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Abstract

In the last two decades, machine learning algorithms have experienced a consistent in-
crease in their use in particle physics research. The NNPDF collaboration has found great
success in exploiting neural networks (NNs) to extract the Parton Distribution Functions
(PDFs) from experimental data. The recent developments of more efficient libraries for
training and hyperoptimization of neural networks have led to the reimplementation of the
NNPDF framework in a new code, named n3fit. In this thesis we present a first analy-
sis based on the Hessian representation of the Monte Carlo PDF sets obtained with this
new methodology. We compare the predictions of the n3fit code with the latest release,
NNPDF3.1, and quantify their goodness-of-fit from the study of a measure of fit quality,
χ2. The χ2 values allow us to extract useful informations about potential inefficiencies
in the fitting methodologies. This kind of analysis brings us to consider an experimental
branch of n3fit, to repeat the χ2 study and search for further improvements in the fitting
procedure. We conclude with the extrapolation of an effective tolerance parameter from
the Hessian conversions of the Monte Carlo sets obtained with these methodologies, from
which we are able to determine the accuracy of their predictions. We finally suggest how
the strategies adopted in this thesis could be included in future fits of the n3fit code.
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Introduction

Nowadays, the main focus of the research in theoretical particle physics is to provide pre-
dictions, based on the Standard Model (SM) of elementary particles, with enough precision
that even a small deviation in the experimental measurements can be identified as a signal
of new physics. The most important benchmarks for the SM are proton-proton collisions
at the Large Hadron Collider (LHC), where two proton beams are accelerated at very high
energies before they are made to collide. During these collisions, their fundamental con-
stituents, quarks and gluons, interact to produce complicated multi-particle final states.
The computation of any particle physics observable is then strictly related to a faithful de-
scription of the inner structure of the proton, which in turn cannot be obtained from first
principles from the underlying theory of strong interactions, Quantum Chromodynamics
(QCD). The proton structure can only be explained with a probabilistic interpretation in
terms of Parton Distribution Functions (PDFs), probability densities describing the mo-
mentum distribution of quarks and gluons in the initial stage of a collision. The PDFs
carry information on the non-perturbative structure of the proton, or hadrons in general,
outside the domain of applicability of perturbative QCD.

The only way to determine the parton distributions is from an indirect analysis, based
on comparing PDF-dependent predictions with experimental data. However, the prob-
lem gets complicated by the fact that PDFs are functions rather than simple parameters,
and thus their extraction from a finite set of data will always result in some level of un-
certainty. Nonetheless, the techniques exploited to determine their functional forms have
greatly evolved from the first naive models of the ’80s, where PDFs were parametrized by
ad-hoc models and the uncertainties could not be estimated [1]. At present, the PDFs
are determined from well established fitting procedures which rely on precise theoretical
predictions, and take into account both the uncertainties of the input data and those re-
lated to the choice made for the parametrization of the PDFs. All this complex machinery
is the result of the development of new methods to extract the PDFs and estimate their
uncertainties, along with the continuous increase in computing power and efficiency.

During the last decade the NNPDF collaboration [2] (Neural Network PDF) has reached
a new state-of-the-art in PDF determination with the introduction of machine learning tools
for PDF analyses. In particular, NNPDF uses artificial neural networks to parametrize and
find the best PDF estimate, while the uncertainties are propagated directly from the exper-
imental data during the fitting procedure. A further step towards a new generation of PDFs
predictions is currently under investigation within the N3PDF project [3] of the NNPDF
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2 Introduction

collaboration. Since neural networks themselves are not unique, and neither the algorithms
used for their training, there is still some freedom in the choice of methodology. At present,
the NNPDF framework has been reimplemented in a new code, named n3fit [4], capable
to perform a semi-automatic hyperoptimization, that is, find the best combination of hy-
perparameters (neural network architecture, activation function, minimizer, etc.) given a
specific input setup.

In this thesis we compare the predictions of the old methodology, namely NNPDF3.1,
with the new one, n3fit, to quantify their goodness-of-fit. While NNPDF implements a
“Monte Carlo” representation of the parton densities, we convert them to an equivalent
“Hessian” representation, from which we can study a suitable figure of merit, χ2. In a
pure Hessian representation, the PDFs are parametrized with a fixed functional form and
the best fit parameters are found from the minimization of the χ2. The uncertainties are
propagated by varying the parameters around the minimum, along directions specified by
the eigenvectors of the χ2 Hessian matrix. The confidence interval for each parameter
is defined by the condition ∆χ2 = T 2, where T is the so-called tolerance parameter.
Therefore, the value of T is directly related to the uncertainties of the PDFs as it defines
the region of acceptable fits. By converting a Monte Carlo set into a Hessian set, we obtain
a further method to quantify the performance of the methodologies under examination, as
we are able to introduce an effective tolerance for Monte Carlo sets.

Moreover, from the χ2 study we can separate the contributions related to the ineffi-
ciencies of the methodologies, and search for further improvements in the n3fit proce-
dure, thanks to the great flexibility of the new code. This analysis leads us to consider
an experimental branch of n3fit, named feature_scaling_test, based on a different
parametrization for the PDFs and a different treatment of the neural network input. From
the Hessian representations of the Monte Carlo sets obtained with these three methodolo-
gies, NNPDF3.1, n3fit, and feature scaling, we estimate the corresponding tolerances to
eventually conclude which one gives the most accurate predictions. We conclude with a
short outlook about how this whole procedure can be included in future fits for potential
improvements in the determination of parton distribution functions.

This thesis is organized as follows:

Chapter 1: The theoretical framework. We give an overview of QCD with par-
ticular attention on how the PDFs arise and their fundamental role for theoretical
predictions. We begin from the concept of running coupling and the parton model de-
scription of Deep Inelasting Scattering. Then, we consider the next-to-leading order
corrections to introduce the factorization theorem and its generalization to inclusive
cross sections. We arrive at the DGLAP evolution equations with the treatment
of heavy quarks, and conclude with the general properties expected for the proton
PDFs.

Chapter 2: PDFs determination. PDFs predictions are the result of a complex
fitting procedure which must take into account very different aspects: the selection of
experimental data, the choice of parametrization for the PDFs to compute theoretical
predictions during the fit, the minimization strategy to optimize the parameters that
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describe their functional forms, and the method to propagate the uncertainties of
the resulting parton distributions. In this chapter we give an overview of all these
features and we focus on the two main methods used to represent the uncertainties:
the Monte Carlo and Hessian method. We also introduce the Monte Carlo to Hessian
conversion implemented in the mc2hessian code [5, 6], which is used to study the
Monte Carlo sets considered in this thesis.

Chapter 3: PDFs from deep learning methods. We introduce in more detail the
new n3fit code and argument how it can improve the old NNPDF framework. Then,
we start our analysis from two “equivalent” Monte Carlo sets produced by these two
methodologies, and we convert them into Hessian sets to study the χ2 variations
around the best PDF estimate. We consider a possible strategy, based on positive and
negative variations of the χ2, to determine kinematical regions where potential ineffi-
ciencies in the determination of the PDFs might appear. Guided by these observations
we choose an experimental branch of n3fit, named feature_scaling_test, and re-
peat the same analysis to search for further improvements for the n3fit methodology.

Chapter 4: Tolerance for Monte Carlo sets. We continue our assessment of the
Monte Carlo sets by considering a simple one-parameter model for the χ2, which
allows us to isolate the various contributions that define its shape. In particular,
we investigate which set best converges to the model predictions. Finally, we intro-
duce an effective tolerance for the equivalent Monte Carlo sets obtained from the
three different methodologies under examination, to quantify the accuracy of their
predictions.

Chapter 5: Conclusions and outlook. We conclude with a brief summary of the
results obtained in this thesis. Moreover, we provide an outlook about further im-
provements that can be obtained in future fits from the inclusion of the strategies
adopted in this thesis within the n3fit code.





Chapter 1

The theoretical framework

In this chapter we review the basics of QCD, starting from the running coupling to arrive
at the derivation of PDFs and DGLAP evolution.

1.1 Fundamentals of QCD
The basic theory which describes the strong interactions is Quantum Chromodynamics, or
QCD, a non-Abelian gauge theory with gauge group SU(3). The fundamental constituents
are quarks, fermions of fractional elementary charge (either −1/3 or +2/3), and gluons,
which are massless gauge bosons. Quarks are grouped into three families, each one con-
taining two of them with their corresponding antiquarks. These six types of quarks are
often referred to as flavours.

The classical Lagrangian is given by the Yang-Mills Lagrangian density

Lclassical =
∑

flavours
ψa(i /D −m)abψb −

1

4
F a
µνF

µνa . (1.1)

These terms describe the interactions of quark fields ψa in the fundamental representation
of the SU(3) colour group (a = 1, 2, 3), and gluons, whose fields lie inside /D and F a

µν .
Specifically, the latter term is the antisymmetric strength tensor derived from the gluon
field Aa

µ,

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν , (1.2)

where fabc are the structure constants of SU(3), and the indices a, b, c run over the eight
colour degrees of freedom in the adjoint representation to which the gluon fields belong.
Finally the term /D in eq. (1.1) is the contraction γµD

µ between the Dirac matrices and
the covariant derivative acting on the quark fields

Dµ = ∂µ + igtaAµa , (1.3)

where ta are the eight generators of SU(3) in the fundamental representation. In eqs. (1.2)
and (1.3) g is the bare coupling of the theory which determines the strength of the inter-
action.
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6 Chapter 1. The theoretical framework

When the Lagrangian eq. (1.1) is quantized, additional terms related to gauge invariance
are introduced and the Feynman rules of the theory can be derived. These rules allow
us to calculate transition amplitudes as a perturbative series in the bare coupling g, or
equivalently as a series in the coupling constant

αS =
g2

4π
. (1.4)

To make meaningful predictions, αS should be small enough to guarantee the convergence
of the perturbative series, and as we will see in the next section this is what happens for
sufficiently high energy.

1.1.1 The running coupling of QCD

Typically in a quantum field theory, when calculating amplitudes using Feynman diagrams,
infinite values arise whenever are present loops of virtual particles whose momenta are not
bound (UV divergences).

Thanks to the general procedure called renormalization, these unphysical divergences
can be reabsorbed by rescaling the fields and introducing renormalized (physical) param-
eters, such as a renormalized coupling. These new parameters are determined by a set of
renormalization conditions applied at a certain momentum scale, or renormalization scale,
µR. The renormalized parameters are then dependent on this quantity, and on the scheme
adopted for the renormalization conditions.

The new scale µR was not mentioned in the starting Lagrangian, but its choice is
required in order to define the theory at the quantum level. Furthermore it is arbitrary:
we could choose another value µ′R, which would change the renormalized parameters, but
the predictions for the physical observables would remain the same. This means that
the µR dependence of renormalized quantities must cancel out inside the expressions of
physical observables. The mathematical formulation of the previous statement is given by
the Callan-Symanzik equation [7, 8].

QCD is a renormalizable theory, in the sense that with a finite number of renormal-
ization conditions all possible divergences can be cured. As any observable must be in-
dependent on µR, the introduction of the renormalization scale implies the definition of
the running coupling αS(Q

2), which depends on the process energy scale Q2. The specific
dependence is given by the renormalization group equation (RGE)

Q2∂αS(Q
2)

∂Q2
= β(αS(Q

2)) , (1.5)

with the initial condition αS(µ
2
R) = αS , the fixed renormalized coupling.

The β function has the perturbative expansion

β(αS) = −α2
S(β0 + β1αS + β2α

2
S + . . . ) , (1.6)

where the leading order term is

β0 =
1

12π
(33− 2nf ) , (1.7)
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and nf are the numbers of active flavours at the scale Q2. Since in QCD nf < 17 at any
scale, β0 is positive and the β function (1.6) stays negative. Accordingly, eq. (1.5) tells that
the strength of the coupling decreases at a logarithmic rate as the energy of the interaction
increases. This property of QCD is called asymptotic freedom [9]: for high enough energy
the coupling is sufficiently small to allow perturbative calculations, with quarks and gluons
treated as asymptotic states, or free particles.

More quantitatively, solving the differential equation (1.5) at leading order gives

αS(Q
2) =

αS(µ
2
R)

1 + β0αS(µ2R) ln
(
Q2/µ2R

) , (1.8)

and the denominator can be expanded in powers of αS ln
(
Q2/µ2R

)
,

αS(Q
2) = αS(µ

2
R)
(
1− β0αS(µ

2
R) ln

(
Q2/µ2R

)
+ . . .

)
. (1.9)

Logarithmic corrections (αS ln
(
Q2/µ2R

)
)n typically arise in divergent amplitudes with n

loops, and thus the RGE automatically resums these terms at all orders by using the
running coupling.

Equation (1.8) gives a parametrization of the running coupling in terms of its value at
the reference scale µ2R. Another possible parametrization is found by defining the QCD
scale Λ as the zero of the denominator of eq. (1.8), which therefore is rearranged into the
form

αS(Q
2) =

1

β0 ln(Q2/Λ2)
. (1.10)

This formula is the clear statement that αS decreases as (ln
(
Q2
)
)−1 for large Q. The QCD

scale gives a rough estimate of the energy at which the coupling becomes so strong that a
perturbative treatment of QCD is no longer justified. Experimental measurements yield a
value of Λ ' 200MeV.

The parametrization (1.10) is not used for the estimation of αS(Q
2) because at higher

orders the quantity Λ does not directly arise. It has become standard practice to quote the
value of αS at the mass of the Z boson MZ ' 91.2GeV, where αS(M

2
Z) = 0.118 [10]. Then,

by solving eq. (1.5) at fixed order such as the leading order solution (1.8), the running of
the coupling can be computed at any other scale.

1.2 Deep Inelastic Scattering
In the late ’60s and early ’70s, collision experiments were conducted to probe the inner
structure of the proton and neutron, and provided direct experimental foundations of
QCD as the theory of strong interactions. In those experiments [11, 12], a beam of leptons
was accelerated and fired against fixed hadronic targets, such as atomic nuclei. Only the
energy and direction of the scattered leptons were measured, leaving the final hadronic
state, denoted by X, unknown.

The basic diagram1 of the process, `(k) + h(p) → `′(k′) + X, is shown pictorially in
fig. 1.1. If the target hadron remains intact, X = h, the reaction is an elastic scattering.

1All the diagrams which will be presented are obtained using the TikZ-Feynman package [13].
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`

`′

Wµν

h

X

k

k′

q = k − k′

γ∗

p

Figure 1.1: Hadronic level diagram of a DIS process. The incoming lepton ` scatters off
a target hadron h by exchanging a virtual photon γ∗ with momentum q. The hadronic
tensor Wµν is defined in eq. (1.17).

In case of large momentum transfer, the hadron fragments into many particles and the
process is referred to as deep inelastic scattering, or DIS.

Assuming that the energy of the incoming lepton is much greater than its mass, the
kinematic variables of DIS in the rest frame of the target hadron are:

p = (M, 0, 0, 0) The initial momentum of the target hadron of mass M.

k = (E, 0, 0, E) The lepton initial momentum of energy E.
k′ = (E′, E′ sin θ, 0, E′ cos θ) The lepton final momentum of energy E′.

q = k − k′ The momentum transfer.
ν =M(E − E′) = p · q The energy loss of the lepton times the hadron mass.
y = ν/p · k The fractional energy loss of the lepton.

Q2 = −q2 Since q is spacelike, it is convenient to define Q2 ≥ 0.

x =
Q2

2ν
=

Q2

2p · q
=

Q2

2MEy
The Bjorken variable, of crucial importance for DIS.

Conservation of baryonic number implies that the invariant mass of the final hadronic
state X must be at least that of the initial nucleon

M2
X = (p+ q)2 ≥M2 ⇔ M2 + 2p · q −Q2 ≥M2 ⇒ x ≤ 1 . (1.11)

Since Q2 and ν are both positive, x must be positive as well. Then the kinematically
allowed interval for x is

0 ≤ x ≤ 1 . (1.12)

The unpolarized amplitude M of the process in fig. 1.1 is

iM = −(ie)2ū(k′)γµu(k)
i

Q2
〈X|J µ

h |p〉 , (1.13)
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where J µ
h is the hadronic electromagnetic current. The theoretical difficulty of the calcu-

lation arise from the fact that the hadronic states |p〉 and |X〉 are unknown, since they are
characterized by non-perturbative effects.

To compute the cross section it is convenient to factor the modulus squared of the
amplitude in eq. (1.13) into a leptonic and a hadronic piece,

dσ ∼ LµνW
µν . (1.14)

The leptonic tensor, Lµν , is completely determined by QED,

Lµν = e2
1

2

∑
spins

[ū(k′)γµu(k)ū(k)γνu(k
′)] = e2

1

2
tr
[
/k′γµ/kγν

]
=

= 2e2
(
kµk

′
ν + kνk

′
µ − gµνk · k′

)
,

(1.15)

while the hadronic tensor, Wµν , contains all the information about the interaction of the
photon and the target hadron

Wµν =
1

4π

∑
X

〈p|J µ†
h |X〉 〈X|J ν

h |p〉 (2π)4δ4(q + p− pX) =

=
1

4π

∫
d4z eiq·z 〈p|J µ†

h (z)J ν
h (0)|p〉 ,

(1.16)

where we used the completeness relation on the final states and the integral representation
of the four dimensional delta function.

Due to our ignorance on the initial hadronic state, eq. (1.16) cannot be computed
directly in QCD but symmetries and conservation laws can restrict its functional form.
Conservation of the electromagnetic current, ∂µJ µ

h = 0, implies that qµWµν = 0 and
qνW

µν = 0. Furthermore, by requiring the tensor to be symmetric under parity transfor-
mations, one can show that the most general form is

Wµν =

(
−gµν + qµqν

q2

)
F1(x,Q

2) +

(
pµ +

qµ

2x

)(
pν +

qν

2x

)
1

ν
F2(x,Q

2) , (1.17)

where the functional parameters F1 and F2 are known as electromagnetic structure func-
tions. To project out these structure functions, it is convenient to choose a reference frame
where the struck hadron is moving very fast, such that we can neglect its mass, p2 = 0.
We can then introduce the lightlike vector n with the properties n · p = 1 and n · q = 0 to
obtain the following relations:

νnµnνWµν = F2 ,

4x2

ν
pµpνWµν = F2 − 2xF1 =: FL ,

(1.18)

where the quantity in the second equation is called longitudinal structure function.
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`

`′

Ŵ i
µν

fi(ξ)

h

X

k

k′

q

γ∗

p

ξp

Figure 1.2: The DIS process in QCD. The virtual photon γ∗ scatters off a parton with a
fraction ξ of momentum of the struck hadron. The partonic tensor Ŵ i

µν describes the QCD
corrections to the interaction vertex.

