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Abstract

The main aim of this thesis is to study the stability and evolution of NNPDF
fits and to show the importance of stopping point, cross-validation and the
possibility of overfitting of a neural network.

After a brief introduction, in which we explain what is a parton distribution,
we analize the behavior of the fits in different scenarios. First, we analize
the quality of the fit when stopped before the optimal stopping point and
its stability, by evaluating the fits at different epochs. Then, we analize how
the fitness of PDF may vary depending on cross-validation, evaluating its
importance to avoid overfitting. At last, we evaluate also the effect of the
positivity constrain on the fits.
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Parton Distribution Functions

Parton Distribution Functions (PDFs) describe the substructure of hadrons
in terms of partons: quarks and gluons. They are a fundamental tool to
compute the processes at hadron colliders, such as LHC. They have such an
important role because they allow us to make predictions and calculate cross
sections of scattering processes.

1.1 Quantum Chromodynamics

Quarks and gluons are the fundamental constituents of hadrons. Theirs
structure can be expressed in terms of the basic fields, the degrees of freedom
of the theory describing their interaction: quantum chromodynamics (QCD).
There is one field for each of the 6 quark (plus their anti-quark), and one for
gluons, the gauge boson of strong force. Quarks also have an internal degree
of freedom, the color. This internal degree of freedom is analogous to electric
charge, but each quark can have three possible states: blue, red, and green.
There exist 8 independent gluons.

At the leading order of QCD, we can say that a PDF fi(x,Q
2) represents the

probability of finding an i type parton (quark or gluon) carrying a fraction
x of the proton momentum at a scale Q2.

1.2 Factorization

Factorization is a fundamental property of QCD. It allows us to divide cross
section computation in two separate parts: a process-dependent parton cross
section and a set of universal parton distribution functions. Thanks to this
universality it is possible to determine PDFs from a particular process and
than use the PDFs to obtain prediction for different processes. For example,
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factorization allows to express the cross section for hadroproduction at a
scale MX as [1]:

σX(s,M
2
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∫︂ 1
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2
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2
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2
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(1.1)

where s is the center-of-mass energy, fa/hi
(xi,M

2
X) is the distribution of type

a parton in the i-th incoming hadron, σ̂ab→X is the parton-level cross section

for production of X, xmin = τ :=
M2

X

s
, and the hard coefficient function Cab

is a function of the scale M2
X and the dimensionless ratio of the scale to the

center-of-mass energy ŝ of the partonic subprocess z =
M2

X

ŝ
= τ

x1x2
.

For electroproduction, Equation1.1 is replaced by a factorized expression for
the structure functions Fi(x,Q

2) that parametrize the DIS cross section:

d2σNC,ℓ±

dxdQ2
(x, y,Q2) =

2πα2

xQ4

[︁
Y+F

NC
2 (x,Q2)∓Y−xF

NC
3 (x,Q2)−y2FNC

L (x,Q2)
]︁

(1.2)
for neutral-current (NC) charged-lepton (ℓ±), where FL(x,Q

2) = F2(x,Q
2)−

2xF1(x,Q
2) is the longitudinal structure function, Y± = 1± (1− y)2, written

in terms of y = p·q
p·k = Q2

xs
, the electron momentum, where p and k are the

incoming proton and lepton momentum and q (q2 = −Q2) is the transferred
momentum, and the last step holds if we neglet the proton mass, where
s is the center-of-mass energy. The factorized expression for the structure
function is

Fi(x,Q
2) = x

∑︂
a

∫︂ 1

x

dz

z
Ci,a

(︁x
z
, αs(Q

2)
)︁
fa(z,Q

2), (1.3)

where x = Q2

2p·q , the standard Bjorken variable, Ci,a is the structure function
computed with an incoming parton and fa is the distribution of the parton
a in the incoming hadron.

