h prod
o
h “".' / \ ""'
e/ \ /
Higgs mechanism Coleman-Weinberg mechanism

V(h) =m;hth + %)\(/ﬁ/z)g V(h) — %)\(hfh)glog [(hih)]

‘m, 2

Each possibility associated to completely different EWSB mechanism, with crucial implications for the
hierarchy problem, the structure of quantum field theory, and New Physics at the EW scale

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.0649!
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Probing Electroweak Symmetry breaking

¢ Current measurements (couplings in single Higgs production) probe Higgs potential close to minimum
¢ Double Higgs production essential to reconstruct the full Higgs potential and clarify EWSB mechanism

¢ The Higgs potential is ad-hoc: many other EWSB mechanisms conceivable

Higgs mechanism Coleman-Weinberg mechanism

V(h) =mihh + %)\(h‘th)2 V(h) — %A(h*h)glog [(hfh)]

.m' 2

Each possibility associated to completely different EWSB mechanism, with crucial implications for the
hierarchy problem, the structure of quantum field theory, and New Physics at the EW scale

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.0649!
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hh->bbbb: selection strategy

¢ Exploit 4b final state: highest signal yields, but overwhelming QCD background (by orders of magnitude!)

& Carefully chosen selection strategies ensure that all relevant event topologies can be reconstructed

Resolved " Boosted

Recent progress in jet substructure
techniques important to reduced QCD
background in the boosted regime

A

37 Juan Rojo QCD jet Boosted W jet Boosted top quark jet



Jet substructure

¢ The rich substructure of jets offers a powerful discriminant between QCD and BSM production dynamics
¢ Several variables have been introduced to maximise the discrimination potential

¢ Recent progress also from the analytical point of view has improved our understanding of substructure

Example: N-subjetiness

1 : A
TN = & ZPT,k -min (0 Rk, ..., 0RNg) , do = ZPT,k R,
k k

N

Distance from subjet i to constituent k

pT of jet constituent k

Jet radius

38 Juan Rojo DRSTP, Trends in Theory 2017, 12/05/2017



di-Higgs kinematic distributions

Resolved category, (ny;) =0
0.035—— : . : :

- Signal
0.030r| --- Background 1

T

0.025

10.020

®
0.015
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-—l—L .....

60 80 100 120 140 160 180
Invariant Mass of Leading Higgs Candidate (GeV)

0.005L ymmmr == ==="

Boosted category, {ny;) =0

— Signal
U == Background|]

80 0.1 0.2 0.3 0.4 0.5
ECF ratio C{” in leading Higgs candidate
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Resolved category, no PU
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di-Higgs kinematic distributions

Resolved category, no PU

Resolved category, (np; =0
0.035 . . : :

l— Siglnal 2 oo
10° R 1
0.030r| --- Background : Background|;
! N "Ie o |
0.025F . - Sad -= -
I . -: _l—l (- - - _‘_\—|_I_‘_|_
1 -
10.020} 1 5 [ jmd e '
> © ' e
© Nn.O1E I } ;9;3 N : — L
Many kinematic variables can be used to disentangle signal and background
90
How do we select which ones to use? And the optical cuts? And the cross-
correlations among variables?
We don’t need to! Use ML methods to identify automatically the combination of
kinematical variables with the highest discrimination power!
S a4l z 1.5} L -
N _I
1.0
2t — ==
o5t 1=
ol -
8.0 0.1 0.2 03 0.4 0.5 8o 0.2 0.4 0.6 0.8 1.0
ECF ratio C{” in leading Higgs candidate Subjettiness ratio 7, in leading Higgs candidate
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Multivariate techniques

S

Input &’\
\ w§ Artificial Neural Network
W ﬁi\ \i Trained on signal and background MC events
. AN N
Higgs pT mt\\: R \\\\
. S-S I
Higgs m =\
=
di-Higgs m | -
=%
ECF e
2222 O
T12 =7 74 7 utput
- 2 7, /.
Subjet pT 77 \/
Signal?
NN optimisation based
on Genetic Algorithm Background?

Caveat: in a measurement, training of classifier should be done on real data based on control regions
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Multivariate techniques

The optimisation of the classifier is based on the minimisation of the cross-entropy function

Number of MC events
used for the training

Nev
E({w}) = ~log | [ P@il{k} {w})

Nev

— Z [y,i log y; + (1 — y;) log (1 — yz)]

True classification of event: y'i=0
for background, y’=1 for signal

Probability that the event i
originates from signal process

aims to achieve the best possible separation between signal and background events

42
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Multivariate techniques

Combining information from all kinematic variables in MVA: excellent signal/background discrimination

Boosted Category, no PU

12 . |
B Signal
10k EZZI Background|.
8 :
Background . Signal
z. 6f rejected = accepted
4 .

0.4 0.6 0.8 1.0
ANN Output
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Discovering Higgs self-interactions

ML techniques allow to substantially improve the signal significance for this process observe Higgs
pair production in the 4b final state at the HL-LHC. Observation (maybe discovery) within reach!

S
~ 4.7 (1.5). £ = 3000 (300)fb~ 1
( m)tm (15). (300)

HL-LHC, PU8B0+SK+Trim

4.0
--=- Resolved
3.5 Intermediate|
3.0t — Boosted
@ 2.5} / Post MVA
\2.0' __________ oss " .
1.5 L e
1.0 o7 e
0.5 ‘\
0.8 - - : : : - .
0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9
/ ANN output cut

Pre-M VA
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Discovering Higgs self-interactions

ML techniques allow to substantially improve the signal significance for this process observe Higgs
pair production in the 4b final state at the HL-LHC. Observation (maybe discovery) within reach!