In this frame, we can write the differential cross section of the DIS process mediated
by a virtual photon as:

d2σ

dxdQ2
=

4πα2

Q4

[(
1 + (1− y)2

)
F1 +

(1− y)

x
(F2 − 2xF1)

]
, (1.19)

and therefore F1 and F2 can be extracted from measurements of (1.19).
The Bjorken limit is defined as Q2, ν → ∞ with x fixed. In this limit the structure

functions were observed to obey an approximate scaling law, i.e. they depend only on the
variable x:

Fi(x,Q
2) −−−−−−→

Q2,ν→∞
Fi(x) . (1.20)

Bjorken scaling implies that the virtual photon scatters off pointlike constituents, since
otherwise the structure functions would depend on the ratio Q/Q0, with 1/Q0 some length
scale characterizing the size of the constituents.

So far we made some assumptions that simplified the hadronic tensor structure of
eq. (1.16). We are now ready to introduce the “naive” parton model, which successfully
predicts the behaviour of eq. (1.20) and gives further understanding on the quantities in
eqs. (1.17) and (1.18).

1.2.1 The parton model

One of the contributions that provided great support to QCD as the theory of strong
interactions was the proposal of what is called “naive” parton model [14]. Naive because
it was developed to explain the early results of electron/proton DIS experiments, without
an actual basic theory as a foundation. Nevertheless, it is still a justifiable approximation
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at high energies and its ideas are now part of QCD, fig. 1.2. The key points of the model
can be summarized as follows:

• A hadron can be considered as a composition of point like constituents, called partons,
which correspond to quarks and gluons.

• In a DIS process when Q2 is sufficiently higher than the binding energy of the partons,
the virtual photon becomes sensitive to the inner structure of the hadron and scatters
incoherently off the quark constituents.

• If p is the momentum of the hadron in the fast moving frame then a parton carries a
fraction of momentum ξp, with 0 < ξ < 1. We are therefore neglecting the transverse
components of the momentum of the partons, which are due to the internal soft
dynamics, on the assumption of the high energy transfer in the direction of motion.

• The probability that the photon interacts with the i-th parton whose momentum
fraction lies between ξ and ξ + dξ is given by fi(ξ) dξ, where fi(ξ) is called Parton
Distribution Function, or PDF.

The probabilistic interpretation allows to rewrite the hadronic tensor (1.17) as a sum of
parton-level tensors, Ŵ i

µν , weighted by the corresponding distributions fi,

Wµν(x,Q
2) =

∑
i

∫ 1

x

dξ

ξ
fi(ξ)Ŵ

i
µν

(
x

ξ
,Q2

)
, (1.21)

where the index i runs over the partons which enter the process. The factor 1/ξ is needed
to obtain the proper normalization 2p0 of the hadronic state in terms of that of quark
states 2ξp0.

The same arguments which brought us to (1.17) can be applied to the partonic level
tensors, which therefore are

Ŵ i
µν =

(
−gµν + qµqν

q2

)
F̂ i
1

(
x

ξ
,Q2

)
+

(
pµ +

qµ

2x

)(
pν +

qν

2x

)
ξ2

ν
F̂ i
2

(
x

ξ
,Q2

)
, (1.22)

where F̂ i
1 and F̂ i

2 are the parton structure functions, related to the electromagnetic structure
functions by substituting eqs. (1.17) and (1.22) in eq. (1.21):

F1(x,Q
2) =

∑
i

∫ 1

x

dξ

ξ
fi(ξ)F̂

i
1

(
x

ξ
,Q2

)
, (1.23)

F2(x,Q
2) =

∑
i

∫ 1

x
dξξfi(ξ)F̂

i
2

(
x

ξ
,Q2

)
. (1.24)

The advantage is that now the partonic level tensor Ŵ i
µν is computable in perturbation

theory from the averaged squared amplitude of the subprocess q(ξp) + γ∗(q) → q(l), and
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γ∗

qi

qi

q

ξp

l = ξp+ q

Figure 1.3: LO diagram of the process q(ξp) + γ∗(q) → q(l).

the quantities F̂ i can be extracted in a similar way as in eq. (1.18):
νnµnν

ξ2
Ŵ i

µν = F̂ i
2 , (1.25)

4x2

νξ2
pµpνŴ i

µν = F̂ i
2 −

2x

ξ2
F̂ i
1 =: F̂ i

L . (1.26)

The parton model treats the subprocess qγ → q at leading order (LO), shown in fig. 1.3,
whose matrix element is

iMi
µ = −ieiū(l)γµu(ξp) . (1.27)

During the computation we can neglect the quark masses and therefore the averaged mod-
ulus squared of Mi

µ is the same as the leptonic tensor Lµν of eq. (1.15) provided the
substitutions k → ξp, k′ → l and e → ei. The partonic tensor is similar to eq. (1.16) with
an additional factor of integration over the final particle phase space:

Ŵ i
µν =

1

4π

∫
d3l

(2π)32El

1

2

∑
spins

|Mi|2µν(2π)4δ(4)(ξp+ q − l) =

=
1

4

∑
spins

|Mi|2µνδ(l2) ,
(1.28)

where we used the identity of the Lorentz invariant integral∫
d3l

(2π)32El
=

∫
d4l

(2π)4
(2π)δ(l2)

∣∣∣∣
l0>0

. (1.29)

We can now extract the structure function (1.25),

F̂ i
2 =

νnµnν

ξ2
Ŵ i

µν = 2νe2i δ(l
2) = e2i δ(ξ − x) , (1.30)

since
δ(l2) = δ

(
(ξp+ q)2

)
= δ(2ξp · q −Q2) =

1

2ν
δ(ξ − x) . (1.31)

Equation (1.31) states that at leading order the Bjorken variable x is actually the momen-
tum fraction ξ of the scattered parton. By computing the left hand side of eq. (1.26) we
find that F̂ i

L = 0 and then

F̂ i
1 =

ξ2

2x
F̂ i
2 = e2i

ξ2

2x
δ(ξ − x) . (1.32)
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Finally we may write the electromagnetic structure functions of eqs. (1.23) and (1.24)
as predicted by the parton model

F1(x,Q
2) =

∑
i

∫ 1

x

dξ

ξ
fi(ξ)e

2
i

ξ2

2x
δ(ξ − x) =

1

2

∑
i

e2i fi(x) ,

F2(x,Q
2) =

∑
i

∫ 1

x
dξξfi(ξ)e

2
i δ(ξ − x) = x

∑
i

e2i fi(x) .

(1.33)

In these equations there are two important features that were needed to explain the early
experimental measurements of DIS:

(i) the structure functions F1 and F2 scale, which means they have no dependence on
the momentum transfer Q2;

(ii) F2(x) = 2xF1(x), which is known as the Callan-Gross relation [15].

The first property was found by Bjorken [16] and inspired the development of the parton
model, while the second implies that the longitudinal structure function vanish FL =
F2 − 2xF1 = 0, as we already noted at the partonic level where F̂L = 0. The relation is
a consequence of the specific process in fig. 1.3, and as such is evidence of the spin−1/2
nature of quarks.

1.2.2 Higher order corrections and scaling violation

The discovery of asymptotic freedom in QCD gave the theoretical foundation to explain
the scaling feature of the structure functions. Since the constituents of the hadrons at high
energies were expected to behave as quasi-free pointlike particles, the partons were then
readily associated to quarks and gluons, and the predictions of the parton model related
to the leading order subprocess γq → q of fig. 1.3.

As said, the parton model was able to provide a valid description of the results of the
first DIS experiments. However, to obtain more accurate predictions we cannot neglect the
higher order corrections of QCD, starting at O(αS). When accounting for these corrections,
virtual loops and real emissions of partons have to be considered. Since we are assuming
the quarks to be massless, the virtual contributions suffer both UV and IR singularities,
while real emission processes are IR divergent due to soft and collinear final states.

In fig. 1.4 are shown the next-to-leading order (NLO) real corrections, i.e. gluon emis-
sion from initial and final state, γ∗q → gq, and the event in which the process is initiated
by a gluon splitting into a pair of quark-antiquark, γ∗g → qq̄. These corrections will lead
to a mild break of Bjorken scaling by the appearance of logarithms of Q2 in the struc-
ture functions. The measurements of such scaling violations provided further evidence to
establish QCD as the theory of strong interactions.

The squared amplitudes for gluon emission are shown in fig. 1.5. As stated above
all these processes suffer from IR singularities that may be treated in several ways, for
example by giving the gluon a small mass, or by using the dimensional regularization [17].
These methods can take care of both infrared and ultraviolet divergences: in particular, IR
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γ∗

q

q

g

q

ξp

(a)

γ∗

q

q

g

q

ξp

(b)

γ∗

g

q

q̄

q

ξp

(c)

Figure 1.4: Feynman diagrams of the NLO contributions to a deep inelastic scattering.
Real gluon emission (b) and (c), and gluon initiated process (d).

(a) (b) (c) (d)

Figure 1.5: Contributions to the squared amplitude from real gluon emission at NLO.

singularities from virtual and final state emissions cancel each other out when combined.
This result holds thanks to the Kinoshita-Lee-Nauenberg theorem [18, 19], which states
that all completely inclusive processes in QCD are IR safe. However, the real emission
from initial state, fig. 1.4a, is not subject to this cancellation and its divergence has to be
treated separately (the same holds for the process of fig. 1.4c).

We can be more explicit with a different procedure [20], in which the computation is
carried out in the light-cone gauge: the contributions from figs. 1.5b to 1.5d are finite,
while the remaining singular term is therefore the diagram in fig. 1.5a. As in eqs. (1.25)
and (1.28), we can extract the parton-level structure function F̂ i

2 and combine the result
with the leading order term of eq. (1.30)

F̂
i(q)
2

(
x

ξ
,Q2

)
= e2i

{
δ(ξ − x) +

αS

2π

x

ξ2

[
Pqq

(
x

ξ

)
ln
Q2

κ2
+ Cq

(
x

ξ

)]
+O(α2

S)

}
, (1.34)

where the superscript q refers to the γ∗q → gq process. In general, the function Pab

describes the b→ a parton splitting, so Pqq is known as the q → q splitting function,

Pqq(z) =
4

3

1 + z2

1− z
, (1.35)

while all the other finite contributions are in the Cq term. The logarithm ln
(
Q2/κ2

)
originates from the integration over the gluon transverse momentum spectrum∫ Q2

κ2

dk2⊥
k2⊥

= ln
Q2

κ2
, (1.36)
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Figure 1.6: Virtual gluon emissions contributing at O(αS) to a deep inelastic scattering.

where we have introduced an infrared cut-off κ as a regulator to obtain a finite result, since
the lower limit of integration should be set to zero.

This treatment is however incomplete, since we need also the virtual gluon diagrams
shown in fig. 1.6. At O(αS) their contribution comes from the interference with the leading-
order term of fig. 1.3. If we inspect eq. (1.35) we can see that it’s divergent when z → 1,
which is due to gluon emission with energy that tends to zero (soft divergence). The virtual
corrections singularities cancel exactly this divergent behaviour of Pqq by modifying its
expression to

Pqq(z) =
4

3

1 + z2

(1− z)+
+ 2δ(1− z) , (1.37)

where the plus prescription on the singular part refers to the distribution∫ 1

0
dz

f(z)

(1− z)+
=

∫ 1

0
dz
f(z)− f(1)

1− z
. (1.38)

In this way, this final result for gluon emission ensures the conservation of baryonic number,
since ∫ 1

0
dzPqq(z) = 0 . (1.39)

We can now compute the hadronic structure function F
(q)
2 using eq. (1.24),

F
(q)
2 (x,Q2) = x

∑
i=q,q̄

e2i

{
fi(x) +

αS

2π

∫ 1

x

dξ

ξ
fi(ξ)

[
Pqq

(
x

ξ

)
ln
Q2

κ2
+ Cq

(
x

ξ

)]
+O(α2

S)

}
,

(1.40)
and we can see that beyond leading order it is Q2 dependent, with Bjorken scaling broken
by logarithms of Q2.

Equation (1.40) is still ill defined since the cutoff κ has no physical meaning and even-
tually we should take the limit κ2 → 0. From eq. (1.36) we can see that this singularity
arises when the gluon is emitted parallel to the quark, which is why it is called a collinear
divergence. In this case there is no IR cancellation since the photon can distinguish be-
tween a quark and a collinear quark-gluon pair with the same overall momentum. The key
to obtain a finite result is to realize that a collinear emission belongs to the long range or
“soft” regime of the strong interaction, which we cannot compute in perturbation theory.

In the same way as the renormalization of the bare parameters of the Lagrangian, we
can consider fi(ξ) in eq. (1.40) as unmeasurable bare distributions f (0)i (ξ), and absorb the
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collinear singularities into these functions at a momentum scale µF , called factorization
scale. By splitting the divergent logarithm as

ln
Q2

κ2
= ln

Q2

µ2F
+ ln

µ2F
κ2

, (1.41)

we can define the renormalized parton distributions

fi(x, µ
2
F ) = f

(0)
i (x) +

αS

2π

∫ 1

x

dξ

ξ
f
(0)
i (ξ)

[
Pqq

(
x

ξ

)
ln
µ2F
κ2

+ Cq

(
x

ξ

)]
+O(α2

S) , (1.42)

and obtain a finite structure function independent from the infrared cutoff κ,

F
(q)
2 (x,Q2) = x

∑
i=q,q̄

e2i

[
fi(x, µ

2
F ) +

αS

2π

∫ 1

x

dξ

ξ
fi(ξ, µ

2
F )Pqq

(
x

ξ

)
ln
Q2

µ2F
+O(α2

S)

]
=

= x
∑
i=q,q̄

e2i

∫ 1

x

dξ

ξ
fi(ξ, µ

2
F )

[
δ

(
1− x

ξ

)
+
αS

2π
Pqq

(
x

ξ

)
ln
Q2

µ2F
+O(α2

S)

]
.

(1.43)

The distributions fi(x, µ2F ) cannot be computed from first principles in perturbation theory,
but can be determined from measurements of the structure function at any scale, since by
setting µ2F = Q2 we have F2(x,Q

2) = x
∑

i e
2
i fi(x,Q

2).
During the factorization procedure the singular logarithmic terms are always absorbed

inside the renormalized parton distributions, but there is an arbitrariness in how the finite
parts are treated. In fact in eq. (1.42) we absorbed the whole term Cq, using the so called
DIS scheme [21]. In general, the choice of the finite terms to include in fi(x, µ

2
F ) defines

the factorization scheme. The most used one is the Modified Minimal Subtraction, or MS
scheme, in combination with the dimensional regularization of divergent amplitudes. In
this case the absorbed finite terms are simply ln 4π − γE , which appear in all calculations
due to the dimensional regularization procedure. Then, with µ2F = Q2, we have

F
(q)
2 (x,Q2) = x

∑
i=q,q̄

e2i

∫ 1

x

dξ

ξ
fi(ξ,Q

2)

[
δ

(
1− x

ξ

)
+
αS

2π
Cq

MS

(
x

ξ

)
+O(α2

S)

]
. (1.44)

Once a scheme gets fixed, it must be kept in the calculation of all the other quantities.
To conclude the computation of the O(αS) corrections, we must consider the remaining

process γ∗g → qq̄ shown in fig. 1.4. This contribution is IR divergent due to collinear
quark-antiquark splitting of the initial gluon state, and the resulting parton-level structure
function is

F̂
i(g)
2

(
x

ξ
,Q2

)
= e2i

αS

2π

x

ξ2

[
Pqg

(
x

ξ

)
ln
Q2

κ2
+ Cg

(
x

ξ

)]
+O(α2

S) , (1.45)

where κ is an infrared cut-off, Cq contains all the finite contributions, the superscript g
refers to the γ∗g → qq̄ process, and the g → q splitting function is

Pqg(z) =
1

2

[
z2 + (1− z)2

]
. (1.46)
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We can finally compute the complete structure function F2 by using eq. (1.24) and
eq. (1.45) with a convolution of the gluon PDF fg(ξ), then add the result to eq. (1.40). In
the MS scheme we may obtain the finite result:

F2(x,Q
2) = x

∑
i=q,q̄

e2i

∫ 1

x

dξ

ξ
fi(ξ,Q

2)

[
δ

(
1− x

ξ

)
+
αS

2π
Cq

MS

(
x

ξ

)]

+ x
∑
i=q,q̄

e2i

∫ 1

x

dξ

ξ
fg(ξ,Q

2)

[
αS

2π
Cg

MS

(
x

ξ

)]
+O(α2

S) ,

(1.47)

where µ2F = Q2 as before.
During the whole computation we have left implicit the scale µ at which the running

coupling αS is evaluated. Since both the factorization and renormalization scales are
arbitrary, they are often chosen to be equal µF = µ.

1.3 The factorization theorem
The generalization to all orders of the parton model assumption eq. (1.21) is given by
factorization theorem [20, 22],

Wµν(x,Q
2) =

∑
i=q,q̄,g

∫ 1

x

dξ

ξ
fi(ξ, µ

2
F )Ŵ

i
µν

(
x

ξ
,
Q2

µ2F
, αS(µ

2
F )

)
, (1.48)

where now is present a dependence on the factorization scale µF .
As a consequence, the structure functions admit the most general decomposition

Fa(x,Q
2) =

∑
i=q,q̄,g

∫ 1

x

dξ

ξ
fi(ξ, µ

2
F )Ca,i

(
x

ξ
,
Q2

µ2F
, αS(µ

2
F )

)
+O

(
Λ2

Q2

)
, (1.49)

where the final term denotes non-perturbative contributions, such as hadronizations pro-
cesses, multiparton interactions, etc. For energies sufficiently higher than the QCD scale
Λ, these effects are negligible, and the observable factorizes into

• universal parton densities, fi(ξ, µ2F ), which absorb the long distance collinear singu-
larities. They contain informations about the soft internal dynamics of the hadron
before the interaction and therefore are process independent, but not computable in
perturbative QCD.

• (Wilson) coefficient functions, Ca,i, which describe the short distance subprocess.
They are therefore calculable in perturbative QCD as a power series in αS , but they
depend on the particular observable Fa.

The factorization procedure described for DIS in section 1.2.2 is also valid for a large
class of processes, where the IR divergent counterterms as in eq. (1.42) have always the same
logarithmic structure, lnµ2F . Thus, for instance, one can measure the PDFs of a hadron
from deep inelastic scattering experiments and then use them to predict cross sections of
other type of processes.
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l− l+

fq(x1)h1 fq̄(x2) h2

pl+pl−

γ∗/Z

p1

x1p1
x2p2

p2

Figure 1.7: Pictorial representation of the neutral current Drell-Yan process for lepton pair
production in the parton model.

1.3.1 Hadron-hadron collisions

The factorization theorem allows us to compute cross sections and observables of more
complex processes, such as “hard” hadron-hadron collisions, which are of fundamental
importance in colliders as the LHC.