Equations 1.1 and 1.2 hold at their respective scale, M2
X or Q2, but we can

relate PDFs at different scales by perturbative evolution equations
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where g is the gluon distribution, Σ is the singlet quark distribution

Σ(x,Q2) :=

nf∑︂
i=1

(︁
qi(x,Q

2) + q̄i(x,Q
2)
)︁

(1.6)

and the nonsinglet distributions are qNS
ij (x,Q2) = qi(x,Q

2) − q̄j(x,Q
2), any

linearly independent set of 2nf − 1 differences of the quark and antiquark
distribution. Perturbative evolution has some constrains due to conservation
laws: the conservation of baryon number∫︂ 1

0

dx
(︁
qi(x,Q

2)− q̄i(x,Q
2)
)︁
= ni, (1.7)

where nu = 2, nd = 1, ns,c,b,t = 0, and the conservation of the total energy-
momentum ∫︂ 1

0

dxx

[︃ nf∑︂
i=1

(︁
qi(x,Q

2) + q̄i(x,Q
2)
)︁
+ g(x,Q2)

]︃
= 1. (1.8)

Therefore, combining factorized expression in Equations 1.1 and 1.2 with
the solution of Equations 1.4 and 1.5, it is possible to write the physical
observables as the convolution of a prefactor with the PDFs at a reference
scale.

1.3 PDF parametrizations

A set of PDFs is a set of functions for each 0 < x < 1 at some reference scale
Q0.

In principle there are 13 independent PDFs (12 for quarks and antiquarks
and one for the gluon), but, in practice, charm and heavier quarks are not
independently determined but assumed to be generated only by QCD radi-
ation. In most cases it is more convenient to express the PDFs of the six
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light-quark as suitable linear combinations, such as the singlet combination
of Equation 1.6.

A standard choice for of a PDF parametrization is made by assuming that

fi(x,Q
2) = xαi(1− x)βigi(x), (1.9)

with gi that tends to a constant for x → 0, 1, with this choice motivated
by the expectation that PDFs behave as power of x for x → 0, due to
Regge theory, and as a power of 1 − x for x → 1, due to quark counting
rules [2]. gi can vary between the different possible approachs, with some
common choices that are polinomial or exponential of polinomial in x or

√
x.

Tipically, these PDF sets are parametrized by ≈ 20 − 30 parameters. The
choice of a parametrization corresponds to projecting the infinite-dimensional
problem of determining a PDF set of functions onto the finite-dimensional
space of the parameters. This way, errors on PDFs are just error ellipsoids
on in the parameters space.

An alternative choice can be to parametrize PDFs with a general functional
form that doesn’t include any theoretical prejudice. With this unbiased PDF
choice, the absolute minimum of the figure of merit (like χ2, described in
Section 1.4) is not necessarily the best possible fit, because it can correspond
to a result describing also random fluctuations (like the PDFs described in
Section 2.2.1), therefore a systematic study is necessary in order to avoid
this problems. With unbiased PDFs random fluctuations are smoothened
out because the parametrization is not flexible enough.

The fact that the best fit is not uniquely defined shows that the problem
of determining a set of functions from a finite set of experimental data is
not mathematically well defined: it would mean obtaining infinite infor-
mation from a finite set of data. Hence, theoretical assumptions, such as
parametrization, are necessary.

1.4 Fitting methodology

The goodness of a PDF set is measured by minimizing a suitable figure of
merit, defined as

χ2 =

Ndat∑︂
i=1

Ndat∑︂
j=1

(Di − Ti)(V
−1)ij(Dj − Tj), (1.10)
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where Ti are the theoretical predictions, Di the data point, and

Vij = δij(σ
uncorr
i )2 +

Ncorr∑︂
k=1

σcorr
k,i σcorr

k,j (1.11)

is the experimental covariance matrix, where every i-th data point (i =
1, ..., Ndat) is affected by uncorrelated uncertainty σuncorr

i and correlated sys-
tematic uncertainty σcorr

k,i for k = 1, ..., Ncorr.

It is possible to rewrite Equation 1.10 by adding Ncorr shift parameters rk as

χ2 =

Ndat∑︂
i=1

(︃
D̂i − Ti

σuncorr
i

)︃2

+

Ndat∑︂
i=1

r2k, (1.12)

where

D̂i := Di −
Ncorr∑︂
k=1

rkσ
corr
k,i . (1.13)

A confidence interval in the space of PDFs is determined by minimizing a
suitable measure of goodness of fit, which is not trivial because it requires
the definition of a probability measure on a space of functions [3]. One first
method of representing probability distributions in PDFs space is the Hessian
method, based on the standard least-squares method [4]. This method is
based on the assumptions that the parameter’s probability distribution is
a multi-gaussian, determining a central PDF as the one that minimize χ2

and determining a 1-σ confidence level as the volume enclosed by the χ2 =
χ2
min + T 2, where T is a tolerance parameter1. This method is usually used

with PDFs using a relatively small number of parameters and one of its
advantages is that it allows a compact representation and computation of
PDF uncertainties by providing eigenvectors of the Hessian matrix rescaled
by their respective eigenvalues. The best fit of any value F (S) and its 1-σ
uncertainty are

F0 = F (S0) σF =

⌜⃓⃓⎷Npar∑︂
i=1

[︁
F (Si)− F (S0)

]︁2
, (1.14)

where S0 is the central set of PDFs and Si, i = 1, ..., Npar, are the 1-σ error
sets, corresponding to the variation of each eigenvector.

