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Lay Summary

In this thesis we present a number of studies concerning the determination of the

Parton Distribution Functions (PDFs) of the proton. PDFs describe the internal

structure of the nucleons in terms of their constituent quarks and gluons, and

therefore they are important to gain a better understanding of the fundamental

structure of the proton. Additionally PDFs are a necessary input to perform

a number of relevant computations in high energy-physics phenomenology,

which makes their precise knowledge, together with the determination of the

corresponding uncertainty, a key ingredient for new physics studies. It is

therefore important to produce more and more precise PDFs, researching into

new numerical frameworks and physical ideas. In this thesis we present a number

of steps in this direction, addressing a number of different topics, which span from

the impact of new experimental data from the Large Hadron Collider (LHC) to

recent developments from the lattice community.
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Abstract

A precise understanding of the proton structure, encoded in Parton Distribution

Functions (PDFs), is required to make reliable predictions and analyses at the

Large Hadron Collider (LHC), the main source of experimental data probing

subnuclear interactions we have today. PDFs have played a central role in

the recent discovery of the Higgs boson and, since it is increasingly clear that

any effect due to new physics will manifest itself as small deviations from the

current theory, a precise determination of PDFs is likely to be a key ingredient

for new physics studies. The PDFs are formally defined as matrix elements of

renormalized operators in Quantum Chromodynamics (QCD) involving hadronic

states. They are inherently non-perturbative quantities, and they are extracted

from global QCD analysis over experimental data using the so-called factorization

theorems. Producing a new generation of PDFs, satisfying the precision and

reliability requirements demanded by the current research, is a challenging task

which involves, together with the experimental data input, the development

of robust fitting methodologies, along with new physical ideas. In this thesis

we present a number of progresses which have been developed in the last few

years in the context of PDFs determination, some of which will lead to the next

PDFs release by the NNPDF collaboration. In particular we will discuss a new

framework for global PDFs determinations, the impact of new experimental data,

with particular emphasis on jets data, the inclusion of theory uncertainty in a

PDFs fit and the treatment of heavy quarks distributions. We will then discuss a

set of recent ideas which would allow to extract PDFs from equal time correlators

computable within the framework of lattice QCD, and we will present results

regarding data coming from different lattice approaches and collaborations.
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Introduction

The increasing demand for accuracy required nowadays to perform high-energy

phenomenology represents one of the main challenges for the particle theory

community. The overall precision of theoretical computations has to match the

one of the corresponding experimental measurements: more precise experimental

data call for more precise computations, together with a better control and

understanding of the different sources of errors affecting theoretical predictions.

The computations of high-energy processes involving nucleons are based on

factorization, namely on the separation of amplitudes or cross-sections in different

contributions, each of which depends on a specific energy scale. While short-

distance (or high-energy) contributions can be computed within the framework

of perturbation theory, those related to long-distance phenomena and responsible

for the internal structure of the nucleons are not directly accessible by means

of first principle computations, and are factorized into universal objects of non

perturbative origin, denoted as Parton Distribution Functions (PDFs).

PDFs encode our knowledge about the structure of the nucleons in terms of quarks

and gluons, and represent an essential ingredient to perform theory computations

in collider physics. Using factorization theorems, PDFs can be extracted

from global QCD fits over a set of experimental data, and, thanks to their

universality, the results can be subsequently used to compute different processes.

Unfortunately, they also represent the dominant source of uncertainty in many

important computations, including analyses at the Large Hadron Collider (LHC)

and other experiments, the determination of standard model parameters, Higgs

boson characterisation and searches for New Physics. It is therefore necessary to
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push the determination of PDFs to a new level of accuracy, researching for new

methodologies and physical ideas to improve such global analyses.

The problem of PDFs determination involves a number of different lines of re-

search which can be investigated using diverse approaches. For phenomenological

applications, it is important to develop frameworks which allow to implement and

test different numerical and analytical techniques to deal with complex global

fits involving a big number of data coming from experimental measurements.

Such frameworks need to be flexible enough in order to fit the available data

while imposing known physical constraints which have to be satisfied by the final

PDFs, and should allow to easily include new data and computations in the

analysis. When new experimental data for specific high-energy processes become

available, their impact on parton distributions needs to be studied and quantified,

to see how the new experimental information changes our knowledge regarding

the structure of the nucleons. This involves, on one side, the understanding of the

details of the new data (distributions to be included in the analysis, statistical

and systematic errors, kinematic cuts to apply in order to use factorization

theorems in their domains of validity), on the other the implementation of the

most up to date theoretical computation for the process considered. In order

to quantify how reliable the theory predictions are, specific studies regarding

the theoretical errors and their propagations into PDFs need to be carried out,

and a suitable prescription for the combination of experimental and theoretical

uncertainties have to be formulated. Alongside this kind of studies, which are

usually performed within the high-energy community, other approaches to study

parton distributions are possible. Being non-perturbative objects, PDFs are also

a natural subject for a lattice QCD investigation. Starting from the formal

definition of parton distributions, given in terms of matrix elements between

nucleons states of QCD bilocal operators, it is possible to study the detailed

structure of the ultraviolet (UV) and infrared (IR) divergences of such objects,

and relate them to specific correlators which, in principle, can be obtained through

lattice QCD simulations. Such ideas have been studied and developed in recent

years, and data from lattice QCD simulations have started appearing. Given the

high interest shown by both the lattice and high-energy community, new data

for different lattice observables are likely to appear in the coming years. It is

therefore important to understand how to extract information about PDFs from

them, study their potential for high-energy phenomenology, their interplay with

experimental data and understand the different sources of uncertainties affecting

the corresponding lattice simulation.
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This thesis can be divided into three main parts. The first part, composed by the

first two chapters, is devoted to review the basics of QCD and the main concepts

underlying factorization theorems. We will introduce parton distributions first

from a phenomenological point of view, following the parton model ideas and

discussing the general structure of the NLO QCD corrections, and subsequently

following a more formal approach, revising the theoretical definition of PDFs

in terms of QCD bilocal operators. These chapters are based on a number of

standard QCD text books [1–3], quantum field theories lectures and classical

references regarding factorization in high-energy processes, such as refs. [4–6],

and will be used to set up the main notations adopted in the rest of the thesis.

In the second part, made by chapters 3, 4, 5 and 6, we will present a number

of phenomenological studies, as detailed in the following. In chapter 3 we will

describe the fitting methodology which has been developed within the NNPDF

collaboration and its recent implementation within the new n3fit framework,

with particular emphasis on the numerical techniques adopted to impose physical

constraints on PDFs. We will also discuss the so called fit basis, showing how the

final results produced within this framework only depend on the experimental

and physical inputs, and not on the specific details of our fitting methodology.

Such studies will be part of NNPDF4.0, the next public release of the NNPDF

collaboration. In chapter 4 we will discuss the impact of jets data in a global

PDFs determination. This gives an example of the kind of analyses which need

to be done every time an important class of new experimental measurements is

available, together with the corresponding theoretical predictions. The results

discussed in this chapter have been first presented in ref. [7]. In chapter 5 we will

discuss the definition and implementation of a theoretical error accounting for

missing higher orders in a PDFs global analysis. The chapter is based on refs. [8, 9]

where this study was first presented by the NNPDF collaboration. In chapter 6,

based on ref. [10], we discuss an alternative treatment for the bottom PDFs,

analysing the specific case of Higgs production in bottom fusion and its potential

impact on precise phenomenology. Finally, in the third part of the thesis, made by

chapters 7, 8 and 9, we will present a number of studies to understand the relation

between PDFs and lattice computable Euclidean correlators. In particular in

chapter 7, based on ref. [11], we will revise the main theoretical ideas behind

the lattice approach using a nongauge theory as a simple toy example. This

chapter is used to introduce the theoretical framework necessary to understand

the studies presented in the two following chapters. In chapter 8 we analyse

data for quasi-PDFs matrix elements, studying their potential in constraining
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PDFs and presenting a detailed analysis of the systematic uncertainties affecting

the data and of how these affect the final results. The results reported in this

chapter were first presented in ref. [12]. In chapter 9 we present results for PDFs

extracted from a different kind of lattice observables, denoted as reduced Ioffe-

time pseudodistribution, assessing differences and similarities with the analysis

of chapter 8. The chapter is based on ref. [13]. Finally in chapter 10 we briefly

summarize the main results and conclusions of this thesis.

The thesis is supplemented with a number of appendices, where some analyses are

further expanded and the details and results of the more technical computations

are reported for reference.
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1
Basics of QCD

In the early ’60s it was generally believed that a theory for the strong interaction

could not be formulated within the framework of Quantum Field Theory (QFT)

[14]. Despite the remarkable success of Quantum Electrodynamics (QED)

in describing phenomena such as the anomalous magnetic moment of the

electron, the renormalization process was not completely understood yet and

renormalizable quantum field theories were still looked at with suspicion.

The experimental observation of Bjorken scaling [15] in Deep Inelastic Scattering

(DIS) experiment (SLAC 1960) suggested that the constituents of nucleons may

be described as almost-free and point-like objects when observed with high spatial

resolution, leading to the formulation of the parton model [16]. Accordingly, the

dynamic of partonic systems should have the property of becoming weaker at

shorter distances. In 1973 asymptotic freedom of non-Abelian gauge field theories

was discovered [17, 18], making possible to embed the partonic model ideas within

the framework of a renormalizable QFT. Soon after it was shown how non-Abelian

gauge field theories are actually the only ones exhibiting such property in four

dimensional space-time [19] and Quantum Chromodynamics (QCD) emerged as

a mathematically consistent theory for the strong interaction.

After its formulation, QCD has been successfully used to describe strong

interaction processes observed at colliders, and nowadays it represents one of the

cornerstone of the Standard Model. In this chapter we present a brief overview of

QCD, recalling some basic features of the theory and introducing our notation.

For a more detailed treatment of the basics of QCD we refer to standard QFT

and QCD textbook, such as refs. [1–3].
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1.1 Lagrangian and its symmetries

Quantum Chromodynamics is a non-Abelian gauge theory based on the gauge

group SU(3)color. The classical Lagrangian of QCD, describing the interaction of

Nf massive spin-1
2

quarks and massless spin-1 gluons, is given by

Lclassical = −1

4
FA
µνF

Aµν +

Nf∑
k=1

ψ
k

a (iγµDµ +mk)ab ψ
k
b , (1.1)

with the field strength tensor and the covariant derivative defined as

FA
µν = ∂µAAν − ∂νAAµ + g fABCABµACν , (1.2)

Dµ = ∂µ − i g TAAAµ . (1.3)

The summation over k runs over all the quark flavours, with each quark field

ψka belonging to the fundamental representation of the gauge group SU(3)color

(a = 1, 2, 3), while the gauge field AAµ , called gluon, belongs to the adjoint

representation (A = 1, 2, ..., 8). The quantities g and fABC are the gauge coupling

and the SU(3)color structure constants respectively, and TA are the eight gauge

group generators, satisfying

[
TA, TB

]
= ifABCTC , (1.4)

Tr
[
TATB

]
= TR δ

AB . (1.5)

An explicit expression for the generators TA in the fundamental representation

is given by (TA)ab = 1/2
(
λA
)
ab

with λA representing the eight 3-dimensional

Gell-Mann matrices and with the normalization of the generators conventionally

chosen to be TR = 1/2. Given the equations above, the colour matrices obey∑
A

∑
b

TAabT
A
bc = CF δac , (1.6)∑

A

∑
C

TABCT
A
CD =

∑
A,C

fACBfACD = CA δBD , (1.7)

where, considering the generic case of SU(N), CF = N2−1
2N

and CA = N .

The classical Lagrangian of eq. (1.1) does not allow to formulate quantum

perturbation theory in a consistent way. The problem cannot be avoided as

long as we rely on a gauge invariant Lagrangian, where the gauge field AAµ has
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the freedom to change according to gauge transformations. We can get rid of such

freedom by putting constraints on the field AAµ , known as gauge fixing conditions,

which in general can be expressed as

GµAAµ = BA , (1.8)

with Gµ and BA chosen in some convenient way 1. Upon functional integration

over the arbitrary quantity BA, such condition is implemented in the theory by

adding to the classical Lagrangian the so-called gauge fixing term

Lgauge−fixing = − 1

2ξ

(
GµAAµ

)
, (1.9)

with ξ representing an arbitrary parameter whose specific value defines the gauge.

Different choices for the gauge fixing term can be done. Taking Gµ = ∂µ we

obtain a class of covariant gauges. In this case the gauge fixing term must be

supplemented by an additional term, known as ghost Lagrangian [21], describing

a complex scalar field ηa (the Faddeev-Popov ghosts) obeying the Grassmann

algebra and belonging to the adjoint representation of the gauge group

Lghost =
(
∂αη

A
)∗
Dα
AB η

B . (1.10)

Perturbation theory can be formulated starting from the Lagrangian density

L = Lclassical + Lgauge−fixing + Lghost . (1.11)

Another possible gauge fixing term is the one giving the so-called axial gauges,

fixed in terms of a chosen vector n such that Gµ = nµ. In this case ghost fields

decouples and can thus be ignored, but the explicit form of the gluon propagator

turns out to be more complicated than the one in the covariant gauges.

The QCD Lagrangian has a number of important symmetries, both exact and

approximate, which is worth recalling here. The classical Lagrangian given in

eq. (1.1) is invariant under SU(3)color gauge transformations. After gauge fixing

gauge invariance is broken, but the resulting Lagrangian of eq. (1.11) satisfied

the BRST symmetry [22, 23], which in turn helps with the renormalizability

of the theory. The so-called flavour symmetries are also exact symmetries of

1Eq. (1.8) in general admits various solutions, representing different possible gauge
configurations known as Gribov copies. Their occurrence is known as the Gribov copies problem,
or Gribov ambiguity [20].
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QCD, acting through a global phase transformation of each quark field separately

and giving the baryon number conservation. Other symmetries include the

discrete global symmetries of parity and time reversal invariance. Finally charge-

conjugation is also an exact symmetry of eq. (1.11).

Assuming mass degeneracy for the up and down quarks, the U(1) global symmetry

associated with quark number can be extended to a global U(2) = U(1) ⊗
SU(2). The new symmetry SU(2) is known as isospin symmetry. We can further

enhance the symmetry group to U(1) ⊗ SU(3) assuming the strange quark to

be also degenerate in mass with the up and the down2. In the case of massless

quarks, a chiral symmetry U(2)L ⊗ U(2)R = SU(2)V ⊗ U(1)V ⊗ SU(2)A ⊗ U(1)A

holds, which however is spontaneously broken to SU(2)V ⊗ U(1)V ⊗ U(1)A, with

the subscripts V and A denoting the vector and axial combinations. The three

pseudo-scalar Goldstone bosons resulting from chiral SU(2) breaking to SU(2)V

are identified with the three pions π+, π− and π0 in the massless quark limit.

While the survived SU(2)V ⊗ U(1)V symmetry is identified with the isospin

and baryon number conservation mentioned previously, the remaining U(1)A,

despite not being spontaneously broken, appears to be lost in QCD. The study

of what happens to this symmetry is known as the U(1)-problem [25]. The axial

symmetry U(1)A is actually broken at the quantum level, through the Adler-Bell-

Jackiw anomaly, which induces a new term in the QCD Lagrangian proportional

to εαβγδ TrF γδFαβ . This term would be responsible for a violation of CP in

the strong sector and its magnitude is given by the size of the parameter θ,

representing an angular variable whose values is fixed to be in the range θ < 10−9

by experimental measures. The unexplained smallness of such parameter is known

as the strong CP-problem. Among the proposed solutions, the Peccei-Quinn

mechanism was developed [26] which, together with the introduction of additional

particles called axions [27, 28], proposes a dynamical explanation for the θ values.

1.2 The running coupling and asymptotic freedom

In analogy with the QED fine structure constant, the QCD coupling constant

is defined in terms of the gauge coupling as αs = g2/4π. As a consequence

of the renormalization process, the coupling acquires a dependence on the

renormalization scale µ, namely the arbitrary scale at which the subtraction of

2Such approximate flavour symmetry SU(3) is the basis of the Gell-Mann quark model [24]
which was proposed well before the birth of QCD.
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the ultraviolet (UV) poles is performed. The resulting renormalization group

equations read

µ2∂αs
∂µ2

= β (αs) . (1.12)

The β function can be computed in perturbation theory as a power expansion

in αs. Nowadays results up to five loops have been computed [29]. At next-to-

leading order it is given by

β (αs) = −β0 α
2
s

(
1 + β1αs +O

(
α2
s

))
, (1.13)

with

β0 =
33− 2Nf

12π
, β1 =

153− 19Nf

2π (33− 2Nf )
. (1.14)

Using the leading order expression for the β in eq. (1.12) we find the leading-log

solution for the running coupling, relating its value at the generic scale Q2 to the

one at a reference scale µ2

αs
(
Q2
)

=
αs (µ2)

1 + αs (µ2) β0 log Q2

µ2

. (1.15)

Given the positive sign of β0, from eq. (1.15) it is evident how, as the scale

Q2 becomes very large, the coupling αs (Q2) decreases to zero. This property,

which characterizes non-Abelian gauge theories like QCD, is known as asymptotic

freedom and the theory is then said to be asymptotically free. It is customary

to introduce a dimensionful parameter directly in the definition of αs, usually

denoted as Λ. It can be defined as

log
µ2

Λ2
= −

∫ ∞
αs(µ2)

dx

β (x)
, (1.16)

with its specific value depending on the choice of the renormalization scheme, on

the order of the β function power expansion and on the number of active flavours3

entering the theory. Any dimensionful quantity in QCD can be expressed in units

of Λ. It can be thought as an intrinsic scale of QCD: at scales much larger than

Λ the coupling αs is small and quarks behave as almost free particles.

3The notion of active flavours will be discussed in sec. 1.3
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1.3 Quark masses

The quark masses represent another parameter of the Lagrangian eq. (1.1). Just

like the coupling constant because of the renormalization process they also acquire

a dependence on a renormalization scale µ given by

µ2 ∂m

∂µ2
= −γm (αs)m

(
µ2
)
. (1.17)

The quantity γm is the mass anomalous dimension which can be computed in

perturbation theory as a power expansion in αs

γm (αs) = c αs (1 + c′αs + ...) , (1.18)

with the explicit expression of the coefficients depending on the choice of the

renormalization scheme.

In order to study the impact of the quarks mass on a generic physical observable

R, consider the situation in which we have only one quark with mass m. Writing

R = R (Q2/µ2, αs (µ2) ,m (µ2) /Q) and setting the renormalization scale equal to

the physical scale µ = Q, if we assume the first N derivatives of R to be finite in

m = 0 we can write the expansion

R
(
1, αs

(
Q2
)
,m
(
Q2
)
/Q
)
∼ R

(
1, αs

(
Q2
)
, 0
)

+
N∑
n=1

1

n!

[
m (Q2)

Q2

]n
R(n)

(
1, αs

(
Q2
)
, 0
)
. (1.19)

where R(n) denotes the n-th derivative of R with respect to its third argument.

Given the fact that eq. (1.17) leads to a change of the renormalized mass with

Q which is at most logarithmic, from eq. (1.19) it is clear how, when considering

high energy scales Q� m, the mass dependence can be dropped, and the quark

can be considered massless. On the other hand, when the mass of the quark is

much greater than the relevant scale Q it can be shown that the heavy quark

mass correction to R are suppressed by inverse powers of m, and therefore they

can be ignored when Q � m. The nl active flavour introduced in the previous

section are the light quarks whose mass is much smaller than the physical scale

Q.

Considering the situation in which we have nl light quarks (i.e. quarks whose mass
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is much smaller than Q) and a single heavy quark with mass m, the two values

α
(nl+1)
s and α

(nl)
s measured in the two domains Q� m and Q� m respectively,

are usually matched through matching equation of the form

α(nl+1)
s

(
Q2
)

= α(nl)
s

(
Q2
)

+
∞∑
k=2

ck (L)
(
α(nl)
s

(
m2
))k

, (1.20)

where the coefficients ck (L) are polynomials in L = logQ2/m2 and at the scale

m2 = Q2 the O (α2
s) coefficient vanishes, c2 (0) = 0. Depending on the specific

energy scale of interest, one can perform the computation of a generic physical

observable considering either nl or nl + 1 active flavours, each choice being more

convenient in a given kinematic region. In sec. 2.4 we will discuss a way in which

such computations can be combined in a unique result which is accurate at every

energy scale.

1.4 Perturbative and non-Perturbative approaches

The property of asymptotic freedom allows to compute high energy scattering

processes as an expansion in the coupling, paving the way to a perturbative

treatment of QCD. The Lagrangian given in eq. (1.11) can be written as the

sum between the free Lagrangian L0, describing free fermions and gauge fields,

plus an interaction term LI , containing all the terms proportional to the gauge

coupling g: at high energy g becomes small, and all these terms can be treated

as perturbative interactions, so that the corresponding contribution in the action

can be expanded in a power series of the coupling.

In general, perturbation theory can be seen as a systematic way of approximating

the solution of a quantum field theory keeping the error under control. Although

its success in describing high energy processes, it is not a full solution of the theory,

and there are situations in which it cannot be applied: in the case of QCD, at

low energy the coupling becomes large, and a power expansion in αs is no longer

possible. It is therefore important to have a non-perturbative formulation of

QCD, based on the classical Lagrangian of eq. (1.1). The framework of lattice

QFT represents one of the most studied and developed systematic approaches to

study quantum field theories in non-perturbative regimes. In the following we

recall the basic ideas underlying the formulation of QCD on an Euclidean lattice,

referring to standard textbooks as ref. [30] for a complete discussion.
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In lattice QFT the path integral of the theory is defined on a discrete and finite

Euclidean space-time, characterized by a finite volume and lattice spacing a, and

directly evaluated through Monte-Carlo simulations. The lattice can be defined

as a cartesian product

Λ4 (N) = a
(

[[0, N0 − 1]]× [[0, N1 − 1]]× [[0, N2 − 1]]× [[0, N3 − 1]]
)
, (1.21)

where N is a four vector with integer components and [[0, n]] is the set of all the

integers j such that 0 ≤ j ≤ n. The integer Nµ represents the number of lattice

sites in the µ direction, corresponding to a space-time extent equal to aNµ. From

this definition it is clear how for each point xµ belonging to the lattice there

exists a four vector jµ with integer coordinates such that xµ = ajµ. The zero-

component N0 is usually identified with the temporal extent T = aN0, while the

three remaining ones, assumed to be equal, represent the spatial extent in the

three spatial directions L = aN1 = aN2 = aN3. On such lattice the full Lorentz

invariance of the continuum Minkowski space-time is reduced to the hypercubic

group, however when considering gauge theories their lattice version is built in

such a way to preserve gauge invariance.

Considering for simplicity a theory containing a single scalar field φ, taking a

generic correlation function in Minkowski space

C(M)
n (x1, ..., xn) =

1

Z

∫
Dφφ (x1) ...φ (xn) exp

(
iS(M) [φ]

)
, (1.22)

one can define the associated Euclidean correlation function by performing a Wick

rotation xi = (x0
i , ~xi)→ x̄i = (−ix0

i , ~xi)

C(E)
n (x1, ..., xn) ≡ C(M)

n (x̄1, ..., x̄n) =

1

Z

∫
Dφφ (x1) ...φ (xn) exp

(
−S(E) [φ]

)
, (1.23)

where S(E) is the Euclidean action of the theory. Such Wick rotation effectively

transform the Minkowski metric ηµν = diag (1,−1,−1,−1) into the positive

Euclidean metric δµν = diag (1, 1, 1, 1) 4.

The functional integral of eq. (1.23) can be estimated by averaging the fields

4The precise conditions under which the Wick rotation works are stated by the Osterwalder-
Schrader axioms [31]. These are a list of properties that correlation functions in Euclidean space
have to satisfy to be the analytic continuation of the correlation functions of the original QFT
in Minkowski space.
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product φ (x1) ...φ (xn) on the probability density Dφ exp
(
−S(E) [φ]

)
.

In order to write a discrete version of QCD, we need to construct an action for the

gauge field and one for the quark fields. In the case of the gauge field, the action

can be written in terms of gauge links Uµ (x), obtaining the so-called Wilson

action

SG (Uµ) =
β

N

∑
x∈Λ4

∑
µ>ν

Re (1− Pµν (x)) , (1.24)

Pµν (x) = Uµ (x)Uν (x+ aµ̂)Uµ (x+ aν̂)† Uν (x)† , (1.25)

where β is a constant of the theory. It can be shown that in the continuum limit,

using β = 2N/g2, eq. (1.24) recovers the Euclidean Yang-Mills action.