A relevant outcome of hadronic collisions is the neutral-current Drell-Yan (DY) process,
shown in fig. 1.7, where a quark-antiquark pair annihilates to produce a lepton-antilepton
pair l+l− with large invariant squared-mass M2

ll = (pl+ + pl−)
2 � 1GeV2. In the naive

parton model, the total cross section is given by the subprocess cross section σ̂ weighted by
the respective PDFs of the colliding hadrons h1 and h2, summed over all quark-antiquark
combinations

σDY =
∑
q,q̄

∫ 1

τ
dx1 dx2 [q(x1)q̄(x2) + (q ↔ q̄)] σ̂qq̄→l+l− . (1.50)

The formal domain of validity of eq. (1.50) is the asymptotic “scaling” limit: M2
ll, s → ∞

with τ = M2
ll/s fixed, analogous to the Bjorken limit of DIS, where s = (p1 + p2)

2 is the
squared center-of-mass energy of the colliding hadrons.

The factorization theorem ensures that the O(αS) corrections to the DY process have
the same collinear singularities as those of the structure functions of deep inelastic scatter-
ing. Therefore we can absorb them into renormalized parton distributions which acquire a
dependence on the factorization scale µF . The cross section in eq. (1.50) becomes

σDY =
∑
q,q̄

∫ 1

τ
dx1 dx2

[
q(x1,M

2
ll)q̄(x2,M

2
ll) + (q ↔ q̄)

]
σ̂qq̄→l+l− , (1.51)

where the PDFs are evaluated at the relevant scale µ2F = M2
ll. Particularly, M2

ll = x1x2s,
and the variables x1 and x2 can be expressed as

x1 =
Mll√
s
ey , x2 =

Mll√
s
e−y , (1.52)
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where y is the rapidity of the virtual boson,

y =
1

2
ln
E + pL
E − pL

, (1.53)

written in terms of its energy E, and longitudinal momentum pL relative to the collision
axis.

The structure of eq. (1.51) finds confirmation in experimental measurements of a large
variety of inclusive hard hadron-hadron collisions, h1(p1) + h2(p2) → H(Q, ...) +X, where
H denotes for instance a weak boson, a pair of jets, a Higgs boson, etc. The scale Q could
be the invariant mass of H or the transverse momentum of a jet. Then, according to the
factorization theorem, the related cross sections assume the general form

σ =
∑

i,j={q,q̄,g}

∫ 1

xmin

dx1 dx2 fi/h1
(x1, µ

2
F )fj/h2

(x2, µ
2
F ) σ̂ij(x1x2ŝ, Q, αS , ...;µ

2
F , µ

2
R) ,

(1.54)
where typically xmin & Q2/s. The dependence on the renormalization scale µR comes
from the power expansion of σ̂ij in the running coupling αS(µ

2
R). In practical applications

it is usual to chose µF = µR ∼ Q and varying the scales near this value to estimate the
theoretical uncertainties due to truncation of the perturbative series in αS .

1.4 DGLAP evolution equations
The factorization scale µF is introduced to separate the long distance from the short
distance physics of a hard scattering process. Since it is an arbitrary scale, at least for
values greater than the QCD scale Λ, the observables can’t depend from it. We can see
for instance that the right hand side of eq. (1.49) for the structure functions contains a µF
dependence, while the Fa depend only on x and Q2. A similar observation can be made
for the general cross section eq. (1.54). Therefore, the same arguments which led to the
introduction of the running coupling eq. (1.5) can be applied in this case.

The Wilson Operator Product Expansion (OPE) provides the determination of the
renormalization group equations, valid order by order in perturbation theory, for the PDFs
and coefficients functions, which describe their scale dependence on µF :

µ2F
∂

∂µ2F
fi(x, µ

2
F ) =

αS(µ
2
F )

2π

∑
j

∫ 1

x

dξ

ξ
Pij

(
x

ξ
, αS(µ

2
F )

)
fj(ξ, µ

2
F ) , (1.55)

µ2F
∂

∂µ2F
Ci

(
x,
Q2

µ2F
, αS(µ

2
F )

)
= −

∑
j

∫ 1

x

dξ

ξ
Pij

(
x

ξ
, αS(µ

2
F )

)
Cj

(
ξ,
Q2

µ2F
, αS(µ

2
F )

)
.

(1.56)

The integro-differential equations (1.55) are known as the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations. They are of essential importance to compute the
evolution of the PDFs as µ2F varies, and require only the initial value of the PDFs at some



20 Chapter 1. The theoretical framework

reference scale. As in eq. (1.5) for the running coupling αS , where the renormalization
group equation takes care of large logarithms, the DGLAP equations effectively sum leading
powers of

[
αS ln

(
Q2
)]n. These contributions are generated by collinear parton emissions

in a region of phase space where the momenta are strongly ordered, that is Q2 � k2n,⊥ �
· · · � k22,⊥ � k21,⊥:

∫ Q2

κ2

dk2n,⊥
k2n,⊥

· · ·
∫ k23,⊥

κ2

dk22,⊥
k22,⊥

∫ k22,⊥

κ2

dk21,⊥
k21,⊥

∼ 1

n!
lnn
(
Q2

κ2

)
, (1.57)

where κ2 cuts off the infrared singularities.
We can see that both eqs. (1.55) and (1.56) are determined by the Altarelli-Parisi split-

ting functions Pij , which have a perturbative expansion in the running coupling constant
αS and currently they have been computed to order O(α3

S) [23, 24]. The leading-order
contributions are given by

P (0)
qq (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, CF = 4/3 , (1.58)

P (0)
qg (z) = TR

[
z2 + (1− z)2

]
, TR = 1/2 , (1.59)

P (0)
gq (z) = CF

[
1 + (1− z)2

z

]
, (1.60)

P (0)
gg (z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
(1.61)

+ δ(1− z)
(11CA − 4nfTR)

6
, CA = 4 , (1.62)

where the plus prescription was defined in eq. (1.38).
Because of charge conjugation invariance and SU(nf ) flavour symmetry of QCD, the

rank of the the matrix Pij is not maximal. In fact, the following relations hold:

Pqiqj = Pq̄iq̄j

Pqiq̄j = Pq̄iqj

Pqig = Pq̄ig ≡ Pqg

Pgqi = Pgq̄i ≡ Pgq , (1.63)

which means the splitting functions Pqg and Pgq are independent of the quark flavour and
the same for quarks and antiquarks. At leading-order Pqiqj is zero unless qi = qj , as can
be seen from eq. (1.58). Hence, to solve the DGLAP equations it is convenient to define
PDF combinations that make the evolution operator Pij as diagonal as possible.

Given nf = 6 flavours with fi = u, d, s, c, b, t, we first introduce

f±i = fi ± f̄i , (1.64)
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then, we can write the sequence of non-singlets (NS) combinations composed of valences
and triplets distributions,

Valences: Vi ≡ f−i (1.65)

Triplets:



T3 ≡ u+ − d+

T8 ≡ u+ + d+ − 2s+

T15 ≡ u+ + d+ + s+ − 3c+

T24 ≡ u+ + d+ + s+ + c+ − 4b+

T35 ≡ u+ + d+ + s+ + c+ + b+ − 5t+

(1.66)

which satisfy the decoupled evolution equations

µ2F
∂

∂µ2F
fNS(x, µ

2
F ) =

αS(µ
2
F )

2π

∫ 1

x

dξ

ξ
PNS

(
x

ξ
, αS(µ

2
F )

)
fNS(ξ, µ

2
F ) , fNS = Vi, Tj .

(1.67)
The remaining combination of quark distributions is the singlet PDF

Σ(x, µ2F ) =
∑
i

f+i (x, µ2F ) , (1.68)

whose evolution is coupled to that of the gluon:

µ2F
∂

∂µ2F

(
Σ(x, µ2F )
g(x, µ2F )

)
=
αS(µ

2
F )

2π

∫ 1

x

dξ

ξ

×

PΣΣ

(
x
ξ , αS(µ

2
F )
)

2nfPΣg

(
x
ξ , αS(µ

2
F )
)

PgΣ

(
x
ξ , αS(µ

2
F )
)

Pgg

(
x
ξ , αS(µ

2
F )
) (Σ(ξ, µ2F )

g(ξ, µ2F )

)
. (1.69)

An alternative formulation of the DGLAP equations is in terms of the Mellin transforms,
or moments of the parton distributions,

fi(n, µ
2
F ) =

∫ 1

0
dxxn−1fi(x, µ

2
F ) , n ∈ C , (1.70)

which allow to simplify the convolution integrals into algebraic products, since∫ 1

0
dxxn−1

∫ 1

x

dy

y
g(x/y)f(y) =

∫ 1

0
dxxn−1

[∫ 1

0
dy

∫ 1

0
dzf(y)g(z)δ(x− yz)

]
=

∫ 1

0
dy yn−1f(y)

∫ 1

0
dz zn−1g(z)

= f(n)g(n) . (1.71)

For instance, the non-singlet part reduces to

µ2F
∂

∂µ2F
fNS(n, µ

2
F ) =

αS(µ
2
F )

2π
γNS(n, αS(µ

2
F )) fNS(n, µ

2
F ) , (1.72)
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Figure 1.8: Example of proton PDFs evolution at Q2 = 10GeV2 (left plot) and Q2 =
104GeV2 (right plot), obtained from an n3fit NNLO global fit, with αS(M

2
Z) = 0.118.

Plots generated with reportengine [29].

where γNS is the so-called anomalous dimension given by

γNS(n, αS(µ
2
F )) =

∫ 1

0
dxxn−1PNS(x, αS(µ

2
F )) . (1.73)

The equations in the Mellin n-space can be solved analytically but the difficulty arises in
returning to the x space, by taking the inverse Mellin transform,

fi(x, µ
2
F ) =

1

2πi

∫ c+i∞

c−i∞
dnx−nfi(n, µ

2
F ) . (1.74)

In practice, the solution of the DGLAP equations are obtained with numerical codes
either through direct integration in x space or by solving the differential equations in
Mellin space, and then computing the inverse transformation eq. (1.74). The first method
is used in algorithms such as HOPPET [25], QCDNUM [26] or APFEL [27], which is
currently exploited in the NNPDF fits, while the second approach is implemented in the
QCD-PEGASUS [28] code.

Throughout this thesis we will focus on the proton PDFs, since they are the most
studied ones due to their crucial importance in colliders phenomenology, such as the LHC.
Thanks to the DGLAP equations, PDF determination from data is much simpler because
we can parametrize the distributions at an initial scale µ20 = Q2

0, and evolve them to the
energy scales at which the experimental measurements are performed. From now on we
will denote the factorization scale in terms of the energy of the process, µ2F = Q2.

An example of DGLAP evolution in x space with the code APFEL is shown in fig. 1.8,
using the physical basis where fv = f−. The proton PDFs are evolved from Q2

0 = 2.7GeV2

to the scales Q2 = 10GeV2 (left plot) and Q2 = 104GeV2 (right plot).
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Figure 1.9: Lowest-order heavy quark production in FFN (left diagram) and ZM-VFN
(right diagram) scheme in a DIS.

1.5 Heavy quarks

Our complete discussion on PDFs and their evolutions relies on the approximation that the
quarks contributing in the processes are massless. This assumption is entirely reasonable
for the three lightest quarks u, d, s since their mass is far below the QCD scale Λ. However,
in order to provide reliable theoretical predictions at all energy scales, a careful treatment
of the observables is needed to deal with terms that depend on heavy quark masses near
their production threshold.

The specific approach to treat the quark masses is known as a heavy quark scheme,
where in this case “scheme” refers to the particular approximation used rather than the
definition of finite contributions as in the case of factorization or renormalization schemes.
The choice of a heavy quark scheme can therefore lead to different results even in the limit
of an all-orders calculation.

The heavy quark schemes specific for DIS processes have received a lot of attention
due to their impact to the determination of PDFs, and correspondingly to collider physics.
Since we are interested in studying the PDFs below and above the threshold production of
heavy quarks, a heavy quark scheme is needed to provide a suitable interpolation between
all the regimes considered.

Particularly, there are two kinematical regions which are treated differently, depending
on the relation between the heavy quark mass mh and the hard scale Q of the physical
process. The first is m2

h & Q2, where the Fixed Flavour Number Scheme (FFNS) is used. In
this scheme the heavy quark is treated as a purely final state particle, and the only partons
that enter in the theory are the lighter quarks and the gluon. Therefore the heavy quark
dependence enters only in the perturbative part of the computation: for instance, at lowest-
order its production is due to gluon splitting into a hh̄ pair fig. 1.9a. While accurate near
and below the mass threshold, this scheme becomes unreliable when Q2 � m2

h, because
powers of large logarithms, ln

(
Q2/m2

h

)
, spoil the converge of the perturbative series.

The second limit is therefore Q2 � m2
h, where now the additional quark is treated as a

massless parton, fig. 1.9b, with the introduction of an associated heavy quark PDF, which
is set to zero below the mass threshold and evolved according to the DGLAP equations
for scales greater than m2

h. This treatment is then named as Zero Mass Variable Flavour
Number Scheme (ZM-VFNS), since the new quark is considered massless. Symmetrically
to the previous scheme, in this case the approximation becomes problematic near the mass
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threshold, where powers of m2
h/Q

2 are non-negligible.
For studies at energy scales that span several heavy quark thresholds, hybrid methods

or general mass schemes are employed to combine the ZM-VF and FF treatments. Such
schemes usually reduce to the previous ones at the corresponding energy scales, while
the intermediate regimes are handled via some interpolating conditions. Therefore, the
difficulty arises when matching the ZM-VF and FF in a unique scheme valid at all Q2.

The basic idea of a General Mass Variable Flavour Number Scheme (GM-VFNS) is to
switch the PDFs from a nf -flavour FFNS ones to the (nf + 1)-flavour FFNS ones at the
matching point µ = mh. The PDFs above and below the threshold are related order by
order in αS by

fVF
i (µ→ m+

h ) ≡ f
(nf+1)FF
i =

nf∑
j

Aij ⊗ f
(nf )FF
j ≡

nf∑
j

Aij ⊗ fVF
j (µ→ m−

h ) , (1.75)

where the transition matrix elements Aij(µ/mh) are known at NNLO [30, 31], the super-
scripts ± indicate the direction of the limits, and the symbol ⊗ is used as a shorthand for
the usual convolution integral

(f ⊗ g)(x) =

∫ 1

x

dy

y
g

(
x

y

)
f(y) . (1.76)

The general assumption of a GM scheme is that the physical observables have to be con-
tinuous when passing through the mass threshold at all orders. Therefore, we may write
the DIS structure functions in the vicinity of the matching point, µ2 = Q2 = m2

h, as

Fa(x,Q
2) =

nf∑
j

C−
a,j(m

2
h/Q

2)⊗ f−j (Q2) =

nf+1∑
i

C+
a,i(m

2
h/Q

2)⊗ f+i (Q2) , (1.77)

where f−j corresponds to the nf -flavour PDFs, while f+i to the (nf + 1)-flavour ones. We
can now insert eq. (1.75) in eq. (1.77) to arrive at

Fa(x,Q
2) =

nf+1∑
i

nf∑
j

C+
a,i(m

2
h/Q

2)⊗Aij(Q
2/m2

h)⊗ f−j (Q2) . (1.78)

Finally, comparing eq. (1.78) with eq. (1.77) we may find that the coefficient functions
must satisfy the transformation formula:

C−
a,j(m

2
h/Q

2) =

nf+1∑
i

C+
a,i(m

2
h/Q

2)⊗Aij(Q
2/m2

h) , (1.79)

which define the minimal prescription of a GM-VFN scheme [32].
Several variants of GM-VFNS exist, due to the fact that eq. (1.79) does not completely

define all the Wilson coefficients across the matching point, since the transition matrix
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A is not a square matrix. Examples of different general mass schemes are S-ACOT [33],
Thorne-Roberts [34], and the FONLL which was originally formulated for hadronic colli-
sions [35] and then applied to DIS [36]. The FONLL scheme and its variants are currently
in use in the NNPDF framework to account for charm initiated contributions and fit them
explicitly [37].

1.6 General properties of the proton PDFs

So far we have reviewed the theoretical description of parton densities in the perturbative
QCD framework, where the DGLAP evolution equations and heavy quark mass schemes
allow to compute the PDFs at any relevant experimental energy scale Q.

As already mentioned, the main difficulty in the determination of parton densities is
their functional dependence on the momentum fraction x at some initial scale Q0. The
number of independent PDFs to be determined depends on the choice of Q0, as the heavier
quarks may be generated perturbatively via the procedures described briefly in section 1.5.
The choice adopted by the NNPDF collaboration since the latest release (3.1) is to consider
Q0 = 1.65GeV, such that the gluon, the three lightest quarks, u, d, s, and also the charm
PDFs are independently parametrized (with the corresponding antiquarks).

Even though the six lightest quarks and gluon distributions are intrinsically related
to the non-perturbative dynamics of the proton, some general statements can be made on
their x-dependence, which should be valid at all energy scales. Particularly, the momentum
sum rule (MSR) ensures that the momentum fraction carried by all the partons sum up to
the momentum of the parent proton∫ 1

0
dxx

[
Σ(x,Q2) + g(x,Q2)

]
= 1 , (1.80)

where the singlet distribution Σ was defined in eq. (1.68). Then, other constraints come
from the number sum rules, which fix the quark distributions to match the observed quan-
tum numbers of the proton:

up-valence:
∫ 1

0
dx
[
u(x,Q2)− ū(x,Q2)

]
= 2 , (1.81)

down-valence:
∫ 1

0
dx
[
d(x,Q2)− d̄(x,Q2)

]
= 1 , (1.82)

strange-valence:
∫ 1

0
dx
[
s(x,Q2)− s̄(x,Q2)

]
= 0 . (1.83)

Equation (1.80) suggests that the PDFs should vanish in the limit x→ 1, since otherwise
their contribution would be too large to satisfy the momentum sum rule. The constraints
eqs. (1.81) to (1.83) imply that the valence distributions Vi, defined in eq. (1.65), must be
integrable over the whole x-range, whereas the same requirement can be imposed instead
on the first momentum of the singlet and gluon distributions from eq. (1.80).
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Combining these informations we may extract a simple parametrization of the small
and large x dependence of valence-like and singlet-like PDFs:

fV (x,Q
2) = NV x

αV (1− x)βV pV (x) ,

fΣ(x,Q
2) = NΣ x

αΣ(1− x)βΣ pΣ(x) . (1.84)

The coefficients α and β control respectively the small and large x behaviour of the PDFs.
Specifically, the values of β should ensure that the parton densities tend smoothly to zero as
x approaches 1, while α should assume values for which the valences and the first moment
of the singlet and gluon distributions are integrable. The normalizations N are determined
from the corresponding sum rules.