1With the standard choice T 2 = 1 the best fit parameter fluctuate much more than it
would do if it actually provided a 1-σ confidence level
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An alternative method is the Monte Carlo method, generating Nrep PDF
sets Sk by assigning a Monte Carlo sample of PDF replicas, and this way
it is possible to obtain the probability distribution of PDFs. The best fit
is determined as expectation value, while the 1-σ interval is the standard
deviation:

F0 =
1

Nrep

Nrep∑︂
k=1

F (Sk), σF =

⌜⃓⃓⎷ 1

Nrep + q

Nrep∑︂
k=1

[︁
F (Sk)− F0

]︁2
. (1.15)

Monte Carlo method has the advantage that provides a direct representation
of the probability distribution, without the need to make any assumption on
the shape of the probability distribution of the parameters.

1.4.1 Cross-validation

If there is a very large number of parameters, determining the best fit could
be non trivial, due to false minima and fluctuations. There are several ways
to avoid this problem. One possible way is to add a penalty term to the χ2

to the PDFs that are too complex, penalising the PDFs that are longer.

An alternative method is cross-validation [5]. This method consists in ran-
domly dividing the data in two sets, training and validation, and computing
their χ2 separately, but only the training one (χ2

tr) is minimized. At the
beginning, both χ2

tr and χ2
vl decrease, but at some point (see Figure 1.1)

training continues decreasing, while validation has a global minimum.

Figure 1.1: Training and validation χ2 at different epochs

This point is the optimal stopping point: if the process is stopped before this
point we have under-learning, while if it is stopped after this point we have
over-learning: the PDF is trained to describe also statistical fluctuations.
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When the experimental data are randomly divided between training and
validation, it is usually with equal probability, but it’s also possible to choose
different probabilities, like what is done in Section 2.2, using only training.

1.5 Neural networks for determination of PDFs

The neural network (NN) approach [5, 6], used in this work, allows to avoid
theoretical biases that can be incurred when particular functional forms are
adopted.

The main idea of the use of neural networks is that they can be used as
universal unbiased interpolators: starting from a Monte Carlo representation
of the probability density of data points, they can be used to produce a
representation of the probability density everywhere.

Obtaining a parametrization from the data requires two distinct steps [7]. In
the first step artificial data are produced as Nrep replicas of the original set
of Ndat data points, obtaining a Monte Carlo set of pseudodata

F
(art)(k)
i =

(︁
1 + r

(k)
N σN

)︁(︂
F

(exp)
i +

Nsys∑︂
p=1

r(k)p σi,p + r
(k)
i σi,s

)︂
, (1.16)

k = 1, ..., Nrep, i = 1, ..., Ndat, where Fi represents one single point, σN is
the total normalization uncertainty,σi,p are the Nsys correlated systematic

errors, σi,c =
∑︁Nsys

p=1 σ2
i,p is the sum of all correlated systematics, and r(k)

are independent univariate gaussian random numbers. The Nrep sets of data
point are distributed as an Ndat-dimensional multi-gaussian with expectation
value equal to the experimental value and standard deviation as the error of
experimental points.

The second step is the interpolation between data points with neural net-
works. It consists on training Nrep sets of neural networks, each of them
based on the data in one single replica. At the end, we have Nrep PDFs and
from these value we can determine the mean value of the parton distribution
for each x as the average over all the replicas, while the uncertainty is the
variance of the values. This way it is possible to eliminate the problem of
choosing a value of ∆χ2 that corresponds to 1-σ contour.