HL-LHC, PU80+SK+Trim

10°
| --- Resolved |
P I B Intermediate|
10 —  Boosted / Post MVA
e A
> 107 =~—=—--f'—’*
1073 :
104 L . . . . . . !
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Pre-M VA ANN output cut

Need to ensure also a high enough signal /background ratio, else experimental
systematic errors would kill the signal significance
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& ANNSs are sometimes criticised by being black boxes, with little understanding of what happens inside them

Opening the Black Box

& But ANNSs are simply a set of combined kinematical cuts, nothing mysterious in them!

¢ Kin distributions after and before the ANN cut allow determining the effective kinematic cuts being
optimised by the MVA, which would allow a cut-based analysis

0.09

0.08f
0.07f

0.06f

©0.04}
0.03}
0.02}

0.01y

0.00
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Signal events, resolved category, no PU

0.051

— pre-MVA, y,,=0.0 ||
<=+ pOSt-MVA, y_.—0.6
i
R
: -
-l !
‘ ' : I
T
90 100 110 120 130 140 150 160

Invariant Mass of Leading Higgs Candidate (GeV)
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Opening the Black Box

& ANNSs are sometimes criticised by being black boxes, with little understanding of what happens inside them

& But ANNSs are simply a set of combined kinematical cuts, nothing mysterious in them!

& Kin distributions after and before the ANN cut allow determining the effective kinematic cuts being
optimised by the MVA, which would allow a cut-based analysis

0.09

0.08f
0.07}

0.06}

©0.04}
0.03}
0.02}

0.01

0.00
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Signal events, resolved category, no PU

0.05f

_,_.—'_'_ :-:

—  pre-MVA, y.,,=0.0

==+ post-MVA, y_,,=0.6 _

—

90 100 110

120 130 140 150 160

Invariant Mass of Leading Higgs Candidate (GeV)
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10°

10* |

QCD 4b events, resolved category, no PU

p—

— pre-MVA, y.,=0.0 |
==+ post-MVA, y_..=0.6 |

90 100 110 120 130 140 150 160
Invariant Mass of Leading Higgs Candidate (GeV)

The MVA sculpts a Higgs peak
in the QCD background!




Some physical insight!

A useful feature of these kind of classifiers is that they made possible verifying our physical intuition about
which variables are more important for the discrimination and which ones are irrelevant

48

Total associated weight
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Total associated weight for each
of the input variables
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Machine Learning for HEP

Higgs
The structure self-interactions
of the proton at the LHC
iﬁ‘t@\j %}%% QCD-aware NNs
\*&\EE S For jet physics
Gl
2 @%ﬁ% ﬁt&
i Automated bSM ,‘ W« Boosting
bSM searches

_exclusion limits

HEP detector simulation
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Classification from data

% ?

Automated BSM limits with
machine learning

e S -

Sascha Caron, Jong Soo Kim, Krzysztof Rolbiecki,
e y,>31 Roberto Ruiz de Austri, Bob Stienen

AR N A arXiv:1605.02797

N
A
N
%1
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Harvesting the LHC data for BSM signals

¢ In the absence of new particles and / or interactions, LHC searches for BSM physics are used to derive
exclusion ranges for specific scenarios

& Results presented typically as excluded ranges in a subset of the full parameter space of the bSM theory

1, production, t, = 1, + 2,1, > t + i? m(ﬂ)-m&?) =180 GeV

;‘ 600 B L I L I 1T T1 I LI ] LI L I L ] LI L ] LI . 1 I I LI éUISYI | _
S - ATLAS Preliminary = Observed limit (+10yg,,)
o: | {s=13TeVv,36.1f6" = ==== Expected limit (x1 o) ]
1> 500 [— ——— ATLAS 8 TeV, 20.3fb™ =
£ i i
B All limits at 95% CL N

400 — —
300 — —
200 — =
100 |~ —

_I 11 | I | I | I | [ I 111 1 I LTl -I-"l":ll';li I 1':1 |- I | I | l | I I L1 1 l:

500 550 600 650 700 750 800 850 900 950 1000
m(t,) [GeV]

However this is only a small part of the information contained by the LHC measurements, ideally we would
like the exclusion ranges in the full parameter space of the theory: e.g. 19 params in the pMSSM

Juan Rojo o Nikhef Topical Lectures on Machine Learning, 6/6/2018



Harvesting the LHC data for BSM signals

One problem is that exploring the full parameter space of the theory is in general very CPU time consuming

Time = O(hours)

= :

5 . Simulate Calciilat Compare

= Simulate detector Event G results

8 events and its reconstruction Sathon with

< response experiment
Juan Rojo 52
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Harvesting the LHC data for BSM signals

One problem is that exploring the full parameter space of the theory is in general very CPU time consuming

Time = O(hours)

Simulate ; Compare
Simulate detector Event results
events and its reconstruction - with
response experiment

Model point
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Harvesting the LHC data for BSM signals

One problem is that exploring the full parameter space of the theory is in general very CPU time consuming

Time = O(hours)

= :
5 . Simulate Calciilat Compare
= Simulate detector Event o results
3 events and its reconstruction e with
< response experiment
c
2
o) Machine Learning
3
=
Time = O(ms)