Finally, the remaining terms p(x) carry all the unknown dependence of the parton
densities on the momentum fraction x. Therefore, their precise determination is the main
focus in the research of the proton PDFs.
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PDFs determination

The precise understanding of the functional forms of the PDFs is crucial to provide accurate
theoretical predictions of physical cross sections at hadron colliders. Since the parton
distributions are related to the non-perturbative dynamics of the proton structure, they
cannot be computed in the framework of perturbative QCD. Their determination relies
on comparing experimental measurements with theoretical predictions based on a specific
parametrization of the PDFs. The fundamental difficulty of this task is situated in the
search space: a PDF fit must provide a function rather than a single parameter, despite
having only a finite number of data points available. Therefore, one must attempt to
find the optimal solution in an infinite-dimensional functional space. Moreover, a careful
determination of the uncertainties of the PDFs is essential due to the high precision needed
in their applications. The problem of PDF fitting is then to find a reliable estimator for a
probability density in a space of functions.

All modern PDFs are given as a set of computer files in the LHAPDF format [38]: an
LHAPDF set consists of a list of members where the PDFs values, sampled as a grid of
points in (x,Q), are stored. The LHAPDF software can interpolate to obtain the value of
the parton distributions at arbitrary points in (x,Q). The members of the PDF sets are
then used to compute PDF dependent quantities and their uncertainties.

Nowadays, the problem of PDF determination is studied by several groups, each one
providing its own sets of PDFs. The main differences between these sets are due to the
different strategies adopted by each group, such as the experimental data included in the
fit, the schemes used in the computation of theoretical predictions, the choice made for the
PDFs parametrization, and finally the fitting algorithm. The most active collaborations
involved are the ABM [39], CTEQ [40], HERAPDF [41], MMHT [42] and the NNPDF [43]
collaboration.

2.1 Experimental data

The first step in the determination of parton distributions is the selection of the experi-
mental datasets that are used in the fitting procedure. The most important aspect is to
identify which dataset can offer precise and reliable data relative to a specific input PDF.

27
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Usually, PDF fitting collaborations apply some specific kinematic cuts to the various pro-
cesses considered. These cuts ensure that only data where the theoretical calculations are
reliable is included.

We briefly present the main processes considered in PDF determination, and review
some of the most relevant experiments that constitute the input data of a PDF fit, with
particular attention to datasets used in the NNPDF global analyses.

2.1.1 Fixed-target and collider DIS

Deep inelastic scattering data provides the majority of the experimental points in PDF
analyses. At leading-order, neutral current DIS measurements from a proton target directly
probe the quark sea distributions qi + q̄i, via the relative strength of interaction of each
flavour with the bosons γ, Z. Moreover, charged current, and Z-mediated neutral current
data can provide some constraint on flavour separation via the F3 structure function.

Another important constraint can be obtained from scattering off deuteron targets,
which provide important informations on the u− d and u/d PDF combinations, under the
assumption of isospin symmetry.

Since the gluon contribution starts at NLO, a DIS can only yield an indirect probing
of the gluon PDF from scaling violations of the structure functions. However, the large
variety of DIS measurements available at a wide range of scales provides a great deal of
information in the determination of the gluon distribution.

DIS datasets can be presented either as experimental cross sections, or decomposed
into structure functions. The main experiments which are usually included in he fits
are NMC [44, 45], SLAC [46], BCDMS [47, 48], and the final HERA [49] combination.
Important measurements for the charm and beauty structure functions are available again
from HERA [50, 51, 52], which can be useful in specific applications as the determination
of the beauty quark mass mb.

A further subset of DIS measurements comes from neutrino scattering on nuclear tar-
gets, with the experiments CHORUS [53] and NuTeV [54, 55]. Typically, these datasets
provide information on the valence quark distributions qi−q̄i; moreover, since in the dimuon
production νN → µµX the favoured initial state parton is the strange quark, this process
is useful to probe the strangeness distribution, whose contribution is difficult to discern
from global structure function measurements.

2.1.2 Drell-Yan and jet production

After DIS experiments, the second most important contribution in PDF fits is the dataset
of Drell-Yan measurements. As described in section 1.3.1, at LO the neutral current DY
process is controlled by the parton combinations q(x1)q̄(x2) + q̄(x1)q(x2), and therefore
can provide various constraints depending on the specific experimental setup. Particularly,
eqs. (1.52) and (1.53) imply that high rapidity measurements probe the parton content of
the proton at both small and large-x.

Additionally to the neutral current, a Drell-Yan process can occur also via the exchange
of a charged weak boson, where the resulting final state is a pair lepton-(anti)neutrino:
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qq′ →W± → l±νl. In this case, the presence of a neutrino from the decay of the W boson
makes much more complicated the measurement of its rapidity. Therefore, data is often
presented in terms of the pseudorapidity of the detected lepton

η = − ln tan θ , (2.1)

defined in terms of the angle θ between the final state lepton and the collision axis, and
independent on the particle mass and momentum. A further type of experimental result
in charged current DY process is the lepton asymmetry, defined in terms of W± → l±νl
differential cross sections dσl±/ dηl as

Al
W =

dσl+/ dηl − dσl−/ dηl
dσl+/ dηl + dσl−/ dηl

, (2.2)

which benefit from cancellations of shared systematic uncertainties and provide constraints
for the light quark sea qi + q̄i.

Fixed-target DY of proton and deuteron targets constrain the u/d combination, and the
datasets typically used come from the Tevatron experiments E605 [56] and E866/NuSea [57,
58, 59]. The outcome of these measurements are usually affected by nuclear corrections
due the low energies that could be reached in fixed target collisions.

The cleanest environmental setup to probe the parton distributions from a DY process
is found in high energy colliders data: the Tevatron collaborations, D0 and CDF, provided
the earliest measurements with pp̄ collisions. Specifically, D0 carried out measurements of
W electron/muon asymmetries [60, 61], which provide important information on the quark
flavor separation at large-x, and Z rapidity distribution dσZ/ dyZ [62].

In the same way, the CDF collaboration considered the Z rapidity distribution [63], but
treated also one-jet inclusive cross sections [64], where a narrow cone of hadrons and other
particles (jet) is produced as a result of the hadronization of quarks and gluons radiated
after the fragmentation of the colliding protons. These are the most important processes
for the determination of the gluon distribution, particularly in the large-x region, where
the high energy allows gg initiated diagrams to be the most dominant contributions for
the production of inclusive jet or di-jet events.

Experimentally, jets are reconstructed with some clustering algorithm that can iden-
tify jet structures starting from final hadronic states, ensuring that collinear and infrared
safety of QCD are satisfied. The most used jet reconstruction algorithms are the kt [65],
anti-kt [66], and the Cambridge-Aachen [67] algorithms, which have become popular also
within experimentalists thanks to the speed up introduced by the FastJet [68] package.

Cross sections computations for the inclusive jet and di-jet production in hadron-hadron
collisions are available at NLO in QCD [69], while the NNLO corrections have been recently
studied by the NNLOjet collaboration [70].

2.1.3 LHC data

The current LHC datasets used in PDF determination includes measurements from Run
I, taken at center-of-mass energies of 2.76TeV, 7TeV and 8TeV. These measurements
include the results from all the three main collaborations, ATLAS, CMS, and LHCb:
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Figure 2.1: Kinematic coverage of datasets included in NNPDF3.1 which will be adopted
for the fits presented in this thesis.

• W,Z boson production rapidity and pseudorapidity distributions;

• Z boson double differential cross sections (pZT , yZ) and (pZT ,Mll);

• W electron/muon asymmetry distributions, Al
W ;

• jet production data;

• top-quark pair production normalized ytt̄ distributions, (1/σtt̄) dσtt̄/ytt̄;

• total inclusive tt̄ cross-sections, σtt̄.

Particularly the top pair production at the LHC is a primary probe for the gluon PDF
through the gg → tt̄ subprocess.

For the full list of datasets included in the latest release NNPDF3.1, and which will be
used in the following, see Ref. [43]. The kinematic range covered is shown in fig. 2.1 and
grouped by type of process.

2.2 PDF fit methodology

2.2.1 Parametrization

Once the experimental datasets are given, one must choose a convenient and effective
parametrization of the parton distributions in order to compare (indirectly) their predic-
tions to data.
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The six quarks, six antiquarks and the gluon give a total of 13 PDFs, but, since typically
the quarks c, b, t are determined perturbatively, the total number reduces to 7 independent
PDFs to be fitted. The parton parametrization basis is chosen to facilitate both fitting
and calculation of the perturbative evolution, as discussed in section 1.4. The final choice
is however dictated by the necessity to avoid fitting quantities that are poorly determined
by the experimental datasets. We shall now describe as an example the similar PDF
parametrization strategies adopted by MMHT and CTEQ, and then focus on the unique
one in use within the NNPDF collaboration.

A brief example: MMHT and CTEQ

MMHT2014 [42] uses the following basis for their fits:

g ,

uV = u− ū ,

dV = d− d̄ ,

∆ ≡ d̄− ū ,

S ≡ 2(ū+ d̄) + s+ s̄ ,

s+ ≡ s+ s̄ ,

s− ≡ x(s− s̄) , (2.3)

which can parametrize all the 7 distributions to be determined. Then, a functional form
in x is chosen for each of these PDF combinations, at the input scale Q2

0 = 1GeV2.
Usually, all groups use the general decomposition eq. (1.84), while the main differences are
found in the choice made for the unknown functions p(x). For example, the MMHT gluon
parametrization is given by

xg(x,Q2
0) = Ag(1− x)ηgxδg

[
1 +

2∑
i=1

ag,iT
Ch
i (y(x))

]
+Ag′(1− x)ηg′xδg′ , (2.4)

where TCh
i (y(x)) are Chebyshev polynomials in y(x) = 1 − 2

√
x, while the latest CTEQ

PDF set [40] uses a polynomial in y =
√
x,

xg(x,Q2
0) = xa1−1(1− x)a2P g

a (y) ,

P g
a (y) = a3(1− y)3 + a43y(1− y)2 + a53y

2(1− y) + y3 . (2.5)

The coefficients {A, η, δ, ag,i} of eq. (2.4) and {ai} of eq. (2.5) are the parameters to be
determined in the fit. The criterion that guides the choice of the number of parameters used
in the fits is to obtain the most flexible parametrizations that at the same time can avoid
overfitting, as expanded parametrizations attempt to describe statistical noise. Taking into
account the number and momentum sum rules, some parameters can be expressed in terms
of the others: the MMHT set has a total of 37 free parameters, while CTEQ has slightly
less freedom with a total of 29. The problem of PDF determination reduces then to find
the optimal set of parameters which minimizes a suitable measure of the fit quality. The
main definitions for such quantity will be discussed in the next sections.
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NNPDF

The NNPDF collaboration adopts a completely independent approach to PDF fits respect
to the general procedure described above. The first main difference being the choice of the
parametrization: NNPDF exploits neural networks to obtain the x-dependence of the par-
ton densities. Neural networks (NNs) allow more flexible and unbiased parametrizations,
since they are not limited by specific input functional forms such as a normal parametric
model.

A neural network can be viewed as a directed graph where each node is either an input
or an activation node. Each activation node has an associated activation function, whose
result is used as the input for the next connected node. Each node i has a corresponding
threshold θi, and each edge connecting the output of the node j to the input of node i has
a corresponding weight, wij . Thresholds θi and weights wij constitute the parameters of a
neural network which have to be optimized during a PDF fit.

Let’s consider a feed-forward neural network, which is the type used by NNPDF. In
this case, the NN graph is restricted to be acyclic. Therefore, each node can only belong to
one element of an ordered list of layers, and the edges can only connect nodes of adjacent
layers. The first layer is denoted as the input layer, which is directly connected to the
input data to be fitted, while the last layer is the output layer, and represents the output
of the network. Any layer in between is called a hidden layer. In this configuration, a node
is said fully connected when it is connected to all the nodes of the previous and next layer.

The activation function g(x) of a given node i in a layer l takes as input the weighted
sum of the nodes outputs ξ(l−1)

j of the previous layer, to produce the result

ξ
(l)
i = g

inputs∑
j=1

w
(l)
ij ξ

(l−1)
j + θ

(l)
i

 , (2.6)

where the indexes i, j run over the nodes of layer l and (l − 1) respectively.
With NNPDF methodology, each PDF of the fit basis is parametrized with a feed-

forward, fully connected, multi-layer perceptron, with architecture 2-5-3-1 shown in fig. 2.2.
The first layer contains two nodes of input x and ln(x). The two hidden layers of 5 and 3
artificial neurons use the most common activation function,

g(x) =
1

1 + e−x
, (2.7)

which is the sigmoid or logistic activation. The output layer instead has a simple linear
activation, g(x) = x, allowing the final result of the network to acquire values outside the
range (0, 1).

Since the latest release NNPDF 3.1, the total charm distribution c+ has been indepen-
dently parametrized, which extends the fit basis to 8 independent parton densities. With
the architecture described above used for each PDF, the total number of free parameters
reaches 296, much more than what can be used with fixed functional forms as eqs. (2.4)
and (2.5). Thanks to the large flexibility offered by neural networks, in this case the choice
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Figure 2.2: Default neural network architecture used by NNPDF: a feed-forward, fully
connected, multi-layer perceptron, where the input layer (light gray) is composed of two
nodes of input x and ln(x). The two hidden layers (dark gray) have logistic activation
functions, while the output layer (green) has a linear activation.

of fit basis has little effect on the resulting PDFs. The default basis is then one that
diagonalizes as much as possible the DGLAP evolution equations:

g ,

Σ = u+ + d+ + s+

V = u− + d− + s− ,

V3 = u− − d− ,

V8 = u− + d− − 2s− ,

T3 = u+ − d+ ,

T8 = u+ + d+ − 2s+ ,

c+ , (2.8)

where f±i = fi ± f̄i as defined in eq. (1.64).
Each PDF combination eq. (2.8) is parametrized at the input scale Q0 = 1.65GeV as

fi(x,Q0) = Aix
1−αi(1− x)βiNNi(x) , (2.9)

where Ai is a normalization constant used to enforce the values of the sum rules, NNi

denotes the output of the neural network parametrization, and x1−αi(1− x)βi is a prepro-
cessing factor used to speed up the convergence of the fit. This simple polynomial is used to
ensure that the NN predictions don’t deviate too much from the expected behaviour of the
PDFs at small and large-x, while the exponents αi and βi provide the correct integrability
of the distributions. Their values are therefore randomly chosen within an optimized range
at the beginning of the fit and then kept fixed. The preprocessing factor is in practice a
mandatory theoretical constraint, as it forces the PDF predictions in the small- and large-x
regions to follow a polynomial behaviour, where the lack of experimental data leaves too
much freedom in parameter space.
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2.2.2 Measure of fit quality and minimization

After the selection of the datasets and the choice made for the parametrization of the
PDFs, a meaningful fitting procedure requires the definition of a measure of fit quality,
which is usually denoted as χ2. In general, a global fit quality is defined as the sum over
the fit quality of individual datasets d,

χ2 =
∑
d

χ2
d . (2.10)

In the NNPDF approach the full covariance matrix of data, (cov)ij , is used to construct
the χ2, considering correlations within and between all the datasets included (the explicit
form will be given below). A natural candidate to measure the fit quality is then given by

χ2 =

Ndat∑
i,j

(Di − Ti)(cov
−1)ij(Dj − Tj) , (2.11)

where T are the theoretical predictions computed from the neural network parametriza-
tion, D the corresponding experimental measurements, and (cov−1)ij the inverse of the
covariance matrix between data points i and j. Within NNPDF determinations, a dataset
may be included in a fit if the full experimental correlations are available.

Other groups adopt an alternative, yet numerically equivalent, definition of the fit
quality. For instance, when the individual sources of correlated errors are provided, the
MMHT collaboration uses the following expression

χ2 =

Ndat∑
i

(
Di +

∑Ncorr
k rkσ

corr
i,k − Ti

σuncorr
i

)2

+

Ncorr∑
k

r2k . (2.12)

The term σuncorr
i is built as the sum in quadrature of the statistical and uncorrelated

systematic errors. Instead, systematic uncertainties associated with Ncorr sources may
induce correlated variations (shifts) in the experimental data points. Their effect is then
modeled by allowing the data Di to shift by some multiple rk of the correlated systematic
uncertainties, σcorr

i,k , in order to give the best fit. By a common assumption, each rk
follows the standard normal distribution, while its deviation from rk = 0 incurs a penalty
contribution r2k to χ2, as defined by the rightmost term of eq. (2.12). In particular, the
correlated errors are combined multiplicatively, that is σcorr

i,k = βcorr
i,k Ti, where βcorr

i,k are the
percentage errors.

The optimal shifts of data points are solved analytically by minimizing the χ2 with
respect to rk, while the input PDF parameters must then be determined by numerical
minimization of the χ2. A similar measure of fit quality is also used by the CTEQ group.

Multiplicative uncertainties

The value of the χ2 estimator depends on the assumed functional form in the presence of
experimental systematic uncertainties. Even with the same χ2 measure, the treatment of
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multiplicative uncertainties may result in substantial deviations when different definitions
of the covariance matrix are used.

The full experimental uncertainty information is encoded in a sum of three contribu-
tions for each data point: uncorrelated errors σuncorr

i , constructed by adding the statistical
and uncorrelated systematic uncertainties in quadrature; correlated additive systematic
errors σadd

i,k ; correlated multiplicative systematic errors σmul
i,k . The covariance matrix used

in eq. (2.11) can then be defined as

(cov)ij = δijσ
uncorr
i σuncorr

j +

Nadd∑
k

σadd
i,k σ

add
j,k +

(
Nmul∑
k

σmul
i,k σ

mul
j,k

)
DiDj , (2.13)

and its value is unambiguously defined by the experimental results.
However, this experimental prescription [71] is unreliable for direct use within a fitting

procedure. In fact, it is known that the theoretical values determined from the minimization
of the χ2 with the covariance matrix eq. (2.13) are systematically shifted below the true
value. This effect, known as the D’Agostini bias [72], is due to the overall normalization
uncertainties associated with each experiment. Normalization uncertainties are usually
multiplicative, in the sense that each data point within a set has a normalization uncertainty
proportional to the measurement at that point. Using the complete covariance matrix
leads to a substantial bias in the fitted values due to the fact that smaller data points
are assigned a smaller uncertainty than larger ones. In particular, the resulting systematic
underestimate of the fit worsens as the number of points that share the same multiplicative
error increases.

A general treatment of multiplicative uncertainties which is always free from any bias
was developed by the NNPDF collaboration and adopted since the NNPDF2.0 release [73].
With this method the covariance matrix is built with the so-called t0-prescription,

(covt0)ij = δijσ
uncorr
i σuncorr

j +

Nadd∑
k

σadd
i,k σ

add
j,k +

(
Nmul∑
k

σmul
i,k σ

mul
j,k

)
T
(0)
i T

(0)
j , (2.14)

where T
(0)
i (the theory prediction for the associated data point) is used to define the

normalization contribution to the χ2. Since the theory predictions are not subject to
the same fluctuations as the data, the definition eq. (2.14) has the advantage of avoiding
the D’Agostini bias when performing a PDF fit. In practice, the t0 set is determined
consistently via an iterative procedure that updates the covariance matrix eq. (2.14) by
taking the central values of the previous fit as the new t0 set.