Considering the fermionic fields, defining the translation operator in the µ̂

direction as τµf (x) = f (x+ aµ̂), it turns out that a naive discretization of the

Dirac action

SDirac

[
ψ, ψ̄

]
= a4

∑
x∈Λ4

ψ̄ (x)

(
γµ

2a
(τµ − τ−µ) +m

)
ψ (x) (1.26)

would lead to a theory with the wrong continuum limit, describing 16 independent

fermion states all having the same energy. This is the so-called doubling problem,

and it is a consequence of a more general property of fermionic actions known

as the Nielsen-Ninomiya no-go theorem [32]. A possible solution to the doubling

problem was proposed by Wilson [33], through the addition of another term to

the fermionic action to remove the unwanted states

SW
[
ψ, ψ̄

]
= SDirac

[
ψ, ψ̄

]
− a5

2

∑
x∈Λ4

ψ̄ (x) δ̃2ψ (x) , (1.27)

where δ̃2 = a−2
∑

µ (1− τ−µ) (τµ − 1). In the presence of a gauge field, eq. (1.27)

becomes

SW
[
ψ, ψ̄, Uµ

]
= a4

∑
x∈Λ4

ψ̄ (x) (K [Uµ] +m)ψ (x) , (1.28)

where K [Uµ] is a suitable discretization for the covariant derivative which

implements the Wilson prescription. The addition of the Wilson term in the

action solves the doubling problem, however it explicitly breaks chiral symmetry,

leading to a more complex UV structure of the theory. An example of this appears
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when looking at the renormalization of the fermion mass: when a Wilson fermion

is coupled to some gauge interaction the mass shift, which would be zero in the

continuum and in the case of naive lattice fermions, is not zero anymore. This

means that a Wilson fermion with zero bare mass is actually not massless. Its

mass is denoted as critical mass.

Once the Euclidean action has been defined, the expectation value of a generic

observable O
[
ψ, ψ̄, Uµ

]
can be evaluated through the path integral

〈O〉 =
1

Z

∫
DψDψ̄DUµO

[
ψ, ψ̄, Uµ

]
e−S[ψ,ψ̄,Uµ] . (1.29)

with

S[ψ, ψ̄, Uµ] = SG (Uµ) + SW
[
ψ, ψ̄, Uµ

]
. (1.30)

Since the fermionic action is quadratic, the functional integrals over ψ and ψ̄ can

be performed analytically getting

〈O〉 =
1

Z

∫
DUµ det (K +M)OWick [Uµ] e−SG[Uµ] , (1.31)

where OWick denotes the functional obtained from O performing the Wick

contractions of the quark fields. Note that this observable depends on the quark

propagator (K +M)−1, appearing for every ψψ̄ contraction. Inverting the term

K + M in order to obtain the fermionic propagator represents the elementary

computation in lattice QCD simulations. Assuming det (K +M) > 0 5, the

quantity

1

Z
det (K +M) e−SG[Uµ] , (1.32)

can be interpreted as a probability distribution and an estimation for 〈O〉 up to

a O
(

1/
√
N
)

statistical error can be obtained by drawing N samples U
(i)
µ from it

and computing

〈O〉 =
1

N

N∑
i=0

O
[
U (i)
µ

]
. (1.33)

5In a continuum theory it can be shown that this is true thanks to chiral symmetry, as long
as we consider non-zero masses. On the lattice the situation can be more complicated: in the
case of Wilson fermions for example chiral symmetry is lost, and the determinant is positive
only when the bare masses are bigger than the critical mass.
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2
Factorization theorems in QCD

In the previous chapter we have seen how, thanks to asymptotic freedom, the

structure of QCD simplifies when considering problems involving short-distance

or high-energy scales: the coupling becomes small and the theory can be solved

perturbatively. However, cross sections for high energy processes are usually a

combination of short- and long-distance effects, and cannot be fully computed

within the framework of perturbation theory. Factorization theorems allows

to separate (factorize) a cross section or amplitude in separate contributions,

each factor containing the dependence of the process on a specific distance scale:

while short-distance effects can be computed in perturbation theory, contributions

coming from long-distance phenomena have to be extracted from experimental

data. In this chapter, starting from the Parton Model ideas we will discuss

factorization theorems in QCD, using the case of Deep Inelastic Scattering (DIS)

as a basic example. We will then introduce the main subject of the present work,

namely Parton Distribution Functions (PDFs).

2.1 The Parton Model

The basic ideas underlying factorization theorems for high energy processes can

be described appealing to Feynman’s parton model [16, 34, 35]. In this picture

fundamental particles called partons are bound together to form hadrons. Since

the details of the partonic system are unknown, the scattering between a test

particle and the hadron as a whole cannot be computed. However we assume

that we do know how to describe the scattering with a free parton. For example,

let us consider the case of the scattering of a high-energy charged lepton off a
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hadron target

e−(k)H (P ) → e−(k′)X .

Such process is known as Deep Inelastic lepton-hadron Scattering (DIS). Looking

at this scattering in the centre of mass frame, the hadron will be Lorentz

contracted in the direction of the collision and the lifetime of the internal partonic

states will be lengthened. As a consequence, the time the electron takes to cross

the hadron will be much shorter than the average lifetime of each partonic state.

During the time of the interaction the hadron can then be thought as “frozen”

in a well defined partonic state, with each parton carrying a definite fraction ξ

of the hadron momentum and not interacting with the other ones. If the energy

of the collision is high enough, the virtual photon mediating the electron-hadron

interaction will interact with a single parton having a given momentum fraction.

Likewise, interactions occurring in the final states are assumed to occur on time

scales too long to interfere with the hard scattering. Given this picture, it is

natural to think about the scattering cross section as classical and incoherent,

namely as a sum of probabilities rather than of amplitudes. The parton model

ideas can be summarized in the simple formula

σ
(
e− (k)H (P )→ e− (k′) +X

)
=∑

i

∫ 1

0

dξ qi/H (ξ) σ̂
(
e− (k) qi (ξP )→ e− (k′) + qf

)
(2.1)

where σ̂ represents the partonic cross section describing the interaction between a

single free parton and the virtual photon, and the set of functions qi/H (ξ) are the

probability densities of having a parton of kind i inside the hadron H, carrying

a fraction ξ ∈ (0, 1) of the total hadron momentum.

In the following we recall in more details how parton model ideas apply

to the case of DIS, setting the stage for a more complete discussion of

factorization which will be addressed in the next section. DIS experiments

are traditionally the main testing ground of perturbative QCD, having been

the first processes where pointlike particles were seen inside the hadron, thus

motivating the formulation of the parton model. They play a central role in

any discussion regarding factorization and provide a simple experimental and

theoretical framework to study the strong interaction. As we are going to recall

in the following, measurements of DIS structure functions directly probe the

structure of hadrons, giving the bulk of experimental measurements at the basis

of every phenomenological determination of Parton Distribution Functions.
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Figure 2.1 DIS kinematic.

The kinematic for DIS is reported in fig. 2.1. We specify the discussion to the case

of neutral current (NC) unpolarized scattering, considering only the contribution

associated to photon exchange (which is the dominant one as long as we consider

energy scales below m2
Z). The space-like momentum of the photon is given by

q = k − k′, the centre of mass energy square is s = (P + k)2 and we denote the

invariant mass square of the final states as W = (P + q)2. It is customary to

introduce the kinematic variables

Q2 = −q2 > 0 , x =
Q2

2P · q
, y =

Q2

xs
. (2.2)

In the regime

Q2, W 2 � m2
hadron ∼ Λ2

QCD ,

leptons and quarks masses can be neglected. It is easy to see that the variable

x, known as Bjorken variable can take values between 0 and 1, with x → 1

representing the elastic limit in which W = m2
hadron. The Deep Inelastic regime

is then defined as Q2 � Λ2
QCD with x fixed and different from 1.

The amplitude corresponding to the diagram in fig. 2.1 reads

M =
e

q2
ū (k′) γαu (k) 〈X|jα (0) |P 〉, (2.3)

where |X〉 represents the generic final state with n on-shell particles and jα is the

electromagnetic current through which the photon interacts in the proton. The

cross section, which is proportional to the amplitude square, is then found to be
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proportional to the product between a leptonic and an hadronic part

dσ

dx dQ2
∝
∫

d3k′

2Ek′ (2π)3 W
µνLµν . (2.4)

The leptonic tensor Lµν can be easily computed within QED, while the hadronic

one, containing the information about the interaction between the virtual photon

and the hadron, can be parameterized as

W µν (P, q) = −
(
gµν − qµqν

q2

)
F1

(
x,Q2

)
+

1

P · q

(
P µ − qµP · q

q2

)(
P ν − qνP · q

q2

)
F2

(
x,Q2

)
, (2.5)

F1 and F2 being scalar functions, called structure functions, depending on the

invariant quantities of the problem, namely x and Q2. If, more generally, we

allow jα to be any electroweak current, there will be an additional parity-violating

structure function F3.

Computing explicitly the leptonic tensor and plugging eq. (2.5) in eq. (2.4) we

can derive a general expression for the double differential cross section of DIS in

the Center of Mass frame

dσ

dx dQ2
=

2πα2

Q4

[[
1 + (1− y)2]FT (x,Q2

)
+

2 (1− y)

x
FL
(
x,Q2

)]
, (2.6)

where α = e2/ (4π) is the fine structure constant and the transverse and

longitudinal structure functions are defined as

FL = F2 − 2xF1 , FT = 2F1 . (2.7)

The partonic cross section dσ̂ for the scattering of the lepton off a single parton

with momentum ξP can be computed through a simple leading order QED

computation (e− + q → e− + q) getting

dσ̂

dx dQ2
=

4πα2

Q4

[
1 + (1− y)2] 1

2
e2δ (x− ξ) , (2.8)

from which we can read the expressions for the partonic structure functions F̂1
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and F̂2

F̂2 = xe2δ (x− ξ) = 2xF̂1 . (2.9)

Finally, using the parton model assumption of eq. (2.1), we can write an explicit

expression for the full structure functions

FL
(
x,Q2

)
= 0 , F2

(
x,Q2

)
= x

∑
a

e2
a qa/H (x) . (2.10)

Eq. (2.10) makes manifest how DIS experiments probe the structure of the

incoming hadron H, giving direct access to the functions qa/H (x) encoding its

internal distribution of quarks and gluons. Also, it shows explicitly how in the

parton model the structure functions do not depend on the energy scale. Such

property is known as Bjorken scaling, and its experimental observation was taken

as a confirmation of the composite nature of hadrons, confirming the basic ideas

of the parton model. From the analysis of DIS experimental data within the

framework of the parton model the following picture emerged: the proton is

composed by two u-valence quarks

uv (x) = u (x)− ū (x) ,

and one d-valence quark

dv (x) = d (x)− d̄ (x) ,

which carry the proton electric charge and baryon number, plus a sea of light

quarks made of qq̄ pairs. Additionally, the following integrals, known as valence

sum rules, are satisfied∫ 1

0

dx uv (x) = 2 ,

∫ 1

0

dx dv (x) = 1 . (2.11)

Experimentally it was observed that only about the 50% of the proton’s

momentum is carried by quarks

∑
q

∫ 1

0

dx x [q (x) + q̄ (x)] ' 0.5 , (2.12)

with the remaining momentum fraction associated to gluons.
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2.2 Improved Parton Model and factorization of

collinear singularities

In this section, starting from the parton model ideas, we briefly recall how to

include Next-to-Leading-Order (NLO) QCD corrections. As we are going to

see, when considering QCD corrections two important things happen. First

Bjorken scaling is broken, namely the structure functions acquire a non trivial

scale dependence. Second, when considering gluons emissions from the initial

state particles, infrared collinear singularities arise. The universal factorization

of such collinear poles and the subsequent renormalization of parton distribution

functions represent the main conceptual point of factorization in high energy

processes, and will be discussed in the following.

2.2.1 Next-to-Leading-Order QCD corrections

Considering a generic structure function F , following the parton model ideas we

can write it as

F
(
x,Q2

)
=
∑
a

∫ 1

x

dξ

ξ
q

(0)
a/H (ξ) F̂a

(
x

ξ
,Q2

)
, (2.13)

with F̂a representing the partonic level structure function for the scattering of

a quark off the virtual photon, and q
(0)
a/H denoting the parton model PDFs 1.

Such formula is valid up to power corrections, namely up to further terms of

non-pertubative origin which are suppressed by powers of Λ2
QCD/Q

2.

From the previous section we know that at Born level F̂a is proportional to a

delta function e2δ (1− x). Considering QCD correction of order αs, initial and

final states emissions of a single gluon, corresponding to Feynman diagrams of

fig. (2.2) have to be computed. Accounting also for the corresponding virtual

corrections on the quark legs and for the gluon induced vertex correction, the full

1Although here we are introducing this formula starting from the ideas of the parton model,

eq. (2.13) can be proved in the Bjorken limit, and the bare PDF q
(0)
a/H can be defined in terms

of a bilocal operator matrix element. We will get back to this point in the next sections
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result has the following form

F̂
(
x,Q2

)
= e2

[
δ (1− x) + αs

(
P (x) log

Q2

Q2
0

+R (x)

)]
, (2.14)

with

P (x) =
CF
2π

[
1 + x2

(1− x)+

+
3

2
δ (1− x)

]
(2.15)

with the action of the plus distribution over a generic test function g (ξ) defined

as ∫ 1

0

dx
1

(1− x)+

g (ξ) =

∫ 1

0

dx
1

(1− x)
[g (ξ)− g (1)] . (2.16)

Two observations can be done. Firstly, as anticipated above, beyond leading

order Bjorken scaling is broken by logarithms of Q2, and the structure function

acquires a Q2 dependence. Secondly, eq. (2.14) contains a logarithmic dependence

on an infrared cutoff Q2
0, pointing out the presence of an infrared divergence.

Figure 2.2 Real NLO QCD corrections.

Working in a light-cone gauge, such logarithmic divergence can be traced back to

the square of the amplitude associated to a gluon emission from the initial state

quark. It can be shown that, denoting as k⊥ the longitudinal momentum of the

emitted gluon, we end up with a contribution of the form

F̂q γ→q g
(
x,Q2

)
=

∫ Q2

dk2
⊥

k2
⊥
αs P (x) + ... , (2.17)

where the ellipses stand for finite regular terms. It is clear from eq. (2.17) that

such term diverges in the region of small-k⊥. In order to regulate such pole we can

introduce the infrared cutoff Q2
0, getting the logarithmic contribution observed

in eq. (2.14). Similarly, when considering multiple gluons emissions from initial

state particles, terms of the kind
(
αs (Q2) log Q2

Q2
0

)n
show up. Since all these

terms are of order 1, if we accounted for only some of them we would spoil

perturbation theory. In order to get a proper perturbative expansion such terms
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have to be resummed at all orders. Such resummation is achieved factorizing

the collinear singularities into the parton model PDFs, and solving the resulting

renormalization group equations as described in the next sections.

2.2.2 Factorization of collinear singularities

The singularities described in the previous sections arise from the kinematic

region where k⊥ → 0, namely when a gluon is emitted parallel to an initial state

quark. For this reason they are often called collinear singularities. To understand

how to deal with such terms, one needs to realize that the limit of small−k⊥
corresponds to the long-range (low energy) regime of the strong interaction and

therefore cannot be treated within perturbation theory. We can then consider the

parton distributions introduced through the parton model as bare, unmeasurable

quantities, and use them to reabsorb the collinear singularities. In this way, all the

dependence on low energy phenomena can be factorized in the parton distribution

functions, leaving the hard cross sections free from collinear singularities.

Starting from the logarithmic divergent contribution appearing in eq. (2.14), we

can introduce an additional unphysical scale µF and write log Q2

Q2
0

= log Q2

µ2F
+log

µ2F
Q2

0
.

Looking back at eq. (2.13), the infrared divergent partonic structure function can

then be written as

F̂ (ξ,Q) =

∫ 1

ξ

dη

η
Γ

(
ξ

η
, µF

)
F̂reg

(
η,
Q

µF

)
, (2.18)

with

Γ (y, µF ) = δ (1− y) + αs

[
P (y) log

µ2
F

Q2
0

+ Γfinite (y)

]
, (2.19)

F̂reg

(
η,
Q

µF

)
= δ (1− η) + αs

[
P (η) log

Q2

µ2
F

+R (η)− Γfinite (η)

]
. (2.20)

The new scale µF introduced above, often referred to as factorization scale,

separates long and short distance contributions: everything which is below µF is

considered to be in a non perturbative regime and it is factorized in the kernel

Γ, which therefore contains the infrared poles. The term Γfinite represents finite

contributions that can be kept into the subtraction kernel rather than in the hard

structure function. Its specific choice is what defines the renormalization scheme.
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Substituting eq. (2.18) in eq. (2.13) it is easy to see that we can write

F (x,Q) =
∑
a

∫ 1

x

dη

η
qa/H (η, µF ) F̂reg

(
x

η
,
Q

µF

)
, (2.21)

where the renormalized quark PDFs qa/H is defined as

qa/H (x, µF ) =

∫ 1

x

dη

η
q

(0)
a/H

(
x

η

)
Γ (η, µF ) . (2.22)

The collinear poles are therefore factorized from the hard scattering structure

function and reabsorbed into the PDFs, following a procedure symilar to the

one used for UV renormalization. As a consequence PDFs acquire a non trivial

dependence on an unphysical scale µF , which will be further described in in the

next section.

To sum up, considering higher orders QCD corrections, the DIS structure

functions can be written as

F
(
x,Q2

)
=
∑
a

∫ 1

x

dξ

ξ
Ca

(
x

ξ
,
Q2

µ2
F

, αs

)
qa/H

(
ξ, µ2

F

)
+O

(
Λ2
QCD

Q2

)
≡
∑
a

Ca

(
Q2

µ2
F

, αs

)
⊗ qa/H

(
µ2
F

)
+O

(
Λ2
QCD

Q2

)
, (2.23)

where in the second line we have denoted as ⊗ the convolution operation.

The coefficients functions Ca appearing in eq. (2.23) correspond to the finite

partonic structure functions F̂reg after renormalization and subtraction of collinear

singularities. Their explicit expression will depend on the specific structure

function under consideration and on the choice for the renormalization and

factorization schemes, defined when removing the UV and collinear singularities

respectively. Once properly defined they can be computed order by order in

perturbation theory as an expansion in the strong coupling

Ca (x, αs) = C(0)
a (x) + αsC

(1)
a (x) + α2

s C
(2)
a (x) + ... , (2.24)

where the first contribution (LO) recover the parton model predictions, the

second one (NLO) corresponds to the QCD corrections discussed above and the

coming ones (NnNLO) will refer to higher order corrections. Differently from the

initial formula of eq. (2.13), which was written in analogy to the parton model

formulation, the parton distributions have now acquired a scale dependence,

which cancel against an analogue dependence in the coefficient functions, leaving
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the physical structure function independent from any unphysical scales. Also,

even if in our discussion we have only considered the quark channel, the sum

over the flavour types a now includes also gluon initiated contributions, which

formally start at NNLO.

So far we have discussed factorization for processes with only one hadron in the

initial state, but the same ideas and logic apply to inclusive enough high-energy

hadron-hadron collisions

H1 (p1) +H2 (p2)→ W (Q) +X ,

where H1 and H2 are the incoming hadrons, having momenta p1 and p2, W

represents the particle produced in the hard scattering (Higgs or vector bosons,

heavy quarks) and X denotes any other particle appearing in the final state. In

this case the factorization formula takes the form

σ (p1, p2, Q) =
∑
a,b

∫ 1

τ

dx1dx2

qa/H1

(
x1, µ

2
F

)
qb/H2

(
x2, µ

2
F

)
σ̂ab

(
x1p1, x2p2,

Q2

µ2
F

, αs

)
+O

(
Λ2
QCD

Q2

)
, (2.25)

where τ = Q2

s
and s = (p1 + p2)2.

The two factorized expressions given in eqs. (2.23), (2.25) allow to connect

cross sections for high-energy processes having hadrons in the initial states

to hard scattering cross-sections. The former can be measured in collider

experiments, while the latter can be computed in perturbation theory. The

objects connecting perturbation theory with physical observables are the Parton

Distribution Functions. The content of the factorization theorem is that all the

dependence on low mass phenomena is entirely contained in the PDFs. Therefore,

since they describe the internal structure of a given kind of hadron and have been

decoupled from the short-distance details of the specific process we consider, they

are nonpertubative and universal objects. This means that the PDFs appearing in

the case of DIS must be the same considered for any other high-energy collisions.
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2.3 Parton Distribution Functions

In the previous section we have introduced PDFs as some bare quantities,

which are then used to reabsorb the infrared collinear poles coming from the

fixed order computation of partonic cross sections. Following this approach

PDFs are introduced in the discussion through the parton model ideas, and

defined as objects containing all the dependence of the physical observables

on low energy physics. It is possible to give a rigorous operator definition

of parton distributions, which can be applied beyond perturbation theory and

makes manifest the universal nature of PDFs. The formalism and notations

commonly used to describe PDFs in terms of QCD operators are quite different

from those introduced in the previous section, which are usually adopted for

phenomenological applications. Since in this work we will present results for

which both formalism are required, in this section we briefly revise the formal

definition of PDFs, addressing their UV renormalization and renormalization

group equations and making contact with the formalism and notations introduced

in the previous section.

2.3.1 PDFs operator definition

Working in the Bjorken limit, it can be proved [4, 5] that the bare unpolarized

quark PDF appearing in eq. (2.13) is related to the light-cone Fourier transform

of a bilocal operator, given by

f (0)
q (x) =

∫
dξ−

4π
e−ixP

+ξ−〈P|ψ̄(0)
q

(
ξ−
)
γ+ U

(
ξ−, 0

)
ψ(0)

q (0) |P〉 , (2.26)

where |P〉 denotes a hadronic state with momentum P µ = (P 0, 0, 0, P z), x belongs

to the real interval [−1, 1] and P± =
(P 0±P z)√

2
are light-cone coordinates. The

index q identifies the parton under investigation. For instance, in a theory where

we only consider the four lightest quarks, we have q = u, d, s, c. The momentum

carried by the parton is kµ = xP µ, ψ
(0)
q is the bare quark field operator and the

Wilson line U is given by

U
(
ξ−, 0

)
= P exp

(
−ig

∫ ξ−

0

dη−A(0) +
(
η−
))

. (2.27)
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An analogous definition can be given for the gluon bare PDFs, denoted as f
(0)
g (x).

The superscripts (0) in the above expressions identify bare fields: the matrix

elements that enter in the definition of f
(0)
q are ultraviolet divergent, and therefore

need to be renormalized. Renormalized parton distributions are usually defined

by minimal subtraction, and the relation between the bare and the renormalized

quantities is given by

f (0)
a (x) =

∑
b

∫ 1

x

dy

y
Zab

(
x

y
, µ

)
fb
(
y, µ2

)
, (2.28)

where the indices a and b run over all the parton types (gluon and flavors of

quarks) and µ denotes the renormalization scale introduced by the minimal

subtraction scheme.

Focusing on the quark PDFs for now, the renormalized distributions introduced

above have a compact support given by the interval [−1, 1]. To recover the

conventions of the previous sections, used for phenomenological applications, it is

customary to define the PDFs on the interval [0, 1], and to introduce independent

functions for the quarks and the antiquarks, which we have previously denoted

as q(x, µ2) and q̄(x, µ2) respectively. The relation between fq, q and q̄ is

fq

(
x, µ2

)
=

 q(x, µ2) , if x > 0 ,

−q̄(−x, µ2) , if x < 0 .
(2.29)

It is useful to consider the symmetrised and antisymmetrised combinations of fq

in the interval x ∈ [0, 1]:

f sym
q (x, µ2) = fq(x, µ2) + fq(−x, µ2) , (2.30)

f asy
q (x, µ2) = fq(x, µ2)− fq(−x, µ2) . (2.31)

It can be readily shown that

f sym
q (x, µ2) = q(x, µ2)− q̄(x, µ2) = q−(x, µ2) , (2.32)

f asy
q (x, µ2) = q(x, µ2) + q̄(x, µ2) = q+(x, µ2) . (2.33)

where q+ and q− are defined by the equations above. Considering a SU(4) flavour

symmetry, we can collect the quark fields in a vector, e.g. ψ = (ψu, ψd, ψs, ψc),

26



and define the following nonsinglet bare PDFs:

f
(0)
A (x) =

∫
dξ−

4π
e−ixP

+ξ−〈P|ψ̄(0) (ξ−)λAγ
+ U (ξ−, 0)ψ(0) (0) |P〉 , (2.34)

where A = 3, 8, 15, and we have used the 4-dimensional Gell-Mann matrices

λ3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , λ8 =


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 , λ15 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 .(2.35)

In this notation f3 corresponds to fu−d = fu − fd, f8 = fu+d−2s, and so on.