Beyond leading order, PDFs do not need to be positive defined. However,
the requirement for some measurable physical observables to be positive still
imposes a generalized positivity constraint on the PDFs [8]. For example, an
important theoretical constraint is the positivity of physical cross–section.
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Therefore, positivity must be imposed on observable hadronic cross-sections
and not on parton distributions, which do not necessarily need to be positive
(except at leading order where the probabilistic interpretation holds) [9, 10].
The positivity constrain is imposed through Langrange multipliers, it consists
in adding pseudo-data for cross sections with very small uncertainties, such
that a negative cross section would lead to a very high contribution to the
χ2.

1.5.1 The NNPDF neural network

In NNPDF fits up to 3.1, a multi-layer feed-forward neural network is used,
where each flavour is independent. This NN has a 2-5-3-1 architecture: it has
four layers with, respectively, 2,5,3 and 1 neuron. The first layer is the input
layer: it receives two inputs (x and ln 1/x); while the last layer is the output
layer, whose value is directly related to the value of the PDF at the scale Q0.
The output of the j-th neuron of the l-th layer ξ

(l)
j (j = 1, ..., nl, l = 1, ..., 4,

where nl is the number of neurons in the l-th layer) is given by an activation
function g(x):

ξ
(l)
j = g(h

(l)
j ), g(x) =

1

1 + e−x
(1.17)

for the first three layers and g(x) = x for the last layer, depending on a linear

combination of the outputs of all neurons on the previous layer ξ
(l−1)
j ,

h
(l)
j =

nl−1∑︂
i=1

ω
(l)
ji ξ

(l−1)
i − θj, (1.18)

where the weights ωij and the thresholds θj are free parameters of the net-
work, to be determined during the fitting. Up to NNPDF 3.1 training was
done using genetic algorithms.

For the work presented in this thesis a new framework has been used, where
multiple parameters can be tuned, thus allowing the studies that are pre-
sented in Chapter 2. The main differences of this new method is that it uses
the same NN for all the flavours, using a bigger network with a 35-25-8 archi-
tecture. Furthermore, minimization is performed using a variant of gradient
descend method, with the modifies on weights and thresholds are done in the

opposite direction of the gradient of χ2
(︂

∂χ2

∂ω
(l)
ij

, ∂χ2

∂θ
(l)
i

)︂
, to determine the best

fit parameters.



Results

2.1 Dependence on stopping point

The first part of this work is devoted to study the quality of the fit when it
is stopped before the optimal stopping point.

The fit has a maximum number of epochs of 40000, to be sure that the neural
network has enough time to reach its final state. We divide the total number
of epochs in 200 steps, each of them of 200 epochs, in order to be able to
monitor the fit in many different points. For each step we have 100 replicas.

By combining the data of each of the 200 steps, we also create a visual
representation of the evolution of the fits, and this animation allowed us to
chose the most significant steps, which are reported in this work to show the
evolution of the fits.

2.1.1 The neural network at the end of the epochs

First of all, we must be sure that the PDFs generated from the neural network
at the end of all the epochs are compatible with the current PDFs used for
computations.

So we compare the PDF we have at the end (at step 200) with a reference
PDF, with the results shown in Figure 2.1. In Figure 2.2 we show the distance
between the fits, according to de definition given in [11], where a distance
of 5 with 100 replicas correspond to a compatibility of 0.5 σ. Reference
fit corresponds to the NNPDF 3.1 [12] methodology, while the current fit
correspond to a new methodology [13]. All work in this thesis has been
implemented with the new code described in [13]. The results show that the
fits converge to a stable result, compatible with the reference fit, so it makes
sense for us to compare its state at the end with its state at some points in
the middle. The only significative differences between the two fits are in the

11
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Figure 2.1: PDF at the end compared to a reference PDF
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Figure 2.2: Distance between the PDFs and the reference fit (left) and vari-
ance distance (right)

low-x regime (x < 10−4), which is also the slowest to converge to the final
PDF.

2.1.2 Step 3 of 200 (600 epochs)

The first step we evaluated is after 600 epochs (step 3) compared to the fits
at the end of all the epochs (step 200). As we can see in Figure 2.6 the plots
are very different because at this point the neural network is very far from
converging to a stable and correct model. Furthermore, the 1-σ contour is
larger than the one for the fits at the end of the epochs. Despite the poor
fits at step 3, we can observe that at high-x regime (0.8 ≤ x ≤ 1) the plot
starts to resemble the reference one. Also, in Figure 2.5 we can see that the
PDFs are very distant.