Minimization

With the measure of fit quality constructed, a PDF determination is now an optimization
problem whose solution is the optimal set of free parameters of the PDF basis which
minimize the figure of merit χ2. Even for those groups utilizing a fixed parametrization,
this task is numerically challenging due to the combination of a large amount of data
points, O(103), and the moderate number of free parameters, ∼ 50/60. A common choice
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Figure 2.3: Schematic representation of the look-back cross-validation stopping criterion
used in the NNPDF fits. The optimal stopping point corresponds to the iteration where
the validation loss reaches its minimum value. Figure taken from Ref. [75].

to perform the minimization is the MINUIT [74] package, as done by the CTEQ group
in the CT18 analysis. It involves numerical calculations of the first- and second-order
derivatives of χ2, combined with sequential minimum searches along fixed directions in the
PDF parameter space.

In the NNPDF case, the minimization is complicated by the very large number of
parameters available and the non-linear relation between the fitted experimental data and
the input PDFs, making conventional methods based on gradient descent impractical1.
These difficulties are overcome with the implementation of genetic algorithms (GAs) for
the minimization procedure, which are particularly useful to explore complex parameter
spaces and require the knowledge of the χ2 local values only.

A further issue to be addressed during the minimization is the possibility that one might
end up fitting point-to-point fluctuations, due to the highly redundant parametrization
offered by the neural network shown in fig. 2.2. This phenomenon of learning the statistical
fluctuations of an input set rather than the underlying law that produced it is known as
overfitting or overlearning, and is a problem often encountered while training large neural
networks. Within NNPDF determinations, the strategy adopted to identify and avoid
overlearning is the look-back cross-validation stopping criterion, illustrated schematically
in fig. 2.3.

With this method, the input experimental measurements are randomly divided into two
separate sets: the training set, used for the actual minimization of the χ2 (called error/loss
function in machine learning applications), and the validation set, which plays the role of a
control sample to monitor and validate the training progress. At each iteration of the GA
minimization, the error function between the NN predictions and both sets is computed.
During the early stages, both values of the error functions should decrease, as the neural
network is learning the underlying law. However, after a certain number of iterations, the

1The development of new technologies has now made possible a deterministic minimization using gradient
descent. A new methodology implemented within the NNPDF collaboration will be presented in section 3.1.



2.2. PDF fit methodology 37

χ2 calculated to the training set may continue to decrease while the value computed to
the validation set has stopped decreasing or even begun to increase. This behaviour is
indeed indicating that what is being learned from the training sample is not present in
the validation one (namely the fluctuations). Then, the optimal stopping point is defined
as the global minimum of the χ2 validation set, computed over a large fixed number of
iterations.

Adoption of this stopping criteria has been made possible with greater computing effi-
ciencies, since NNPDF3.0 [76] (2015). The method in fact requires reaching the maximum
number of iterations for all replicas, out of which the absolute minimum is determined.
This maximum must be chosen to be large enough that the absolute minimum is always
reached, and it therefore leads on average to longer training.

2.2.3 Error propagation

Once the minimization procedure has produced the “best prediction” of the true PDFs,
a method to estimate their uncertainties is needed for a meaningful interpretation of the
measured observables. Ideally, one would like to determine a representation of the PDF
probability distribution in the whole functional space. That is, given a dataset d, we would
like to find the probability density, P(f |d), of a certain PDF candidate f such that our
fitted PDF central value is given by

〈f〉 (x) =
∫

Df f(x)P(f |d) , (2.15)

with a variance
Var[f ](x) =

∫
Df [f(x)− 〈f〉 (x)]2 P(f |d) . (2.16)

The generalization for an observable O[f ] is then straightforward.
The probability density P(f |d) is however a difficult quantity to calculate. In the

following, we will describe the two main methods used to provide an estimate of PDF
uncertainties.

The Hessian method

The Hessian method is the most widely used method of error propagation. In a nutshell,
this approach is based on examining the variations of the χ2 induced by displacements
of the fit parameters ~a near the optimal values, denoted as ~a0, that minimize the χ2.
A tolerance for the χ2 variation is then chosen, and the errors on the observables are
calculated from PDFs obtained using the displaced parameters based on the selected value
of the tolerance.

More quantitatively, the basic assumption of the Hessian method is a quadratic ap-
proximation of the χ2 in the neighborhood of the minimum χ2(~a0),

∆χ2(~a) := χ2(~a)− χ2(~a0) =

n∑
i,j=1

(a− a0)iHij(a− a0)j , (2.17)
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where (a− a0)i is the i-th component of the displacement from the best parameter set ~a0.
The symmetric matrix Hij in eq. (2.17) is the Hessian matrix,

Hij =
1

2

∂2χ2

∂ai∂aj

∣∣∣∣
~a=~a0

, (2.18)

evaluated at the minimum of χ2(~a). Early Hessian uncertainty estimates were based upon
standard linear error propagation,

(∆X)2 = T 2
n∑

i,j=1

∂X

∂ai
Cij

∂X

∂aj
, (2.19)

where X is a generic quantity that depends on the PDFs, T 2 = ∆χ2 is the tolerance of
the χ2 variation and C = H−1 the covariance matrix in parameter space, equivalent to the
inverse Hessian matrix. This procedure is however numerically inefficient since it requires
the computation of the partial derivatives of X with respect to the fit parameters. To
overcome the issue a different geometrical method [77, 78] was developed by the CTEQ
collaboration.

Within this method, the eigenvectors of the Hessian matrix are exploited to obtain the
estimate of the uncertainties. The Hessian matrix eq. (2.18) has in fact a complete set of
orthonormal eigenvectors {~vk}k=1,...,n defined by

H~vk = εk~vk , (2.20)
~vk · ~vj = δkj , (2.21)

where εk are the correpsonding eigenvalues. It is convenient to define the rescaled eigen-
vectors ~ek = ~vk/

√
εk and expand the displacement ~a − ~a0 in this new basis, in order to

write it in the simple form

~a− ~a0 =

n∑
k=1

~ekzk , (2.22)

where zk are the expansion coefficients. Then, substituting eq. (2.22) in the quadratic
approximation eq. (2.17), the ∆χ2 reduces to

∆χ2(~a) = χ2(~a)− χ2(~a0) =
n∑

k=1

z2k . (2.23)

Equation (2.23) defines the interior of a hypersphere of radius
√
∆χ2 centered in ~a0 in

the parameter space generated by the rescaled eigenvector basis, which corresponds to the
variation of the parameters consistent with the tolerance T =

√
∆χ2 in the quadratic

approximation. Therefore, the particular choice of T defines the region of acceptable fits,
since eqs. (2.17) and (2.23) imply that a shift in the best fit parameters may induce an
increase ∆χ2 that can be at most T 2.
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Figure 2.4: Ratio to global fit (yellow) of the up-valence (left plot) and gluon (right plot)
distributions obtained from different datasets, HERA only (red), no HERA (green), Col-
lider only (blue), by MSTW2008. Figures taken from Ref. [80].

It is now possible to construct 2n eigenvector PDF sets, S±
k , to span this hypersphere,

with parameters specified by the boundaries of the hypersphere volume,

~a(S±
k ) = ~a0 ± t~ek , (2.24)

i.e. each parameter of the S±
k set is displaced by an amount t “up” or “down” the direction

of the eigenvector ~ek. In the quadratic approximation t = T , while an iterative procedure
is applied to obtain the target ∆χ2 when this approximation is not valid. Finally, the error
on a generic quantity X that depends on the PDFs is given by

(∆X)2 =
1

2

n∑
i=1

(
X(S+

k )−X(S−
k )
)2
. (2.25)

Equation (2.25) is also valid when X is a PDF, allowing therefore to compute the errors
of the parton densities themselves.

The choice of the tolerance value follows from the “parameter fitting” criterion [79]: in
the ideal case of consistent datasets and Gaussian errors, the 68% confidence interval of a
parameter is given by the value which induces a variation of one unit in the χ2, that is T = 1.
However, in the context of global PDF fits, this value often leads to an underestimation of
the uncertainties. In practice, larger values of tolerance are usually used, such as T =

√
50

or even T =
√
100 for the 90% confidence intervals, even if Gaussian statistics would require

T =
√
2.7.

The motivations for larger values come from two distinct aspects: the first is the incom-
patibility between PDFs fitted from different datasets [81], which could be due to unknown
systematic uncertainties in the experiments, or to theoretical errors as missing higher or-
der uncertainties. For instance, in fig. 2.4 the up-valence and gluon distributions of the
MSTW2008 set show that the uncertainty bands from fits to subsets do not always overlap
with a global fit. The second problem is the parametrization bias, which originates in
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representing unknown functions as the PDFs in terms of expressions that depend only on
a finite number of free parameters [82]. In this case, more generic parametrizations are
exploited, as outlined in section 2.2.1 for the MMHT and CTEQ collaborations.

In the MSTW2008 [83] set, the use of a global tolerance T was refined by choosing
separately for each eigenvector direction a value Tk with a dynamic determination according
to the weaker “hypotesis testing” criterion [79]. With this criterion, a fit is judged to be
“good” if each data set d, consisting of N data points, has χ2

d ' N ±
√
2N . More precisely,

ranges of χ2
d corresponding to a 90% c.l. limit, for example, can be calculated, then the

value of the tolerance T =
√
∆χ2 can be chosen to ensure that each data set is described

within its 90% C.L. limit. On average, the dynamic tolerance reduced the values to estimate
the 68% and 90% confidence intervals to T ≈ 3 and T ≈ 6 respectively. The same approach
is then inherited by the MMHT set.

More specialized fits, such as ABM or the HERAPDF, based upon relatively small
datasets, may use the standard tolerance of ∆χ2 = 1, thanks to the restricted number
of experimental points leading to fewer conflicts that would require an inflation of the
tolerance.

In general, the uncertainties produced via the Hessian procedure are difficult to examine
in a statistical sense, due to the large deviation from the expected value ∆χ2 = 1 and the
approximations made in the procedure. It is therefore difficult to find a representation in
the Hessian approach of the full probability distribution P(f |d).

The Monte Carlo method

The second method of PDF error propagation is the Monte Carlo method, designed to
faithfully represent the uncertainties present in the initial data, and to propagate the
errors in a way that does not assume anything of the nature of the error propagation.

In the Monte Carlo procedure, for each data point in the fit, an ensemble of Nrep artifi-
cial data, called pseudo-data replicas, is generated according to the probability distribution
of the input data. Usually, in NNPDF fits this distribution is a multi-Gaussian defined as

D
(art)(k)
i = D

(exp)
i +

Ndat∑
j=1

[Chol(covt0)]ij N (0, 1) , (2.26)

where Chol(covt0) is the transpose of the Cholesky decomposition of the covariance matrix
based on the t0-prescription eq. (2.14), and N (0, 1) is a random number sampled from
a standard normal distribution to generate fluctuations of the artificial data around the
experimental central value D

(exp)
i . It was shown in Ref. [84] that O(1000) replicas is

needed to reproduce the mean values, the variances, and the correlations of the original
experimental data at the percent level of accuracy.

Therefore, when a fair amount of pseudo-data is sampled, instead of performing just one
fit to the data, each of the Nrep replicas is independently fitted to minimize the measure of
fit quality eq. (2.11) with respect to the neural network parameters, that is the weights and
biases (see section 2.2.1). In this specific case, the measure of fit quality may be written
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as:

χ2(k) =
1

Ndat

Ndat∑
i,j

(
D

(art)(k)
i − T

(NN)(k)
i

)
(cov−1

t0
)ij

(
D

(art)(k)
j − T

(NN)(k)
j

)
, (2.27)

where T
(NN)(k)
i is the theoretical prediction obtained from the NN parametrization for

the i-th data point of the replica k, and covt0 is again the covariance matrix in the t0-
prescription. Theory uncertainties (such as missing higher order uncertainties) can also be
included as presented in Ref. [85], but this has only been done in preliminary PDF sets so
far.

The outcome of the fitting procedure is an ensemble of Nrep PDFs, {f (k)}k=1,...,Nrep ,
named PDF replicas or simply replicas, which faithfully describe the probability distribu-
tion of the PDFs based upon the original experimental uncertainties. Central value and
uncertainty of a quantity X which depends on the PDFs are now calculable by mere average
and standard deviation over the replica sample,

〈X〉 = 1

Nrep

Nrep∑
k=1

X(k) , (2.28)

σ2[X] =
1

Nrep − 1

Nrep∑
k=1

(X(k) − 〈X〉)2 , (2.29)

where X(k) denotes the quantity X evaluated to the PDF replica k. Similarly to eq. (2.25),
the quantity X can also be a PDF itself, so that central values and uncertainties of the
PDFs can be computed directly from the replica values f (k).

The Monte Carlo method gives therefore a discrete representation of the underlying
probability distribution P(f |d), so that the uncertainties from the experimental data to
the PDFs are propagated without the need for a linear error propagation assumption, or
the introduction of a tolerance in order to define the region of acceptable fits. Figure 2.5
presents a Monte Carlo ensemble of 1000 replicas for the gluon distribution: the left plot
shows all the PDF replicas and the central value of the set, while the right plot shows the
uncertainty bands.

2.3 Monte Carlo to Hessian conversion

2.3.1 Introduction

Unlike the Hessian approach, where one assumes that the distributions around the best
fit are Gaussian and the uncertainties can be calculated from linear error propagation, the
Monte Carlo approach can provide a representation of the PDFs uncertainties even when
non-Gaussian effects become important, in regions where there is lack of experimental
data points (namely at small- and large-x). A practical way to inspect whether a set of
replicas present non-Gaussian errors is to compare the one standard deviation band and
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Figure 2.5: A Monte Carlo ensemble of 1000 gluon replicas obtained from a “global” fit,
namely using all datasets included in NNPDF3.1, at NNLO and αS(M

2
Z) = 0.118. Each line

on the left plot shows a different replica, while the nearly visible bold line is the central
value of the set. The right plot shows, in addition to the central value, the standard
deviation (dashed line), and the 68% c.l. band.

the 68% c.l. band. The latter is defined as the symmetric interval which contains the 68%
of the replica sample around the central value of the set. Since a Gaussian distribution
would require these two bands to coincide, a discrepancy between them is a symptom of
non-Gaussian effects. For instance, the right plot of fig. 2.5 shows that, in this particular
global fit, non-Gaussian errors in the gluon distribution are found only in the region of
extrapolation x . 10−4.

Even though the Hessian and Monte Carlo representations provide uncertainties in a
very different manner, they should nonetheless lead to the same description of the parton
content of the proton, and in fact it was firstly shown it is possible to convert an Hessian
PDF set into a Monte Carlo representation [80]. Basically, the Hessian parameter space is
randomly sampled by allowing Gaussian deviations around the standard values eq. (2.24).
Then, a set of PDF replicas is built from the set of Hessian parameters using the fixed
Hessian parametrization. The reverse operation, namely the conversion of a Monte Carlo
set into an Hessian representation requires a more careful consideration.

The advantage of the Hessian methodology is that the errors can be interpreted in terms
of continuous parameters variations. In fact, the eigenvectors of the Hessian matrix may be
treated as nuisance parameters to quantify how much a subset of parameters affects the fit
to a dataset or the predictions of an observable. On the other hand, with the Monte Carlo
approach there is no need for any assumption on the statistical distribution followed by the
parameters, and also, PDFs can be parametrized with more general unbiased functional
forms, such as neural networks, with a large number of parameters.

However, when the Gaussian approximation is reasonably accurate, that is, when PDF
uncertainties are small and driven by abundant experimental data, it should be possible
to obtain a meaningful Hessian representation of a Monte Carlo set. This goal was indeed
achieved with the implementation of the mc2hessian code [5]. In the following will be
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described the Singular Value Decomposition (SVD) version, combined with the Principal
Component Analysis (PCA) [6]

2.3.2 The SVD + PCA method

The Hessian conversion of a Monte Carlo set is based on the construction of a multi-
Gaussian covariance matrix in PDF space, whose eigenvectors give directly the Hessian set
members. The fundamental assumption of this procedure is that the central value of the
resulting Hessian set coincides with the prior Monte Carlo set.

All the necessary information is encoded in the NxNf×Nrep rectangular matrix X which
samples the difference between each replica, f (k)α (xi, Q), and the central value, f (0)α (xi, Q),
of the set:

Xlk(Q) := f (k)α (xi, Q)− f (0)α (xi, Q) , (2.30)

where α runs over the Nf independent flavours at the energy scale Q, i runs over the Nx

x-grid points where the PDFs are sampled, l = Nx(α − 1) + i runs over the NxNf grid
points x×flavour, and k runs over the Nrep replicas. The covariance matrix in PDF space
is then built as

cov(Q) =
1

Nrep − 1
XXt . (2.31)

Assuming Nrep > NxNf , the eigenvectors of the NxNf×NxNf covariance matrix eq. (2.31)
can be represented as linear combinations of the Nrep replicas, by using the SVD of the
sampling matrix eq. (2.30):

X = UΣV t , (2.32)

where U and V are orthogonal matrices, with dimensions NxNf ×NxNf and Nrep ×Nrep
respectively. Σ is a diagonal positive semi-definite matrix with dimension NxNf × Nrep
and whose entries, called singular values of X, are the square roots of the eigenvalues of
XXt. From eq. (2.32) follows that

XXt = U(ΣΣt)U t = UΣ2U t , (2.33)

which means the columns of U are the orthogonal eigenvectors of the covariance matrix
that are needed to construct the Hessian set members. Then, the matrix Z = UΣ yields
the representation of the multigaussian covariance matrix in terms of the original PDF
replicas, since

ZZt = XXt , (2.34)

and also
Z = XV , (2.35)

which means that Vkj is the expansion coefficient of the j-th eigenvector along the k-th
replica. From now on the singular values of Σ can be assumed in decreasing order starting
from the first diagonal entry.

Since the number of Hessian eigenvectors Neig = NxNf is generally large, it is conve-
nient to retain only Ñeig principal components, i.e. the eigenvectors relative to the largest
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singular values. This procedure is implemented by the PCA optimization, which consists
in replacing U and Σ by their submatrices u and σ with dimensions NxNf × Ñeig and
Ñeig ×Nrep respectively, where Ñeig < Neig. Now σ has only Ñeig non vanishing diagonal
entries and therefore only the Nrep × Ñeig submatrix of V contributes in eq. (2.32). This
is referred to as principal submatrix P of V , and so the optimized set of eigenvectors is
found by using P in place of V in eq. (2.35). The final Ñeig eigenvectors are given by

f̃ (k)α (xi, Q) = f (0)α (xi, Q) +
1√

Nrep − 1
(XP )lk , k = 1, . . . , Ñeig , (2.36)

and the uncertainties of the resulting Hessian set may be computed similarly to eq. (2.25),

σPDF
H,α (xi, Q) =

√√√√√Ñeig∑
k=1

(
f̃
(k)
α (xi, Q)− f

(0)
α (xi, Q)

)2
. (2.37)

This procedure allows to reduce the typically large number of replicas of the starting
Monte Carlo set into a smaller set without significant loss of accuracy. Also, the conversion
does not depend on the energy scale, since the QCD evolution equations of the Monte Carlo
set are automatically satisfied by the Hessian PDFs thanks to linearity.