The symmetrised and antisymmetrised combinations map directly into the so-

called evolution basis for the PDFs that is normally used in phenomenological

studies, see e.g. ref. [36] for a detailed definition of the flavor decomposition.

More specifically, we have:

f asy
3 = u+ − d+ = T3 , (2.36)

f sym
3 = u− − d− = V3 , (2.37)

f asy
8 = u+ + d+ − 2s+ = T8 , (2.38)

f sym
8 = u− + d− − 2s− = V8 , (2.39)

f asy
15 = u+ + d+ + s+ − 3c+ = T15 , (2.40)

f sym
15 = u− + d− + s− − 3c− = V15 . (2.41)

As mentioned above the bilocal operator products of eq. (2.26) require renormal-

ization. The corresponding renormalization group equations are the Altarelli-

Parisi equations for PDFs, or DGLAP, discussed in the next section. Considering

on-shell incoming partons, a straightforward 1-loop computation gives

f
(0)
a/b (x, ε) = δab δ (1− x) + αs

[
1

εUV
− 1

εIR

]
P (1) (x) +O

(
α2
s

)
, (2.42)

where P (1) (x) represent the collinear splitting function, which will be introduced

in sec.2.3.2. To obtain such result, one has to work in dimensional regularization

to regularize both the UV and IR divergences. Working in the MS scheme, the

UV pole 1/εUV is removed through renormalization, and we are left with the
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renormalized partonic PDFs

fa/b (x, ε) = δab δ (1− x) + αs

(
−1

ε

)
P (1) (x) +O

(
α2
s

)
. (2.43)

Such object, despite being UV finite, does contain infrared poles.

We can now see how the formal approach followed here recovers the picture given

in the previous section. Taking as example the case of DIS structure function,

we can apply eq. (2.23) to the case of an incoming parton b2

F̂b (x, ε) =
∑
a

∫ 1

x

dξ

ξ
Ca

(
x

ξ
, αs

)
fa/b (ξ, ε) +O

(
Λ2
QCD

Q2

)
. (2.44)

Considering the coefficient functions power expansions given in eq. (2.24) and

an analogue expansion for F̂a, using the 1-loop expression for the renormalized

partonic PDF of eq. (2.43) we get

C
(0)
b (x) = F̂

(0)
b (x) , (2.45)

C
(1)
b (x) = F̂

(1)
b (x, ε) +

1

ε

∑
a

∫ 1

x

dξ

ξ
P (1) (ξ) F̂ (0)

a

(
x

ξ

)
, (2.46)

which recovers the prescription introduced in the previous section: in order to

compute the hard scattering cross sections, one should calculate the structure

function at the parton level and subtract from it certain infrared divergent terms

proportional to the splitting kernel and the Born cross section. Such terms,

identified as collinear emissions in the previous sections, here are computed in

a process independent way starting directly from the formal definition of PDFs.

Another way of stating this, is that the infrared subtraction kernel Γ introduced

in eq. (2.18) corresponds to the parton level renormalized PDF of eq. (2.43). For

a proof of this at every order in perturbation theory see for example [4].

2.3.2 DGLAP evolution equations

As stated in eq. (2.28) the operator defining parton distribution functions requires

renormalization. It follows that renormalized PDFs acquire a scale dependence.

Including in the discussion also the gluon PDF, the corresponding renormalization

2An important property of the hard coefficient functions is that they depend only on the
parton type a and not on the specific hadron H, so that they can be computed with the simplest
choice of external parton.
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group equations read

µ2 ∂

∂µ2

(
qi (x, µ

2)

g (x, µ2)

)
= αs

∑
j

∫ 1

x

dξ

ξ

Pqiqj (xξ , αs) Pqig

(
x
ξ
, αs

)
Pgqj

(
x
ξ
, αs

)
Pgg

(
x
ξ
, αs

)(qj (x, µ2)

g (x, µ2)

)
(2.47)

with each splitting function P computable in perturbation theory

Pqiqj (x, αs) = δijP
(0)
qq (x) + αsP

(1)
qiqj

(x) + ...

Pqg (x, αs) = P (0)
qg (x) + αsP

(1)
qg (x) + ...

Pgq (x, αs) = P (0)
gq (x) + αsP

(1)
gq (x) + ...

Pgg (x, αs) = P (0)
gg (x) + αsP

(1)
gg (x) + ...

(2.48)

It is convenient to re-express the DGLAP equations choosing a PDFs basis which

maximally diagonalize them. In order to do this the aforementioned evolution

basis is particularly useful. Denoting

q±i = qi ± q̄i , (2.49)

and considering the flavours u, d, s, c, b, t the non-singlet sector is defined by the

valence distributions

Vi = q−i (2.50)

and by the Ti combinations

T3 = u+ − d+ , T8 = u+ + d+ − 2s+ , T15 = u+ + d+ + s+ − 3c+ , (2.51)

T24 = u+ + d+ + s+ + c+ − 4b+ , T35 = u+ + d+ + s+ + c+ + b+ − 5t+ . (2.52)

Each non-singlet distribution qNS will then satisfy an independent evolution

equation, given by

µ2 d

dµ2
qNS

(
x, µ2

)
=

∫ 1

ξ

dξ

ξ
P (ξ, αs) q

NS

(
x

ξ
, µ2

)
. (2.53)

The splitting function P for the Vi and Ti distributions is given by P− and P+

respectively, which at leading order are

P−(0) (x) = P+(0) (x) =
CF
2π

(
1 + z2

1− z

)
+

. (2.54)
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Working in the evolution basis, the only distribution which couples to the gluon

is the so called singlet combination, defined as

Σ
(
x, µ2

)
=
∑
i

(
qi
(
x, µ2

)
+ q̄i

(
x, µ2

))
, (2.55)

for which we have

µ2 ∂

∂µ2

(
Σ (x, µ2)

g (x, µ2)

)
= αs

∫ 1

x

dξ

ξ

Pqq (xξ , αs) Pqg

(
x
ξ
, αs

)
Pgq

(
x
ξ
, αs

)
Pgg

(
x
ξ
, αs

)(Σ (x, µ2)

g (x, µ2)

)
(2.56)

with the leading order splitting function given by

P (0)
qq (x) =

CF
2π

[
1 + x2

(1− x)+

+
3

2
δ (1− x)

]
,

P (0)
gg (x) =

CA
π

[
x

(1− x)+

+
1− x
x

+ x (1− x)

]
+ δ (1− x)

(11CA − 2nfTR)

12π
,

P (0)
gq (x) =

CF
2π

[
1 + (1− x)2

x

]
,

P (0)
qg (x) =

nf
2π

[
x2 + (1− x)2] . (2.57)

Because of charge conjugation invariance and SU(nf ) flavour symmetry, splitting

functions are independent on the quark flavour and are the same for quarks

and antiquarks. Also, the leading order splitting functions have a nice physical

interpretation as probability distributions. Following ref. [37], eq. (2.53) can be

written as

qNS
(
x, µ2

)
+ dqNS

(
x, µ2

)
=∫ 1

0

dy

∫ 1

0

dz δ (zy − x) qNS
(
y, µ2

) [
δ (z − 1) + αs P (z) d log

µ2

µ2
0

]
. (2.58)

The quantity in square brackets can then be interpreted as the probability

density of finding a quark inside another quark, with a fraction z of the parent

momentum. The quantity αsP (z) is then the variation of such probability density

per logarithmic unit of the energy. The interpretation of splitting function as

probability densities implies that they are positivite for x < 1 and allows to

compute them starting from the QCD vertices for q → q g, g → qq̄ and g → gg.

The DGLAP equations can be solved perturbatively by computing an evolution
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kernel, which can be subsequently convoluted with PDFs at a given scale Q0 to

evolve them up to the final scale Q. In such evolution kernel the resummation

of the large collinear logarithms mentioned at the end of sec. 2.2.1 is achieved by

exponentiating them, allowing a consistent definition of PDFs at a generic scale

Q. In the following we briefly summarise how the QCD evolution equation can

be solved in Mellin space for the nonsinglet sector, yielding such evolution kernel.

Denoting the nonsiglet distributions Vi and Ti with q(−) and q(+) respectively, the

QCD evolution equations can be written as

µ2 ∂

∂µ2
q(±)

(
x, µ2

)
=
αs(µ

2)

2π

∫ 1

x

dξ

ξ
P (±)
qq

(
x

ξ
, αs(Q

2)

)
q(±)

(
ξ, µ2

)
, (2.59)

which in Mellin space becomes

µ2 ∂

∂µ2
q(±)

(
N,µ2

)
= γ(±) (N,αs) q

(±)
(
N,µ2

)
. (2.60)

The distribution at the scale µ2 is obtained from the distribution at the scale µ2
0

by introducing the evolution operator Γ

q(±)
(
N,µ2

)
= Γ(±)

(
N,αs, α

0
s

)
q(±)

(
N,µ2

0

)
, (2.61)

where αs ≡ αs (µ2) and α0
s ≡ αs (µ2

0). Substituting eq. (2.61) in eq. (2.60) and

remembering that the dependence of Γ on the scale µ is only through the coupling,

we have

β (αs)
∂

∂αs
Γ(±)

(
N,αs, α

0
s

)
= γ(±) (N,αs) Γ(±)

(
N,αs, α

0
s

)
. (2.62)

Considering for example NLO evolution equations, using eq. (1.13) and the

perturbative expansion of the anomalous dimension

γ(±) (N,αs) =
αs
4π
γ

(±)
0 (N) +

(αs
4π

)2

γ
(±)
1 (N) +O

(
α3
s

)
, (2.63)

eq. (2.62) can be easily solved getting

Γ(±)
(
N,αs, α

0
s

)
= 1 +

αs − α0
s

4π

(
γ

(±)
1 (N)− β1γ

(±)
0 (N)

2β0

)
. (2.64)

The solution in the x-space is obtained by computing the inverse Mellin transform

of Γ(±) (N,αs, α
0
s). Having analytically continued the function Γ (N) to the

complex plane, the inverse Mellin transform is obtained by computing the contour
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integral

Γ(±)
(
x, αs, α

0
s

)
=

∫
C

dN

2πi
x−N Γ(±)

(
N,αs, α

0
s

)
. (2.65)

2.4 Heavy quarks

Considering a process in perturbative QCD involving heavy quarks3, the cor-

responding cross-section can be computed in different renormalization schemes.

In a standard minimal subtraction scheme, like MS, heavy quarks are treated

on the same footing as light flavours. In practise this means two things: first,

they are endowed with a PDF and second the β function depends on the total

number nf of both light and heavy flavours. Alternatively, in a decoupling scheme

heavy quarks are treated as massive particles which fully decouple from QCD

evolution equations, so that only the nl light quarks contribute to the DGLAP

and running of αs, as briefly discussed in sec. 1.3. In the first case, often denoted

as massless scheme, collinear logarithms ofQ2/m2
h are resummed through DGLAP

equations and reabsorbed in the corresponding PDF, but corrections suppressed

by powers of m2
h/Q

2 are neglected. In the second case, denoted as massive

scheme, collinear logarithms are only included to fix order, but the full mass

dependence is retained. While a minimal subtraction scheme is more precise

at high scales Q2 � m2
h, where unresummed collinear logarithms would spoil

perturbation theory, a decoupling scheme is more accurate close to the threshold,

where mass corrections might be non negligible. Heavy quarks schemes are all

based on the idea of combining these two computations, each of which is more

accurate in a certain kinematic region, in order to get a single result which is

accurate at all scales. Some of the possible options available from the literature

are the ACOT [38–40], S-ACOT [41], TR [42] and FONLL schemes. The latter

was initially introduce in ref. [43] in the context of hadroproduction of heavy

quarks, and subsequently extended to DIS structure functions in refs. [44] and to

hadronic processes in ref. [45].

In the following, using the notations of refs. [44, 45] we will briefly recall the

main features of the FONLL scheme, which will be used in chapter 6 to construct

a new method to deal with initial state heavy quarks in an hadronic process.

3considering a process characterized by an hard scale Q2, we define a quark to be heavy if
m2

h � Q2, with mh the quark mass. This definition is usually applied to the charm, bottom
and top quarks.
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Considering an hadronic process involving nl light quarks q and only one massive

quark h of mass mh, the corresponding cross section in the massless (nl + 1)-

flavours scheme is given by

σ(nl+1) =

∫ ∫
dx1dx2

∑
ij=g,q,q̄,h,h̄

f
(nl+1)
i

(
x1, µ

2
)
f

(nl+1)
j

(
x2, µ

2
)

× σ̂(nl+1)
ij

(
x1, x2, α

(nl+1)
s

)
. (2.66)

The sum in eq. (2.66) runs on both light and heavy flavours, which are all treated

in the MS scheme. The heavy quark has an associated PDF and contributes

to both the DGLAP evolution equations and to the running of αs, which is

therefore denoted as α
(nl+1)
s . For simplicity we have omitted the dependence on

the factorization and renormalization scales in the hard cross section. The same

process can be computed in the massive (nl)-flavours scheme as

σ(nl) =

∫ ∫
dx1dx2

∑
ij=g,q,q̄

f
(nl)
i

(
x1, µ

2
)
f

(nl)
j

(
x2, µ

2
)

× σ̂(nl)
ij

(
x1, x2,

µ2

m2
h

, α(nl)
s

)
. (2.67)

Unlike the case of the massless computation, here the sum is on light flavours

only, there is no PDF corresponding to the heavy quark and the hard cross-

section retains the explicit dependence on the heavy quark mass mh. In order

to match the two computations, we express eqs. (2.66), (2.67) in terms of the

massless schemes coupling α
(nl+1)
s and light quarks PDFs

f
(nl+1)
i , i = g, q, q̄

using relations of the form

α(nl+1)
s

(
µ2
)

= α(nl)
s

(
µ2
)

+
∞∑
k=2

ck (L)
(
α(nl)
s

(
m2
h

))k
, (2.68)

f
(nl+1)
i

(
x, µ2

)
=

∫ 1

x

dy

y

∑
j=g,q,q̄

Kij

(
x

y
, L, α(nl)

s

(
µ2
))

f
(nl)
j

(
y, µ2

)
, (2.69)

where i = g, q, q̄, h, h̄ and L = log µ2/m2
h. The coefficients ck (L) are polynomial

in L, and the functions Kij can be expressed as a power expansion in αs with

coefficients that are polynomial in L. The sum over j in eq. (2.69) runs over the

nl light flavours and anti-flavour plus the gluon, therefore the first 2nl+1 of these
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equations relate the light quarks and gluon PDFs in the two schemes and can be

inverted in order to express the massive scheme PDFs in terms of the massless

scheme ones. The last two equations allow to express the heavy quark PDF in

the massless schemes in terms of the gluon and light flavours PDFs of the massive

one. Inverting eqs. (2.68), (2.69) and substituting in eq. (2.67), one can obtain

the expression of the massive scheme cross-section in terms of α
(nl+1)
s and f

(nl+1)
i ,

with i = g, q, q̄

σ(nl) =

∫ ∫
dx1dx2

∑
ij=g,q,q̄

f
(nl+1)
i

(
x1, µ

2
)
f

(nl+1)
j

(
x2, µ

2
)

×Bij

(
x1, x2,

µ2

m2
h

, α(nl+1)
s

)
, (2.70)

where the coefficient functions Bij can be expressed as a fixed order expansion in

α
(nl+1)
s

Bij

(
x1, x2,

µ2

m2
h

, α(nl+1)
s

(
µ2
))

=
P∑
p=0

(
α(nl+1)
s

(
µ2
))p

Bp
ij

(
x1, x2,

µ2

m2
h

)
. (2.71)

From now on we can use eq. (2.70) to express the massive scheme results, avoiding

any further reference to α
(nl)
s and f

(nl)
i

4. Using again eqs. (2.69) to write the

massless scheme heavy quarks PDFs in terms of light-quark parton distributions,

the massless scheme results eq. (2.66) can be written entirely in terms of light-

quark PDFs

σ(nl+1) =

∫ ∫
dx1dx2

∑
ij=g,q,q̄

f
(nl+1)
i

(
x1, µ

2
)
f

(nl+1)
j

(
x2, µ

2
)

× Aij
(
x1, x2, L, α

(nl+1)
s

)
, (2.72)

where the coefficients Aij are given by a perturbative expansion of the form

Aij
(
x1, x2, L, α

(nl+1)
s

(
µ2
))

=
N∑
p=0

(
αnl+1
s

(
µ2
))p

×
∞∑
k=0

A
(p),(k)
ij (x1, x2)

(
α(nl+1)
s

(
µ2
)
L
)k
, (2.73)

where at leading order N = 0, at NkLO N = k.

4Note that eq. (2.70) differs from the original massive scheme expression eq. (2.67) by
subleading terms, due to the fact that matching coefficients are known at a given order in
perturbation theory.
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In order to match the two results given in eqs. (2.72), (2.70) one should notice

that the contributions to the massive scheme expression of eq. (2.71) which do

not vanish when µ2 � m2
h, namely all the constant and logarithmic terms, must

also be present in the massless scheme computation. The p-th order contribution

to the sum of these terms, denoted as B
(0), p
ij , can be implicitly defined as

lim
mh→0

[
Bp
ij

(
x1, x2,

µ2

m2
h

)
−B(0), p

ij

(
x1, x2,

µ2

m2
h

)]
= 0 , (2.74)

and since it has to be present also in the massless scheme computation it will

admit an expansion of the form

B
(0), p
ij

(
x1, x2, ,

µ2

m2
h

)
=

p∑
k=0

A
(p−k),(k)
ij (x1, x2)Lk . (2.75)

The FONLL method can be expressed as follows: considering the massless scheme

coefficients at a given perturbative order p appearing in eq. (2.73) A
(p),(k)
ij , replace

all the terms which are also present in the massless limit of the massive scheme

B
(0),p
ij of eq. (2.75) with their fully massive expression Bp

ij appearing in eq. (2.71).

This can be done in a systematic way defining the massless limit of the massive

computation as

σ(nl),(0) =

∫ ∫
dx1dx2

∑
ij=g,q,q̄

f
(nl+1)
i

(
x1, µ

2
)
f

(nl+1)
j

(
x2, µ

2
)

×B(0)
ij

(
x1, x2,

µ2

m2
h

, α(nl+1)
s

)
, (2.76)

with

B
(0)
ij =

N∑
p=0

(
α(nl+1)
s

)p
B

(0), p
ij

(
x1, x2,

µ2

m2
h

)
, (2.77)

and computing

σFONLL = σ(nl+1) + σ(nl) − σ(nl),(0) . (2.78)

In this way the mass suppressed terms which are not included in a massless

computation, but which are known from the massive one, are included in the final

results. On the other hand the all order resummation of collinear logarithms L

achieved in a massless scheme through DGLAP equations, which would be lost

in the massive scheme, is now taken into account.
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3
Global fits of Parton Distribution Functions

As seen in the previous chapter, factorization theorems allow for a separation

between contributions related to different distance scales: while short distance

effects can be obtained through the perturbative computation of partonic

matrix elements, long-distance contributions are collected in the universal PDFs

q (x,Q2). As seen in sec. 2.3.2, knowing the functional form of the PDFs at a given

initial scale Q2
0, their dependence on the generic energy scale Q2 can be computed

by solving the DGLAP evolution equations. However the dependence on x would

be computable only solving QCD in a nonperturbative domain. We will come

back to this point in chapter 7, when considering lattice QCD observables. In this

chapter we will discuss the general approach adopted to extract the x dependence

of the PDFs from a discrete set of experimental data, using as basic ingredient

the factorization theorems for high-energy processes discussed before.

The general problem is to determine a set of unknown functions given a collection

of data instances. Such kind of task has a long history in data science literature,

and can be classified as a pattern recognition problem [46]. However the specific

problem of PDFs determination has some additional peculiarities that we need

to keep in mind. First, PDFs are continuos functions, which makes our problem

intrinsically ill-defined: a continuous real function q (x,Q2
0) cannot be determined

from a discrete set of data, no matter how large such set is. Second, the data are

not instances of the functions we are trying to determine, but they are related

to them through factorization theorems: each point is determined combining a

certain subset of PDFs in a non-linear way, and integrating over a certain range of

x, as stated in eq. (2.25). As we will extensively discuss in this and the following

chapters, this fact has several practical and conceptual implications.
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Another important aspect concerning the problem of PDFs determination is the

need for results with well quantified uncertainties and correlations. Universality

of PDFs allows to extract them from a set of data for some specific high-energy

processes and use the result to make predictions for different observables not

included in the analysis. In order for PDFs to be useful as an input to physics

predictions one needs to account for the different sources of statistical and

systematic uncertainties affecting the experimental data, and propagate them

on the resulting PDFs. Ideally one would like to determine a representation of

the probability distribution for the unknown PDFs in the whole functional space,

so that the full information about uncertainties and correlations are taken into

account when making predictions for new observables.

In this chapter we discuss how all these issues have been addressed within

the NNPDF collaboration starting from 2002 [47], revising the Monte Carlo

replicas generation, the neural networks parameterization and the minimization

procedure. Such methodology has been used to produce the last public NNPDF

PDFs set NNPDF3.1 [48] . The studies which will be described in chapters 4

and 5, regarding the inclusion of jets data and the formulation of a theoretical

error in a global PDFs determination, have been performed within the private

c++ implementation of this framework.

We will then describe how such methodology has been revised and extended

within the new n3fit code [49], which will be used to produce the next NNPDF

release, NNPDF4.0. In particular, we will discuss in detail the implementation of

MS PDFs positivity, the integrability of the nonsinglet sector and the fit basis

independence.

3.1 NNPDF methodology

The NNPDF methodology is based on a Monte Carlo determination of the

PDFs error, combined with a neural network parameterization of the unknown

x-dependence of the PDFs. So far numerical minimization algorithms have been

used, and overfitting has been avoided using a cross-validation technique. In the

first part of this section we revise these general ideas, referring to the baseline

c++ code which has been used to produce NNPDF3.1.
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3.1.1 The Monte Carlo replica method for error propagation

As mentioned before, in order to make PDFs sets an useful tool for making

predictions, a faithful estimation of the errors affecting the analysis is necessary.

A possible way to address the problem is to determine the probability distribution

of the PDFs set q (x) given a set of data D. Let’s denote such probability

distribution as P (q|D). A generic observable O, function of one or more PDFs,

will be determined as an expectation value over P . Considering for example the

case of a DIS observable, the central value and uncertainty of the prediction will

be given by

〈O〉 =

∫
DqO [q]P (q|D) , Var [O] =

∫
Dq (O [q]− 〈O〉)2P (q|D) . (3.1)

The problem is then about how to compute a reliable representation of the

probability distribution P (q|D). In the NNPDF framework a Monte Carlo

approach is adopted. In this method an ensemble of Nrep artificial data is

generated for each experimental point, assuming a multigaussian distribution

given by the experimental covariance matrix. More precisely, denoting asOexp
p the

experimental data for the single point p corresponding to the kinematic variables

{xp, Q2
p}, Nrep artificial pseudo-data are generated according to [50]

O(k)
p = S

(k)
p,N

(
Oexp
p +

∑
l

r
(k)
p,l σp,l + r(k)

p σp,s

)
, k = 1, ..., Nrep (3.2)

where

S
(k)
p,N =

∏
n

(
1 + r(k)

p,nσp,n
)
, (3.3)

takes into account normalization errors. The variable σp,s represents the

uncorrelated statistical uncertainty of the datapoint while σp,l and σp,n are

the l-th and n-th source of additive and multiplicative systematic uncertainties

respectively. The variables r
(k)
p , r

(k)
p,l and r

(k)
p,n are all univariate gaussian random

numbers, generating fluctuations of the artificial data around the experimental

value. For each replica k, if the l-th additive systematic is correlated between the

two experimental points p and p′ then r
(k)
p,l = r

(k)
p′,l with an equivalent condition on

r
(k)
p,n to ensure correlation between multiplicative uncertainties. Nrep independent

fits are performed, generating a Monte Carlo ensemble of PDFs that faithfully

reproduces the statistical features of the original experimental data, providing the
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desired representation of the probability density in the space of PDFs. Central

values, uncertainties and correlations can then be computed by doing statistics

over replicas, so that for example

〈O〉 ∼ 1

Nrep

Nrep∑
k=1

O (k) , Var [O] ∼ 1

Nrep

Nrep∑
k=1

(
O (k) − 〈O〉

)2
. (3.4)

The Monte Carlo method allows to propagate the error from the data to the

PDFs set in a natural way, using only the input experimental information and

without the need of any further assumption.