By using Machine Learning tools one can speed-up the limit-setting procedure by orders of magnitude,
making possible an efficient exploration of the full parameter space of the theory
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Harvesting the LHC data for BSM signals

One problem is that exploring the full parameter space of the theory is in general very CPU time consuming

Time = O(hours)

i) Learn from training examples which points in parameter
space are allowed/excluded

Model point

ii) Inter/Extrapolate to regions of parameter space not used
for training

Caveat: a smooth interpolation might miss special phase
space points, e.g. resonances

Time = O(ms)

Model point

By using Machine Learning tools one can speed-up the limit-setting procedure by orders of magnitude,
making possible an efficient exploration of the full parameter space of the theory

55
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Generalised BSM limits

& This is a classical example of a discrete Classification problem: a given point in bSM parameter space can be
either allowed or excluded, with no options in between

& Decision Trees classifiers, such as Random Forest classifier, exhibit good performance here

;; = (Y1 ' Yz)
v
y, >15
TRUE FALSE
y,<4.6 y,> 3.14
% TRV KLSE TV KLSE
a
Class A Class B y, <-2 Class A
Root node m/ &SE
Internal node
Class A Class B
v Leaf node

¢ Procedure starts by presenting parameter sets and class labels, to learn patterns that the input data follow.

¢ Same principle for all classification algorithms, specific implementation depending on the particular problem
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http://www.susy-ai.com

Generalised BSM limits

Yy = (Y1 ' Y2)
v
y, >15
TRUE FALSE
+ y,<4.6 y,>314
g‘ TRV \LSE TV w
o
Class A Class B y, <-2 Class A
Root node TRV &SE
1 Internal node
Class A Class B
v Leaf node

¢ A Decision Tree consists of multiple nodes, each node specifies a test performed on the arriving attribute

& The result of this test determines to which node the attribute set is sent next.

¢ Process is repeated until the final leaf node is reached, i.e. the node with no further nodes connected to it.
¢ At the final node a class label is assigned to the set, specifying its class according to the classifier.
¢ The tree works on the entire parameter space: every test performed interpreted as a cut in this space.

¢ The parameter space is split into disjunct regions, each having borders defined by the cuts in the root and

internal nodes, and a classification defined by a leaf node.

Juan Rojo
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Harvesting the LHC data for BSM signals

Compare classification (allowed vs excluded) in real data vs the ML-trained classifier

Classification from data Predicted classification
P (7 77 P 77 7 [7 Y L/ /I/ P 77 7 [7
77, 2 7477 7
2000 77y w
A, 4"/"/{///" ’ 200 Y/ ’/ /// /1 % d' "'Ay,///; ’ 7, ’ 77 ’/ /I; /A' 7 //
7 s 7. , p - a, ity n b Yy s, P 7 . Y
v i, '44,,/1?,{/,,'%%/ L “,"/?",,z/"///ﬂ%,,/’
Z 5 2 et At “u % 4 2 v 4 “u
7 ) ) ’ - %
1000
10.6
0 v'IIIIIIIIIIIIIIIIIIIIIIIIIIIII_JII . v'IIIIIIIIIIIIIIIIIIIIIIIIJ& SIS /////b/////////////////////////////////// 7 n 05
| 10.4

"'J 2
2 2

r""
(

1000 1500 2000 2500 3000 3500 4000
~ Y
m;|GeV] m;|GeV]

1000 1500 2000 2500 3000 3500 4000

& Very efficient reproduction of the full bSM parameter space
¢ Can be projected in any of the dimensions of the 19-parameter space of the pMSSM

¢ Generalise to points of parameter space not used for the classifier training in O(ms) as opposed to O(h)
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Harvesting the LHC data for BSM signals

Game: Challenge the machine!

SUSY-Al is a machine learning
tool that is able to provide in a
fraction of a second the exclusion
of a pMSSM (sub)model point.
This website provides a simple
online interface for quick
determination of exclusion of a
model point using the results of
ATLAS Run-I (8TeV) and ATLAS
Run-ll (13TeV). The papers
associated with this data can be
found

The full version of SUSY-Al is
faster and can provide predicions
for multiple modelpoints at the
same time. It is under continuing
active development and can be
downloaded from the hepforge
project page.

Download SUSY-AI

If you use SUSY-AI in your
scientific work, don't forget to cite
us.

More about SUSY-AI Online

Juan Rojo

Direct parameter input

Slide the parameters to the requested values or click 'set value' to set a variable manually. Prediction can only be performed if all parameters have been set.
More information about the parameters (what they are and where they can be found in .slha files) can be found here.

407 GeV

349 GeV

501 GeV

458 GeV

915 GeV

M2 1232 GeV
. |

mE1 711 GeV
-

muU1 745 GeV
-

At 2299 GeV
[

MAA2 1.158e+7 GeV?2
|

n Direct parameter input (08:28:47)

8 TeV
Classification Excluded
Prediction 0.0289
Confidence 0.9918
Classification Excluded
Prediction 0.0057
Confidence 0.9988

mL3

mQ3

mD3

mu

=

3

E3

IE

U3

>I3

b

tan(beta)

Analysis

mU1

At

mAA2

WWW.SuSy-ai.com
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764 GeV

1013 GeV

1185 GeV

77 GeV

16

13 TeV

mE3

mU3

Ab

tan(beta)

mL1 853 GeV
[ |

mQ1 1136 GeV
ca—

mD1 1131 GeV
[ |

Atau 1356 GeV

. |
e
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Harvesting the LHC data for BSM signals

Game: Challenge the machine!