As a check of this method, in fig. 2.6 is shown a comparison between the starting Monte
Carlo representation with Nrep = 1000 replicas and the final Hessian representation with
Neig = 100 eigenvectors of the published set NNPDF31_nnlo_as_0118_1000. On the left plot
is shown the gluon distribution and on the right plot the singlet one, both at Q2 = 102GeV2

and normalized to the central PDF. It is evident that the Hessian representation faithfully
describe the prior Monte Carlo set, with differences in the one-σ uncertainty bands of few
percents only at very small- and large-x.

2.3.3 ∆χ2 variations of converted Monte Carlo sets

The method presented above offers an unbiased Hessian representation for Monte Carlo
PDF sets. If the procedure used to obtain the prior Monte Carlo set has really found the
“best true” PDF, and the Hessian conversion introduces only a small loss of information,
the resulting Hessian set should be comprised of PDFs which describe positive variation
of the χ2 around the virtual minimum corresponding, by definition, to the Monte Carlo
central PDF. Thus, the ∆χ2 distribution may be studied from the variation computed for
each of the Neig eigenvectors extracted during the Hessian conversion. If from such analysis
negative variation in the χ2 appear, then the optimization procedure which led to the prior
Monte Carlo set was actually not the optimal one, as some of the Hessian eigenvectors are
describing negative variations ∆χ2 < 0. Moreover, a further test of the reliability of the
Monte Carlo predictions comes from the expected increment in the χ2, which, as discussed
in section 2.2.3, should be equal to one unit for the 68% c.l. interval. The presence of
positive values of ∆χ2 but larger or smaller than one are therefore indicators of under- or
over-estimation of the uncertainties in a Monte Carlo set.
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Figure 2.6: Comparison between the gluon (left plot) and singlet (right plot) at Q =
10GeV normalized to the central PDF. The dashed orange line shows the 1σ value of the
NNPDF3.1 Monte Carlo set of Nrep = 1000 replicas, while the teal band the final Hessian
representation of Neig = 100 eigenvectors. The prior distributions are obtained from a
global fit with αS(M

2
Z) = 0.118.

In the next chapter, a new fitting methodology (n3fit) based on deep learning methods
and implemented by the NNPDF collaboration will be introduced. Then, the basic idea
of studying χ2 variations in the context of a Monte Carlo to Hessian conversion will be
applied to examine the reliability of the predictions of the old and new methodology.





Chapter 3

PDFs from deep learning methods

The AI-based approach to PDF determination of NNPDF has been developed to eliminate
potential source of bias, particularly those related to the choice of functional form. Neural
networks are the optimal candidates in such sense, since they provide universal function
approximators. However, neural networks themselves are not unique, and neither the
algorithms used for their training. The methodology created by NNPDF is an ongoing
effort that started more than ten years ago, and is the result of a series of improvements
based on trial and error. Nevertheless, the human intervention to tackle the obstacles faced
in this complex problem might have been a source of bias. Therefore, the next step towards
a new generation of parton density determinations is to extend an unbiased methodology
with an unbiased choice of fitting methodology. This goal has been recently achieved with
the implementation of a new procedure that can optimize the methodology itself, by a
so-called hyperoptimization scan. In the following, this new approach will be introduced,
while a deeper description can be found in Refs. [4, 86].

3.1 A new approach to the NNPDF fitting methodology

As largely discussed, the NNPDF methodology is based on the Monte Carlo treatment of
experimental data, the parametrization of PDFs with artificial neural networks, and the
minimization strategy on genetic algorithms. Starting from the release NNPDF3.0 [76], all
the code is implemented in C++ and relies on a very small set of external libraries. How-
ever, the complex structure of the codebase impairs the study of novel architectures or the
introduction of modern machine learning techniques which could lead to an enhancement
of the methodology. Furthermore, the use of a GA minimization algorithm is computa-
tionally demanding and represent a significant limitation to perform systematic scans in
order to optimize the fitting methodology. This problem has been examined in the last two
years within the N3PDF project [3], and resulted in the reimplementation of the NNPDF
regression model from scratch in a python-based framework.

The neural network capabilities of this new framework are provided by Keras [87] and
Tensorflow [88], which are some of the most used and well documented NN libraries. The
code can also abstract any dependence on them, so that other machine learning tools may

47
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Figure 3.1: Scheme of the n3fit code. Each box represents an independent operation, while
the red squared ones, namely the neural network and the preprocessing factor, contain the
parameters of the PDF fit. Figure taken from Ref. [4].

be implemented. As mentioned before, neural networks are not unique, and the space of
hyperparameters (number of layers, nodes per layer, activation functions, optimizer, etc.)
is big enough that finding the best choice becomes an overwhelming task. To this purpose,
the entire framework is enclosed in hyperoptimization scan routines, implemented with the
hyperopt library [89], which allows to systematically scan over many different combinations
of hyperparameters and find the optimal configuration for the neural network, given a
specific input setup.

The new framework implements gradient descent (GD) methods to replace the pre-
viously used genetic algorithm. Thanks to the current technologies, this change reduces
the computing cost of a fit while achieving similar or better results in the goodness-of-fit.
Particularly, the optimizers which are found most well suited for the fits are Adadelta [90],
Adam [91], and RMSprop [92]. The GD methods produce more stable fits than their
GA counterparts, and, given the possibility of performing hyperoptimizations, there is no
longer a risk of ending up in architecture-dependent local minima.

Concerning the neural network employed in this new methodology, to be sensible
to cross-correlation between the different PDFs, all the eight functional forms are now
parametrized with a single densely connected network, instead of the single net for each
flavour shown in fig. 2.2. As previously done, the first layer is fixed to split the input data
into the pair (x, ln(x)), while the PDF basis is still {g,Σ, V, V3, V8, T3, T8, c+}. In this case,
the output layer is composed of 8 nodes, one per flavour, with linear activation functions.
The NN architecture (number of layers and nodes per layer) is now hyperoptimized, rather
than being fixed.

In fig. 3.1 is shown a schematic view of the full new methodology which will be referred
to as n3fit. The vectors xgrid1, . . . , xgridn contain the x-inputs for each dataset enter-
ing the fit, and therefore are used to compute both the value of the neural network and
preprocessing factor. The normalizations Ai of the PDFs are computed at each step of



3.1. A new approach to the NNPDF fitting methodology 49

the fit with the xgridint points, yielding the normalized distributions eq. (2.9). Since the
PDF basis employed is a combination of flavours, to compute physical observables a basis
rotation is applied to obtain the physical one {s̄, d̄, ū, g, u, d, s, c(c̄)}.

Unlike in many standard regression problems, in which during the optimization proce-
dure the model is compared directly to the input data, in PDF fits the data are compared
to theoretical predictions for physical observables of the form eq. (1.54). Any observable
depends on the PDFs through a number of convolution integrals between the PDFs at the
initial scale of parametrization Q0, the (DGLAP) evolution factors that take them to scale
Q and the partonic cross sections. In practice, these convolutions are turned into multi-
plication of pre-computed tables, called FastKernel (FK) tables, by projecting on suitable
basis functions, as discussed in Refs. [76, 93]. In this sense, the FK tables implement a
separation between theory and fitting procedure, since the PDFs at the initial scale are
varied in order to minimize the χ2 while the FK tables are always kept fixed and treated as
an external input. The predictions of the network for the initial PDFs (the pdfi of fig. 3.1)
are contracted with the FKi-table, and the resulting observable Oi is used to compute the
effective figure of merit χ2, eq. (2.27), to eventually update the NN parameters.

To avoid overlearning, the cross-validation of input data is used in combination with
a more refined stopping criterion, which calls a patience algorithm after the validation
stops improving, and waits for a number of iterations before raising the stopping action.
However, since the hyperopt framework is actually performing a higher level optimization,
on top of the NN training, it happens that the selection of the best model is affected by
the correlations between training and validation sets. This problem is avoided with the
introduction of a further quality control for the hyperoptimization scan, which evaluates
the NN predictions on test sets never seen before or with a more refined procedure using
k-foldings.

Table 3.1 lists some of the main differences between the old and new methodology. In
summary, there are two principal reasons that make n3fit much more efficient and ap-
pealing: firstly, the semi-automatic hyperoptimization performed by the hyperopt library,
which is in turn made possible by the second feature, that is, limited computing resource
usage thanks to GD optimizers (see Ref. [94]). This efficiency is in fact exploited to test
hundreds of architectures in the same amount of time that it takes for a single fit of the
old methodology to complete.
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Component NNPDF3.1 n3fit
Neural Net fixed architecture, per flavour single net, flexible architecture

Preprocessing random fixed random fixed, fitted in range
Optimizer genetic optimizer gradient descent
Stopping look-back patience

Fine tuning manual semi-automatic
Model selection closure test closure test, hyper optimization

Table 3.1: Component by component comparison of the different strategies adopted in the
old and new methodology.

3.2 ∆χ2 analysis for NNPDF3.1 and n3fit

We shall now consider the Monte Carlo to Hessian conversion of two equivalent sets of
NNPDF3.1 and n3fit to compare the ∆χ2 distributions, as explained in section 2.3.3.
With “equivalent sets” we mean same theory parameters (initial scale, quark masses and
scheme, coupling value, ...) and same fraction of training/validation split for the datasets
which enter in the fits. Also, even though n3fit allows to vary the preprocessing exponents
αi, βi during the fit, we have left them fixed as in NNPDF3.1.

We therefore consider the following two Monte Carlo sets, both comprised of Nrep =
1000 replicas at NNLO and with αS(M

2
Z) = 0.118:

• NNPDF31_nnlo_as_0118_1000;

• PN3_Global_nonfittedprepro_1000.

The first set was published in the latest release of the NNPDF collaboration [43], while the
second has been obtained by running a 1000 replica fit of n3fit with a hyperoptimized
configuration1.

3.2.1 Gaussian error deviation

Since we want to obtain a Hessian representation of these Monte Carlo sets, the question
arises whether we may carry out the conversion if the prior uncertainties are not Gaussian.
It is thus necessary to quantify the deviations from a Gaussian behaviour in order to
make sure that the procedure can be consistently applied. This is achieved by considering
the simplest indicator, that is the second moment of the probability distribution, and
thus we compare the one-sigma and 68% c.l. intervals. In figs. 3.2 and 3.3 is shown a
comparison of these intervals for some PDFs at Q = 1.7GeV from the NNPDF3.1 and
n3fit set, respectively. We observe that typically the intervals do not coincide in regions
of extrapolation, namely at small- and large-x, being the uncertainties determined by

1In appendix A we present a brief comparison between the Monte Carlo sets we use in this thesis, along
with their Hessian representations.
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Figure 3.2: Comparison of one-sigma (dashed line) and 68% c.l. (teal band) interval for
the gluon and the three lightest quarks, from left to right and top to bottom, for the
NNPDF3.1 Monte Carlo set. The values are normalized to the central PDF.

theoretical constraints (sum rules and cross-section positivity) due to lack of experimental
data. At first sight, we can state that the n3fit PDFs are less subject to large uncertainties
in these regions and, moreover, non-Gaussian effects appear to be smaller than those of
NNPDF3.1.

More precisely, to take into account deviations from a Gaussian probability distribution,
the following figure of merit is defined:

εα(xi, Q) =
|σα(xi, Q)− σ68%α (xi, Q)|

σ68%α (xi, Q)
, α = 1, 2, . . . Nflv , (3.1)

where σα(xi, Q) and σ68%α (xi, Q) are respectively the one-sigma and 68% c.l. intervals
evaluated at xi and scale Q for the α-th flavour. Thus, a threshold value ε, independent
from x, is chosen such that all points for which εα(xi, Q) > ε are discarded. After that, the
Hessian conversion may be carried out from the sampling matrix eq. (2.30) without these
outliers. Of course, the choice of ε is dictated by the compromise to include only grid points
for which the Gaussian approximation is valid, without loosing too much information.

In fig. 3.4 is shown the estimator εα(xi, Q) for both Monte Carlo sets2 at the scale
Q = 1.7GeV at which the conversion is accomplished. The horizontal line marks the thresh-
old value ε = 0.25 chosen for the n3fit set, while the value used instead for NNPDF3.1 is
slightly greater, ε = 0.30 (not shown), just to ensure that some of the grid points corre-
sponding to the sharp peaks at large-x in the gluon and anti-up quark distributions could

2The blue lines are the results for another n3fit set that will be described in section 3.2.2.
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Figure 3.3: Same as fig. 3.2 but for the n3fit set.

be included. The charm quark shows in both sets the largest deviations from Gaussian-like
errors for x . 10−3. The threshold values chosen allow in any case to retain grid points
in the bulk of experimental data where the charm distribution is more likely to be well
behaved. The observation we made before by looking at the plots of figs. 3.2 and 3.3 is
then confirmed by these results: the NNPDF set is more inclined to present non-Gaussian
effects, with a peculiar sharp structure in εα(xi, Q) at large-x for the gluon distribution.

We have then produced the Hessian conversion of the two Monte Carlo sets by using
the SVD+PCA method implemented in the mc2hessian code (see section 2.3.2). Since the
method provides a great compression of information, a faithful representation of the prior
sets may be obtained from Neig = 100 eigenvectors. We can now study the χ2 variations
around the best PDF estimate for each eigenvector produced. The χ2 variation for an
eigenvector is simply computed as the difference between the χ2 eq. (2.11) evaluated with
the eigenvector prediction (with real data and t0-prescription for the covariance matrix),
and the same χ2 evaluated with the central value of the Hessian set which, by definition,
is equal to the central value of the prior Monte Carlo set.

The ∆χ2 distribution are presented in fig. 3.5: on the left, a bar plot shows the χ2

variations for each of the Neig = 100 eigenvectors, while on the right is shown the distri-
bution of these values. The first evident observation for both sets is that a fair number
of eigenvectors, almost 30, describe negative variations of the χ2, and so we denote them
as “negative” eigenvectors from now on. Moreover, the spread of the variations are quite
far from the expected value ∆χ2 = 1 for the 68% c.l. interval: in the Hessian NNPDF set
−6 . ∆χ2 . 20, while in the n3fit one −14 . ∆χ2 . 15. Apart for the large negative
variations of the first two eigenvectors of the n3fit set, the overall range of fluctuations
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Figure 3.4: Gaussian error estimator εα(xi, Q) as a function of x at Q = 1.7GeV. The
results for the n3fit set are presented with orange lines, while in teal those of NNPDF3.1.
The blue lines represent the values for another n3fit set which will be considered in sec-
tion 3.2.2. From left to right and top to bottom are shown the results for s̄, d̄, ū, g, u, d, s, c.
The thin horizontal line represents the threshold value ε = 0.25 chosen for the conversion
of the n3fit set.

is similar, which may suggest that the two methodologies give similar results in the de-
scription of PDFs uncertainties. We may also note that the minimum of the χ2 reached by
NNPDF is smaller, χ2

0 = 5045, while for n3fit χ2
0 = 5120, even though we cannot know

which one is closer to the real global minimum. Nevertheless, the presence of negative
eigenvectors has to be interpreted as a symptom of inefficiency in the fitting methodolo-
gies, even though the results of fig. 3.5 cannot tell us where the inefficiency comes from.
We shall now describe a possible strategy to address this problem.

3.2.2 Eigenvector decomposition and the feature scaling branch

By inspecting the ∆χ2 distributions, we may consider the “eigenvector decomposition” of
the Hessian sets, namely divide each of them into two disjointed subsets of positive and
negative eigenvectors, relative to positive and negative variations of the χ2 respectively.
We can then compare these sets to study where the negative eigenvectors influence the
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Figure 3.5: ∆χ2 distribution for the Hessian sets NNPDF3.1 (top) and n3fit (bottom)
with Neig = 100 eigenvectors. The left plot shows the variation ∆χ2 for each eigenvector,
while the right plot shows their distribution with bins of unit length.

most the uncertainties of the PDFs.
The results for the NNPDF3.1 and n3fit sets for the lightest flavours and gluon are

shown in figs. 3.6 and 3.7: the positive (orange) and negative (blue) eigenvector subsets are
compared with the corresponding parent Hessian set (teal), with values normalized to the
(same) central PDF. Overall, the uncertainties of the quark distributions are described
by the positive eigenvectors, except in particular regions where the negative subset gives
a similar contribution, for instance at large-x. The most intriguing results are found for
the gluon distribution, where the uncertainties of the negative subset dominate over the
positive ones at x . 10−3, particularly in the n3fit set.

Since the largest uncertainties of the negative eigenvector subsets are found at small-
and large-x, this analysis might be hinting to an inefficiency in the PDFs determination
in regions of extrapolation. As explained in section 2.2.1, the PDFs parametrization in
those regions is given by the preprocessing factor x1−αi(1− x)βi , while the neural network
has little to no effect due to lack of data points. It could be possible that this simple
polynomial affects the PDFs functional form found by the NN towards incorrect values
at the boundary of the regions of extrapolation. Thus, we are induced to think that the
presence of negative eigenvectors is a consequence of the non optimal parametrization of
the PDFs at small- and large-x.
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Figure 3.6: Comparison of positive (orange) and negative (blue) eigenvector subsets with
the parent NNPDF3.1 Hessian set (teal) at the scale Q = 1.7GeV. Values are normalized
to the central PDF, which is always the same. From left to right and top to bottom are
shown the gluon, and then up, down, strange quarks.

Guided by these observations, we considered an experimental branch of n3fit, named
feature_scaling_test, in which the following changes have been made:

1. the PDFs are parametrized by the neural network only,

f(x,Q2
0) = NN(x)− NN(x = 1) , (3.2)

where the second term ensures that the PDFs vanish in x = 1, while at small-x the
network output may saturate;

2. instead of (x, lnx), the input layer is just x. However, while in the usual n3fit
x ∈ [0, 1], here the input domain is properly smeared in the interval x ∈ [−1, 1].

We have then run a 1000 replica fit3 to produce the new Monte Carlo set 300820-02-
rs-feature_scaling. From the same analysis outlined in the previous section, we study
the Gaussian error estimator eq. (3.1): remarkably, εα(xi, Q) . 0.25 for all xi, as can be
seen in fig. 3.4 (blue line), and thus we have chosen a threshold value ε = 0.25 which
can accommodate in practice all grid points. We eventually carry out the Monte Carlo to
Hessian conversion with Neig = 100 eigenvectors at Q = 1.7GeV.

First, we should look at the ∆χ2 distribution of this new set, shown in fig. 3.8, from
which we can accomplish the eigenvector decomposition. If compared to the previous ones

3Same theory parameters, datasets, and training/validation split as in the previous sets.
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Figure 3.7: Same as fig. 3.6 but for the n3fit Hessian set.

in fig. 3.5, we observe an increase in the number of negative eigenvectors, now almost 40,
whereas the χ2 variations are doubled −22 . ∆χ2 . 42. We may also notice the minimum
found is the lowest of the three sets, χ2

0 = 5015, though we cannot know if we are getting
closer to the real global minimum.

