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Intro

Use the y? statistic to determine agreement between data and

theory
x? =d'xd (1)

where d is vector of differences between data and theory and X is
convariance matrix.
For a dataset which is not included in the fit we have the following

(%) =N, (2)

and

std (x2) = V2N. (3)

provided we have a compatibility between data and theory



Intro

Take ATLAS W/Z production 7TeV, differential cross section in
rapidity [arxiv. 1612.03016].

o with NNPDF3.1 [arxiv. 1706.00428] x2/Ngata = 2.2 - one of
the datasets described poorly by fit.

e with 34 data points this corresponds to 50 discrepancy



Intro

Why might we get a bad x2?
@ theory gives poor description of data
@ uncertainties are underestimated

e correlations are difficult to estimate (this talk)



Intro

@ We can perform a regularization* on the covariance matrix,

Y > X
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Figure: Ratio of regularized covariance to original covariance iu/zu The
maximum ratio of standard deviation is 1.02. The average ratio of
standard deviations is 1.015.

*to be defined later



Intro

@ We can perform a regularization* on the covariance matrix,

Y =X
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Figure: Ratio of elements of regularized correlation matrix, ¢, to original
correlation matrix, c. max|1 — &;/c;j| = 0.05. The average relative
change is 0.03.

*to be defined later
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recalculate the y?2 statistic with & and compare to old value

‘ using - ‘ using Y
X*/Naata | 22 | 12

new value is within 1o
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Defining stability

Consider a toy model, with small statistical uncertainties € < 1
and high correlations

2 +1 1 1 1
1 e +1 1 1
X = 1 1 e +1 1 (4)
1 1 1 e +1

@ matrix has eigenvalues e 5 3 = e, ex=€24+4

@ [? condition number given by the ratio of smallest and largest

. 2
eigenvalue k(X) = 6;54
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Defining stability

Can introduce some input parameter x € [0, 2] which controls
correlation of final datapoint.

e +1 1 1 1—x
1 2 +1 1 1—x
X = 1 1 e€+1 1—x (%)

1—-x 1—-x 1—x €+1

but x has some uncertainty.
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Defining stability

We can plot the expected x? if we assume x = 0 but the data was
actually generated with x € [0, 2]

(x?) when assuming x=0 as a function of true x
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Defining stability

Can perform same exercise assuming x = 0.25. Note: the blue
lines now are 1o bands!

(x?) when assuming x=0.25 as a function of true x
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toy model prefers smaller values for 1 — x in terms of stability.
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Defining stability

@ often given datasets with highly correlated uncertainties

@ correlations are hard to estimate, some datasets provide
multiple correlation models, see e.g:

o ATLAS jets at 7 TeV [arxiv. 1410.8857]

e sensitivity studied in detail by Harland-Lang, Martin, Thorne
[arxiv. 1711.05757]

o default correlations should be chosen to maximise stability
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Defining stability

How to define stability? Assume the underlying model is correct,
but that the covariance is wrong, another possible covariance could
be given by ¥ =¥ + 45

@ S is some symmetric NxN matrix

@ ¢ is a dimensionless number measuring size of fluctuation

take data distributed according to ¥
d e N(0,%), (6)

and define N N
P =dt¥d. (7)
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Defining stability

take the difference between y2 calculated on d and d keeping ¥

fixed
Ax? = 108) = ()] -
=N — (%)
stability condition is that this difference is much less than
statistical fluctuations of y?
IN —(¥*)] < V2N (9)
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Generic analysis

Generic analysis
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Generic analysis

Without knowledge of S we can get the approximate relation
Ax? < V2N = k(X) < 1/5 (10)

where k(X) is the L? condition number of the covariance matrix.
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Generic analysis

Disdvantages:
@ slightly heuristic bound, working on more rigorous proof

@ in practise covariance matrices span uncertainties with many

orders of magnitude
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Figure: Covariance matrix for ATLAS WZ production dataset

@ don't want to mix uncertainties with big magnitudes and
uncertainties with small magnitudes

19/30



Generic analysis

What about regularizing the correlation matrix? Correlation matrix
is covariance of reduced variables: d/o

Figure: Correlation matrix for ATLAS WZ production dataset

looks a lot like toy model!

20/30



Generic analysis

X
o perform eigenvalue decomposition on ¢ giving A and U such
that ¢ = U'AU.

o obtain new eigenvalues A; = &; min(A;, A) where

~

A = max(Ajj)/k where k is an input parameter specifying a
threshold condition number

@ obtain correlation matrix from covariance matrix ¢ =

@ construct ¢ = U'AU and use to obtain new, regularized
covariance matrix X = &/ ;X

This is our regulariation procedure!
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fitting with &
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fitting with &

Perform regularization with condition number threshold 500 on
each dataset correlation matrix then perform fit using all other
settings of NNPDF3.1 we find (preliminary results - paper on in
depth study in preparation)

Stat Estm. ‘ Fit using i|k:500 ‘ fit using X
X2/ Ngata 1.00035 1.16328
(x?/Ngata) | 1.095+0.038 | 1.253 4 0.033
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fitting with &
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PDFs are unchanged from 3.1, despite dramatic change in global
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Conclusions

o datasets with high correlations and low statistical
uncertainties can have unstable x? (toy model)

@ experimentalists have knowledge of the input parameters,
much better positioned to choose stable correlation models

@ we can perform a generic regularization of covariance matrices
based on SVD of correlation matrix

@ Investigation into effects of regularization on fits still in
progress but results look promising, in particular want to
study sensitivity on condition number threshold [paper in
progress Z. Kassabov, E. R. Nocera, MW]|
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backup slides

toy model prefers no correlations with uniform prior on x

Average Ax? over the range (0, 1)
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Figure: x? by experiment for fit
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