3.1.2 Parameterization and Neural Networks

As mentioned above, the determination of a continuos function from a discrete

set of data is an intrinsically ill-defined problem, no matter how copious this

set is. In order to overcome this issue a particular functional form for the x

dependence of the PDFs at a reference scale Q0 is chosen, given in terms of a

set of free parameters. The PDFs at all the other scales Q are determined by

solving perturbative evolution equations, and the experimental data are used to

determine the optimal values of the free parameters.

The choice of the specific parameterization has been largely debated and

investigated, and its final form varies substantially between different fitting

groups. The underlying idea is that the PDFs parameterization has to be flexible

enough to describe all the data entering the analysis without introducing a bias

in the final results. The fact that a too restrictive functional form is likely to

introduce a strong bias in the result has been rapidly recognized, and more and

more complex models have been adopted in recent PDFs determinations.

The use of neural networks as basic functional form for PDFs was first suggested

in 2002 [47], in the context of the determination of the DIS structure function

F2. The idea was further developed in ref. [51] and applied for the first time to

quark distributions in ref. [52]. This first suggestion was then developed in the

context of global fits of PDFs by the NNPDF collaboration through a series of

intermediate steps [50, 53–55], the last of which in 2017, with the release of the

PDFs set NNPDF3.1 [48].

Neural networks are a class of non-linear maps between some input ξ
(1)
i and some
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output ξ
(L)
i variables. They are used in several machine learning applications

where flexibility and a lack of bias with respect to a conventional fixed

parameterization are desired. Like other sets of functions, neural networks, in

the limit of an infinite number of parameters, can reproduce any differentiable

function. The main advantage of using them is the possibility of dealing with

a greater number of parameters than what is usually available using a more

standard parameterization. The basic element of a neural net is a neuron or

node, which takes a vector ~x ∈ <N as input and gives back a scalar output

f (~x) ∈ <. A neural network consists of many neurons stacked into layers and

can be graphically represented as a direct graph made by input, hidden and

output layers. Starting from the input, the output of each layer is used as input

for the next one. The specific form of the function f characterizing the nodes is

usually given by a linear function composed with a non linear transformation g,

called activation function, so that the output of the i-th node of the l-th layer

ξ
(l)
i is obtained by that of the (l − 1)-th layer using the relation

ξ
(l)
i = g

(∑
j

w
(l)
ij ξ

(l−1)
j + θ

(l)
i

)
(3.5)

The weights w
(l)
ij and the biases θ

(l)
i are the free parameter of the nets, to be

determined during the fit. Different choices can be made for the activation

function g. In many cases, including the NNPDF code, it is given by a sigmoid

g (x) =
1

1 + e−x
(3.6)

for the nodes belonging to the hidden layers, and by a linear function g(x) = x

for the output layer.

Starting from the first proof-of-concepts exercises up to the most recent public

release, the basic neural network architecture employed in all the NNPDF

determination has been the same. The only thing which has been changed

is the number of independent parameterized PDFs in a global fit: five in

NNPDF1.0 (up and down quarks and antiquarks, gluon), seven in NNPDF1.1

(up, down, strange quarks and antiquarks, gluon) and eight in NNPDF3.1 where

the total charm PDF was fitted from data for the first time. Each flavour is

independently parameterized using a neural network, with architecture 2-5-3-1,

represented in fig. (3.1). The momentum fraction x enters the two input nodes as

x and log x, followed by two hidden layers with a sigmoid activation function
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and an output layers with a single node, associated with a linear activation

function. This architecture is supplemented with a preprocessing polynomial

factor x−α (1− x)β which controls the PDFs behaviour at large and small x, so

that the parameterization for each independent flavour reads

x qj
(
x,Q2

0

)
= x1−αj (1− x)βj NNj (x) . (3.7)

Eq. (3.7) can be supplemented by an additional normalization factor Aj which

imposes momentum and valence sum rules. The eight flavours independently

parameterized in NNPDF3.1 are

qj =
[
Σ, g, V, V3, V8, T3, T8, c

+
]
, (3.8)

which in terms of quarks and antiquarks distributions are given by

Σ = u+ ū+ d+ d̄+ s+ s̄+ 2c ,

V = (u− ū) +
(
d− d̄

)
+ (s− s̄) ,

V3 = (u− ū)−
(
d− d̄

)
,

V8 =
(
u− ū+ d− d̄

)
− 2 (s− s̄) , (3.9)

T3 = (u+ ū)−
(
d+ d̄

)
,

T8 =
(
u+ ū+ d+ d̄

)
− 2 (s+ s̄) ,

c+ = c+ c̄ .

The preprocessing exponents αi and βi are randomized, by choosing a different

value for each replica within a suitable range. This is determined in a fully

self-consistent way: the effective exponents, defined in ref. [55] as

αeff,i (x) =
log qi (x)

log 1/x
, βeff,i (x) =

log qi (x)

log (1− x)
, (3.10)

are computed for each distribution qj. The 68% confidence level across replicas is

determined for each flavour, and the fit is repeated with the exponents randomized

in a range taken equal to twice this interval. This procedure is iterated until the

range stops changing.
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Figure 3.1 Graphical representation of the neural network used in the NNPDF
code. For each PDF of eq. (3.8) one independent neural network is
implemented.

3.1.3 Minimization and stopping

The optimal fit is obtained by varying the parameters of qj (x,Q2
0) in such a way

that some chosen figure of merit is minimized. Since most of the experimental

data are assumed to have a multigaussian distribution, a standard choice for such

an object is obtained by taking the standard χ2
k for each individual dataset k

χ2
k =

Ndat∑
ij

(Dki − Tki)C−1
ij (Dkj − Tkj) , (3.11)

and then by building the quantity

χ2 =
∑
k

χ2
k . (3.12)

Here Dki is the i-th experimental datapoint in the k-th dataset; Tki is the

corresponding theoretical prediction, computed using a suitable factorization

theorem and expressed as a function of the free parameters; Cij is the covariance

matrix, which takes into account both statistical and systematic uncertainties,

as given by the experimental collaborations. In order to avoid a fitting bias,

multiplicative uncertainties required to be handled with a specific method denoted

as t0 prescription, which as been developed in ref. [56] and implemented in all the

following NNPDF PDFs determination.
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The χ2 minimization implemented within the NNPDF environment is based on

genetic algorithm (GA): after a first random initialization of the neural network

parameters, the weights are mutated according to a suitable rule, producing

several copies of the original neural net, each one characterized by a different

mutation. Mutations with the lowest value of the figure of merit are selected

and the procedure is iterated. Different variations of GA have been used in every

NNPDF PDFs set, including NNPDF3.1. Another possible option which has been

investigated is the CMA algorithm [57], which has been used, for example, in a

recent NNPDF determination of fragmentation functions [58]. Nowadays several

efficient deterministic methods are available in a number of public libraries. As

we are going to discuss in the next section, numerical minimizers are no longer the

best possible option and an efficient deterministic minimization is more desirable.

Independently from the specific minimization algorithm implemented, overfitting

is avoided employing a cross-validation technique. In this method, the available

data are split in two sets. The first, the training set, is used for the minimization

of the error function, while the second, the validation set, does not enter the fitting

procedure. At each iteration of the minimization algorithm, the error function

between the theory predictions from the neural net and the data is computed for

both the training and validation set. At an early stage of the training, both these

quantities are expected to decrease. However, towards the end of the training,

while the error function over the training set will keep decreasing, the same value

computed over the validation data will reach a minimal value, and eventually

it may even start increasing. This is a signal of overfitting, and the point in

parameters space yielding the minimal value of the validation error is the one

taken as the fit result.

3.1.4 Fast Kernel tables

In order to get expressions for physical observables, PDFs have to be evolved up

to the physical scale Q of the hard processes and finally combined with partonic

matrix elements. These steps happen through two separate convolutions, first

with the evolution kernel, see sec. 2.3.2, which solves DGLAP evolution equations

and second with the hard cross sections. Such convolutions happen by means of

FastKernel (FK) tables, introduced and validated in refs. [53, 59] and used in

any subsequent NNPDF analysis. Each PDFs is projected on a suitable basis
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functions

qi
(
x,Q2

0

)
=
∑
α

qi
(
xα, Q

2
0

)
I(α) (x) (3.13)

so that, considering the case of a DIS observable ODIS, its final value can be

expressed as a tensors product of the kind

ODIS = [FK]iα qiα . (3.14)

with the PDF tensor defined as qiα = qi (xα, Q
2
0). The matrix FK, denoted as FK

table, stores the evolution and partonic matrix element and can be precomputed

for each process entering the analysis. In the case of hadronic observables ODY

the PDF tensor has to be replaced by a luminosity tensor Liαjβ = qiαqjβ and the

FK table becomes a rank-4 tensor,

ODY = [FK]iαjβ Liαjβ . (3.15)

After computing the value for all the observables entering the fit, the data are

split into training and validation sets and the χ2 function of the training set is

minimized.

3.2 Towards NNPDF4.0

The methodology described in the previous section has been completely revised

and extended within the new n3fit environment, first presented in ref. [49]. This

framework will be used to produce NNPDF4.0, the next public PDFs set by the

NNPDF collaboration. In this section we describe some of the n3fit general

features, focusing in particular on the implementation of PDFs positivity and

integrability. Additionally, we will present some results regarding the problem

of the fit basis independence, addressed here for the first time within this

environment.
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3.2.1 Architecture and general structure

The n3fit code is a python-based framework, written using an object-oriented

approach and a number of external libraries. Unlike the previous c++ code of

the NNPDF methodology, which is fully based on an in-house implementation of

neural networks and minimization algorithms, in the new framework Keras [60]

and Tensorflow [61] have been used to deal with them. This choice greatly

simplifies the study of new architectures and techniques recently introduced in

the machine learning literature, allowing for a systematic investigation of many

of them, and represents an important technological improvement with respect to

the previous code.

The two main methodological changes in n3fit concern the architecture and the

minimization algorithm: rather than using eight independent neural networks,

each one giving as output a particular flavour, in the new environment a single

net with an eight-dimensional output is used; additionally, gradient descent

methods are implemented to replace the genetic algorithm described before. The

new architecture, graphically depicted in fig. 3.2, allows to study and take into

account cross-correlations between different PDFs, while the new gradient descent

minimizers have been proved to produce more stable fits than those obtained using

the genetic algorithm.

Figure 3.2 Graphical representation of the neural network used in the n3fit

framework. Each output nodes represents one of the independently
parameterized flavours.

For each dataset entering the fit, a vector of x values is given as input to

the neural network and, as in the old methodology, before going through the
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intermediate layers it is split into (x, log x). The eight output nodes of the neural

network provide the eight independent PDFs parameterized at the reference scale

Q0. We denote such set of independent parton distributions as fit basis. In

NNPDF3.1, this is given by eq. (3.8). The new framework allows the user to

choose between different options: two standard choices are the so called evolution

and flavour basis. While the former represents the equivalent of the one given

in eq. (3.8), in the latter each quark, antiquark and the gluon are independently

parameterized. The choice of the fit basis should not affect the final results,

however different choices might be more convenient from a numerical point of

view, and different architecture setups might be required when changing the basis.

We will extensively discuss these points in sec. 3.2.2. Depending on our choice

for the fit basis, each output can be supplemented with a suitable preprocessing

polynomials, and with normalization factors to impose momentum and valence

sum rules, as discussed in sec. 3.2.3

3.2.2 Fit basis

The parton distributions used to build the FK tables are the thirteen PDFs

qi = Σ, g, V, V3, V8, V15, V24, V35, T3, T8, T15, T24, T35. (3.16)

Eight of these are independently parameterized, while the remaining ones,

involving heavy quarks, are determined by perturbative evolution, using the

matching relations given in eqs. (2.69). When QED corrections are considered in

the analysis, the photon PDF γ is also included and independently parameterized.

As mentioned before, the n3fit environment allows for different fit basis choices.

In other words, the user can choose which distributions should be independently

parameterized.

The two most natural choices are the so called evolution and flavour basis. The

former is defined by the eight dimensional subset of (3.16) given by

qk = [g,Σ, V, V3, V8, T3, T8, T15] . (3.17)

This basis is the equivalent of the one given in eq. (3.8), with the only difference

that the distribution c+ has been replaced by T15, defined as

T15 =
(
u+ ū+ d+ d̄+ s+ s̄

)
− 3 (c+ c̄) . (3.18)
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In the case of the flavour basis the neural network outputs up, down, strange and

charm quarks and antiquarks distributions (for charm we consider c = c̄) plus the

gluon

q̃k =
[
g, u, ū, d, d̄, s, s̄, c

]
. (3.19)

When running a fit, the eight PDFs of the chosen basis are first supplemented

with the perturbative heavy quarks distributions and then rotated back into the

FK table basis of eq. (3.16).

The final result of a PDFs determination should be independent on the specific

basis used in the fit and only determined by experimental data and general

physical constraints. The way in which the latter are implemented in the fit

can vary depending on the basis, and might define different final methodologies,

which in turn could be more or less convenient in terms of numerical performances.

It is therefore interesting to study different possible fit basis choices, discussing

the differences in performances and methodologies and verifying that, at least in

the kinematic regions where experimental data are available, the fit results are

independent on the specific PDFs initially parameterized.

3.2.3 Theoretical constraints

As mentioned above, there are several theoretical conditions that can be used to

further constrain PDFs. In the following we address each of them, discussing the

way in which they are implemented when considering different fit bases.

Sum rules. As seen in sec. 2.1 in the context of the parton model, the valence

structure of the proton implies the valence sum rules eq. (2.11). Additionally,

energy conservation implies momentum sum rules, given by∫ 1

0

dx x (g (x) + Σ (x)) = 1 . (3.20)

In QCD these sum rules remain valid, and provide additional information to

constrain parton distributions. We can rewrite eq. (2.11) in terms of the evolution

basis ∫ 1

0

dx V (x) =

∫ 1

0

dx V8 (x) = 3 ,

∫ 1

0

dx V3 (x) = 1 . (3.21)
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and implement these conditions in the fit multiplying the distributions V , V3, V8

and g by suitable normalization factors AV , AV3 , AV8 and Ag defined as

AV = AV8 =
3∫ 1

0
dx V (x)

, AV3 =
1∫ 1

0
dx V3 (x)

, Ag =
1−

∫ 1

0
dx xΣ (x)∫ 1

0
dx xg (x)

, (3.22)

so that eqs. (3.20), (3.21) are automatically satisfied. Such multiplication happens

after rotating the fit basis back into eq. (3.16), so that the procedure remains the

same independently on the choice of the fit basis.

Additional information about PDFs can be obtained by the Gottfried sum rule,

given by the integral

IG =

∫ 1

0

dx

x

[
F lp

2 − F ln
2

]
, (3.23)

where F lp
2 and F ln

2 are the structure functions of lepton-proton and lepton-neutron

DIS. Eq. (3.23) can be expressed as

IG =
1

3

∫ 1

0

dx (uv (x)− dv (x)) +
2

3

∫ 1

0

dx
(
ū (x)− d̄ (x)

)
=

1

3
+

2

3

∫ 1

0

dx
(
ū (x)− d̄ (x)

)
. (3.24)

Experimental data from th NMC collaboration show a deviation of IG from

the nominal value of 1/3 [62], and provide measurements of the quark flavour

asymmetry of the sea
∫
dx
(
ū− d̄

)
. Unlike the case of the valence sum rules, no

specific value for the Gottfried sum rule is imposed during the fit. However the

value of IG can be directly related to the integral of distribution T3

IG =
1

3

∫ 1

0

dx T3 (x) . (3.25)

Eq. (3.25) shows how, in order to have a well defined value for the Gottfried

sum rule, the distribution T3 has to be integrable in the interval (0, 1), providing

information for its small-x behaviour.

Large- and small-x behaviour. The large-x behaviour of the PDFs has to

be consistent with the elastic limit, namely the condition qi (x = 1) = 0 has

to be satisfied by all the distributions of both the flavour and evolution basis.

This can be easily implemented in the fit by supplementing the neural network
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parameterization of each flavour by the preprocessing factor (1− x)βi , just like in

the NNPDF methodology described before. The use of an additional polynomial

factor x−αi , controlling the small-x behaviour of each flavour, only makes sense

when working in the evolution basis. In this case, each flavour is either a singlet

or nonsinglet distribution, and as such its small-x behaviour can be classified

as integrable (nonsinglet) or not integrable (singlet) in x = 0, as discussed in

the following paragraphs: a parameterization like the one given in eq. (3.7) can

be used, with α randomized in intervals such that α < 1 in the former case

and α > 1 in the latter. On the other hand, when working in the flavour

basis each distribution (except the gluon) has both a singlet and a nonsinglet

component, which makes it impossible to use a polynomial expression to describe

in a consistent way its small-x behaviour. Because of this, when working in the

flavour basis only a large-x preprocessing is implemented, so that each distribution

of eq. (3.19) is parameterized as

x q̃j
(
x,Q2

0

)
= (1− x)βj NNj (x) , (3.26)

with NNj (x) denoting the corresponding neural network output, just as in

eq. (3.7).

Positivity. As recalled in chapter 2, PDFs are renormalization scheme dependent

quantities. Despite at LO they can be interpreted as probabilities distributions,

when considering QCD corrections such naive picture doesn’t hold any more.

This in general prevents PDFs from being positive definite objects. However,

regardless of the PDFs sign and shape, cross sections for high-energy processes

have to be positive, which means that fit solutions leading to negative cross-

sections have to be discarded. This condition might have a non-negligible

impact on the PDFs themselves, especially in those kinematic regions where no

experimental data are available: functional forms giving negative cross sections

cannot be physical solutions of the problem, and therefore should be discarded. In

the old c++ code such requirement is implemented through the use of Lagrange

multipliers, penalizing fit solutions for which a set of chosen high-energy cross

sections, denoted as positivity observables, result to be negative.

It would be highly beneficial to work in a renormalization scheme in which PDFs

are positive definite also beyond LO: this would allow to implement directly

the positivity of the distributions, without having to rely on a specific choice of

positivity observables. This is indeed the idea of a recent paper [63], where such
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positive renormalization scheme for PDFs is built. In the same paper, the Authors

work out the relation between such positive renormalization scheme and the

standard MS scheme, which is the one commonly used in PDFs determinations,

and surprisingly they find out that NLO MS distributions for quarks, antiquarks

and gluon are actually positive definite. This result has been accounted for in

n3fit, where positivity is imposed at the PDFs level. In the following we describe

how this feature is implemented in the code, and we assess the impact of such

constraint on the large-x region of the PDFs.

For each distribution q̃k which has to be positive, namely for all the PDFs defining

the flavour basis of eq. (3.19), we add to the total χ2 a contribution defined as

χ2
k,pos = Λk

∑
i

Eluα
(
−q̃k

(
xi, Q

2
))
, (3.27)

with Q2 = 5 GeV2, xi given by 10 points logarithmically spaced between 5 · 10−7

and 10−1 and 10 points linearly spaced between 0.1 and 0.9. The Elu function is

defined as

Eluα (t) =

t if t > 0

α (et − 1) if t < 0
, (3.28)

with α = 10−7. When the distribution q̃k (xi, Q
2) is negative, the total χ2 will

receive a positive contribution (a penalty) proportional to the corresponding

Lagrange multipliers Λk. Therefore, during the minimization of χ2
tot solutions

corresponding to positive distributions qk will be favoured. Note that such

implementation works fine for both the evolution and flavour basis, the only

difference being the linear transformation mapping the network outputs to the

positive distributions to be used in eq. (3.27).

Integrability. Given the lack of data in the small-x region, when x < 10−4 the

PDFs are left largely unconstrained. Because of the redundant parameterization

employed in the NNPDF methodology, this will result in an artificially big PDFs

error in the small-x region. This is an important feature that a reliable PDFs

set should have: in those kinematic regions where experimental data are missing,

the PDFs error should increase accordingly. There are however some physical

considerations that can be made to further constrain PDFs at small-x, which

can be used to reduce the huge error band in this kinematic region. As seen

in sec. 3.2.3, in order to have well defined momentum and valence sum rules
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the distributions V, V3, V8, xg, xΣ have to be integrable when x decrease to zero.

Moreover, in order to have well defined Gottfried sum rules, also the integral of T3

over the interval (0, 1) has to be finite. The same is true also for the distribution

T8, assuming the same small-x behaviour for all the light sea quarks.

This means that, denoting as q (x,Q2
0) a generic integrable PDF at the fitting

scale, as x decreases to zero such distribution cannot raise faster than 1/x. In

other words the following limit has to be verified

lim
x→0

xq
(
x,Q2

0

)
= 0 . (3.29)

In order to satisfy numerically eq. (3.29) we require that, for a given set of points

x
(i)
integ in the small-x region, the function xq (x) evaluated in these points is much

smaller than its peak value,∑
i

|xq|
x=x

(i)
integ
� xq|x=xpeak , (3.30)

with xpeak denoting the point where the distribution xq reaches its maximum

value. Eq. (3.30) can be rewritten introducing a numerical parameter fq of order

10−1

∑
i

|xq|
x=x

(i)
integ

< fq ∗ xq|x=xpeak . (3.31)

Despite eq. (3.31) is not mathematically equivalent to eq. (3.29), the idea is that,

if satisfied for small enough x values x
(i)
integ, the function xq (x) will decrease to

zero as x keeps getting smaller, and the integrals defining the sum rules will be

well defined. Also, unlike eq. (3.29), the condition given in eq. (3.31) can be easily

verified replica by replica, so that replicas not satisfying it can be discarded.

In a similar way to what done for positivity we can impose integrability. For

each distributions qk which has to be integrable we add to the total χ2 a new bit

defined as

χ2
k,integ = Λk

∑
i

[
xi qk

(
xi, Q

2
)]2

, (3.32)

In this way, the fit will favour configurations with smaller values of |xi qk (xi, Q
2) |,

and should therefore produce distributions satisfying eq. (3.31). The points xi

are chosen in different ways depending on the specific distribution and fit basis
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we are considering, as detailed in the next section.

3.2.4 Results

In the previous section we have described how theoretical constraints are

implemented in the fit. In particular we have seen how, when imposing positivity

and integrability, the total experimental χ2 has to be supplemented by additional

contributions proportional to Lagrange multipliers, so that the total χ2 which is

actually minimized during the fit is

χ2
tot = χ2

exp +
∑
k

χ2
k,pos +

∑
l

χ2
l,integ (3.33)

with the indices k and l running on the positive and integrable distributions and

χ2
k,pos, χ

2
l,integ defined in eqs. (3.27), (3.32).

In this section we present results produced with the new n3fit methodology,

focusing on the effects positivity and integrability constraints have on the final

result. Our point here is to show the effects of such theoretical constraints on a

given baseline which doesn’t include them. We will first present results obtained

using the evolution basis, and in the next section we will repeat the exercise in

the flavour basis, in order to check explicitly fit basis independence.

The baseline dataset we will consider here is the one of the NNPDF3.1 PDFs

set, presented and discussed in ref. [48]. This includes: fixed-target neutral-

current (NC) DIS structure function data from NMC [64, 65], SLAC [66]

and BCDMS [67]; charged-current (CC) DIS structure function data from

CHORUS [68] and NuTeV [69, 70]; HERA data from their combined measure-

ments [71], including charm-production cross sections [72] and b-tagged structure

functions [73, 74]; fixed-target Drell-Yan data from E866 [75–77] and E605 [78];

collider Drell-Yan data from CDF [79] and D0 [80–82]; and Drell-Yan, inclusive

gauge boson, and top-pair production data from ATLAS [83–90], CMS [91–98]

and LHCb [99–102]; ATLAS and CMS single-inclusive jet data [103, 104]. In

total this baseline dataset contains ndat = 4287 datapoints, see ref. [48] for more

details.