Direct parameter input

Slide the parameters to the requested values or click 'set value' to set % .ually. Prediction can only be performed if all parameters have been set.
More information about the parameters (what they are and where thr i in .slha files) can be found here.
M1 407 GeV M2 é M3 764 GeV mLA1 853 GeV
SUSY-Al is a machine learning — N - =
tool that is able to provide in a mL3 349 GeV mE1 l& mE3 1013 GeV mQf1 1136 GeV
fraction of a second the exclusion < f—| a [S—
of a pMSSM (sub)model point. mQ3 501 GeV muU1 mU3 1185 GeV mD1 1131 GeV
This website provides a simple - — ° NQ — _—_—
online interface for quick mD3 458 GeV At 2V Ab 77 GeV Atau 1356 GeV
- ; - - G N . |
determination of exclusion of a
. . mu 915 GeV MAA2 SeV? tan(beta) 16
model point using the results of
— (C— a
ATLAS Run-| (8TeV) and ATLAS
Run-l (13TeV). The papers Q | Howto... | Predict
associated with this data can be Q
found :
The full version of SUSY-AI i *‘
e full version of SUSY-Al is Analysis 13 Tev [N 0.68
faster and can provide predicions Q
for multiple modelpoints at the m
same time. It is under continuing Direct parameter input (08
active development and can be Q
dovt/nkt)aded from the hepforge 8 TeV Q A M_2 M_3 mL1
project page. Classification Excluded %
P mL3 mE1 mE3 mQ1
Download SUSY-AI Prediction 0.0289
Confidence 0.991¢
If you use SUSY-AI in your N mQ3 Al e el
scientific work, don't forget to cite —
us Classification Exclt m mD3 At Ab Atau
} Prediction 0 V
Confidence 0.9 - mAA2 tan(beta)

More about SUSY-AI Online

WWW.SuSy-ai.com
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(Un)na,tura,l supersymimetry

FOED [ B Excluded - Mass limits charged particles

Bl Excluded - Z decay width / Higgsbounds

B Excluded - LUX/PICO

- SD XenonlT limit

—=-mp< 110 GeV and my< 150 GeV

B m; or mi < 600 GeV

[ Binolike DM models

EZ@Winolike DM models

B Higgsinolike DM models
L A

& Natural regions of the

100 S | :‘._,.. il .|.- .,I l,
| .::i: d"ll i SUSY parameter space still
allowed by current
. constraints ...

Finetuning

& Being able to assess this
requires a full efficient
exploration of the theory
parameter space
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o

1 . ) . . - e e . . . . ' .
107 10%10° 10% 102 102 10* 1002101 102 10° 10* 10° 10° 10’ arXiv:1612.06333
QDl\lh
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Machine Learning for HEP

Higgs
The structure TIEES
self-interactions
of the proton at the LHC
QCD-aware NNs
For jet physics

Automated bSM
exclusion limits

. Boosting |
¢ bSM searches |

HEP detector simulation
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X1

f(x1,x2,0)

X2

r X

Parametrised Neural Networks for HEP

S -

Pierre Baldo, Kyle Cranmer, Taylor Faucet,
Peter Sadowski, Daniel Whiteson

_ arXiv:1601.07913

AUC

o6l »—x Parameterized NN (mass is a feature
. - / . I
/ x--xX Network trained on all masses
% x Network trained at mass=1000 only
0.5 1 1 1
500 750 1000 1250 1500

Mass of signal
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Parametrised ML for HEP

0=0,

A f (X] X ) [4 As shown for the Higgs Pair
x> arrb Production case, NNs are often
used as classifiers
[ Input variables are event
B kinematics, ie, four-momenta or
0=0y some other higher-level variables
X]
— fo(X1,X2)
X2

¢ Individual networks trained with examples with a single value of some parameter O (same the
mass of some new BSM particle), x; are the event kinematic variables

& The individual networks are purely functions of the input features.

& Problem: performance for intermediate values of O is not optimal nor does it necessarily vary
smoothly between the networks.
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Parametrised ML for HEP

0=0,
Signal: 5 TeV Z’
Background: QCD

X1
Jfa(Xx1,X2)
X2
Performance of
classifiers will be very different
0=0, in the tz‘I'o cases!
X1
S— fb( X1,X2 ) Signal: 50 GeV Z’ (dark photon)
X2 Background: QCD

¢ Individual networks trained with examples with a single value of some parameter O (same the
mass of some new BSM particle), x; are the event kinematic variables

& The individual networks are purely functions of the input features.

& Problem: performance for intermediate values of O is not optimal nor does it necessarily vary
smoothly between the networks.