The χ2 evaluated on experimental data also proves this. For the last replica
we have χ2 = 1.12059, while at step 3 χ2 = 3.22907. For example, by looking
at Figure 2.3, we can see that for each experiment considered the χ2 at step
3 is way higher than the one at the end.

Also, if we compare the prediction of the two fits to the actual data, we
can see, like in Figure 2.4, that the data at step 3 are far from both the
actual data and the fit at the end of the epochs. So, the neural network and
the PDFs generated from it are very far from describing well the underlying
physics.
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Figure 2.3: χ2 by experiment at step 3

Figure 2.4: Data prediction at step 3 and at step 200

Figure 2.5: Distance between the PDFs at step 3 and the PDFs at step 200
(left) and variance distance (right)



2.1. DEPENDENCE ON STOPPING POINT 15

Figure 2.6: PDFs at step 3 compared to step 200
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2.1.3 Step 5 of 200 (1000 epochs)

In Figure 2.7, we compare step 5 and step 200: considering the previous plots
in Figure 2.6, step 5 and step 3 substantially don’t differ from each other
Furthermore, as we expect by looking at the plots, the χ2 has’t improved
much: now we have χ2 = 3.08714.

Even if the first PDF converged to a quite good high-x regime description
in only 600 epochs, from this fit we can conclude that, even if 600 epochs
are enough to make a first fit, we need way more than the same amount of
epochs to gain the fine tuning that actual fits require.

Figure 2.7: PDFs at step 5 compared to step 200
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2.1.4 Step 15 of 200 (3000 epochs)

Around step 15, so after 3000 epochs, we start having the first significant
improvements. First of all, the χ2 improved, both the total χ2 having a
value of 2.48924, and the χ2 per experiment, shown in Figure 2.8, with all the
values improved compared to the ones of step 3 (Figure 2.3). In Figure 2.9,
we can observe that most of the prediction are compatible with the data,
within the error, even if the central values are still different, while at epoch
3 (Figure 2.4) almost none of the predicted data points were compatible.

Furthermore, by looking at the plots of Figure 2.11 we can also see an im-
portant improvement from step 5, also noticeable looking at the distances
(Figure 2.10), but we can also observe that the PDF convergence differs in
different kinematics regimes. We have an high-x regime (x > 0.8) of very fast
convergence: here the NN already describes almost perfectly the PDF, after
only 3000 epochs. On the other hand, we have the low-x regime where often
the NN is very far from describing the data. Also, the 1-σ error is smaller
than the steps considered previously.

Figure 2.8: χ2 by experiment at step 15
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Figure 2.9: Data prediction at step 15 and at step 200

Figure 2.10: Distance between the PDFs at step 15 and the PDFs at step
200 (left) and variance distance (right)
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Figure 2.11: PDFs at step 15 compared to step 200
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2.1.5 Step 25 of 200 (5000 epochs)

As we increase the number of the epochs, the quality of the fit improves.
Here, as an example, we show the fit after 5000 epochs. First of all, we have
a good value of χ2 = 1.25982. Then, looking at Figure 2.12, we can see
that the central replica is almost everywhere inside the 1-σ contour of the
reference fit. This is also seen in the χ2: it takes less time to go from χ2 > 100
(at the first step) to χ2 ≈ 3, than it takes to go from χ2 ≈ 3 to χ2 = 1.2.
Analogously, from the fits we see that it takes only 600 epochs to start having
a reasonable shapes, but it needs 5000 epochs to have a compatible central
value, but still with some significant difference is in the envelope, which is
larger than the reference and somewhere non compatible, but for most of the
values of x they are compatible. Analogously to the previous point, we can
still observe that the main differences are at low-x. Also, the size of the 1-σ
error is compatible to the error at the end, even if it is bigger at step 25.

Furthermore, by looking at the data predictions (Figure 2.13) and at the
distances (Figure 2.14), we can notice that all the predictions are compatible
and the distances are small, but still the fits are different.
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Figure 2.12: PDFs at step 25 compared to step 200
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Figure 2.13: Data prediction at step 25 and at step 200

Figure 2.14: Distance between the PDFs at step 25 and the PDFs at step
200 (left) and variance distance (right)
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2.1.6 Stability after step 25

After step 25 we can see that the NN converges to a state very similar to the
final result, in particular from about step 50 the shapes of the fits and the
values of χ2 are the same of step 200. Furthermore, the χ2 is at its minimum
from step 50: the fits take more epochs to pass from χ2 ≈ 3 to χ2 = 1.2
than to pass from χ2 = 1.2 to its final value of χ2 = 1.1. In the same way,
after step 25, where the central values are compatible, we still need the same
number of epochs more to converge to fits with also the same envelope.