The results of the eigenvector decomposition are shown in fig. 3.9, where we provide the
analogous plots of figs. 3.6 and 3.7. The most obvious difference from the previous n3fit
set is in the gluon distribution, where now the uncertainties at small-x are described by the
positive subset (note also the reduced range of the y-scale). However, the uncertainties of
the quarks distributions are now dominated by the negative subset, particularly at small-x
for the down and strange quarks. Based on the criterion of how the negative eigenvectors
affect the uncertainties of a Hessian set, we may conclude the feature scaling improves
the determination for the gluon distribution, but at the same time the predictions for the
quarks get worse. Since the PDF parametrization adopted in the feature scaling is free
of preprocessing factor, we may conclude the functional form of the gluon at x . 10−3

could be more complicated than the simple x1−α, whereas for the quarks the usual term
x1−α(1− x)β is appropriate for their description in the regions of extrapolation.

Given also the ∆χ2 distribution of fig. 3.8, it is evident that the claimed improvement
in the gluon predictions cannot correspond to a global improvement of the fitting method-
ology. Nevertheless, we shall consider this feature scaling set in our future discussion in
chapter 4 to compare its predictions with both n3fit and NNPDF3.1.
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Figure 3.8: Same as fig. 3.5 but for the Hessian representation of the feature scaling Monte
Carlo set.

3.3 Different prescription for the eigenvector decomposition

The χ2 variation we studied so far was the difference between the χ2 evaluated using
the eigenvector eq. (2.36), and the central value of the Hessian set. As discussed in sec-
tion 2.3.2, the starting point for the Monte Carlo to Hessian conversion is the construction
of a symmetric covariance matrix in PDF space eq. (2.31), which consequently assumes
a symmetric distribution in the resulting Hessian set. From this hypothesis we expect
that if we consider the opposite eigenvector directions, namely flip the “+” into a “−” in
eq. (2.36), we should find the same variations ∆χ2.

We have therefore applied the same Hessian conversions to all previous Monte Carlo sets
by considering instead the opposite directions to construct the eigenvectors. In fig. 3.10 we
compare for each set the resulting ∆χ2 distributions with the previous ones already shown
in figs. 3.5 and 3.8. The values from the usual computation are labeled as “+ direction”
while the new results as “− direction”. We see that, contrary to our assumption, for the
large part of the eigenvectors a positive variation is matched to a negative one in the
opposite direction, and vice versa. Even though the χ2 variations actually never match,
the right plots show a rather unexpected symmetry in the distribution of these values.

The results presented here should therefore be included within the eigenvector decom-
position analysis by applying a new prescription: we define a negative eigenvector when
the corresponding χ2 variation is negative in at least one direction. We may therefore
reconsider the previous Hessian sets and see whether this new prescription can give further
insights to possible sources of inefficiencies in the methodologies. Particularly, due to the
asymmetry of the χ2 in the eigenvector directions, we shall expect an increase of the uncer-
tainties for the negative eigenvector subsets due to the increase in the number of negative
eigenvectors, and conversely for the positive ones.

This observation is actually confirmed by the plots of fig. 3.11, which show the results of
the decomposition for the three lightest quarks of each set, namely NNPDF3.1, n3fit and
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Figure 3.9: Same as fig. 3.6 but for the feature scaling Hessian set.

feature scaling (from top to bottom), at Q = 1.7GeV. The new prescription affects mostly
the feature scaling set (third row), where the uncertainties are now completely described
by the negative eigenvector subset. Furthermore, from the eigenvector decomposition for
the gluon distribution, shown in fig. 3.12, it is clear that the uncertainties of the Hessian
sets are now determined by the negative eigenvector subsets for all x, even in the feature
scaling set.

Given this further informations, we are forced to discard our hypothesis that the pre-
processing factor is a source of inefficiency in the determination of the PDFs. Nevertheless,
the introduction of this kind of Hessian analysis in future fits should be a correct way to
assess whether new Monte Carlo sets are actually giving the correct description of parton
densities. Particularly, the improvement of the feature scaling fitting methodology could
lead to an unbiased parametrization in the extrapolation regions at small- and large-x,
where there is no theoretical constraint on the exact functional form of the PDFs.

The presence of negative eigenvectors in the Hessian representation of a Monte Carlo
set might be the result of other effects, besides inefficiency, that we shall investigate in the
following chapter to introduce an effective tolerance parameter for all three Monte Carlo
sets considered in this thesis.
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Figure 3.10: Comparison of ∆χ2 distributions obtained from “+” (green) and “−” (orange)
directions, as described in the text. As usual, on the left is shown the χ2 variation for each
eigenvector, while on the right the distribution of these values with bins of unit length.
From top to bottom are shown the results for NNPDF3.1, n3fit and feature scaling.
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Figure 3.11: Comparison between the parent Hessian set (teal) with the positive (orange)
and negative (blue) eigenvector subsets at Q = 1.7GeV obtained from the new prescription.
The first, second and third row correspond to the results from NNPDF3.1, n3fit and
feature scaling respectively, while from left to right are shown the up, down, and strange
quark distributions normalized to the central PDF.

Figure 3.12: Same as fig. 3.11 but for the gluon distribution. From left to right are shown
the results of NNPDF3.1, n3fit and feature scaling.



Chapter 4

Tolerance for Monte Carlo sets

As largely discussed, the presence of negative eigenvectors from the Hessian representation
of a Monte Carlo set suggests the fitting procedure might have potential flaws. As a matter
of fact, negative eigenvectors tell us that the central value of the prior Monte Carlo set
does not correspond to the real global minimum of the χ2, contrary to what is required by
the Hessian method. There are however different aspects which determine the χ2 shape:

• Non-Gaussianity: for a Hessian representation to be meaningful, the errors should
follow a Gaussian probability distribution. If the grid points from the prior Monte
Carlo set do not show Gaussian errors, they could spoil the conversion. As discussed
in section 3.2.1, this problem is tackled by choosing a threshold value ε to discard
points deemed to be non-Gaussian.

• Finite size effects: a Monte Carlo set provides a discrete representation of the
underlying PDF probability distribution, and allows to obtain an estimate of PDF
central values and uncertainties propagated from the experimental data. Thus, the
“real” values for these quantities can be found only in the limit Nrep → ∞.

• Parabolic deviation: the estimated uncertainties of a Monte Carlo set, when repre-
sented by the Hessian conversion, could be inadequate for a quadratic approximation
of the χ2 (see eq. (2.17)) around the supposed unique global minimum. In that
case, larger variations than the expected ∆χ2 = 1 or even negative variations might
appear.

• Inefficiency: the χ2 shape could be complicated by local or even degenerate minima.
If the fitting methodology used to construct a Monte Carlo set is not optimal, it can
lead to the wrong results. A potential error is therefore propagated from the prior
set to the Hessian representation.

The combination of all these factors can thus produce the χ2 distributions observed in the
plots of fig. 3.5.

In the following we will describe and apply a procedure, firstly explained in the MSc.
thesis of Ref. [95], which was used to extrapolate and quantify the contributions listed

61
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Figure 4.1: Comparison between the usual Hessian representation (teal) of the n3fit Monte
Carlo set with the analogous representation obtained from a conversion with sigma-fraction
k = 2 (orange) for the gluon distribution at Q = 1.7GeV. Values are normalized to the
central PDF.

above only for the set NNPDF31_nnlo_as_0118_1000. We have then reimplemented the
framework to repeat the same analysis for the NNPDF3.1 set and extend it to the n3fit
and feature scaling sets. Thanks to the hyperopt framework of n3fit, this whole procedure
could be incorporated in future fits as a further measure of goodness-of-fit, to exploit the
different yet equivalent Hessian representation of a Monte Carlo set.

4.1 Monte Carlo to Hessian with sigma-fraction

In order to explore the χ2 shape globally around the central value of a Monte Carlo set, we
can build the Hessian representation using different sizes for the uncertainties. Specifically,
this is achieved multiplying the covariance matrix in PDF space eq. (2.31) with a constant
value 1/k2. The term k, named sigma-fraction, defines the new size of the fluctuations: in
fact, this operation corresponds to rescale the sampling matrix X (see eq. (2.36)) by an
amount 1/k, and thus the same rescaling applies to the calculation of the uncertainties of
the Hessian set eq. (2.37).

An illustrative example is shown in fig. 4.1, where the usual n3fit Hessian set of
Neig = 100 eigenvectors is compared to the same Hessian representation, but obtained
from a conversion with k = 2, namely with uncertainties halved.

4.1.1 One-parameter model of χ2

Since this method allows us to probe χ2 variations around the best fit, it should also
provide a quantitative information regarding the inefficiency of the fitting methodology.
In particular, signals of inefficiency are alway found from negative eigenvectors, although
they may be related to two different aspects:

1. ∇χ2
∣∣
min = 0. The minimization might have found the global minimum. A negative
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variation in the χ2 would then reveal that it was either a local minimum where the
parabolic approximation for the uncertainties of the prior Monte Carlo set is not
valid, or that it was a saddle point. In both cases, higher order terms must be taken
into account.

2. ∇χ2
∣∣
min 6= 0. The minimization has failed, thus the errors of the prior Monte Carlo

set do not even describe a region of uncertainty around a minimum.

From the Monte Carlo to Hessian procedure described in section 2.3.2, it is understood
that the resulting Hessian set is comprised of Neig independent eigenvectors. It is reasonable
to consider all these PDFs as given by independent Hessian parameters following the same
underlying Gaussian distribution. We may then introduce a one parameter model for the
χ2 which can be used to isolate the various contributions that determine its shape. Since
one of the Hessian assumptions is a quadratic approximation of the χ2 around its minimum,
we may write its functional form as a Taylor expansion up to fourth order, to study the
effects described above:

∆χ2(θ) = χ2(θ)− χ2(θ0) =

= a
(θ − θ0)

σ
+ b

(θ − θ0)
2

σ2
+ c

(θ − θ0)
3

σ3
+ d

(θ − θ0)
4

σ4
, (4.1)

where θ is the Hessian parameter distributed according to N (θ0, σ
2), while the coefficients

a, b, c, d are proportional to the derivatives of χ2 and therefore carry the information of its
true shape. Particularly, since a is related to the first derivative it quantifies the inefficiency
of the fitting procedure. The term b is analogous to a tolerance parameter, while c and d
both describe parabolic deviation.

If a Monte Carlo representation of the parameter θ is sampled from N (θ0, σ
2), then,

Hessian conversions for different values of sigma-fraction k may be carried out. It can be
shown (see appendix B.1) that the finite size of the prior Monte Carlo set and the different
sizes of the uncertainties can all be taken into account to rewrite eq. (4.1) as an expectation
value for the χ2 variation,〈

∆χ2
〉
= aN x+ bN x2 + cN x3 + dN x4 , x = 1/k . (4.2)

Equation (4.2) is therefore a polynomial of fourth degree in x = 1/k, namely the inverse
of the sigma-fraction, while the average coefficients aN , bN , cN , dN 1 carry the dependence
on the number of replicas, Nrep, used in the Monte Carlo sampling. Their values and
uncertainties are reported in appendix B.1, and more importantly the following relations
hold:

aN ∼ a , bN ∼ b , cN ∼ c , dN ∼ d , as Nrep → ∞ , (4.3)

which means the coefficients a, b, c, d in eq. (4.1) describe indeed the true χ2 shape without
any finite size effect, and we can extract them from their Nrep-dependent counterparts of
eq. (4.2).

1For simplicity of notation, for these coefficients the subscript N denotes the number of replicas Nrep.
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• NNPDF31_nnlo_as_0118_1000
• PN3_Global_nonfittedprepro_1000
• 300820-02-rs-feature_scaling

Create N batches of Nrep replicas each

batch1 batch2 batchN
. . .

Monte Carlo to Hessian fixed k and Neig = 100

Compute average and uncertainty of ∆χ2

Next k?
Yes

Fit the results with ∆χ2 polynomial

No

Figure 4.2: Flowchart describing the steps to extract the coefficients aN , bN , cN , dN in
eq. (4.2). The whole procedure is repeated for all the group of batches considered as
described in the text.

We can now turn the attention to our PDF Monte Carlo sets. We want to fit the
x = 1/k dependence of the expectation value

〈
∆χ2

〉
to extract aN , bN , cN , dN and use

the model predictions to extrapolate the Taylor coefficients a, b, c, d. The whole procedure
applied is sketched in fig. 4.2. We start from the three Monte Carlo sets we have exam-
ined thus far. At first, we are interested in the coefficients aN , bN , cN , dN and to their
dependence on the number of replicas. Since all the Monte Carlo sets we use are made of
1000 replicas, to increase the statistics we create the maximum number of batches given
a fixed number of replicas we want to use. Specifically, we consider subsets comprised
of Nrep = {100, 125, 150, 175, 200, 250, 300, 350, 400, 500, 750, 1000} replicas, thus the num-
ber of batches is respectively N = b1000/Nrepc = {10, 8, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1}. All these
twelve groups of batches are made up of subsets with the same number of replicas.

Then, we repeat the following steps for each group: we carry out the Monte Carlo to
Hessian conversion of the subsets at fixed sigma-fraction k, with Neig = 100 eigenvectors
and threshold ε unchanged (see sections 3.2.1 and 3.2.2). From these Hessian subsets we
compute average and uncertainty of the usual χ2 variation over all the eigenvectors, since
we assumed they all follow the same underlying distribution. The result is therefore the ex-
pectation value

〈
∆χ2

〉
, with related uncertainty, at fixed k and Nrep. We must then iterate

the Hessian conversions over several values of k in order to finally fit the computed values
of
〈
∆χ2

〉
with a fourth degree polynomial in x = 1/k, as predicted by eq. (4.2). Specifi-

cally, we considered k = {0.125, 0.143, 0.166, 0.2, 0.25, 0.333, 0.4, 0.5, 0.66, 1, 2, 3, 4, 6, 7} and
corresponding negatives.
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Figure 4.3: Comparison of the computed values of
〈
∆χ2

〉
(error bars) as a function

of x = 1/k from the Monte Carlo sets NNPDF3.1 (teal), n3fit (orange), and fea-
ture scaling (yellow). From left to right and top to bottom are shown the results for
Nrep = {100, 125, 150, 175, 200, 250}. The fit results to a fourth degree polynomial (gray
line) always overlap with the coloured lines of the computed values.

Figure 4.3 shows the plots of
〈
∆χ2

〉
as a function of x = 1/k for the lowest number of

replicas considered, Nrep = {100, 125, 150, 175}, from top to bottom and left to right2. The
three paraboloids in each plot correspond to the results computed from the Monte Carlo
sets NNPDF3.1 (teal), n3fit (orange) and feature scaling (yellow): the error bars mark
central values and uncertainties of the χ2 variation at fixed x = 1/k, or equivalently, at
fixed sigma-fraction. Since the n3fit results are systematically smaller, we may conclude
this is the Monte Carlo set that provides the most reliable predictions for the PDFs.

We then fit these values with a fourth degree polynomial in x as predicted by the
model, eq. (4.2), to extract the Nrep-dependent coefficients. In practice, the computed
values (coloured lines) perfectly match a fourth degree polynomial, as the solid gray line
used to represent the fit always overlap with them. From each of these fits, we obtain the
array of coefficients (aN , bN , cN , dN ), relative to the Nrep value considered. Using the model
predictions eqs. (B.8) to (B.11), from (aN , bN , cN , dN ) we can calculate the corresponding
Taylor coefficients (a, b, c, d). The final results are given as an average over the arrays
of Nrep-independent coefficients, with uncertainties propagated according to the formulas
being used. The values extrapolated with this procedure are listed in table 4.1, from which
we may notice that c , d� a� b ∼ O(1) in all three Monte Carlo set.

We may now use these values to compare the Nrep-dependent coefficients obtained
from the previous analysis with the model predictions. In fig. 4.4 are shown the results

2See appendix B.2 for the complete results.
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Taylor coefficients
NNPDF3.1 n3fit feature scaling

a −0.0936 ± 0.0005 0.024 ± 0.001 0.0462 ± 0.0007
b 2.7331 ± 0.0003 1.5749 ± 0.0005 2.4487 ± 0.0004
c −0.000 10 ± 0.000 03 −0.000 07 ± 0.000 07 −0.000 05 ± 0.000 03
d 0.000 184± 0.000 007 0.000 08 ± 0.000 01 0.000 12 ± 0.000 08

Table 4.1: Taylor coefficients extrapolated with the model predictions for the Monte Carlo
sets NNPDF3.1, n3fit, and feature scaling.

for NNPDF3.1 (left), n3fit (right) and feature scaling (bottom). The orange lines rep-
resent the fit results for aN , bN , cN , dN and the green bands the model predictions. From
this comparison we observe that the fluctuations of the coefficients aN and cN are highly
underestimated by the model, while for dN the results are compatible. A separate dis-
cussion is needed for the dominant coefficient, bN : although the model predicts bN = b
(see eq. (B.9)), this coefficient exhibits a decreasing behaviour as the number of replicas
increases. We should therefore interpret this trend as the result of finite size effects not
considered by the model. Particularly, for the NNPDF3.1 and feature scaling sets we ob-
serve at Nrep = 100 the initial values bN ' 3.8 and bN ' 2.8, respectively, but similar final
values bN ' 2 at Nrep = 1000. This could indicate that in the limit Nrep → ∞ the PDF
predictions of these two sets should be subject to similar fluctuations. On the other hand,
in the n3fit case the results are more stable and compatible with the model predictions,
which suggests the minimization procedure of n3fit is more efficient, as it converges faster
to the real value of b.

4.1.2 Dependence on the number of eigenvectors

We have then investigated the dependence of the fit to the Neig number of eigenvectors
exploited in the conversions. We considered five disjointed subsets of eigenvectors for
the computation of the coefficients aN , bN , cN , dN . Specifically, instead of calculating the
expectation value

〈
∆χ2

〉
over the complete set of Neig = 100 eigenvectors, we use the

eigenvectors 1-20, 21-40, 41-60, 61-80, 81-100 and also the cumulative subsets (1-20), 1-40,
1-60, and 1-80. In fig. 4.5 are shown the results for NNPDF3.1 (left), n3fit (right), and
feature scaling (bottom): the dashed lines represent the values obtained from the disjointed
subsets of eigenvectors, the solid lines those from the cumulative subsets, whereas the solid
light green lines in each plot correspond to the previous analysis with Neig = 100.