When working in the evolution basis the small-x behaviour is largely controlled

by the preprocessing polynomial factor. Eq. (3.31) can then be satisfied mainly by

choosing the corresponding preprocessing exponents in an interval which ensures
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integrability. Additionally, the Lagrange multiplier term given in eq. (3.32) is

added to the total χ2 using a single small-x point x = 10−9. These choices have

been proved to produce replicas which mostly satisfy eq. (3.31).

In tab. 3.1 we provide values of χ2/Ndat for a n3fit global fit, reporting results

also for each experiment included in the analysis. These are compared to their

n3fit counterpart produced without positivity and integrability constraints.

Inspection of this table shows how the fit quality is basically unaffected by the

introduction of the theoretical constraints, with a slightly lower total χ2 when

theory constraints are included. It should be noted that a deterioration of the

χ2 after introducing additional constraints in the fit would be expected, but this

is not what observed here, where we observe a slight improvement in the total

χ2. Such mild improvement provides an additional confirmation of the validity

of our theoretical constraints: despite these represent additional conditions to be

satisfied during the fit, they provide meaningful physical hints, making it easier

for the fit to describe the experimental data.

In fig. 3.3 we show the distance between the two fits, quantifying the effect

of theoretical constraints at the PDFs level. For the definition of the distance

between PDFs sets, see app. A. While in the small-x region the difference between

the two fits remains below one-sigma, in the medium- and large-x regions we find

differences of up to two-sigmas. The evolution basis flavours V , V3, V8 and T8

are plotted in linear scale in fig. 3.4. Inspection of these plots show an important

reduction of the PDFs error for the flavours V , V3, V8, and a change in the PDFs

shape and central value to satisfy the new positivity constraints, which affects

also the distribution T8.

We conclude that overall after the inclusion of theoretical constraints the fit

provides an equivalent, or slightly better, description of the input data. However

there are important differences at the level of the PDFs, whose replicas are

globally shifted in order to satisfy positivity, resulting in a general decreasing

in the PDFs error, and in a non negligible change in their central value.

3.2.5 Fit basis independence

As described in sec. 3.2.2, different choices for the specific PDFs which are

independently parameterized are possible. In this section we present results for

a fit run in the flavour basis, using the same methodology implemented for the
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Experiment Ndat χ2
evol χ2

flav Baseline χ2

NMC 325 1.247 1.258 1.280

SLAC 67 0.733 0.757 0.721

BCDMS 581 1.183 1.130 1.253

CHORUS 832 1.159 1.108 1.122

NTVDMN 76 0.969 1.332 0.961

HERACOMB 1145 1.150 1.125 1.168

HERAF2CHARM 37 1.522 1.572 1.492

F2BOTTOM 29 1.100 1.100 1.112

DYE886 104 1.410 1.534 1.560

DYE605 85 1.143 1.161 1.157

CDF 105 0.969 0.921 0.996

D0 48 1.505 1.362 1.409

ATLAS 360 1.105 1.082 1.126

CMS 408 1.035 1.056 1.052

LHCb 85 1.438 1.320 1.526

Total 4287 1.153 1.136 1.171

Table 3.1 The values of χ2/Ndat for each experiment included in the global
fit, before and after the inclusion of positivity and integrability
constraints. Values are reported for fits in both the evolution
and flavour basis. From left to right each column reports: the
experiment, the number of datapoints Ndat, the value of the total χ2

in the evolution and flavour basis when positivity and integrability
constraints are considered and finally the χ2 for the baseline fit
(evolution basis without positivity and integrability constraints).
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Figure 3.3 Distance plots between the baseline fit and the one produced using
positivity and integrability constraints.
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Figure 3.4 PDFs plots: baseline fit (orange) and fit with positivity and
integrability constraints (green). See eq. (3.9) for the definition of
the distributions plotted here.

evolution basis (same minimization algorithm and architecture parameters) and

imposing the theoretical constraints as described previously.

As mentioned in sec. 3.2.3, when working in the flavour basis no small-x

preprocessing is used. This implies that the small-x behaviour of the PDFs, which

is unconstrained by experimental data, can only be controlled through Lagrange

multipliers. Because of this reason, for integrable distributions more stringent
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constraints are used than those implemented for the evolution basis. In particular,

in order to get replicas satisfying eq. (3.31), the Lagrange multiplier terms given

in eq. (3.32) are built using the three small-x points xi = 10−5, 10−4, 10−3.

The fit quality is again basically unchanged, with a total χ2 which is slightly

better than the corresponding value in the evolution basis: χ2
flav = 1.13

to be compared with the value χ2
evol = 1.15 from tab. 3.1. The resulting

PDFs plotted in the evolution basis are reported in fig. 3.5, where they are

compared with the evolution basis fit presented in the previous section. The

plots are shown in linear scale, in order to highlight the x-region where more

experimental data are available. By inspection of fig. 3.5 it is clear that fit

basis independence is achieved, showing how, as expected, as long as data are

present and physical constraints given by positivity, integrability and sum rules

consistently implemented, different choices for the fit basis do not change the final

PDFs. It is worth stressing that this result, even if expected, is not trivial. When

we change fit basis a number of settings and parameters are changed at the same

time. In particular, no small-x preprocessing is used for the flavour basis, which

therefore presents a lower number of free parameters. The fact that we still get

equivalent results provides a strong validation check of the n3fit environment.

In order to determine the best methodology, one should fix the input dataset and

the fit basis. Once this is done, a scan of the hyperparameters defining the final

methodology has to be performed (neural network architecture, minimization

algorithm, positivity and integrability parameters ...), in order to determine the

corresponding values which allow the best fit. The methodology used to produce

the results presented here has been optimized considering the evolution basis,

which will be used in the final NNPDF4.0 release. If results in the flavour basis

were to be used to do actual phenomenology, an additional hyperparameters scan

should be run, to ensure the best possible performance of the methodology. Here

we have shown how, without explicitly doing an additional hyperoptimization,

the n3fit environment still allows to obtain a good fit using a different basis,

providing a proof of concept of basis independence.
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Figure 3.5 PDFs plots comparing results for fits performed in the evolution
(orange) and flavour (green) basis.
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4
Theory interpretation of jets production

at the LHC

The inclusion of new experimental data is the central ingredient in any global

PDFs determination. New data provide additional constraints on PDFs and

allow to get more and more precise results. In this chapter, based on ref. [7], we

present a systematic analysis for the inclusion of jets cross-sections in a global

parton distributions determination. We will use this specific case to give an

example of the general procedure which is usually followed when considering new

experimental data, using the recent NNLO QCD computations supplemented by

electroweak (EW) corrections to assess the impact of jets and dijets production

measurements on the PDFs.

The choice of the most suitable jest observable to be considered in global PDFs

determination and, more in general, for precision QCD studies presents a number

of open theoretical issues, which makes the inclusion of jest data a particular

interesting case. On one hand, the simplest inclusive observable, the single-

inclusive jets cross-section [105, 106], turns out to be non-unitary. A possible

alternative is offered by the dijets cross-section which however, despite appearing

to be unitary and especially well suited for PDFs determination [107], at NLO

displays a significant scale dependence. Thanks to the recent NNLO computation

for these observables, this last problem has essentially been settled, with the scale

dependence of dijets cross-section being under control at NNLO. On the other

hand, the single-jet inclusive cross section shows a scale dependence which is not

reduced when going to NNLO [108], showing how the perturbative behaviour,

the scale dependence [109] and even the definition [110] of this observable are

non-trivial.
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In this study we address these issues from a phenomenological point of view in the

context of PDFs determination. We study the impact of both single-inclusive jets

and dijets cross-sections in a global parton distributions fit and we asses which

observable leads to better PDFs compatibility with other data, better fit quality,

and more stringent constraints on the parton distributions. With this study we

aim to provide a guideline for the inclusion of jets observables in a future global

fit, like for example NNPDF4.0.

The chapter is structure as follows. In sec. 4.1 we describe the data included in

the analysis, together with their kinematic coverage; in sec. 4.2 we briefly discuss

the main aspects of the theoretical computation of jets observables, describing the

scale choices and the way in which NNLO QCD predictions and EW corrections

are implemented in the fit; finally in sec. 4.3 we present our results, consisting in

a series of global PDFs fits where different jets observables are included.

4.1 Jets data from ATLAS and CMS

The ATLAS and CMS collaborations have performed a number of measurements

of single-inclusive jets and dijets cross sections, with center of mass energies

ranging from
√
s = 2.76 to 13 TeV. In this work we will consider data at

√
s = 7

and 8 TeV. Whereas recent global PDFs determinations include some jets data,

like for instance NNPDF3.1, which includes ATLAS and CMS single-inclusive

data with
√
s = 2.76 and 7 TeV, this is the first time that the full LHC-

Run I jet dataset is being considered. In particular dijets data have not been

included in any other previous analysis. Also, in the NNPDF3.1 determination,

theory predictions for the included jets data were computed by combining NLO

coefficient functions with NNLO perturbative evolution. In order to account for

the missing NNLO corrections an additional uncertainty was estimated through

scale variations and added to the jets data. In this work we will use the full

NNLO QCD computation, as detailed in sec. 4.2.

The specific features of the data considered here are summarized in table 4.1: for

each dataset we reported the centre of mass energy
√
s, the integrated luminosity

L, the jet radius R, the measured differential distribution and the number of

datapoints ndat. The relevant kinematic variables are defined as follows. For

single-inclusive jets we denote as pT and y the jet transverse momentum and

rapidity. For dijets, mjj is the invariant dijet mass, y∗ and |ymax| are the
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absolute rapidity difference and the maximum absolute rapidity of the two leading

jets of the event, defined as y∗ = |y1 − y2|/2 and |ymax| = max (|y1|, |y2|)
respectively. Finally, considering the dijets triple differential distribution, pT,avg =

(pT1 + pT2) /2 is the average transverse momentum of the two leading jets and

yb = |y1 + y2|/2 is the boost of the dijets system.

The ATLAS 7 TeV data for single-inclusive jets, given as distributions differential

in transverse momentum pT and rapidity y, cover the kinematic range 100 GeV ≤
pT ≤ 1.992 TeV, 0 ≤ |y| ≤ 3, while the ATLAS 8 TeV data cover the

same range in rapidity and an extended transverse momentum kinematic range

70 GeV ≤ pT ≤ 2.5 TeV. In our default fit we include only the central rapidity

bin (yjet ≤ 0.5) of ATLAS 7 TeV, for ease of comparison with the NNPDF3.1

analysis of ref. [48], where the same choice was adopted due to the difficulty

in achieving a good description of the complete set of rapidity bins using the

default experimental covariance matrix1. The CMS 7 TeV data are available for

100 GeV ≤ pT ≤ 2.0 TeV, 0 ≤ |y| ≤ 2.5, and the CMS 8 TeV cover the extended

ranges 74 GeV ≤ pT ≤ 2.5 TeV and 0 ≤ |y| ≤ 3.0.

Moving to dijets cross-sections, in the case of ATLAS 7 TeV the measurements are

double-differential in mjj and y∗, with 260 GeV ≤ mjj ≤ 4.27 TeV and 0 ≤ y∗ ≤
3.0, while for CMS 7 TeV the distributions are differential in mjj and |ymax|, with

200 GeV ≤ mjj ≤ 5 TeV and 0 ≤ |ymax| ≤ 2.5. Finally the CMS 8 TeV data are

triple-differential in pT,avg, yb and y∗ with ranges 133 GeV ≤ pT,avg ≤ 1.78 TeV

and 0 ≤ yb, y
∗ ≤ 3. Note that ATLAS dijets measurements are currently available

at 7 and 13 TeV but not at 8 TeV.

In addition to the datasets listed in table 4.1 ATLAS and CMS have performed

measurements at
√
s = 13 TeV for both single-inclusive jet [112, 113] and

dijets [112, 114]. These however have smaller integrated luminosities and for

this reason we do not include these datasets in the analysis. Finally several

measurements for multijets production are also available, with ATLAS providing

differential distributions for three jets cross-sections at 7 TeV [115] and four jets

cross-sections at 8 TeV [116] and CMS for three jets at 7 TeV [117]. However

theoretical predictions for these observables are currently available only up to

NLO, and therefore they will not be considered here.

For all the measurements considered here, the complete set of systematic

1In refs. [48, 111] this choice was validated, showing how PDFs determined from each rapidity
bin in turn are indistinguishable.
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Experiment Measurement
√
s [TeV] L [fb−1] R Distribution ndat Reference

ATLAS Inclusive jets 7 4.5 0.6 d2σ/dpT d|y| 140 [103]

CMS Inclusive jets 7 4.5 0.7 d2σ/dpT d|y| 133 [118]

ATLAS Inclusive jets 8 20.2 0.6 d2σ/dpT d|y| 171 [119]

CMS Inclusive jets 8 19.7 0.7 d2σ/dpT d|y| 185 [120]

ATLAS Dijets 7 4.5 0.6 d2σ/dmjjd|y∗| 90 [121]

CMS Dijets 7 4.5 0.7 d2σ/dmjjd|ymax| 54 [118]

CMS Dijets 8 19.7 0.7 d3σ/dpT,avgdybdy
∗ 122 [122]

Table 4.1 The LHC single-inclusive jet and dijet cross-section data that will
be used in this study. For each dataset we indicate the experiment,
the measurement, the center of mass energy

√
s, the luminosity L,

the jet radius R, the measured distribution, the number of datapoints
ndat and the reference.

uncertainties and correlations available from HepData have been used.

4.2 Theoretical calculations

In this section we present the main aspects of the theoretical calculations

used to perform our phenomenological study, discussing scale choices and QCD

corrections up to NNLO. We also discuss EW corrections and the way in which

they are combined with QCD predictions for the purpose of PDFs determination.

4.2.1 Scale choice

As mentioned at the beginning of this chapter, even when considering NNLO

predictions the single-inclusive jet cross-sections are in general rather sensible to

the choice of central scale. Three possible choices are given by the individual

jet transverse momentum pT , the leading jet transverse momentum pT,1 and the

scalar sum of the transverse momenta of all the partons in the event

ĤT =
∑

i∈partons

pT,i . (4.1)
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Predictions obtained from different scale choices may differ, even at NNLO, by

amounts which are comparable to their scale dependence. In ref. [109] the scales

µ = ĤT and µ = 2pT were singled out as optimal ones, according to a number of

criteria, such as perturbative convergence and scale uncertainty as error estimate.

Here we will consider results for µ = ĤT .

Turning to dijets observables, also here different scale choices are possible. As

mentioned before, at NLO theoretical predictions computed with different choices

differ significantly, however the problem is alleviated at NNLO, with µ = mjj

emerging as the preferred choice [123, 124], which therefore will be adopted here.

4.2.2 QCD corrections

Exact NNLO QCD predictions have been computed using NNLOJET [125]. As

detailed in chapter 3, the partonic matrix elements entering a PDFs fit have

to be precomputed in such a way that the numerical convolution with generic

input PDFs can be approximated by means of interpolation techniques. To this

purpose we use NLOJET++ [126] interfaced to FASTNLO [127]. The computation

is performed using the scale choices described above and is validated against

the NNLOJET computation. This fast interpolation grids are then combined with

PDF evolution kernel using APFELGRID [59] to obtain FK tables, as described in

eq. (3.15). However fast interpolation grids to be used as input for APFELGRID

are available only at NLO. We therefore implement NNLO QCD corrections by

supplementing the NLO grids with QCD K-factors as detailed in the following.

We define the NNLO QCD K-factors as

KQCD
NNLO =

∑
ij σ̂

NNLO
ij ⊗ LNNLO

ij∑
ij σ̂

NLO
ij ⊗ LNNLO

ij

, (4.2)

where the sum runs over partonic subchannels, σ̂ij are partonic matrix elements

and L the corresponding parton luminosity, computed in both the numerator and

denominator using NNPDF3.1 NNLO as a fixed input PDF set. NNLO grids for

the relevant cross-sections are then obtained from the corresponding NLO grids

through the multiplicative prescription

d2σ

dpTdy

∣∣∣∣∣
NNLO

=
d2σ

dpTdy

∣∣∣∣∣
NLOQCD

×KQCD
NNLO(pT , y,

√
s) . (4.3)
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Figure 4.1 The NNLO QCD K-factors for the central rapidity bins of the
ATLAS 7 TeV single-inclusive jets (left) and CMS 8 TeV dijets
(right), with the Monte Carlo numerical uncertainties shown as filled
bands around the central result. Figure from ref. [7].

The first term on the right-hand side is the output of the NLO computation, given

in terms of fast interpolation grids, while the second term is the bin-by-bin QCD

K-factors computing according to eq. (4.2). The result is validated against the

full NNLO result from NNLOJET. In general QCD K-factors might be affected by

point-to-point fluctuations due to underlying numerical uncertainties affecting the

NNLO computation, therefore they are provided with a Monte Carlo uncertainty,

estimated as described in ref. [128]. This uncertainty is added in quadrature to

the experimental one when performing the PDFs fit, fully uncorrelated datapoint

by datapoint. For illustration purpose, NNLO QCD K-factors for the central

rapidity bins 0 ≤ |y| ≤ 0.5 of the ATLAS 7 TeV single-inclusive jet and of

the CMS 8 TeV dijet distributions are displayed in fig. 4.1 as functions of pT ,

together with the corresponding Monte Carlo uncertainties. In both cases the

NNLO QCD K-factors increase monotonically with pT from about 5% to about

20% for single-inclusive jets, and from about 3% to 15% for dijets.

4.2.3 Electroweak corrections

The EW corrections for all the single-inclusive jet and dijets datasets considered

here have been determined using the computation of ref. [129]. These include

the O (ααs) and O (α2) tree level contributions and the O (αα2
s) weak radiative

corrections, where α and αs denote the weak and strong coupling respectively. As

in the case of NNLO QCD corrections, EW contributions are included by mean
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Figure 4.2 The EW K-factors, eq. (4.4), for the 7 TeV ATLAS and CMS single-
inclusive (left) and dijet (right) measurements. For single-inclusive
jets the K-factors are shown as a function of jet pT in six different
rapidity bins. For dijets they are shown as a function of the dijet
invariant mass mjj for different ymax bins. Figure from ref. [7].

of K-factor, defined as

KEW =

∑
ij σ̂

LO QCD+EW
ij ⊗ LNNLO

ij∑
ij σ̂

LO QCD
ij ⊗ LNNLO

ij

, (4.4)

where the partonic cross sections have been obtained combining the computation

of ref. [129] with LO QCD results. Fast interpolation grids accounting for EW

corrections can be compute supplementing eq. (4.3) with the EW K-factor of

eq. (4.4), getting

d2σ

dpTdy

∣∣∣∣∣
NNLO+EW

=
d2σ

dpTdy

∣∣∣∣∣
NLOQCD

×KQCD
NNLO(pT , y,

√
s)×KEW

NNLO(pT , y,
√
s) . (4.5)

Electroweak K-factors have been computed using a proprietary code, with

NNPDF3.1 NNLO PDF set as input. In fig. 4.2 representative plots are shown

for ATLAS 7 TeV single-inclusive jet and CMS 7 TeV dijest, as functions of pT

(single-inclusive jet) and mjj (dijets), in bins of rapidity y or maximum absolute

rapidity ymax. In both cases, K-factors are close to one for small values of pT or

mjj, they are mostly flat for large values of the rapidity variable while they grow

with pT or mjj for the central rapidity bin, reaching values as high as 20%. EW

K-factors for the other distributions, not displayed here, present similar features.
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4.3 Results

In this section we present the main results of our study, consisting in a series

of PDF sets in which the global NNPDF3.1 dataset described in sec. 3.2.4 has

been supplemented with subsets of the jets and dijets data described in sec. 4.1,

after removing all the jets data included in the original NNPDF3.1 PDFs set. We

consider a series of different scenarios where we vary the jet observable and the

input data. Specifically we have performed fit including either single-inclusive

jets or dijets data, in each case considering either the full dataset or the 7 TeV

or 8 TeV data only. As described in the previous section we use NNLO QCD

theoretical computations supplemented by EW corrections, with the scale choice

µ = ĤT for single-inclusive jet and µ = mjj for dijets.

In table 4.2 we report the full list of fits which will be discussed in the following,

together with an ID that will be used to identify them. The ID encodes the process

used (j for single-inclusive jets and d for dijets); the data used (a for all, 7 or 8

for the 7 TeV or 8 TeV datasets); finally “n” stands for the perturbative accuracy

NNLO QCD and “w” reminds that EW corrections are included; Each row of the

table corresponds to a different input datasets, with the fit #bn representing the

baseline, where no jets data are included.

In all these fits the systematic uncertainties are implemented as fully correlated

across bins of different kinematic variables, while statistical uncertainties are

correlated only across bins of transverse momentum (for jets) or invariant

mass (for dijets). Following the standard NNPDF methodology, multiplicative

uncertainties are treated with the t0-method [56] and all the fits have been iterated

once in order to ensure convergence of preprocessing and t0 method. The fits

have been run using the standard NNPDF methodology described in sec. 3.1,

employing the c++ framework used to produce the NNPDF3.1 PDF set. All PDF

sets discussed contains Nrep = 100 Monte Carlo replicas, and the ReportEngine

software [130] is used to analyze results and compute various fit metrics and

statistical estimators.

In table 4.3 we report the χ2 values for all the fits with single-inclusive jet data

listed in table 4.2, while in table 4.4 we report values for dijets fits. In both

cases values reported in square brackets are referred to points not included in the

corresponding fit. We show the χ2 values for all the data in the global dataset,

grouped by process type (DIS NC, DIS CC, Drell-Yan, Z pT , top pair) and for
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baseline (no jets data) bn

ATLAS & CMS jets 7-8 TeV janw

ATLAS & CMS jets 7 TeV j7nw

ATLAS & CMS jets 8 TeV j8nw

ATLAS & CMS dijets 7-8 TeV danw

ATLAS & CMS dijets 7 TeV d7nw

CMS dijets 8 TeV d8nw

Table 4.2 The PDF determinations discussed in this study and their IDs. Each
row corresponds to a different choice of input jet dataset, specified
in the first column. The ID encodes the process used (j for single-
inclusive jets and d for dijets); the data used (a for all, 7 or 8 for
the 7 TeV or 8 TeV datasets); the perturbative accuracy (n for QCD
NNLO, w for EW corrections). In this and subsequent tables and
plots “jets” stands for single-inclusive jets.

all jets data, both those included in the fit and those which are not.

4.3.1 Single-inclusive jets

We first analyze results concerning the inclusion of single-inclusive jet data only.

In fig. 4.3 (left) we show the distances between the central values of the fits

#bn and #janw, namely the baseline not including any jets data and the one

including all single-inclusive jet cross-sections. From the distances plot it is clear

how single-inclusive jet data have an impact only on the gluon distribution, the

most affected regions being x ' 0.05, 0.1 . x . 0.2, and 0.3 . x . 0.5, with the

gluon PDF changing by up to almost one sigma. Looking at the PDFs plot in the

right panel of fig. 4.3 we notice how at small-x the gluon distribution is suppressed

by about 2% and enhanced by about 4% in the large-x region. Looking at the χ2

values in table 4.3, individual jet datasets show a χ2 per datapoint of order one,

with the only exception for the 8 TeV ATLAS data, for which we get χ2 = 3.22. It

is interesting to note that the inclusion of singe-inclusive jet data leads also to an

improvement of the description of dijets data, for which #janw shows better χ2

than the baseline fit #bn. We observe a mild deterioration of the χ2 for top pair

processes, with a value of 1.25 to be compared to 1.05 of the baseline. A closer

investigation shows that this comes from the deterioration in the description of

the ATLAS top pair rapidity distributions, whose χ2 per datapoint increases from

1.22 to 2.01.
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Dataset ndat bn janw j7nw j8nw

DIS NC 2103 1.17 1.18 1.17 1.18

DIS CC 989 1.10 1.11 1.10 1.11

Drell-Yan 577 1.33 1.30 1.31 1.31

Z pT 120 1.01 1.02 1.02 1.03

Top pair 24 1.05 1.25 1.02 1.24

Jets (all) 520 [2.60] 1.88 [2.53] [1.89]

Jets (fitted) — 1.88 1.12 2.20

ATLAS 7 TeV 31 [1.87] 1.59 1.15 [1.62]

ATLAS 8 TeV 171 [5.01] 3.22 [4.58] 3.25

CMS 7 TeV 133 [1.06] 1.09 1.11 [1.14]

CMS 8 TeV 185 [1.59] 1.25 [1.80] 1.23

Dijets (all) 266 [3.07] [2.10] [2.56] [2.22]

Dijets (fitted) — — — —

ATLAS 7 TeV 90 [2.47] [1.95] [1.97] [2.01]

CMS 7 TeV 54 [2.40] [2.08] [2.12] [2.15]

CMS 8 TeV 122 [3.81] [2.21] [3.20] [2.39]

Total 1.18 1.28 1.17 1.27

Table 4.3 The χ2 per datapoint for all fits of table 4.2 including single-inclusive
jet data, with default settings. Results are shown for all datasets,
aggregated by process type. For jets data, results are shown both for
the sets included in each fit, and also for those not included, enclosed
in square brackets. Combined results are also shown for all single-
inclusive jet and for all dijet data, both for the full set, and for those
included in each fit. The number of datapoints in each dataset is also
shown.