Juan Rojo Nikhef Topical Lectures on Machine Learning, 6/6/2018



Parametrised ML for HEP

0=0,

X7
fa(x1,X2)
X2
0
X1
029[) f(X],XZ,(Q)
X2
X1
fo(x1,X2)
X2

€ A single network trained with input features as well as an input parameter 0
¢ Such a network is trained with examples at several values of the parameter 0

¢ Superior performance in predicting/describing values of O not used during the training

also ensures smooth interpolation and allows one imposing physical constraints
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Parametrised ML for HEP

7000

— Trained

10l 6=—05 6=0.5 - - - Interpolated| |

6000}
& 5000F 0.8}
2 4000} 3
C Q
o o
° 3000f z
3
= 0.4}
>
Z 2000}

1000} 02

% 0.0 :
-4 -3 -2 3 4

Toy example: the parametrised NN smoothly interpolates for values of the parameter not used in training

¢ The addition of the input parameter 0 introduced extra considerations in the training

¢ The distribution of O used for the training is only relevant in how it affects the quality of the
resulting parameterized network: it does not imply that the resulting inference is Bayesian

¢ Also, for some components of the training sample the values of O might not be meaningful at all,
for example the specific value of a bSM particle mass does not affect the SM background samples

Use random values of the bSM parameters when training on the SM samples
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A word on Deep Neural Networks

Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer @ Output Layer

& A Deep Neural Network (DNN) is nothing but a standard multi-layer feed-forward perceptron
with a large number of internal layers

& All types of neural nets eg Recursive, Convolutional, Parametrised etc can be made “deep” by
adding more hidden layers

& For several applications, the increased complexity achieved this way leads to a significant
improvement in performance

Juan Rojo Nikhef Topical Lectures on Machine Learning, 6/6/2018



Application to bSM searches

Consider a new heavy bSM particle that decays into top quarks pairs

¢ The goal here is to produce an optimised classifier that allows discriminating between signal and
background events, without any prior assumption on the value of mx

¢ Parameterized deep neural network models were trained on GPUs using the Blocks framework

¢ The architectures contain five hidden layers of 500 hidden rectified linear units with a logistic
output unit, with stochastic gradient descent used for the NN training
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Application to bSM searches

Compare performance of parametrised NNs with traditional NNs

AUC: area under ROC

@)
-]
< - /
- /
0.7k , |
/
/ . .
/ »—x Parameterized NN (mass is a feature] ,
0.6} , _ y Unlabelled mass in
/ x:-X Network trained on all masses > braini ]
¢ % ¥ Network trained at mass=1000 only FAINING SAmpLes
0.5 ' . '
500 750 1000 1250 1500

Mass of signal

& Compare discrimination (AUC) for parameterised network and single network trained at 1000 GeV

& The AUC score decreases for single network as the mass deviates from the trained value,
parameterised network improved performance;

¢ Performance a single network trained with an unlabelled mixture of signal samples at all masses is
inferior to that of the parametrised network
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Application to bSM searches

Compare performance of parametrised NNs with traditional NNs

10 I I NZ

0.9 i AUC: area under ROC

0.8 Same performance since m=1000

O / . .
2 . / iy ff??l&ll }Z/ll ltlrl&flli:lzil/llgl-l(l)flbl?lt{/ll 2?%???3/‘-](:% 'L |
o /
0.7 , i
/
/ . .
/ »x—x Parameterized NN (mass is a feature] ,
0.6, . . Unlabelled mass in
/ x--X Network trained on all masses > o ,
¢ % ¥ Network trained at mass=1000 only training sanples
0.5 ' ' '
500 750 1000 1250 1500

Mass of signal

& Compare discrimination (AUC) for parameterised network and single network trained at 1000 GeV

& The AUC score decreases for single network as the mass deviates from the trained value,
parameterised network improved performance;

¢ Performance a single network trained with an unlabelled mixture of signal samples at all masses is
inferior to that of the parametrised network
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More on DNNs for BSM searches

Searching for Exotic Particles in High-Energy Physics with Deep Learning

P. Baldi,! P. Sadowski,! and D. Whiteson?

IDept. of Computer Science, UC Irvine, Irvine, CA 92617
“Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle dis-
coveries. Finding these rare particles requires solving difficult signal-versus-background classification
problems, hence machine learning approaches are often used. Standard approaches have relied on
‘shallow’ machine learning models that have a limited capacity to learn complex non-linear functions
of the inputs, and rely on a pain-staking search through manually constructed non-linear features.
Progress on this problem has slowed, as a variety of techniques have shown equivalent performance.
Recent advances in the field of deep learning make it possible to learn more complex functions and
better discriminate between signal and background classes. Using benchmark datasets, we show
that deep learning methods need no manually constructed inputs and yet improve the classification
metric by as much as 8% over the best current approaches. This demonstrates that deep learning
approaches can improve the power of collider searches for exotic particles.

Compare the performance of the discrimination between shallow and deep neural networks
Here use a five-layer NNs with 300 hidden units in each layer

Compare also with the performance of the Boosted Decision Tree
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More on DNNs for BSM searches

Signal: heavy Higgs production (eg 2HDM)

Signal: Chargino pair production in SUSY
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More on DNNs for BSM searches

AUC
Technique Low-level High-level Complete
BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)
NN 0.733 (0.007) 0.777 (0.001)  0.816 (0.004)
DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

Discovery significance

Technique Low-level High-level Complete
NN 2.50 3.1c 3.T0
DN 4.90 3.60 5.00

AUC

Technique Low-level High-level Complete

BDT 0.850 (0.003)

NN

DN

0.835 (0.003)
0.867 (0.002)  0.863 (0.001)

(
(

0.872 (0.001)  0.865 (0.001)
(

0.863 (0.003)

0.875 (< 0.001)
NNaropout 0.856 (< 0.001) 0.859 (< 0.001) 0.873 (< 0.001)
0.876 (< 0.001)
DNaropout 0.876 (< 0.001) 0.869 (< 0.001) 0.879 (< 0.001)