Overall, aN and cN show similar fluctuations around zero in all three sets, particularly
−3 . aN . 2 and −0.1 . cN . 0.1. Concerning the coefficient dN , we may observe that
it is essentially independent to the number of replicas, and by increasing the number of
eigenvectors its value lowers towards zero for all Monte Carlo sets. Finally, the coefficient
bN shows a clear dependence on the number of eigenvectors in all sets, in addition to its
dependence on the number of replicas (see fig. 4.4). We thus provide the same plots for
this coefficient in fig. 4.6, but only for the values obtained from the cumulative subsets
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Figure 4.4: Comparison between the fit results (orange lines) and the model predictions
(green bands) for the Nrep-dependent coefficients aN , bN , cN , dN from the Monte Carlo to
Hessian conversions of NNPDF3.1 (left), n3fit (right), and feature scaling (bottom).

in order to highlight the Neig dependence. In particular, for NNPDF3.1 and n3fit bN
always decreases as the number of eigenvectors increases at fixed Nrep, whereas in the
feature scaling set we observe this behaviour only at Nrep < 250. However, it is clear that
as we use more eigenvectors to represent the prior Monte Carlo sets, the coefficient bN
becomes less subject to finite size effects, and approaches the (constant) Taylor coefficient
b as predicted by the model. Since b describes the real shape of the χ2 without finite
size effects, it should be possible to extrapolate its value in the limit Nrep → ∞ from the
functional forms describing the curves in fig. 4.6.

In conclusion, n3fit Monte Carlo sets comprised of Nrep ≥ 100 replicas can be faithfully
described using Neig = 100 eigenvectors: since the dominant coefficient bN is approximately
constant, the χ2 variations around the central value are on average equal, and thus the
predictions for the PDFs will show similar fluctuations. Instead, for the NNPDF3.1 and
feature scaling sets the finite size effects are a limiting factor, as reducing the fluctuations
in the χ2 (therefore the value of bN ) requires a very large number of replicas ∼ O(1000).
In the following section, we will exploit the coefficients extracted from this analysis to
estimate an effective tolerance parameter T for these three Monte Carlo sets, providing a
further measure of goodness-of-fit for them.
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Figure 4.5: Nrep-dependent coefficients aN , bN , cN , dN obtained from disjointed (dashed
lines) and cumulative (solid lines) subsets of eigenvectors from the Monte Carlo to Hessian
conversions of NNPDF3.1 (left), n3fit (right), and feature scaling (bottom).

4.2 Tolerance parameter

In order to provide a quantitative evaluation for the predictions of the Monte Carlo sets
studied in this thesis, we should eventually extrapolate from their Hessian representations
an effective tolerance parameter T =

√
∆χ2. This is our final test to determine whether

the n3fit methodology improves the determination of PDFs, as a smaller value for the
tolerance implies more precise predictions (see section 2.2.3).

As we observed in figs. 4.5 and 4.6, the coefficients aN , bN , cN , dN depend on the number
of eigenvectors used to represent the prior Monte Carlo sets. Particularly, when we increase
Neig, aN and cN become less subject to wide fluctuations around zero, while bN and dN
decrease towards some limit value. However, as the model predictions are not reliable (see
fig. 4.4) we cannot use eqs. (B.8) to (B.11) to extract the Taylor coefficients a, b, c, d. We
then need a different procedure for the extrapolation of a tolerance.

Since the results shown in fig. 4.3 are in perfect agreement with the quartic polynomial
eq. (4.2), we must conclude that this is indeed the real functional form of the variation of the
χ2, and therefore we can trust the values of the Nrep-dependent coefficients we extracted.
Moreover, all these results have been obtained from the computation with Neig = 100
eigenvectors, and therefore we shall use them to compute the tolerance parameter for the
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Figure 4.6: Coefficient bN obtained from the cumulative subsets of eigenvectors, namely
with Neig = {20, 40, 60, 80, 100}. From left to right are shown the results from the Monte
Carlo to Hessian conversions of NNPDF3.1, n3fit and feature scaling.
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Figure 4.7: Comparison between the tolerance parameter T =
√
〈∆χ2〉 computed at dif-

ferent values of Nrep replicas from the Monte Carlo sets NNPDF3.1 (teal), n3fit (orange),
and feature scaling (yellow). The results are computed with eq. (4.4) using the coefficients
aN , bN , cN , dN obtained from Hessian conversions with Neig = 100 eigenvectors.

Monte Carlo sets.
Thus, we apply the following “model independent” approach: we evaluate eq. (4.2) in

x = 1/k = 1, in order to obtain〈
∆χ2

〉
= aN + bN + cN + dN , (4.4)

which corresponds to the χ2 variation for the Hessian representation of the prior Monte
Carlo set without any rescaling in the uncertainties, since k = 1. We can then use eq. (4.4)
to estimate an effective tolerance parameter T =

√
〈∆χ2〉, for each Nrep number of replicas

we considered. In fig. 4.7 we show the resulting values of T as a function of Nrep for the
three sets NNPDF3.1 (teal), n3fit (orange) and feature scaling (yellow).

As could be expected, the dominant coefficient bN determines the dependence of the
tolerances to the number of replicas. In fact, for the NNPDF3.1 set T decreases as the
number of replicas increases, from T ' 1.9 at Nrep = 100 to T ' 1.2 at Nrep = 1000. For
the feature scaling set, at first the tolerance fluctuates around T ' 1.7 and then decreases
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similarly to NNPDF3.1 as soon as the number of replicas exceeds Nrep = 300, whereas for
the n3fit set T is more stable in the range 1 . T . 1.4. From the comparison of the
tolerance values at fixed Nrep we can conclude that with the same number of replicas the
predictions of the n3fit methodology are always more accurate.

Finally, we may give an estimate for a global tolerance for the three Monte Carlo sets by
computing mean and standard deviation over all the values at different Nrep, which should
be interpreted as an average of goodness-of-fit for the three methodologies. We thus find
the following results:

NNPDF3.1: T = 1.6± 0.2 , (4.5)
n3fit: T = 1.3± 0.1 , (4.6)

feature scaling: T = 1.6± 0.2 . (4.7)

Overall, the values for the tolerance parameters are close to what expected from the pa-
rameter fitting criterion, T =

√
∆χ2 = 1. Thus, the uncertainties in the Monte Carlo

sets considered in this thesis3 do not impose a large inflation of the tolerance parameter as
instead is required in direct Hessian analyses (see section 2.2.3). The values in eqs. (4.5)
to (4.7) may then be related to small incompatibilities of datasets or missing higher order
uncertainties in theoretical predictions. However, these contributions should be similar for
all three Monte Carlo sets because we considered equivalent sets (same theory parameters,
datasets and training/validation split) and so we expect that differences in the tolerances
are mainly due to the different strategies adopted in the fitting procedures.

We can finally conclude that the predictions of the n3fit methodology are indeed more
accurate, while the NNPDF and feature scaling methodologies are expected to perform
equally well on average. This suggests that further improvements in the feature scaling
procedure should lead to results similar to n3fit, but at the same time provide an unbiased
description of the PDFs functional forms without the need for a preprocessing factor (see
section 3.2.2).

3NNPDF31_nnlo_as_0118_1000, PN3_Global_nonfittedprepro_1000, 300820-02-rs-feature_scaling.



Chapter 5

Conclusions and outlook

In this thesis we examined the accuracy of predictions between the current state-of-the-
art methodologies for PDFs determination in use within the NNPDF collaboration. We
compared the latest version NNPDF3.1 with the new code, n3fit, developed in the last
two years by the N3PDF project.

We started from two equivalent Monte Carlo sets (see section 3.2):

• NNPDF31_nnlo_as_0118_1000;

• PN3_Global_nonfittedprepro_1000.

The first is the NNPDF3.1 set of 1000 replicas published in the latest release of the NNPDF
collaboration, while the second was obtained from a 1000 replica fit using n3fit, with a
hyperoptimized configuration. Our analysis has been carried out by converting these sets
into the equivalent Hessian representations, with the mc2hessian code. From the covari-
ance matrix in the PDF space of replicas, the Hessian parton distributions are extracted
by singular value decomposition as the dominant eigenvectors of this matrix, to provide
a basis in the vector space spanned by the replicas (see section 2.3.2). While in the pure
Hessian method the PDFs correspond to positive variations from the minimum of the χ2,
we found that both sets present a fair number of PDFs relative to negative variations.
Furthermore, we observe much larger fluctuations than the textbook value ∆χ2 = 1 for
the 68% c.l. interval (see section 3.2.1).

Since the negative variations in the χ2 should be interpreted as inefficiency in the
fitting methodology, we introduced a strategy to isolate the negative contributions and
find regions where the determination of the PDFs is not optimal. The largest tensions
were found in the extrapolation regions, namely small- and large-x (see section 3.2.2).
Thus, we searched for potential improvements in the n3fit fitting methodology using
the experimental branch feature_scaling_test. We created a third Monte Carlo set,
with a 1000 replica fit, 300820-02-rs-feature_scaling, and repeated the same analysis.
We observed an improvement in the determination of the gluon PDF at small-x, but a
deterioration for the quark distributions. Furthermore, the variations of the χ2 for this new
set showed larger fluctuations. We extended the prescription to examine the contributions
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of the negative variations by including in the analysis the χ2 variations in the opposite
directions defined by the Hessian eigenvectors (see section 3.3). We were forced to discard
our previous considerations, and conclude that the PDFs relative to negative variations
have a significant role to determine the uncertainties of the Monte Carlo sets, especially in
regions of extrapolation.

We continued our investigation with the introduction of a simple one-parameter model
of the χ2, for which we assume a quartic expansion near the minimum (see section 4.1.1).
We were able to extrapolate an effective tolerance for the three Monte Carlo sets, which can
be interpreted as an average goodness-of-fit of the three methodologies under examination.
We found that the value related to the n3fit set is the lowest, T = 1.3, and we concluded
that the new framework improves the parton distribution functions determination. Con-
cerning NNPDF3.1 and feature scaling, we obtained the same value T = 1.6, therefore we
expect that further improvements in the feature scaling methodology could lead to similar
results to n3fit.

Finally, we suggest the strategies presented in this work could be implemented in the
n3fit code to improve the determination of the PDFs in future fits. Specifically, the
effective tolerance of a Monte Carlo set might be used to introduce the loss function

χ2
loss = T − 1 , (5.1)

which should be minimized during the hyperoptimization scan. Moreover, the analysis of
the negative variations of the χ2 can always provide further tests about the reliability of
the predictions of a fitting procedure.



Appendix A

Monte Carlo sets

In this appendix we present briefly the resulting parton distributions from the Monte Carlo
sets considered in this thesis (see section 3.2):

• NNPDF31_nnlo_as_0118_1000;

• PN3_Global_nonfittedprepro_1000;

• 300820-02-rs-feature_scaling,
and we also provide a comparison with their Hessian representations. The three sets
are “equivalent”, in the sense that theory parameters, datasets and training/validation
split are always the same. Particularly, they are all obtained from NNLO calculations
with αS(M

2
Z) = 0.118. In this way, we are able to compare the outcome of the different

strategies adopted for the determination of the PDFs.
In fig. A.1 is shown the comparison between the PDFs from NNPDF3.1 (teal), n3fit

(orange), feature scaling (blue), at the scale Q = 1.7GeV. Overall, the distributions
are compatible within the uncertainty bands: the most evident differences are found for
the gluon, for which n3fit and feature scaling do not predict a steep rise at small-x as
NNPDF3.1. We may also notice the strange and anti-strange distributions of the feature
scaling set which are almost flat at x . 10−3. This could be due to the difficulty of the
neural network alone to extrapolate in a region where the experimental constraints on these
PDFs are poorer respect to the others.

In fig. A.2 we show again the same distributions but in ratio to the central PDFs of the
NNPDF3.1 Monte Carlo set. From these plots we can also appreciate the relative difference
in predictions at large-x of these methodologies.

Finally, we present in figs. A.3 to A.5 the comparison between the Monte Carlo PDFs
with their Hessian representations. The figures show respectively the results for NNPDF3.1,
n3fit and feature scaling, with values in ratio to the central PDF in order to highlight
potential differences in the uncertainties. We may observe that the n3fit and feature
scaling PDFs are always well reproduced by the Hessian conversions, figs. A.4 and A.5,
while the discrepancies between the uncertainties at small-x and large-x for NNPDF3.1,
fig. A.3, are due to the non-Gaussian grid points that had to be discarded to obtain a
faithful Hessian representation (see section 3.2.1).
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Figure A.1: Comparison between the PDFs from the Monte Carlo sets we considered in this
thesis: NNPDF3.1 (teal), n3fit (orange), feature scaling (blue). The dashed lines represent
the one-sigma uncertainty, while the coloured bands the 68% c.l. intervals. From left to
right and top to bottom are shown the s̄, d̄, ū, g, u, d, s, c distributions at Q = 1.7GeV.
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Figure A.2: Same as fig. A.1 but with values in ratio to the central PDFs of the NNPDF3.1
set.
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Figure A.3: Comparison between the PDFs from the NNPDF3.1 Monte Carlo set with
the corresponding Hessian representation at Q = 1.7GeV and Neig = 100. Values are
normalized to the (same) central PDF. The dashed orange lines correspond to the one-
sigma uncertainty of the Monte Carlo set, while the teal bands to the uncertainties of
the Hessian set. From left to right and top to bottom are shown the s̄, d̄, ū, g, u, d, s, c
distributions.
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Figure A.4: Same as fig. A.3 but for the n3fit set.
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Figure A.5: Same as fig. A.3 but for the feature scaling set.



Appendix B

One-parameter model of χ2

Here we discuss in more detail the calculation of the model predictions for the expectation
value

〈
∆χ2

〉
, which is used to extract the tolerance parameter for the Monte Carlo sets

considered in this thesis. We also show the fit results for all the number of replicas Nrep
considered.

B.1 Model coefficients
As explained in section 4.1.1, the starting point in the Taylor expansion eq. (4.1) near the
minimum of the χ2:

∆χ2(θ) = a
(θ − θ0)

σ
+ b

(θ − θ0)
2

σ2
+ c

(θ − θ0)
3

σ3
+ d

(θ − θ0)
4

σ4
, (B.1)

where θ is a Hessian parameter distributed according to N (θ0, σ
2). By drawing a Monte

Carlo sample for the parameter θ from this distribution, we may obtain the set of Nrep
replicas1 {θ(k)} which, due to the finite size of the set, have central value µ and variance
s2 instead of the true θ0 and σ. By applying a Hessian conversion with sigma-fraction k,
the resulting Hessian set of θ’s is distributed according to a Gaussian centered in µ and
with variance s2/k2. The sample mean µ is a random variable, and specifically

µ ∼ N
(
θ0,

1

N

s2

σ2

)
(B.2)

while the sample variance s2 can be expressed as

s2 =
σ2

k2
x

N − 1
, (B.3)

where x is distributed according to the χ2 probability density function with m = N − 1
degrees of freedom,

f(x;m) =
1

2
m
2 Γ
(
m
2

)xm/2−1 exp−x/2 . (B.4)

1For compact notation from now on we denote the number of replicas Nrep simply as N .
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Since the Hessian conversion assumes the quadratic behaviour of the χ2 near the min-
imum, we find that

∆χ2
samp(θ) =

(θ − µ)2

s2
. (B.5)

The 68% c.l. interval for θ is then given by the parameter fitting criterion ∆χ2
samp = 1,

which corresponds to the values θ = µ ± s. This shift is analogous to the displacement
from the best fit parameters ~a0 along the eigenvector directions of the Hessian matrix.

However if the real χ2 is given by eq. (B.1), the values θ = µ ± s induce instead a
different increase, given by ∆χ2 = χ2(µ ± s) − χ2(µ). From this difference we can now
compute average and uncertainty of the χ2 variation as we know the statistical distributions
of both µ and s2. Specifically, the calculation involves expectation values of powers of
(µ− θ0) ∼ N

(
0, s2/(σ2N)

)
, and〈( s

σ

)n〉
=

〈(
x

k2(N − 1)n/2

)〉
=

1

kn(N − 1)n/2

〈
xn/2

〉
=

=
2n/2

kn(N − 1)n/2
Γ
(
n
2 + N−1

2

)
Γ
(
N−1
2

) =
1

kn
GN (n) , (B.6)

where GN (n) is a shorthand for the gamma functions and power terms.
The result of this calculation is the expected value of the χ2 eq. (4.2),〈

∆χ2
〉
= aN x+ bN x2 + cN x3 + dN x4 , x = 1/k , (B.7)

where the coefficients are given by

aN = aGN (1) , (B.8)
bN = b , (B.9)
cN = c [GN (3) + 3/NGN (1)] , (B.10)

dN = d
N2 + 7N − 6

N(N − 1)
, (B.11)

along with their variances,

σ2a = a2
(
1−G2

N (1)
)
, (B.12)

σ2b = b2
6N − 4

N(N − 1)
, (B.13)

σ2c = c2
(
N3 + 19N2 + 3N − 15

N(N − 1)2
−
c2N
c2

)
, (B.14)

σ2d = d2
(
(N + 1)(N + 3)(N + 5)

(N − 1)3
+ 28

(N + 1)(N + 3)

N(N − 1)2

+ 140
N + 1

N2(N − 1)
+ 540

1

N3
−
d2N
d2

)
. (B.15)
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We may note that in the limit N → ∞ the coefficients eqs. (B.8) to (B.11) become N -
independent and approach the Taylor coefficients eq. (B.1), while the variances vanish.
Particularly, the model predicts a constant coefficient bN and equal to b, the analogous to
the tolerance.

B.2 ∆χ2 fit results
As explained in section 4.1.1 we compute the expectation value

〈
∆χ2

〉
for different values

of sigma-fraction k at fixed number of replicas N . In fig. B.1 are shown the results of this
computation. The paraboloids are fitted to a polynomial of fourth degree in x = 1/k to
extract the coefficients aN , bN , cN , dN . The large error bars in the last two plots on the
bottom right are due to the use of only one batch in the calculation.

We may observe, as we already did in section 4.1.1 for the lowest number of replicas,
that the χ2 variations for n3fit (orange) are always smaller than those of NNPDF3.1
(teal) and feature scaling (yellow). This will end up in lower values for the tolerance
parameter, and thus confirms the stability and accuracy of the predictions of the n3fit
methodology. A final comment for the feature scaling results: initially, the χ2 variations
are lower than those of NNPDF3.1, but once the number of replicas reaches N = 300 they
show similar values. In particular, for N ≥ 250 the

〈
∆χ2

〉
shape for the feature scaling

is slightly asymmetric, which implies that inefficiency and parabolic deviation effects are
becoming relevant as they are related to the odd terms of eq. (B.7). Since the increase in
the number of replicas corresponds to an overall decrease in the expectation value of ∆χ2,
we may deduce that the predictions of NNPDF3.1 scale better with respect to the number
of replicas than those of feature scaling.
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Figure B.1: Comparison between the computed values of
〈
∆χ2

〉
(error bars) as a function

of x = 1/k from the Monte Carlo sets NNPDF3.1 (teal), n3fit (orange) and feature scaling
(yellow). From top to bottom and left to right are shown the results for increasing number
of replicas, namely Nrep = 100, 125, 150, 175, 200, 250, 300, 350, 400, 500, 750, 1000.
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