We can asses the impact of different datasets considering fits with 7 TeV or 8

TeV data only, denoted as #j7nw and #j8nw respectively. From table 4.3 we

see how the unsatisfactory description of the 8 TeV ATLAS data persists even

when no 7 TeV data are included in the analysis, suggesting a possible problem

with the dataset itself rather than the presence of internal tension with the 7 TeV

measurements. A significant difference between 7 and 8 TeV datasets is that for

the former only the central rapidity bin is considered, as mentioned in sec. 4.1,

while for the latter all the rapidity bins are included. This suggests that the 8

TeV data may also be affected by similar issues in the treatment of correlations

between rapidity bins as those observed in the 7 TeV case in refs. [48]. This

problem is addressed in app. B where we will see that this is indeed the case.

Looking at the χ2 for top pair processes, we note how its deterioration with

respect to the baseline value comes entirely from the inclusion of 8 TeV data.
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Dataset ndat bn danw d7nw d8nw

DIS NC 2103 1.17 1.18 1.17 1.18

DIS CC 989 1.10 1.12 1.09 1.12

Drell-Yan 577 1.33 1.29 1.32 1.28

Z pT 120 1.01 1.07 1.03 1.08

Top pair 24 1.05 1.14 1.04 1.26

Jets (all) 520 [2.60] [2.06] [2.70] [2.14]

Jets (fitted) — — — —

ATLAS 7 TeV 31 [1.87] [1.63] [1.74] [1.61]

ATLAS 8 TeV 171 [5.01] [3.36] [4.65] [3.55]

CMS 7 TeV 133 [1.06] [1.06] [1.14] [1.07]

CMS 8 TeV 185 [1.59] [1.64] [2.17] [1.68]

Dijets (all) 266 [3.07] 1.65 [2.16] [1.71]

Dijets (fitted) — 1.65 1.72 1.68

ATLAS 7 TeV 90 [2.47] 1.76 1.78 [1.78]

CMS 7 TeV 54 [2.40] 1.60 1.63 [1.66]

CMS 8 TeV 122 [3.81] 1.58 [2.67] 1.68

Total 1.18 1.22 1.19 1.20

Table 4.4 Same as table 4.3, but now for dijets. The baseline is repeated for
ease of reference.

Figure 4.3 Comparison between the baseline fit with no jet data (#bn) and the
fit with all single-inclusive jet data included (#janw). The distance
between all PDFs (left) and the ratio of the gluon PDF to the baseline
(right) are shown at the scale Q = 100 GeV. The shaded band is the
68% confidence interval, while the dashed lines are the edge of one
sigma interval.

In fig. 4.4 we plot the gluon PDF and the corresponding error for the fits with

7 TeV and 8 TeV data only. In both cases the results show an enhancement of

the central gluon PDF at large-x and a suppression at small-x, and a general

reduction in the PDF uncertainty, which is more marked in the case of the 8
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Figure 4.4 Comparison between the baseline fit with no jet data (#bn), and
the fits with only 7 TeV (#j7nw) or only 8 TeV (#j8nw) jet data
included. The relative uncertainty on the gluon PDF (left) and the
ratio of the gluon PDF to the baseline (right) are shown at Q = 100
GeV. All results are shown as ratios to the baseline.

TeV data. In general, results obtained including 8 TeV data only are very close

to those of the fit #janw, showing how 8 TeV datasets provide the dominant

contribution driving the impact of single-inclusive jet data on the final PDFs.

4.3.2 Dijets

We now turn to PDFs in which dijets data rather than single-inclusive jet data

have been included. As done for the single-inclusive jet data, we start comparing

the baseline #bn, where no jets data are considered, to #danw, in which all

dijets data are included using NNLO QCD computations with EW corrections.

From table 4.4 we see how all the dijets datasets are fairly well described, with χ2

values for datapoint around 1.6 for each individual dataset. Also, the inclusion

of dijets data leads to an improvement in the description of single-inclusive jet

data, consistently with what observed in sec. 4.3.1, where we noticed how the

inclusion of single-inclusive jet data leads to a better description of dijets data

as well. These features suggest that single-inclusive and dijet data have a similar

impact on PDFs, and show consistency between data for these two observables.

Also, unlike the case of single-inclusive jet data, no tension is observed between

dijets data and the baseline dataset, whose χ2 is left almost unchanged.

In the left panel of fig. 4.5 we show the distances between fits #bn and #danw:

again only the gluon PDF is affected by the inclusion of the jets data, with

the regions x ' 0.01 and 0.06 . x . 0.4 being the ones showing the largest

effects. Looking at the gluon PDF plot in the right panel of fig. 4.5, we observe a
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Figure 4.5 Same as fig. 4.3, but now for dijets.

Figure 4.6 Same as fig. 4.4, but now for dijets.

suppression in the former region by about 2%, corresponding to a down shift of the

central value by about one sigma, and an enhancement by about 10% in the latter,

around x ∼ 0.3, corresponding to an up shift of the central value by more than

one sigma. These features are qualitatively similar to those observed in sec. 4.3.1

upon inclusion of single-inclusive jet data, but somewhat more pronounced.

We can study the relative impact of different datasets by studying results for the

fits #j7nw and #j8nw, where either the 7 TeV or 8 TeV data only are included.

By inspection of fig. 4.6, where we plot the gluon PDF and the corresponding

error, we see how the impact of the two datasets on the gluon error and central

value is qualitatively the same, and therefore qualitatively equivalent to the one

of the full dijets dataset, with the 8 TeV data having a stronger impact. From

table 4.4 we observe how the fit quality is equally good for the two fits. However

the fit including 8 TeV data leads to a similar description of all the dijets data,

including those which are not included in either fits, to the one given by #danw,

where all dijets data are included. So once again we conclude that the 8 TeV

data provide the dominant contribution.
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4.3.3 Single-inclusive jets vs. dijets

Having assessed the impact on PDFs of jets and dijets datasets separately, we

now compare results.

The effect on PDFs of the inclusion of jet and dijets in the NNPDF3.1 global

dataset is qualitatively the same: they only affect the gluon, by leading to an

enhancement of its central value in the region 0.1 . x . 0.4, and to a suppression

in the region 0.01 . x . 0.1. The suppression is by about 1%, while the

enhancement at the peak, localized at x ' 0.3, is by about 2.5% for single-

inclusive jets, but stronger, by about 7.5% for dijets. These features are clearly

visible in fig. 4.7 (right), where the gluon PDF is plotted for the fits #janw

(single-inclusive jet only), #danw (dijets only) and the baseline #bn (no jets

data).

As for the gluon PDF uncertainty, from the left panel of fig. 4.7 it is clear how

the inclusion of either single-inclusive jet or dijets leads to a reduction of the

error, with a stronger reduction observed in the case of single-inclusive jets. In

this respect it should be observed that ATLAS dijet measurements are not yet

available at 8 TeV, while single-inclusive jet measurements are available both

from ATLAS and CMS. The constraining power of dijets datasets is therefore

more limited.

As for compatibility with the global NNPDF3.1 datasets, the inclusion of jets

data does not lead to a deterioration of the description of the rest of the data in

comparison to the baseline fit, as we can see looking at the χ2 values reported in

tables 4.3, 4.4. The only exception is the ATLAS top rapidity distribution, which,

as mentioned before, seems to be in tension with the 8 TeV single-inclusive jet

data.

Concerning the fit quality, the quality of the two fits #janw and #danw to the

corresponding jets data is comparable, though slightly better for the latter (χ2 =

1.88 vs. χ2 = 1.65). Also, the quality of the fit to dijets when single-inclusive jets

are fitted and conversely are almost identical (χ2 = 2.10 for dijets when fitting

single-inclusive jets vs. χ2 = 2.06 for single-inclusive jets when fitting dijets) and,

as observed before, better than what we get for the baseline. This confirms full

consistency between the two datasets, with a marginal preference for dijets.

Finally we note how the fit including dijets data is somewhat more internally

71



Figure 4.7 Same as fig. 4.3, but now comparing the fits with all single-inclusive
jet data (#janw), and that with all dijet data (#danw). In the gluon
comparison (right) results are displayed as a ratio to the baseline with
no jet data included (also shown for reference).

consistent than the one including single-inclusive jets: the χ2 per datapoint is

slightly better (1.22 vs. 1.28) and the χ2 for individual dataset is generally

better, in particular for top production data.

To sum up, in this chapter we have presented a phenomenological investigation

of inclusive jets production measurements at LHC in the context of global

PDFs determination, exploiting recent NNLO QCD theoretical calculations

supplemented by EW corrections, and studying for the first time the impact

of the inclusive dijets observables. We have found full consistency between

the impact on parton distributions of dijets and single-inclusive jet data, thus

establishing the viability of the dijets observable in constraining PDFs. In a

comparative assessment of single-inclusive jets vs. dijets we have found how,

given the currently available data, the latter has a more marked impact on the

central value of the gluon, while the former leads to a more significant reduction

of the PDF error. We have also shown evidence of some tension between some

single-inclusive jet datasets and the rest of the global dataset, which might be

explained by the less stable perturbative behaviour of this observable. Finally

we have shown how, both for single-inclusive jets and dijets, the more recent 8

TeV data have a more significant impact than the previous 7 TeV data. We

therefore expect that the future availability of more precise measurements from

LHC Run-II at 13 TeV data will improve further our knowledge of the gluon

PDF.
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5
Theoretical error in PDFs determination

In order to get an accurate estimate of the uncertainties affecting the Standard

Model predictions, theoretical errors need to be taken into account. For hadron

collider processes these are dominated by those due to missing higher order

corrections in QCD calculations and to PDFs1. It is clear how MHOU will

also have an affect on the PDFs themselves, being present in the perturbative

predictions of the particular processes used for PDFs determination. Besides

from contributing to the overall size of PDFs uncertainty, MHOU might affect

the relative weights different points have in a fit: points accurately described

by the current perturbative predictions (up to NNLO) should weight more than

those poorly described. As discussed in chapter 3, present PDFs uncertainties

only account for statistical and systematic errors affecting the experimental

data entering the analysis, and typically do not include any source of theory

uncertainty. In this chapter, based on refs. [8, 9], we describe how to set

up a general formalism for the inclusion of theoretical uncertainties in PDFs

determinations, and we specify it to the case of MHOU.

The chapter is structure as follows. In sec. 5.1 we show how a generic source of

theory error can be described by means of a covariance matrix; in sec. 5.2 we

discuss how, when considering MHO, such covariance matrix can be constructed

using scale variations and a suitable prescription, which is validated in sec. 5.3;

in sec. 5.4 we present a first NLO PDFs set accounting for MHO, and finally in

sec. 5.5 we provide instructions on how to use such result in phenomenological

applications.

1From now on we will use the acronyms MHO and MHOU to denote missing higher orders
and missing higher orders uncertainties respectively.

73



5.1 Theory error as a covariance matrix

In this section we will show how, by adopting a Bayesian approach and assuming

a Gaussian prior probability distribution for the true value of the theory, any

missing theoretical uncertainty can be accounted for by adding a contribution to

the experimental covariance matrix used in the PDFs fit.

Denoting as D the vector of experimental data entering the analysis and as T
the corresponding vector of “true” unknown values - whose determination is the

goal of the experiment - we assume that the experimental results are Gaussianly

distributed about this hypothetical true values T

P (D|T ) ∝ exp

(
−1

2
(D − T )T C−1 (D − T )

)
. (5.1)

The true values T are unknown, however we can compute the theory predictions

T for each experimental data using a theory framework which is generally

incomplete, for example because it is based on the fixed-order truncation of a

perturbative expansion 2. Furthermore T depend on PDFs, which are evolved up

to the physical scales of the data using again an incomplete theory. The vectors

T and T would coincide if the theory were exact and the PDFs were known with

certainty. Writing the difference between the true and the actual value of the

theory predictions as

∆ = T − T , (5.2)

we can consider this difference as an additional unknown systematic error,

accounting for the incomplete theory. If we assume, in the same spirit as

when estimating experimental systematic, that the true values T are Gaussianly

distributed about the theory predictions T

P (T |T ) ∝ exp

(
−1

2
(T − T )T S−1 (T − T )

)
, (5.3)

then the prior probability distribution of ∆ will be given by

P (∆) ∝ exp

(
−1

2
∆TS−1∆

)
. (5.4)

2In addition to MHO other effects which could be neglected in the theoretical predictions T
are higher twist and nuclear effects.
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Eq. (5.1) can be rewritten as

P (D|T ) = P (D,∆|T ) ∝ exp

(
−1

2
(D − T −∆)T C (D − T −∆)

)
, (5.5)

so that the conditional probability of the data D given the theory predictions T

can be obtained using the Bayes theorem and marginalizing over ∆

P (D|T ) ∝
∫
d∆P (∆)P (D,∆|T )

=

∫
d∆ exp

(
−1

2
(D − T −∆)T C−1 (D − T −∆)− 1

2
∆TS−1∆

)
∝ exp

(
−1

2
(D − T )T (C + S)−1 (D − T )

)
, (5.6)

where in the last line we have performed explicitly the Gaussian integral over

∆. Eq. (5.6) defines the likelihood which is usually minimized in a Gaussian fit

and shows how theoretical uncertainties can be treated simply as another form of

experimental systematic: it is an additional uncertainty to be taken into account

when trying to find the truth from the data using a specific theory setting, and it

can be accounted for by mean of an additional contribution S to the experimental

covariance matrix C. It should be noted that eq. (5.6) has been obtained under

the assumption of a Gaussian prior for MHOU, as given in eq. (5.3). In general one

could use different models, depending on the nature of the theory error considered,

and minimize the resulting likelihood as given in the first line of eq. (5.6). Here

we will work using the Gaussian assumption, which will be validated in sec. 5.3.

The problem is then to estimate the theory covariance matrix S. The Gaussian

hypothesis eq. (5.3) implies that∫
dT P (T |T ) (T − T )i (T − T )j = 〈∆i ∆j〉 = Sij , (5.7)

showing how in general we need to estimate the shifts ∆i defined in eq. (5.2), in a

way that takes into account the theoretical correlations between different points

within the same dataset, between different datasets measuring the same physical

process and between datasets corresponding to different processes 3.

3Unlike experimental correlations, theory correlations will be present even for entirely
different processes, through the universal parton distributions, which all share the same theory
for DGLAP evolution.
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5.2 MHOU from scale variations

The most commonly used method to estimate the theory corrections due to MHO

is scale variations. In the following we briefly revise its key ingredients and fix

the conventions and terminology used in this work. For simplicity we will discuss

the case of electroproduction processes, like DIS, but the same argument can be

used to obtain expressions for a generic hadronic process. We refer to ref. [9] for

a complete and formal discussion of the topic.

Considering the problem of PDFs determination and remembering the factorized

expression for high-energy processes cross-sections, there are two independent

source of MHOU: the perturbative expression of the partonic cross-section and the

perturbative expression of the anomalous dimensions that determine the evolution

of parton distributions. These will be associated with two independent unphysical

scales, which here will be denoted as renormalization scale µr and factorization

scale µf . Using RG equations for hard cross-sections and for PDFs it is possible

to obtain an estimate of the MHOU by varying independently the two unphysical

scales entering the problem.

Considering a generic structure function, denoting as F the corresponding scale-

dependent theory prediction4 we have

F
(
Q2, µ2

r, µ
2
f

)
= C

(
αs
(
µ2
r

)
,
µ2
r

Q2

)
⊗ q

(
αs
(
µ2
f

)
,
µ2
f

Q2

)
. (5.8)

Following the notations of ref. [9], we introduce the variables t = logQ2/Λ2,

kr = log µ2
r/Q

2 and kf = log µ2
f/Q

2 so that eq. (5.8) can be written as

F (kr, kf ) = C (αs (t+ kr) , kr)⊗ q (αs (t+ kf ) , kf ) . (5.9)

In the following, we will use the notations F , C and q to denote structure

functions, Wilson coefficients and PDFs evaluated at the generic scale µr and µf .

When setting such scales equal to the physical one Q, namely when kr = kf = 0

4The structure function F depend on µ2
r and µ2

f in the sense of the RG equation: the
dependence on unphysical scales cancels order by order, and the residual dependence can be
used to estimate the MHOU.
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we define

F (0, 0) ≡ F (0, 0) ,

C (t) ≡ C (αs (t) , 0) , (5.10)

q (t) ≡ q (αs (t) , 0) .

In order to estimate the MHOU due to the truncation of the perturbative

expansion of the coefficient function C we can fix a specific renormalization

scheme and keep µf = Q, but varying the renormalization scale µ2
r used in

the computation of the coefficient function itself. The scale-dependent structure

function F will then be given by

F
(
Q2, µ2

r

)
= C

(
αs
(
µ2
r

)
,
µ2
r

Q2

)
⊗ q

(
Q2
)

= C (αs (t+ kr) , kr)⊗ q (t) . (5.11)

Using the RG invariance of the physical cross section

µ2
r

d

dµ2
r

F
(
Q2, µ2

r

)
=

d

dkr
F (t, kr) = 0 , (5.12)

it is easy to show that the renormalization scale dependent Wilson coefficients C

can be written as

C (αs (t+ kr) , kr) = C (t+ kr)− k
d

dt
C (t+ kr) +

1

2
k2
r

d2

dt2
C (t+ kr) + ... (5.13)

where according to eq. (5.10) C (t) = C (αs (t) , 0). In other words, thanks to

the RG invariance we can write the renormalization scale dependent Wilson

coefficients at a generic scale µr in terms of their values at the physical scale

µr = Q. The log derivatives appearing in eq. (5.13) can be easily evaluated using

the perturbative expression of C

C (t) = c0 + αs (t) c1 + α2
s (t) c2 + α3

s (t) c3 + ... , (5.14)

and of the β function expansion eq. (1.13) getting

C (αs (t+ kr) , kr) = c0 + αs (t+ kr) c1 + α2
s (t+ kr) (c2 + krβ0c1)

+ α3
s (t+ kr) (c3 + krβ0 (β1c1 + 2c2 − krβ0c1)) + ... (5.15)

In the same way, starting again from eq. (5.9), in order to get the scaled varied

PDF we can fix µr = Q and vary the scale µf at which the PDFs are evaluated.
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Setting µr = Q we get

F
(
Q2, µ2

f

)
= C

(
αs
(
Q2
))
⊗ q

(
αs
(
µ2
f

)
,
µ2
f

Q2

)
= C (t)⊗ q (αs (t+ kf ) , kf ) , (5.16)

and using the RG invariance eq. (5.12) with respect to µf we get

q (αs (t+ kf ) , kf ) = q (t+ kf )− kf
d

dt
q (t+ kf ) +

1

2
k2
f

d2

dt2
q (t+ kf ) + ... (5.17)

where in analogy with what done for the Wilson coefficients we have defined

q (t) ≡ q (αs (t) , 0). Using the evolution equation5

d

dµ2
f

q
(
µ2
f

)
= γ

(
αs
(
µ2
f

))
q
(
µ2
f

)
, (5.18)

eq. (5.17) can be rewritten as

q (αs (t+ kf ) , kf ) =q (t+ kf )− kγq (t+ kf )

+
1

2
k2

(
γ2 +

d

dt
γ

)
q (t+ kf ) + ... , (5.19)

which can be further simplified using the perturbative expansion of the anomalous

dimension and the expression for the β function6.

Eqs. (5.15),(5.19) allow to easily perform scale variations for a single process,

varying independently the two unphysical scales µr and µf . In particular, they

allow to obtain scaled varied coefficient functions and PDFs in terms of the

corresponding values computed at the physical scale Q. Considering a specific

process involved in the PDFs fit, one can, for example, perform scale variation

in the range |kr|, |kf | < log 4, obtaining the scale varied cross section F (kr, kf ).

When considering hadronic processes, the same arguments presented above can

be used to obtain a formula similar to the one of eq. (5.15), as shown in ref. [9].

We now consider a situation where we have p different types of processes (like for

5for simplicity, in this section all the argument is presented implicitly assuming a Mellin
space formalism, so that convolutions are replaced by ordinary products.

6In ref. [9] it is explicitly shown that an alternative way of obtaining eq. (5.19) consists
in varying the renormalization scale of the anomalous dimension. MHOU due to PDFs
evolution can therefore be estimated varying either the PDFs scale or the scale of the anomalous
dimension.

78



example electroproduction processes, hadronic processes, jets ...)

πa = {ia} , a = 1, ..., p ,

where ia labels the datapoints belonging to the a-th process. Each of them is

characterized by a factorization scale µf (associated to the universal PDFs) and

a renormalization scale µra (associated with the hard coefficient functions). Given

the i-th point of the a-th process Fia , we define the corresponding shift ∆ia as

∆ia (kf , kra) ≡ F ia (kf , kra)− Fia (0, 0) , (5.20)

where we assume that all scale variations can be performed in the same range

|kra |, |kf | < log 4. In practice, for each scale three points can be sampled,

corresponding to k = 0,± log 4. Note that since the PDFs are universal but

the coefficient functions are process dependent, when considering two different

processes the scale variations of kr will be totally independent while those of kf

will be correlated between different processes. In other words, because of PDFs

universality the relation between the physical scale of each process (whatever that

is) and the factorization scale µf is the same for all the processes.

According to eq. (5.7), the theory covariance matrix is then constructed by

averaging outer products of the shifts over points in the space of scales

Siajb = N
∑
V

∆ia (kf , kra) ∆jb (kf , krb) , (5.21)

where ia ∈ πa and jb ∈ πb indicate two data points possibly corresponding to

different processes πa and πb, V is the set of scale points to be summed over and

N is a normalization factor. Note that from this definition it follows immediately

that the theory covariance matrix is positive definite: considering a real vector

vi, from eq. (5.21) we have

∑
ij

viSijvj = N
∑
V

(∑
i

vi∆i

)2

≥ 0 . (5.22)

Different prescriptions for the theory covariance matrix definition can be adopted,

characterized by a different set of combination of scales which are summed

over in eq. (5.21). Here we will discuss results for the so called 9-points

prescriptions. In app. C we describe another possible option and we refer to the
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original publication ref. [7] for more details about alternative prescriptions. For

simplicity, let’s first consider the theory covariance matrix entries corresponding

to a couple of points belonging to the same process. In this case there are at most

two independent scales to be varied, corresponding to the renormalization and

factorization scales kr and kf . In the 9-points prescription kr and kf are varied

completely independently, getting the 8 + 1 points in the scales space reported in

fig. 5.1 (left), where the +1 refers to the trivial point kr = kf = 0 for which the

shift ∆i vanishes. The normalization factor appearing in eq. (5.21) is determined

by averaging over the number of points associated with the variation of each scale,

and adding the contributions from variation of independent scales. So in the case

of the 9-points prescriptions we have 8 points and 2 independent scales, giving

a normalization factor N = 1/4. The corresponding theory covariance matrix

entries read

S
(9pt)
ij =

1

4
{∆+0

i ∆+0
j + ∆−0

i ∆−0
j + ∆0+

i ∆0+
j + ∆0−

i ∆0−
j

+∆++
i ∆++

j + ∆+−
i ∆+−

j + ∆−+
i ∆−+

j + ∆−−i ∆−−j } .
(5.23)

The superscripts 0,± denote the different variations of kr and kf defining the

shift, corresponding to 0,± log 4. Such construction can be generalized to the

case of couples of points belonging to two different processes π1 and π2. The set

V now involves possible variations of three scales kf , kr1 , kr2 , represented in the

right plot of fig. 5.1. Again, varying such scales independently and accounting for

the corrects normalization factors, eq. (5.23) can be generalized to the off-diagonal

blocks of the theory covariance matrix, giving

S
(9pt)
i1j2

=
1

24
{2
(
∆+0
i1

+ ∆++
i1

+ ∆+−
i1

)(
∆+0
j2

+ ∆++
j2

+ ∆+−
j2

)
+2
(
∆−0
i1

+ ∆−+
i1

+ ∆−−i1
)(

∆−0
j2

+ ∆−+
j2

+ ∆−−j2
)}

+3
(
∆0+
i1

+ ∆0−
i1

)(
∆0+
j2

+ ∆0−
j2

)
}.