Discovery significance

Technique Low-level High-level Complete
NN 6.50 6.20 6.90
DN 7.50 7.30 7.60

Juan Rojo

Higgs benchmark scenario

Using the right classifier can make
a difference between “evidence”
and ““discovery”

SUSY benchmark scenario

The improvement by using
deep networks is moderate here
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Machine Learning for HEP

i
The structure self—intgiitions
of the proton at the LHC
iﬂﬁ@ % QCD-aware NNs
%\%ﬁ}@ %ﬁ For jet physics
S
7
Automated bSM %@3 Boosting
exclusion limits bSM searches

—

t HEP detector simulation
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Simulating HEP detectors with
Generative Adversarial Networks

= S -

Generative Adversarial
Network

Paganini, de Oliveira, Nachman

arxito:1712.10321
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The name of the game

&Modelling accurately the response of detectors with the propagation of high energy particles is an
essential task for present and future HEP experiment

& Detector simulation at the LHC is a very CPU-intensive task, dominated by modelling of particle
showers inside calorimeters

¢ Generative Adversarial Networks can speed up detector simulation by orders of magnitude

Task: to efficiently model the
propagation of high energy
particles (and their
interaction) within the layers
of electromagnetic and
hadronic calorimeters

Juan Rojo Nikhef Topical Lectures on Machine Learning, 6/6/2018
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A

word on GANSs

¢ New architecture for an unsupervised neural network training (unlabelled samples)

¢ Based on two independent nets that work separately and act as adversaries:

¢ the Discriminator (D) undergoes training and plays the role of classifier, and

¢ the Generator (G) and is tasked to generate random samples that resemble real samples with a
twist rendering them as fake samples.

Latent
Space

Juan Rojo

Generative Adversarial

Real
Samples

Network

IS

: -~ Correct? -

Ve N [ Discriminator
- /
A G 3
L/ Generated
A Generator Fake
N x J Samples
% Fine Tune Training

Noise
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CaloGANs

& Use GANSs as a tool to speed up full simulation of particle showers in a HEP calorimeter
& The generator G learns a map from a latent space to the space of generated samples for training

& Carefully understanding the underlying physics of particle propagation in a detector is crucial to set up
and optimise the training strategy, e.g. relationships between neighbouring detector layers

Output: generated samples
Generator Network to be used for training D

1

INPUTS (
4} | particle

1 | energy +—rescale —

\OUTP UTS

v E . .
Scalar Resize Lm_ear_
multiplication Combination
A
\ 4 I Wm 1 l .
latent W, N /
1024 space > > R ; -
2 Linear

\4

Resize\ Combination

TRl
2 | L
: /‘@

\_

Juan Rojo
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CaloGANs

& Use GANSs as a tool to speed up full simulation of particle showers in a HEP calorimeter

o

& The generator G learns a map from a latent space to the space of generated samples for training

& Carefully understanding the underlying physics of particle propagation in a detector is crucial to set up
and optimise the training strategy, e.g. relationships between neighbouring detector layers

Output:
i) Is sample real or fake?
ii) What is the reconstructed particle Discriminator Network Input: generated samples
energy as function of true energy?
OUTPUTS _ INPUTS
Concatenation ) f
) e
o > e u
Vs. < t
real o
A A A A u
r
e
Minibatch S
Discrimination
Absolute |
Difference
—A> & ? «— < Etot <
reco. A particle| 4
energy : < energy 1
E_ |}

Juan Rojo Nikhef Topical Lectures on Machine Learning, 6/6/2018



CaloGANs

& Use GANSs as a tool to speed up full simulation of particle showers in a HEP calorimeter
& The generator G learns a map from a latent space to the space of generated samples for training

& Carefully understanding the underlying physics of particle propagation in a detector is crucial to set up
and optimise the training strategy, e.g. relationships between neighbouring detector layers

Output:
i) Is sample real or fake?
ii) What is the reconstructed particle

energy as function of true energy?

Input: generated samples

Discriminator Network

OUTPUTS _ INPUTS
Concatenation f
[ ‘ e LAGAN
f\a,:e *(( a D H
rea.l < 1 t S

Effectively parametrises detector simulation into a map:

Real particle energy => Reconstructed particle energy

Absolute |
Difference LAGAN
—A> € ?e«—— < Etot < D
reco. A particle| 4
energy : < energy 1
E
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GAN

CaloGANs

B0
ok

¢ Compare real training samples with the corresponding ““fake” (generated) samples from the GAN,
identified with some nearest neighbours criterion

(-
o
W

=
Y
Energy (MeV)

(-
-

10°

¢ To optimisation of the GAN aims to generate fake samples indistinguishable close to the real ones

& The training of the GANs ends when the Classifier is not able any more from tell apart the real samples
from the fake ones that the Generator is producing
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CaloGANs vs full detector simulation
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Still room for improvement but very promising results!

Juan Rojo
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CaloGANs vs full detector simulation

Simulator Hardware Batch Size ms/shower

GEANT4 CPU N/A 1772
1
CPU 10 5.11
128 2.19
1024 2.03
CALOGAN 1
4 3.68
GPU 128 0.021
512 0.014
1024 0.012

Speed-up by several orders of magnitude, specially when running in GPUs

Juan Rojo
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The many uses of GANs

G Latent Latent Latent
v v v
4)54 4x4 4x4
' 8)l(8 : L | ]
' | ]
| J
‘ " [ ]
E : ' '
: : L )
i ; 1024x1024
E. B. - B
. Reals . 1 Reals . iReaIs
P P y
D - B 1024x1024
. = [ | ] ]
| J
{ ]
v y [ L J l
L 8x8 [ ]
4x4 4x4 4x4
Training progresses >

arXiv:1710.10196

Which one of these images are real and which ones are fake (generated by the GANs)?
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Machine Learning for HEP

Higgs

The structure self-interactions

of the proton at the LHC

. QCD-aware NN |
\Jorjet physics .