In Figure 2.15 we can see that most of the replicas reach their final state
before 10000 epochs, even if many replicas take a longer time. Therefore a
suitable stopping point could be after about 15000 or 20000 epochs, in order
to have the most of the replicas at theirs optimal stopping point, saving
some important computation time with respect to a stopping point after
40000 epochs.

Figure 2.15: Stopping point of the different replicas
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2.2 Dependence on cross-validation

Provided that the NN converges and after studying its evolution to this
stable form, we now proceed to study how the NN changes depending on
cross-validation.

Therefore, we run the same NN of Section 2.1, but using all the data as
training and ignoring validation. As seen in Section 1.4.1, we expect that
without cross-validation we have an overfitted network, describing also sta-
tistical fluctuations.

But actually, in Figure 2.16, we can see that the two fits are very similar,
expect for some small difference for c quark. Also, the distance between the
two fits (Figure 2.17) are very similar. Furthermore, the values of χ2 (1.08
versus 1.12) and arclength1 are very similar.

2.2.1 Comparison to an overfitted network

For reference, we show now an actually overfitted PDF, obtained by using
a larger network, compared to the first one (Figure 2.18) and to the one
without cross-validation (Figure 2.19).

Here we can see that overfitted PDFs are way more wobbly than the others,
as an evidence of overfitting. Also, from arclengths, (Figure 2.20), we can
see that the overfitted arclengths are way bigger than the other two, as we
expect from overfitting. By comparing these PDFs, we can conclude that
the one without cross-validation is way more similar to the first one at the
end of the epochs than to the overfitted one. Therefore, cross-validation has
a marginal role in preventing overfitting, even if we expected that it is the
factor that stops overfitting from happening.

One possible explanation of the marginality of cross-validation is that the
training data are enough to make a good fit also for validation data points,
so the validation data are actually redundant: the huge amount of data points
flattens out random fluctuations and the neural network is not big and flexible
enough to describe these fluctuations, but instead describes an average of the
fluctuations. We can see a proof of that by looking at Figure 2.16: the fits
for the gluon, having more data, looks quite exactly like the ones with cross-
validation, while the ones for the c quark, having fewer data points, looks
actually more overfitted.

1We expect a longer arclength for an overfitted PDF, as it also describe fluctuations.
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Figure 2.16: PDFs without cross-validation compared with the ones in Sec-
tion 2.1.1, at the end of the epochs
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Figure 2.17: Distance between the PDFs without cross-validation and the
PDFs at step 200 (left) and variance distance (right)

Figure 2.18: Overfitted PDFs compared with the ones in Section 2.1.1, at
the end of the epochs
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Figure 2.19: Overfitted PDFs compared with the ones without cross-
validation, at the end of the epochs

Figure 2.20: Arclengths of overfitted NN compared to the normal one (left)
and the one without cross-validation (right)
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Therefore, even if cross-validation has a marginal role in preventing overfit-
ting it still has an importan role in the optimisation of the stopping point:
thanks to cross-validation it is possible to stop the fit after a suitable number
of epochs, for instance it is possible to stop the fit after about 15000 or 20000
epochs instead than after 40000, saving some valuable computation time.

After proving the small importance of cross-validation to avoid overfitting,
we try to find what other factors prevent the neural network from overfitting.
In Section 2.3 we evaluate the importance of the positivity constrains.

2.3 Positivity

At first, we modify positivity threshold: it represents the minimum value
below zero that the fits are allowed to have. In the other fits we used a
positivity threshold of 0.01, now we evaluate how modifying this value may
change the fit. We used thresholds of 0.1 and of 1, still using no cross-
validation. In Figure 2.21 we can see that there is no difference between the
two fits because the data and the pseudodata of positivity force the fit to be
always over the threshold.