(5.24)

5.3 Construction and validation of a theory

covariance matrix

In this section we determine the theory covariance matrix at NLO using

eqs. (5.23), (5.24) and we validate it against the known NNLO results. As

input datasets, we use the same NNPDF3.1 baseline given in tab. 3.1 with
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κr

κf

Figure 5.1 9-points prescription for a single process (left) and for two
different processes π1 and π2, indicating the sampled values for the
factorization scale κf and renormalization scale κr. Figure from
ref. [9].

two minor differences: the value of the lower kinematic cut has been increased

from Q2
min = 2.69 GeV2 to 13.96 GeV2 in order to ensure the validity of the

perturbative QCD expansion when scales are varied downwards, and the HERA

F b
2 and fixed-target Drell-Yan cross-sections have been removed, for technical

reasons related to difficulties in implementing scale variation. In total we then

have Ndat = 2819 data points. As seen in the previous section, we assume that

renormalization scale variation is fully correlated within a given process, but

uncorrelated between different processes. Having defined the input experimental

data it is then necessary to define what we mean by “process” and divide the input

dataset accordingly. Our categorization, summarized in tab. 5.1, involves five

distinct processes: charged-current (CC) and neutral-current (NC) deep-inelastic

scattering (DIS), Drell–Yan (DY) production of gauge bosons (invariant mass,

transverse momentum and rapidity distributions), single-jet inclusive and top pair

production cross-sections. Note that such categorization requires and educated

guess as to which theory computations share the same higher order corrections,

and different choices might be done. We consider the one presented here to be

sufficient for a first study. In order to evaluate the theory covariance matrix Sij,

it is necessary to be able to evaluate both DIS structure functions and hadronic

cross-sections for a range of values of the factorization and renormalization scales,

i.e. for kf 6= 0 and kr 6= 0. In this case, the entries of the NLO theory covariance

matrix have been constructed by means of the ReportEngine software [130] taking

the scale-varied NLO theory cross-sections F i(kf , kr) as input. These are provided

by APFEL [131] for the DIS structure functions and by APFELgrid [59] combined

with APPLgrid [132] for the hadronic cross-sections.

In order to get an idea of the structure of the theory-induced correlations, in
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Process Type Datasets

DIS NC NMC, SLAC, BCDMS, HERA NC

DIS CC NuTeV, CHORUS, HERA CC

DY CDF, D0, ATLAS, CMS, LHCb (y, pT , Mll)

JET ATLAS, CMS inclusive jets

TOP ATLAS, CMS total+differential cross-sections

Table 5.1 Classification of datasets into process types.

fig. 5.2 we compare the experimental correlation matrix, given by

ρ
(C)
ij =

Cij√
Cii
√
Cjj

, (5.25)

with the corresponding combined experimental and theoretical correlation matrix

ρ
(C+S)
ij =

(C + S)ij√
(C + S)ii

√
(C + S)jj

. (5.26)

By inspection of fig. 5.2 large positive correlations within individual experiments

along the diagonal blocks are apparent, particularly evident for DIS NC and DY

data. Within the same process there are large correlations between experiments

for the DY, jets and top datapoints and large anticorrelations for the DIS NC

points. Correlations and anticorrelations between different processes, despite

being present thanks to PDFs universality, are generally weaker.

Next, we wish to construct a validation test for the NLO theory covariance matrix,

using the known shift between NNLO and NLO results. In order to do this, we

view the set of experimental data as a vector Di, where i = 1, ..., Ndat. Such

vector lives in a vector space D of dimension Ndat, and the theory covariance

matrix Sij defines an ellipsoid E belonging to a subspace S of dimension Nsub of

the full space D. In the context of MHOU we can take the NLO theory predictions

evaluated at the central scales TNLOi (0, 0) as our best NLO predictions with the

ellipsoid E estimating a 68% confidence level for the MHO corrections. We want

to check how well the theory covariance matrix Sij predicts both the size and the

correlation pattern of the MHO terms. This can be done by testing the extend

by which the known shift vector between NNLO and NLO theory predictions

TNNLOi −TNLOi falls within the ellipsoid E. More in detail, we first normalize the

theory covariance matrix Sij to the NLO predictions, so that all its entries are
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Figure 5.2 Comparison of the experimental Cij (left) and the combined
experimental and theoretical correlation matrices Sij, All entries are
normalized to the central experimental value. The data are grouped
by process and, within a process, by experiment. Figure from ref. [9].

dimensionless allowing for a meaningful comparison

Ŝij = Sij/
(
TNLOi TNLOj

)
, (5.27)

and likewise we define a normalized shift vector as

δi =
(
TNNLOi − TNLOi

)
/TNLOi . (5.28)

The NNLO predictions used to define the shift δi are computed using the NNLO

matrix elements and anomalous dimensions but the same NLO PDF set used to

compute the NLO theory predictions. In this way the shift δi only accounts for

the perturbative effects due to NNLO corrections, without including additional

effects due to refitting. A first test to check whether the overall size of the scale

variation is of the right order of magnitude consists into comparing the diagonal

entries Ŝii = σ2
i to the normalized shift δi. This check is performed in fig. 5.3: in

all cases δi turns out to be smaller or comparable to σi, showing how the overall

size of the estimated uncertainties, obtained by varying the renormalization and

factorization scales by a factor two in either directions, gives a qualitative reliable

(if somewhat conservative) estimate of the true MHOU.

The validation of the full covariance matrix Ŝij requires some more work. In

order to identify the subspace S we diagonalize the matrix Ŝij, getting a set of
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Figure 5.3 The diagonal uncertainties σi (red) symmetrized about zero,
compared to the shift δi (black) for each datapoint. Figure from
ref. [9].

orthonormal eigenvectors eαi and the corresponding non-zero eigenvalues λα with

α = 1, ..., Nsub. There is also a set of Ndat −Nsub zero eigenvalues, corresponding

to eigenvectors spanning the space D/S. In general the shift vector δ will live in

the space D. For a successful test we expect most of δ to lie within S. In other

words, denoting as δs the projection of the shift over the subspace S

δsi =
∑

α=1,...,Nsub

δαeαi , (5.29)

we expect the angle θ between δ and δs

θ = arccos

(
|δs|
|δ|

)
(5.30)

to be reasonably small. This geometric relation is represented graphically in

fig. 5.4, where the space D is drawn as a three dimensional space and the subspace

S as a two dimensional space. For individual processes we find

θ = 3o, 14o, 22o, 32o, 16o

for top, jets, DY, NC and CC DIS respectively, while for the complete dataset we

find θ = 26o. It is clear from these numbers how processes with larger numbers of

data points, having a wider kinematic range and thus more structure to predict,

are much harder to describe than those with only few data, which translates into

bigger values of θ for bigger datasets. However in general the θ values we get for

each specific process and for the global dataset result reasonably small, validating

our definition and construction of a NLO theory covariance matrix.
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Figure 5.4 Schematic representation of the geometric relation between the shift
vector δ ∈ D (here drawn as a three dimensional space), and the
component δS of the shift vector which lies in the subspace S (here
drawn as a two dimensional space, containing the ellipse E defined
by the theory covariance matrix). The angle θ between δ and δS is
also shown. Figure from ref. [9].

5.4 NLO PDFs with missing higher order

uncertainties

In this section we present the first determination of the proton PDFs which

systematically accounts for MHOU, using the theory covariance matrix formalism

described in the previous sections. We will present only a NLO fit, leaving a full

NNLO analysis for a future work. Note that a NLO PDFs fit offers a nontrivial

validation of our methodology, by comparing the results with and without MHOU

to a standard NNLO PDF set (obtained starting from the same input datasets).

As discussed in sec. 5.1, the theory uncertainties are included by replacing

the experimental covariance matrix Cij with the sum Cij + Sij. The NNPDF

methodology described in chapter 3 is otherwise unchanged. It is then clear how

the inclusion of a theory-induced contribution in the covariance matrix affects

only two steps of the fit: the pseudodata generation and the definition of the χ2

to be minimized. In particular, denoting as D
(k)
i the k-th replicas for the i-th

datapoint entering the analysis, we will now have

lim
Nrep→∞

1

Nrep − 1

Nrep∑
k=1

(
D

(k)
i − 〈Di〉

)(
D

(k)
j − 〈Dj〉

)
= Cij + Sij , (5.31)

with 〈Di〉 denoting the average over the Nrep Monte Carlo pseudodata. Each
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PDF replica is then fitted by minimizing

χ2 =
1

Ndat

Ndat∑
i,j=1

(Di − Ti) (C + S)−1
ij (Dj − Tj) , (5.32)

where the theory predictions Ti are computed using the central scales choice. In

the following, in order to asses the fit quality and to study the impact of MHOUs

on the final PDF uncertainties, we will provide values for the total and partial

χ2 and for the estimator φ, defined in ref. [55] as

φ =
√
〈χ2

exp [T (k)]〉 − χ2
exp [〈T (k)〉] , (5.33)

where by χ2
exp

[
T (k)

]
we denote the value of the χ2 computed using the k-th

PDF replica and only including the experimental covariance matrix. The average

χ2 values entering eq. (5.33) are the χ2 averaged over the replicas and the χ2

computed using the central PDF, which is obtained as an average of all replicas.

As shown in app. A.2, eq. (5.33) can be written as

φ =

(
1

Ndat

Ndat∑
i,j=1

(C)−1
ij Tij

)1/2

, (5.34)

where Tij = 〈T (k)
i T

(k)
j 〉 − 〈T

(k)
i 〉〈T

(k)
j 〉. In words, φ gives the average over all the

datapoints of the ratio of the uncertainties of the predictions to the uncertainties

of the original experimental data, taking correlations into account. For a purely

diagonal covariance matrix, this would be the ratio of the uncertainty of the

predictions using the output PDFs to that of the original data. Note that φ is

defined in such a way that the uncertainty in the prediction is always normalized

to the experimental uncertainty, rather than to the combined experimental and

theoretical uncertainty. By comparing φ values for fits with and without MHOU

we can then get a quantitative idea of the effect of theory uncertainty on the final

PDF error.

In order to asses the effect of MHOU, in addition to fits with the theory covariance

matrix, two baseline NLO and NNLO fits based on the experimental covariance

matrix C only have been produced, using the same input datasets described in

sec. 5.3. As mentioned previously, including a new contribution to the covariance

matrix of the fit will affect both the PDFs central value and uncertainty. In order

to disentangle these two different effects, we also study PDFs determined by only

partially including the theory covariance matrix S in the analysis, either only in
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Label Order Cov. Mat. Comments

NNPDF31 nlo as 0118 kF 1 kR 1 NLO C baseline NLO

NNPDF31 nlo as 0118 scalecov 9pt NLO C + S

NNPDF31 nlo as 0118 scalecov 9pt fit NLO C + S S only in χ2 definition

NNPDF31 nlo as 0118 scalecov 9pt sampl NLO C + S S only in sampling

NNPDF31 nnlo as 0118 kF 1 kR 1 NNLO C baseline NNLO

Table 5.2 Summary of the PDF sets discussed in this section. The perturbative
order and nature of the treatment of uncertainties for each fit are
indicated.

the data generation or in the fitting. The PDF sets which will be discussed in

the following are reported in table 5.2. For each fit we indicate its label, the

perturbative order and the covariance matrix used.

The χ2 and φ values are shown in tables 5.3 and 5.4 respectively, for both

the total dataset and the individual processes of table 5.1. Considering the fit

where the theory covariance matrix is included in both the χ2 definition and

in the Monte Carlo replicas generation, for all the processes the χ2 decreases,

improving by about 3% when considering the total dataset. Additionally the

total χ2 almost coincides with the NNLO χ2, suggesting that indeed the theory

uncertainty is correctly accounting for the missing NNLO corrections. Looking

at the value of φ, we notice how, interestingly, this only increases by around 30%,

much less than what one might expect looking at the relative size of the NLO

MHOU and experimental uncertainties. These numbers suggest that the main

effect of the inclusion of the theory covariance matrix is that, in the data region,

tensions which are otherwise present in the global dataset due to the MHO are

partially resolved, leading to a better fit quality without any major effect on the

final PDFs error. Looking at the fits where the theory error is included in the

χ2 but not in the replicas generation, it is clear how the inclusion of the theory

covariance matrix in the χ2 definition only leads to a final χ2 value very close to

that of the fit where the MHOU are fully included. This means that, as we would

expect, the MHOU affect mostly the central value of the fit, since the relative

weight carried by each point is altered during the fit according to their relative

size of their MHOU. On the other hand, considering the case where the theory

covariance matrix is included only in the replica generation, the χ2 goes up and

φ increases dramatically, pointing out a much more prominent effect in PDFs
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χ2/ndat in the NNPDF3.1 global fits

Process ndat NLO NNLO

C C + S(9pt) C + S
(9pt)
fit C + S

(9pt)
sampl C

DIS NC 1593 1.088 1.079 1.081 1.227 1.084

DIS CC 552 1.012 0.928 0.929 1.036 1.079

DY 484 1.486 1.447 1.461 1.434 1.231

JETS 164 0.907 0.839 0.848 0.911 0.950

TOP 26 1.260 1.012 1.001 1.264 1.068

Total 2819 1.139 1.109 1.113 1.217 1.105

Table 5.3 The values of the χ2/Ndat in the NNPDF3.1 global fits with the theory
covariance matrix S, compared to the results based on including only
the experimental covariance matrix C. We also show results obtained
including the theory covariance matrix only in the χ2 definition but
not in the data generation and conversely. Values corresponding to
the NNLO fit with experimental covariance matrix C only are also
shown.

uncertainty. This behaviour is expected: due to the inclusions of MHOU in the

pseudodata generation, the replica fluctuations are wider, leading to an increase

in the PDFs error. Since the theory error is not included in the χ2, such increase

in the PDFs error is now uncompensated by a rebalancing of the datasets in the

fits.

In fig. 5.5 we show plots for the NLO PDFs of the gluon, the total quark singlet,

the anti-down quark and the strange, comparing results for fits based on C and

C+S. All the PDFs are plotted at Q = 10 GeV and normalized to the fit results

without MHOU. The central value of the NNLO fit based on the experimental

covariance matrix only is shown as well. We find that in the data region the

increase in PDF uncertainties is very moderate, while the central values can

be shifted by up to one sigma. On the other hand, in the regions where the

PDFs are loosely constrained by the experimental data, the PDF uncertainties

increases significantly. These features are in agreement with the observation

that the estimator φ, whose values are reported in table 5.4, increases only by a

moderate amount when including the theory error, and provide further evidence

that in the data region the inclusion of the theory covariance matrix has resolved
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φ in the NNPDF3.1 global fits

Process NLO NNLO

C C + S(9pt) C + S
(9pt)
fit C + S

(9pt)
sampl C

DIS NC 0.266 0.412 0.414 1.137 0.305

DIS CC 0.389 0.408 0.388 0.502 0.471

DY 0.361 0.377 0.378 0.603 0.380

JETS 0.295 0.359 0.336 0.461 0.392

TOP 0.375 0.443 0.382 0.612 0.363

Total 0.314 0.405 0.400 0.932 0.362

Table 5.4 Same as Table 5.3, but for the values of the φ estimator.

tensions due to MHO. This point can be further supported by observing the

improvement in the agreement between the best-NLO fit and the NNLO PDFs

(the latter with experimental covariance matrix only): looking at the central value

of the NNLO fit, first it is fully compatible with the uncertainty band of the NLO

fit, second it is evident how upon inclusion of the NLO MHOU the central best

fit moves towards the correct NNLO result. This is particularly evident in the

case of the gluon and of the strangeness, where inclusion of MHOU leads to a

suppression at large x of the first and to an enhancement in the whole x region

of the second.

Finally in fig. 5.6 we look at PDFs where the theory covariance matrix has been

included in the χ2 definition but not in the Monte Carlo replicas generation and

conversely. It is clear from the plots how, when S is included in the data replica

generation only, uncertainties increased significantly. This is in agreement with

the numbers observed in tables 5.3 and 5.4: the wider fluctuations in the data

generation are not matched by the χ2 definition, resulting in an overall bigger

error and a worse fit quality. On the other hand, when S is included only in the

χ2 definition, the effect of theory error on the central value of the fit is singled

out: the central value of the fit is very close to that obtained when including

the MHOU in both data generation and fit, and, consistently with table 5.4, the

change of the PDFs error in the data region is very small. This confirms our

previous statement according to which, while the addition of a theory covariance

matrix in replicas generation increases the fluctuations of the data replicas, this
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Figure 5.5 Results of the NLO fits based on C and C + S normalized to the
former, as well as the central value of the NNLO fit based on C
for the gluon, the total quark singlet, the anti-down quark, and the
strange PDFs, all at Q = 10 GeV.

is compensated by the inclusion of MHOU in the fit, which releases tensions

between dataset, with the net results that, while the central values are shifted,

the uncertainties in the data region do not increase much.

5.5 Usage and delivery

The PDFs with theory error can be used in the same way as a standard Monte

Carlo PDF sets. In this section we briefly discuss how to combine the PDF theory

error with that in the hard matrix elements, providing detailed instructions to

use the results presented in sec. 5.4.

The MHOU discussed here arise from the fact that the PDFs are determined

using finite order perturbative computations: parton distributions obtained by

using different perturbative orders in the computations for the input processes will

be different (so that for example NLO PDFs differ from NNLO PDFs), and the

formalism developed here provides a way to take this into account when working
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Figure 5.6 Same as fig. 5.5, now comparing the results of the baseline C +S fit
with those in which the theory covariance matrix S is included either
in the χ2 definition or in the generation of Monte Carlo replicas, but
not in both

at some finite order in perturbation theory. We have further seen how there exist

two distinct sources of MHOU in PDFs, the first due to the computation of the

hard cross-sections for partonic processes, the second due to the computation

of the anomalous dimension. Considering a factorized prediction for some other

process not used during the PDFs determination, an additional source of MHOU

is the computation of the hard process itself, which in turn will carry MHOU

related to the computation of the hard cross-section and MHOU related to the

evolution of the PDF from the initial scale (at which the PDFs are delivered)

to the scale of the process. In summary, each theory prediction for a factorized

cross section carry two different MHOU, a PDFs uncertainty, discussed in this

work, and an uncertainty arising in the calculation of the prediction itself. We

will ignore any possible correlation between these two different source of MHOU,

considering the two theory error as completely independent.

In the following we summarize our procedure to compute the total uncertainty for

a given factorized cross-section F . The PDF uncertainty σPDF
F can be evaluated

in the same way as usually done for a standard Monte Carlo PDFs set, as the
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standard deviation over the replicas set

σPDF
F =

(
1

Nrep − 1

Nrep∑
k=1

(
F
[
{q(k)}

]
− 〈F [{q}]〉

)2

) 1
2

. (5.35)

Considering the PDFs presented in this work, σPDF
F will account for uncertainties

related to both experimental data and MHO in the PDFs determination. On the

other hand, when eq. (5.35) is used with a standard PDFs set (like NNPDF3.1),

the resulting uncertainty only includes statistical and systematic errors from the

data. Turning to MHOU on the hard matrix element σth
F , this can be estimated

using any prescription preferred by the user. A commonly used procedure is given

by the 7-points scale variation presented in ref. [133]. Alternatively, one can use

the theory covariance matrix used for the PDFs determination: the uncertainty

on the cross-section F will be the corresponding diagonal entry of the covariance

matrix

σth
F = [SFF ]

1
2 , (5.36)

with the shift ∆ij computed for i = j = F . The PDF uncertainty eq. (5.35) and

the uncertainty on the hard matrix element eq. (5.36) can now be combined in

quadrature, giving the total uncertainty σtot
F for the cross section F

σtot
F =

((
σPDF
F
)2

+
(
σth
F
)2
) 1

2
. (5.37)
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6
Fitting the b-quark PDF as a massive-b scheme

It has been recently shown [48] that for accurate phenomenology at the LHC it is

advantageous to treat the charm parton distribution (PDF) on the same footing as

light-quark PDFs, namely, to parametrize it and extract it from data, rather than

to take it as radiatively generated from the gluon using perturbative matching

conditions. This is likely to be due to the fact that the matching conditions

eq. (2.69) are only known to the lowest nontrivial order, which may well be subject

to large higher order corrections, as revealed by the strong dependence of results

on the choice of matching scale. On top of this, of course, the starting low-scale

heavy quark PDFs could in principle also have a non-perturbative “intrinsic”

component [134, 135]. It is important to note that whether or not the heavy

quark PDF has a nonperturbative component, and whether it is advantageous to

parametrize the heavy quark PDF are separate issues: in fact in ref. [48] it was

shown that the main phenomenological advantage in parametrizing and fitting

the charm PDF comes from a region in which any nonperturbative contribution

to charm is likely to be extremely small.

The case of the bottom quark PDF is, in this respect, particularly interesting. On

the one hand, one may think that the problem of large higher order corrections to

the matching conditions is alleviated in this case by the larger value of the mass.

However, on the other hand, there is a more subtle consideration. Namely, there

are b-initiated hadron collider processes — some of which are especially relevant

for new physics searches — such as Higgs production in bottom fusion, for which

b quark mass effects might be non-negligible [136–138]. This suggests the use of

a scheme in which the b quark is treated as a massive final-state parton — hence

not endowed with a PDF. In such a scheme the b-induced process necessarily

starts at a higher perturbative order than in a scheme in which there exists a b

93



PDF, because the b production process is included in the hard matrix element.

As a consequence, the computation of the b-induced process itself is more difficult

and it can typically only be performed with a lower perturbative accuracy than

in a scheme in which the b quark is a massless parton.

The problem is somewhat alleviated if the massive-scheme and massless-scheme

computations are combined, with the b-PDF in the massless scheme assumed

to be produced by perturbative matching conditions. We henceforth refer to

such a computational framework as “matched-b”. However, in a matched-b

framework the massive computation is still beset by the need to start at high

perturbative order. As a possible way out, the use of a “massive five flavor

scheme” has been suggested recently [139, 140], in which there is a b PDF

(hence five flavors), yet b quark mass effects are included (possibly, at least in

part, also in parton showering). The use of an independently parametrized b

quark PDF within a framework in which massive and massless computations are

combined offers a simpler way of dealing with the same problem. We refer to

this as a “parametrized b” computational framework. Such an approach has been

developed for electroproduction in refs. [141, 142], and it has been used in order

to produce PDF sets with parametrized charm [48, 143], including the recent

NNPDF3.1 set. Because the only data currently used for PDF determination

in which heavy quark mass effects have a significant impact are deep-inelastic

scattering data close to the charm production threshold, in these references only

electroproduction was considered and only the parametrization of the charm was

studied.

In these previous studies, an independently parametrized heavy quark PDF is

included in the FONLL method [43], which, as discussed in sec. 2.4, allows for

the matching of a scheme in which the heavy quark mass is included but the

heavy quark decouples from QCD evolution equations, and a massless scheme in

which the heavy quark mass is neglected, but the heavy quark PDF couples to

perturbative evolution. In this parametrized heavy quark version of the FONLL

scheme, the heavy quark PDF is present both in the massive and massless scheme,

though decoupled from evolution in the massive scheme; unlike in conventional

matched heavy quark computations in which the number of PDFs is different,

with one more PDF in the massless scheme. The rationale for FONLL with a

parametrized heavy quark is to simultaneously include heavy quark mass effects

at lower scales and the resummation of collinear mass logarithms in the heavy

quark PDFs at higher scales. This has the important byproduct that one ends
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up with a computational framework in which there are heavy quarks in the initial

state even in the scheme in which mass effects are retained.