Automated bSM Boosting
exclusion limits bSM searches

HEP detector simulation
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From image recognition to jetography

& In the context of HEP applications of Machine Learning, jets from hadron collisions have been
extensively studied

& Topics include quark/gluon discrimination, jet substructure, jet charge, and other jet properties

& Progress in these ML applications has been driven by analogy between images and hadron calorimeters

\'\\;‘.
e ;‘.{\
\\“\
A\‘Q\
Eg arxiv:1612.01551

Deep convolutional NNs
for quark/gluon jet
discrimination
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From image recognition to jetography

& In the context of HEP applications of Machine Learning, jets from hadron collisions have been
extensively studied

& Topics include quark/gluon discrimination, jet substructure, jet charge, and other jet properties

& Progress in these ML applications has been driven by analogy between images and hadron calorimeters
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Convolutional Neural Networks

¢ Convolutional Neural Networks (CNNs) have convolutional layers based on filters
¢ Each filter maps a group of numbers into a number, reducing the dimensionality of the data

¢ Specially useful for pattern recognition (eg for self-driving vehicles)
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Convolutional Neural Networks

¢ Convolutional Neural Networks (CNNs) have convolutional layers based on filters

¢ Each filter maps a group of numbers into a number, reducing the dimensionality of the data

¢ Specially useful for pattern recognition (eg for self-driving vehicles)

g g g [ [ ] [ [ )
e (L] | 8 .| Assign probability that this
= > = = =
3 2L £ 2 3.§ 2l— 2 3.§ g 3
: 25|l 8 : 25|l 8 : 25|l 8 4T d t
o TR S|ITE[ & |3 (g S|=E| « siimage corresponas 1o a jiower
/ / «"4‘ ;f § @ § A iSoTnSafes ittt
Input Image \
Probability
< | Flower :I
= >
Sliding window £ 2
1 X1 2 x 2 | Cup
sy [T 1. g E
‘ o - - ER 28 g2 > ]
A * * * X2 25 &8
L% ok b . | | | S 3 %3 [Car
Filters é Wi L] X3 z agt—>
light and dark =\ simple shapes complex shapes shapes (TS - O— = S
" . .usedtodeﬁneaﬁower . = g Tree :|
. : % >

T R w m
Every feature map output is the FC FC
result of applying a filter to the image

The new feature map is the next input /

Activations of the network at a partiw

Training on labelled samples

mathworks.com

Juan Rojo Nikhef Topical Lectures on Machine Learning, 6/6/2018


http://mathworks.com

CNNs for Dark Matter Searches

Use CNNSs to discriminate point sources (astrophysical origin) versus diffuse flux (dark matter)
in galactic centre images

CNN CNN CNN CNN CNN
layer 1 layer 2 layer 3 layer 4 layer 5

Input

Caron, Hendriks et al arXiv:1708.06706
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CNNs for Dark Matter Searches

Use CNNSs to discriminate point sources (astrophysical origin) versus diffuse flux (dark matter)
in galactic centre images

Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps maps units units Outputs
1@120x120 64@60x60 128@30x30 128@16x16 256@8x8 %::‘@4)(4 < < .1
Flatten Fully Fully

connected connected

Max-pooling after every convolution
Local response normalization after every other convolution

Final classification:
point sources vs diffuse flux

Caron, Hendriks et al arXiv:1708.06706
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Recursive Neural Networks

& One can build recursive NNs that are ““aware” of the fact that QCD is the correct theory of the
strong force in Nature

¢Recursive Neural Networks (RNNs) are deep neural networks where the same set of weights are
applied recursively following a structured input

(=)
(o) ©
O () @ O
This film -
© (o)
@O O @& O
does n’t care
() (-
about
© ©
& © &)
or
@ © © () O @
wit any of
& © § ® e
cleverness other kind intelligent humor
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Recurrent Neural Networks

Not to mix with Recurrent Neural Networks, which use the output of the current node as the input
to the next node

INPUT LAYER

HIDDEN LAYER
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Recurrent Neural Networks

Lead to truly game-changer applications, such as random generation of country song lyrics

Tied right now

I got life now he never thought I got by the all
Going up like a house four boy
Nothing his thing out of hands

No one with the danger in the world
I love my black fire as I know

But the short knees just around me
Fun the heart couldnes fall to back
I see a rest of my wild missing far
When I was missing to wait

And if I think

It's a real tame

I say I belong is every long night
Maybe Llovin' you

http:/[www.mattmoocar.me/blog/ RNNCountryLyrics/
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Recurrent Neural Networks

RNNs use as inputs not just the current “training examples” but also what they have perceived
previously: they have a built-in notion of time ordering useful for time-dependent functions

Recurrent network

output layer

input layer M (class/target)

hidden layers: “deep” if > 1

The output of a RNN at time time, y(t), depends both on the current input example x(#) as well
as of its previous output y(#-1) (or activation states of hidden neutrons at #-1)