Figure 2.21: PDFs with positivity threshold of 0.1 (left) and 1 (right) com-
pared to threshold of 0.01

After that, we focus on positivity multiplier: it represents the contribution of
the pseudodata for χ2: higher values of positivity multiplier lead to a greater
penalty to χ2 for negative data. Positivity multiplier λmultiplier works by
increasing the value of the positivity cross-section each 100 epochs. In other
words if in step 100 the positivity cross-section is σpos = x, then at epoch
1000 it will be σpos = λ10

multiplierx. For the other fits we have used a multiplier
of 1.09, now we evaluate the fits with smaller positivity multipliers: 1.05,
1.01, 1.005 and 1.001. In other words, we let the fits be more negative by
imposing less restrictive constraint of positivity.
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In Figure 2.22 we can see that there is no significant difference by modifying
the positivity to only 1.05, to have significative improvements we need to
decrease it more. Also all the fits respect the positivity constraint everywhere:
the cross-sections predicted by this fits are always positive.

Figure 2.22: PDFs with positivity multiplier 1.05 compared to 1.09

Considering now a positivity threshold of 1.01, we begin to notice some im-
portant change in the shape of the fits, as shown in Figure 2.23. Here, the fits
start to share some characteristics with the overfitted one of Section 2.2.1.
By relaxing the positivity constrain, we now have some fits that converge
to a value of small χ2, so it describes quite well the experimental data, but
the solutions are not physical: in fact, in Figure 2.24, we can observe that it
predicts negative cross-sections.

Figure 2.23: PDFs with positivity multiplier 1.01 compared to 1.09
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Figure 2.24: Positivity of cross-sections with multiplier of 1.01

If we keep relaxing the positivity multiplier to 1.005 or 1.001 we can notice
something different: the results are stopped before the optimal stopping
point. This happens because, after a certain point, the χ2 still decreases,
but they don’t respect positivity: this way, by having a positivity criteria a
family of solutions with a small χ2 but with unphysical predictions is killed.
In Figure 2.25 we can see that the fits actually look stopped before the
optimal time and in Figure 2.26 we can see that many cross-sections are
negative. While using smaller positivity multipliers, positivity threshold has
actually an important role: without relaxing positivity threshold below the
initial value of 0.01 all the fits would stop already after the first steps, without
giving any significant result.

Figure 2.25: PDFs with positivity multiplier 1.005 (left) and 1.001 (right)
compared to 1.09
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Figure 2.26: Positivity of cross-sections with multiplier of 1.005 (left) and
1.001 (right)

In conclusion, positivity constrain has an important role in eliminating solu-
tions making non-physical predictions, despite their potentially good value
of χ2. Instead, its role in preventing overfitting is still marginal: considering
also the marginality of cross-validation, we can conclude that overfitting is
prevented mostly by the network used which does’t have enough flexibility
to overfit.



Conclusion

We can notice that the NNPDF fits converge at the beginning quite quickly,
going from χ2 ≈ 3 to a good central value with a χ2 = 1.2 in about 5000
epochs. After that, the convergence slows down, needing about the same
time, or more, to get to the final value of χ2 = 1.1. Furthermore, not all the
replicas reach the stopping point at the same time. By looking at the different
stopping points, we can conclude that a suitable stopping point could be at
about 15000 or 20000 epochs, where most of the replicas have reached their
final value, allowing to save some computational time with respect to the
40000 epochs used in this work. Furthermore, during the evolution, the 1-σ
contour becomes smaller with the evolution of the network. In particular, at
the end we have an error way smaller than the error at the beginning. This is
due to the fact that at the beginning the neural networks is describing data
randomly, so it fluctuates more, leading to a bigger contour.

Removing cross-validation, we observed that its importance is negligible.
This happens for two main reasons: the first one is that the neural network
is trained on a huge amount of data. This way, the random fluctuations
are flattened out, so that the neural network describes an average of these
fluctuations, without overfitting on the single points. The second reason is
that the neural network is too small to overfit; in fact, using a bigger network
it is possible to have overfitting. Cross-validation still has an important role
in determining the optimal stopping point.

After concluding the negligible role of cross-validation for avoiding overfit-
ting, we evaluated if the positivity constrain plays a role in overfitting, con-
cluding that it does, but only marginally. In fact, by relaxing the positivity
multiplier, the fits started looking a little overfitted, but not as much as the
results using the bigger network. It is a marginal role because by relaxing
more this constrain, the fits are stopped before the optimal stopping-point,
resulting in under-learning. This way, a family of solutions with small χ2 but
making non-physical predictions, like negative cross-sections, is killed.
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