Juan Rojo Nikhef Topical Lectures on Machine Learning, 6/6/2018



QCD-aware NNs for jet physics

F(t5)
[ QCD-motivated recursive jet embedding for classification
// \\ ¢ Each particle is represented by four-momentum v;
=
§ §For each individual jet, the embedding hyiet (t;) is computed
recursively from the root node down to the outer nodes of the
W binary tree t;
[h{et (t5) ¢ The resulting embedding is chained to a subsequent classifier
> hJ;cV \ ¢ The topology of the network is distinct for each jet and is
3 | _ determined by a sequential recombination jet algorithm
A
A T f \ | e.9. the anti-kT jet clustering algorithm leads to a different
Y : NN topology than the Cambridge / Aachen one

Vl V2 cee VN
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QCD-aware NNs for jet physics

The same strategy can be applied to the full event composed by many jets

Event embedding Classifier

h?\}/ent (e) x

s s s fevent (e)

Bt (t1) hi** (t2) By (ta) /

v(t1) v(tz2) v(tam)

7N 7N 7N

AN
|
|
|
|
|
|
|
|
|

—t ===

Machine learning classification based on recursive neural networks can implement
physical features such as that the reconstructed jets will be infrared and collinear safe
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QCD-aware NNs for jet physics

vi; particle four-momentum
hiiet (t;): jet embedding, including “QCD” clustering information

Performance of classification

of QCD vs non-QCD jets Input ROC AUC R.—50%
with different settings Hardest jet
Best results are achieved V(tjjlt(kt) 0.5909 == 0.0007 0.6 £ 0.0
through nested recurrence V(tj),. h 0.9602 = 0.0004| 26.7 &= 0.7
over the jets and over its v(t;), hJjet(deSC_pT) 0.9594 £ 0.0010 25,6 =14
constituents, as motivated 2 hardest jets
by QCD v(t;) 0.9606 £ 0.0011 | 21.1 £ 1.1
v(t;), W% | 09866 + 0.0007 | 156.9 + 14.8

Jet clustering here can be
understood as a
preprocessing of the input-

V(tj) , h:jjetdiesc—pT)

0.9875 = 0.0006

174.5 £ 14.0

5 hardest jets

v(t;), K¥ | 0.9867 &+ 0.0004 | 152.8 & 10.4
Jet clustering also essential v(t;), h;et(éesc—pT) 0.9872 + 0.0003| 167.8 + 9.5

to isolate soft and semi-hard
QCD physics that

No jet clustering, desc-pr on v;

complicate the classification 1 =1 0.6501 = 0.0023 1.7+ 0.0
1=1,...,50 0.8925 + 0.0079| 5.6 £+ 0.5
1=1,...,100 0.8781 4 0.0180 4.9 4+ 0.6
1=1,...,200 0.8846 4+ 0.0091 5.2 £ 0.5
1=1,...,400 0.8780 £+ 0.0132 4.9 £+ 0.5

Juan Rojo
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Machine Learning tools are everywhere!

I I I I I I I

om m m 3m 4m 5m 6m m
Key:
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AGenerat!Vfr::"Ode'Sk’ FCN, Recurrent,
dversarial Networks LSTM NN

S. Glayzer

RNNs

onvolutional DNN Multiobjective Regrelsssion

For many crucial applications, ML tooll%ﬁnot just one option, but the only option




ML cheat sheet
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Which problem do you wanna solve?

o]
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v real

MONITOR

Monitor performance over time.

COLLEC

Get relevant data!

SR ;
3000 4000 5000 6000 7000 8000 9000

DEPLOY o

Apply model to new, incoming data!

MERGE & CLEAN

Clean/merge data (multiple sources).

o N, *
~

VALIDATE

What is the best model (training data)?

EXPLORE

Visualize the data. Are there outliers?

V.
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L ] a
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N Select models, train models ...
2 an
s ) Learning in Astronomy

Slide 8/42

Endless possibilities - but also many non-trivial hurdles to overcome



Take-away message

Andy Buckley Y
) @agbuckley |

I'm all for technical sophistication, but
it's depressing how many young
scientists we're training in little more
than how to press the Go button on
TMVA and TensorFlow black boxes

3:11 PM - 4 Apr 2018 from Glasgow, Scotland

V

Andy Buckley @agbuckley - 17h
Too much is glorified data entry and algorithm-babysitting. I'm reminded of
Yuval Noah Harari in Sapiens, on how -- in contrast to our conventional telling --

wheat domesticated *us* smh.com.au/opinion/slaves... Who's the boss, the
ML or the scientists?

Proficiency in ML applications requires a deep understanding of both the physical problem
being addressed as well as of the inner workings of the specific algorithms used!
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ANNs and LHC phenomenology

& Machine Learning algorithms are already transforming our world, from the way we move,
shop and heal ourselves, to our understanding of what makes us unique as humans

& In the context of LHC data analysis and interpretation, ML tools are ubiquitous, from event
selection deep in the detector chain (triggering) to bottom-quark tagging and automated BSM
models classification (and exclusion)

& Avoid using ML tools as black boxes: a detailed understanding of both the physical and the
algorithmic aspects of the problem is essential

Higgs
self-interactions QCD-aware NNs
The structure For jet physics
of the proton at the LHC
Automated bSM Boosting
exclusion limits bSM searches

HEP detector simulation
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Fascinating times ahead at the high-energy frontier!

Ready to be exploited with our Machine Learning toolbox!
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