Therefore, in a parametrized-b FONLL framework, problems related to the fact

that the relevant processes in a massive scheme start at higher order is thus

completely evaded, since the heavy quark PDF is always present. Mass effects

are then included to finite perturbative order, along with the resummation of mass

logarithms, though (unlike in some “massive five-flavor scheme”) mass corrections

to resummed perturbative evolution are not included. On the other hand, any

possible nonperturbative corrections to the b PDF, including, say, the effective

value of the b mass at which the matching should happen, are then included in

the PDF itself and thus extracted from the data.

In this chapter, following ref. [10], we explicitly construct the parametrized-

b FONLL method, by generalizing to hadronic processes the construction of

refs. [141, 142] of FONLL with parametrized heavy quark PDF. We specifically

consider the application to Higgs production in bottom fusion. This process has

been computed at the matched level both using the FONLL method [45, 144]

and EFT-based methods [145, 146], with the respective results benchmarked

in ref. [133] and found to be in good agreement with each other. All these

computations were performed in a matched-b approach, in which the b PDF is

absent in the massive (four-flavor) scheme, and determined by matching condition

in the massless (five-flavor) scheme. Here we take this process as a prototype for

the use of a parametrized-b scheme for hadron-collider processes.

First, we discuss how the counting of perturbative orders changes in the presence

of a parametrized-b PDF, and redefine suitable matched schemes based on this

new counting. We then work out the generalization to hadronic processes of

FONLL with parametrized heavy quark PDF of refs. [141, 142], we discuss in

which sense it effectively provides an alternative to the massive five-flavor scheme,

and then we work out explicit expressions for Higgs production in bottom fusion

to the matched next-to-leading order - next-to leading log (NLO-NLL) level and

NLO-NNLL level. We finally compare predictions obtained within this approach

with some plausible choices of the b-quark PDF to those obtained in the approach

of refs. [45, 144], and argue that results with similar or better phenomenological

accuracy can be obtained in a much simpler way within this new approach.
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6.1 The FONLL scheme with parametrized heavy

quark PDF in hadronic collisions

Even though we have the general goal of constructing a parametrized-b FONLL

scheme for hadronic processes, we always specifically refer to Higgs production

in gluon fusion, in order to have a concrete reference case, and test scenario. We

recall that, as discussed in sec. 2.4, the FONLL method matches two calculations

of the same process performed in two different renormalization schemes: a massive

scheme in which the heavy quark mass is retained, but the heavy quark decouples

from the running of αs and from QCD evolution equations, and a massless scheme

in which the heavy quark contributes to the running of αs and QCD evolution

equations, but the heavy quark mass is neglected. In the computation of a hard

process at scale Q2, in the former scheme mass effects O
(
m2
b

Q2

)
are retained, but

mass logarithms ln Q2

m2
b

are only kept to finite order in αs (where mb denotes

generically the mass of the heavy quark). In the latter scheme, mass effects

are neglected but mass logarithms are resummed to all orders in αs. Hence by

matching the two calculations one retains accuracy both at low scales where quark

mass effects are important, and at high scales where mass logarithms are large.

The general idea of the FONLL method is to realize that these are just two

different renormalization schemes: the massive scheme is a decoupling scheme,

and the massless scheme is a minimal subtraction scheme. So the two calculations

can be simply matched by re-expressing both in the same renormalization scheme

using eqs. (2.68), (2.69) and then subtracting common contributions. In practice,

this is done by expressing the massive scheme computation in terms of the PDFs

and αs of the massless scheme, and then adding to it the difference σd between

the massless calculation and the massless limit of the massive one. Schematically

σFONLL = σmassive + σd (6.1)

σd = σmassless − σmassive, 0. (6.2)

This corresponds to replacing all the terms in the massless computation which

are included to finite order in αs in the massive computation with their massive

counterpart.

In the simplest (original) version of FONLL, as discussed in ref. [43] for b

production in hadronic collisions, and in ref. [44] for deep-inelastic scattering,
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Figure 6.1 Feynman diagrams for the leading (left) and next-to-leading order
real emission contributions to Higgs production in bottom fusion
which are present in the massive scheme when the b quark PDF
is independently parametrized, but absent otherwise.

in the massive scheme there is no heavy quark PDF, and the heavy quark can

only appear as a final-state particle. In the massless scheme the heavy quark

PDF is determined by matching conditions in terms of the light quarks and the

gluon. These conditions match the massless scheme at a scale µ such that the

heavy quark PDF only appears for scales above µ. Specifically, at order O(αs),

the heavy quark PDF just vanishes at the scale µ = mb and it is generated by

perturbative evolution at higher scales, while at O(α2
s) it has a nontrivial gluon-

induced matching condition at all scales.

When introducing a parametrized PDF both the massive and massless scheme

computations change. The massless scheme changes, somewhat trivially, in that

the heavy quark PDF, at the matching scale, instead of being given by a matching

condition, is freely parametrized. The massive scheme changes nontrivially in that

there is now a heavy quark PDF also in this scheme, only it does not evolve with

the scale. The consequences of this were worked out in refs. [141, 142] in the case

of electroproduction, and we study them here for hadroproduction for the first

time.

6.1.1 Perturbative ordering

Because there is now a b PDF also in the massive scheme, the counting

of perturbative orders in this scheme changes substantially. Specifically, for

Higgs production in bottom fusion the diagrams of fig. 6.1 are present only

when the b PDF is independently parametrized. This means that while in

the massive scheme the process in the matched-b approach of refs. [45, 144]

starts at O(α2
s), in a parametrized-b approach it starts at O(α0

s). As discussed

in detail in refs. [44, 45, 144], the FONLL method allows the consistent

combination of computations performed at different perturbative orders either in
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the massive or massless scheme: various combinations were defined and discussed

in refs. [45, 144] for Higgs production in bottom fusion.

With the new counting of perturbative orders which is relevant for a parametrized-

b framework it is convenient to define some new combinations. We consider in

particular the combination of the massive scheme O(αs) computation with the

standard five-flavor scheme next-to-leading log (NLL) and next-to-next-to-leading

log computations. We call these combinations respectively FONLL-AP (hence

corresponding to NLO-NLL) and FONLL-BP (corresponding to NLO-NNLL).

6.1.2 Parametrized-b FONLL

The construction of the parametrized-b FONLL for hadronic processes closely fol-

lows the corresponding construction for electroproduction, presented in refs. [141,

142], to which we refer for more details. In comparison to the matched-b FONLL

of refs. [45, 144] the massive scheme contribution to eq. (6.1) includes an extra

contribution:

σFONLLP = σFONLLM + δσP

δσP = σmassive
P − σmassive,0

P , (6.3)

where σmassive
P is the massive-scheme contribution to the given process with

initial-state heavy quarks and σmassive,0
P its massless limit (which subtract its

double counting with the massless-scheme contribution). This massive scheme

contribution has to be re-expressed in terms of massless-scheme PDFs, as

explained in detail in refs. [43–45, 141, 142, 144].

For Higgs production in bottom fusion, up to NLO, this extra contribution is

given by the real diagrams of fig. 6.1, supplemented by the corresponding virtual

correction and thus it has the form

δσmassive
P

(
m2
H

m2
b

)
= 2

∫ 1

τ0

dx

x

∫ 1

τ0
x

dy

y2

f
(4)
b (x) f

(4)

b̄

(
τ0

xy

)[
σ

(4),(0)

bb̄

(
y,
m2
H

m2
b

)
+ αs σ

(4),(1)

bb̄

(
y,
m2
H

m2
b

)]
+ 4αs f

(4)
b (x) f (4)

g

(
τ0

xy

)
σ

(4),(1)
bg

(
y,
m2
H

m2
b

)
,

(6.4)

where the subscript P denotes the fact that this contribution is only present
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when the b PDF is independently parametrized, and the superscript (4) is

used to denote the massive factorization scheme, as in refs. [45, 144]. Note

that even though, with a parametrized b there are five flavors also in the

massive scheme, only the four lightest ones contribute to the running of αs and

perturbative evolution. The massive cross-sections σ
(4),(k)
ij were computed e.g. in

ref. [139] based on corresponding QED results from ref. [147] and are collected in

appendix D.2 after scheme change as we discuss below.

Note that in the matched-b computation of ref. [45, 144] this process in the

massive scheme starts at O(α2
s), hence up to NLO (with our new counting) the

contribution given in eq. (6.4) is the only one to σmassive eq. (6.1): so in actual

fact in this case

σmassive,NLO = σmassive,NLO
P . (6.5)

The expression of σmassive,NLO suitable for use in the FONLL formula eq. (6.1)

is obtained, as mentioned, by re-expressing the massive scheme PDFs and αs in

terms of massless-scheme ones. For simplicity we assume that this is done at a

matching scale µb = mb. The matching condition for αs is, as well known,

α(4)
s (Q2) = α(5)

s (Q2)

[
1 − αs

TR
2π

log
Q2

m2
b

+O(α2
s)

]
(6.6)

while to O(αs) the only nontrivial matching condition is that for the b PDF:

f
(4)
b (x) = f

(5)
b (x,Q2)− αs

∫ 1

x

dz

z

[
K

(1)
bb

(
z,Q2

)
f

(5)
b

(x
z
,Q2

)
+K

(1)
bg (z,Q2) f (5)

g

(x
z
,Q2

)]
+O(α2

s),

(6.7)

where again the superscripts (4) and (5) denote respectively the massive- and

massless-scheme expressions, and Kij are the matching coefficients

f
(5)
i (Q2) =

∑
j

Kij(Q
2)⊗ f (4)

j (Q2), (6.8)

where the sum runs over all partons (including the heavy quark), and

Kij(Q
2) = δijδ(1− z) +

∑
n=1

αns (Q2)K
(n)
ij (Q2). (6.9)

Note that, of course, since there is a heavy quark PDF also in the massive scheme,

Kij is a square matrix, so that, to O(αs), K
−1
ij (Q2) = δij − αs(Q2)K

(1)
ij (Q2). The
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matching function K
(1)
bb was calculated in ref. [148]. Its explicit expression is given

for ease of reference in appendix D.1 together with that of the splitting functions

Pij.

Substituting eqs. (6.6-6.7) in eq. (6.4) we get the desired expression for the

massive-scheme cross section:

σmassive
P

(
m2
H

m2
b

)
=

∫ 1

τH

dx

x

∫ 1

τH
x

dy

y2∑
ij=b,g

f
(5)
i (x,Q2)f

(5)
j

(
τH
xy
,Q2

)
Bij

(
y, α(5)

s (Q2),
Q2

m2
b

)
,

(6.10)

where to O(αs) the non-vanishing coefficients are

B
(0)

bb̄

(
y,
m2
H

m2
b

)
= σ

(4),(0)

bb̄

(
y,
m2
H

m2
b

)
(6.11)

B
(1)

bb̄

(
y,
m2
H

m2
b

)
= σ

(4),(1)

bb̄

(
y,
m2
H

m2
b

)
− 2σ0

∫ 1

y

dz z δ(z − y)K
(1)
bb

(
z, ln

m2
H

m2
b

)
(6.12)

B
(1)
bg

(
y,
m2
H

m2
b

)
= σ

(4),(1)
bg

(
y,
m2
H

m2
b

)
− σ0

∫ 1

y

dz z δ(z − y)K
(1)
bg

(
z, ln

m2
H

m2
b

)
, (6.13)

whose explicit expressions are collected, as mentioned, in appendix D.2.

In order to construct the FONLL expression eq. (6.1), the massive scheme

contribution must be combined with the difference term σd eq. (6.2). However, it

is easy to check that, just like in the case of electroproduction[141, 142], this term,

which is subleading when using matched b, vanishes identically with parametrized

b. This is due to the fact that the massless limit of the massive-scheme calculation

only differs from the massless-scheme calculation because of the resummation of

mass logarithms ln Q2

m2
b

beyond the accuracy of the massive-scheme result (so at

O(α2
s) and beyond, in our case). However, when re-expressing the massive-scheme

calculation in terms of massless-scheme PDFs the evolution of the b-PDF is only

removed up to the same accuracy as that of the massive scheme calculation. This

is seen explicitly in eq. (6.7), in which mass logarithms ln Q2

m2
b

are only removed

up to O(αs). Therefore, the higher order logarithms remain unsubtracted in the

expression of f
(5)
b (x,Q2) and thus cancel exactly between σmassless and σmassive, 0.
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The FONLL result thus reduces to the expression eq. (6.10):

σFONLL-AP = σmassive
P

(
m2
H

m2
b

)
. (6.14)

We can thus write the FONLL result in the form

σFONLL-AP =
∑
i,j

∑
l,m

σmassive
ij

(
m2
h

m2
b

)
⊗K−1

il ⊗ f
(5)
l

(
Q2
)
K−1
jm ⊗ f (5)

m

(
Q2
)
, (6.15)

where K−1
il is the inverse of the matching matrix defined in eq. (6.6), pertur-

batively defined order by order according to eq. (6.9). This is of course well

defined with a parametrized b because Kij is a square matrix. As discussed in

detail in refs. [141, 142] the effect of the inverse matching matrices in eq. (6.15)

is to remove collinear logarithms related to the evolution of the b PDF from

the massless scheme PDFs f
(5)
i , since these are already included in the massive-

scheme matrix cross-section σmassive
ij , where they would appear as mass logarithms

ln Q2

m2
b

in the large Q2 limit (in actual facts here Q2 = m2
H). As a consequence, the

result eq. (6.15) is completely independent of the matching scale mb (i.e. the scale

at which the b PDF is parametrized), as it must be, given that once the b PDF

is parametrized there is no matching scale left. We will check this cancellation

explicitly (see fig. 6.2 below).

Eq. (6.15) shows that FONLL effectively acts as a massive five-flavor scheme, in

which standard five-flavor PDFs are combined with the massive-scheme cross-

section, with massive quarks included in the initial state: it is in fact akin to five-

flavor scheme of ref. [139], though in this reference mass effects are also included

in parton showering, which we do not consider here. In FONLL corrections are

consistently included to the order at which the massive-scheme cross-section is

computed, with collinear and mass logarithms resummed to the logarithmic order

to which PDFs are used. The structure of the result eq. (6.15) is universal, and

so are the PDFs which appear in it. Therefore, to the extent that the PDF is

correctly fitted, mass corrections (i.e. all terms suppressed by powers ofmb/Q) are

then fully included up to the order of the massive-scheme calculation: O(αs) for

FONLL-AP and FONLL-BP. Of course these latter corrections are not universal

and will have to be computed separately for each process.

As mentioned, the FONLL framework allows for the combination of massive-

and massless-scheme computations performed at arbitrary, independent accuracy.

We discuss specifically the two cases defined in sect. 6.1.1, FONLL-AP and
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FONLL-BP. In FONLL-AP, the massive-scheme partonic cross sections σmassive
ij

are computed up to NLO (i.e. O(αs)), while the PDFs are evolved using NLO

(more properly, NLL) evolution equations. Hence, in this case eq. (6.15), with

σmassive
ij computed up to O(αs) (i.e. including the diagrams of fig. 6.1), and NLO

PDFs.

In FONLL-BP, the massive-scheme computation is still performed up to NLO, but

now the massless-scheme computation is performed up to NNLO. This has two

consequences. The first is that NNLO PDFs are now used. The other is that hard

cross-sections are now computed up to NNLO i.e. up to O(α2
s). Because massive

terms are included only up to O(αs), eq. (6.15) must now be supplemented by a

purely massless O(α2
s) contribution:

σFONLL-BP = σFONLL-AP +
∑
l,m

σ
(5),(2)
lm ⊗ f (5)

l

(
Q2
)
f (5)
m

(
Q2
)
, (6.16)

where σFONLL-AP is given by eq. (6.15). Note that because the matching functions

K−1
ij are used to re-express the massive-flavor scheme cross-section in the massless

scheme, they are accordingly computed to the same accuracy as the massive-

scheme partonic cross-section itself: so here to O(αs). The difference term

σd eq. (6.2) always vanishes identically. It is clear that the computation is

considerably streamlined in comparison to the standard FONLL framework of

refs. [45, 144].

6.2 Higgs production in b fusion

We now present explicit results for Higgs production in b-quark fusion within the

FONLL-AP and FONLL-BP scheme, and compare them to previous results of

refs. [45, 144]. Results presented in this section are obtained using the following

set-up. For the calculation of the 5F scheme coefficient functions, we use the

interface to the bbh@nnlo code [149] as implemented in the public bbhfonll

code [150]. The subtraction terms needed for the FONLL-B calculation of

refs. [45, 144] is obtained using bbhfonll. The standard contributions to the

4F scheme are computed using the MG5 aMC@NLO package [151, 152], while

we have implemented the new terms δσmassive
P eq. (6.4) and their massless limit in

a new version of bbhfonll, following the expressions reported in appendix D.2.

Both codes use the LHAPDF [153] package.
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We use the NNPDF3.1 NNLO set of parton distributions with αs(Mz) =

0.118 [48]. For a first default comparison we just use the default NNPDF3.1

set, including the b PDF. From the point of view of a computational framework

in which the b PDF is fitted, this can be thought of as the b PDF that one would

get if initial PDFs were parametrized at Q0 = mb, and the fitted b PDF were to

turn out to be exactly equal to that given by the matching condition at this scale.

Furthermore, in order to get a feeling for effects related to the size of the b-PDF

we then consider, for the sake of argument, a b PDF equal to that which would

be obtained by using the matching condition at µb = 2/3mb or µb = 1/2mb, and

then evolving up to Q = mb where the initial PDF is given.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
b/mb

0.2

0.3

0.4

0.5

0.6

0.7

(
b,

R,
F
=

(m
H

+
2m

b)
/4

) [
pb

]

b
=

m
b

5F
NNLO
massive
P
massive, 0
P

FONLL BP

FONLL AP

Figure 6.2 Cancellation of the dependence on the matching scale in the FONLL-
AP and FONLL-BP schemes.

First, as a consistency check, in fig. 6.2 we verify that indeed the dependence on

µb cancels when constructing the FONLL result with parametrized b according

to eq. (6.3). In this figure the massive-scheme result has been constructed using

a fixed b PDF (that which corresponds to the standard matching condition at

µb = mb) and then re-expressing results in terms of the massive scheme PDFs and

αs in terms of massless-scheme ones. This is done using eq. (6.8), which contains

the matching coefficients Kij which depend on the matching scale µb, and thus the

massive-scheme result becomes µb-dependent. However, this dependence cancels

exactly in the final FONLL result.

In fig. 6.3 we show the factorization and renormalization scale dependence of the

cross-section computed in various schemes, with the other scale kept fixed at the

preferred [45, 144] value µ = mH+2mb
4

. Specifically, we compare results obtained

using the FONLL-AP and FONLL-BP schemes discussed above, the pure five-
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Figure 6.3 Renormalization (left) and factorization (right) scale variation of
the cross-section for Higgs production in bottom fusion. The pure
five-flavor scheme computation is compared to the FONLL-AP and
FONLL-BP results presented here and to the FONLL-B result of
ref. [45]. For the pure five flavor NNLO and the FONLL-BP three
curves are shown, corresponding to three choices of initial b PDF
(see text).

flavor scheme , and the FONLL-B result of ref. [144], all using the same PDFs

(including the b PDF) as discussed above. For the pure five-flavor scheme and for

FONLL-BP we also show the three curves corresponding to the three different

choices for the b PDF discussed above, with a corresponding band: the central,

thick, solid line represents the default µb = mb choice, while the edges of the band

are drawn with dot-dash curves with decreasing thickness, with the thicker of the

two corresponding to µb = 2mb
3

, and the other two µb = mb
2

.

Note that the FONLL-BP computation eq. (6.16) and the FONLL-B result [144]

are directly comparable: indeed, they both include the five-flavor scheme

computation up to NNLO, and combine it with the first two orders of the massive-

scheme computation. The difference is that in FONLL-B in the massive-scheme

computation refers to the process gg → bb̄H, while in FONLL-BP it refers to

bb̄ → H. If the b PDF is the same as given by perturbative matching, the

difference is then only that, in the latter case, only mass effects related to the bb̄

which fuses into the Higgs are included, while in the former, also those related

to the further unobserved bb̄ pair are present. In a realistic situation, in which

FONLL-BP is used while parametrizing and fitting the b PDF these mass effects

should be reabsorbed in the fitted b PDF. In our comparisons, they appear as

a certain enhancement of FONLL-BP in comparison to FONLL-B due to the

opening of phase space.
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Otherwise, the qualitative features of the comparison between FONLL and the

pure five-flavor scheme remain essentially the same as discussed in ref. [144]:

FONLL is quite close to the five-flavor scheme, with mass effects a non-negligible,

but small, positive correction. Indeed, the difference between FONLL-AP and

FONLL-BP, i.e., the impact of NNLO corrections in the five-flavor scheme, is

much more significant than that of mass corrections. The impact of varying the b

PDF by an amount which is comparable to a reasonable variation of the matching

scale is clearly comparable to that of the mass corrections. This provides evidence

for the fact that fitting the b PDF is likely to have a significant impact on precision

phenomenology.

Note that results for the FONLL-B scheme differ at the percent level from those

of ref. [144] because there a different PDF set and mb value were used, for the

sake of benchmarking with ref. [145, 146]. This further highlights the fact that

the size of effects due to the b PDF is comparable to that of mass corrections.

In summary, we have shown how the FONLL matching of massive- and massless-

scheme treatment of computations involving heavy quarks can be generalized

to the case in which the heavy quark PDF is freely parametrized for hadronic

processes. We have show that this effectively provides us with a massive heavy

quark scheme, in which the heavy quark is endowed with a standard PDF

satisfying QCD evolution equations, yet it is treated as massive in hard matrix

elements. A first application to Higgs production in bottom fusion shows that

effects related to the b PDF (whose size is estimated by the pink band of fig. 6.3)

are quite likely to be comparable to mass corrections (whose size is given by the

difference between the FONLL-B and 5FS results plotted in fig. 6.3): both are

small, but non-negligible corrections to a purely massless NNLO calculation in

which the b PDF is obtained from perturbative matching conditions. Determining

the b PDF from data is thus likely to be necessary for a description of b-induced

hadron collider processes at percent or sub-percent accuracy.

As a direction for further study, it should be noticed that extending our results

to NNLO — thereby allowing the construction of a FONLL-CP result, in

the terminology of sec. 6.1.1 (NNLO+NNLL) — is beyond current knowledge.

Indeed, starting at NNLO the cancellation between real and virtual corrections is

no longer trivial, and is spoiled by massive quarks in the initial state [154, 155].

This problem has been recently revised in ref. [156]. Hence, such an extension

to NNLO would require conceptual advances in the understanding of QCD

factorization in the presence of massive quarks, which are left for future studies.
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7
PDFs from lattice data: theoretical framework

Given the central role parton distributions have in the analysis of experimental

data at hadronic colliders, it would be highly beneficial to be able to use

lattice QCD to determine these crucial ingredients in our current understanding

of nucleon structure. The non-perturbative nature of PDFs makes them a

natural candidate for a lattice investigation, however it has been known for a

long time that it is not possible to obtain them directly from first principle

computations, due to the Euclidean metric of the lattice, which does not allow

to access the light-cone matrix element of eq. (2.26). To overcome this issue,

several methods have been recently formulated, and in recent years, there has

been a significant effort within the lattice community to study and compute

specific Euclidean quantities that, in turn, can be related to PDFs through a

factorization theorem. Two examples of these are quasi-PDFs1 and pseudo-

PDFs. They were introduced in refs. [159, 160], and since then numerous

publications have appeared, addressing the main theoretical issues for these

approaches: the definition and renormalization of the non-local operators involved

in the lattice simulation [161–171], the proof of the factorization theorem between

PDFs and Euclidean matrix elements [157, 172–176], the computation of the

matching coefficients relating lattice-computable quantities to PDFs in different

renormalization schemes [172, 173, 175–184]. For recent reviews, we refer the

reader to refs. [158, 185–190].

This program has often been referred to as the “first principles computation of

PDFs”, generating different reactions among the lattice and high-energy physics

communities: on the one hand it has been welcomed with enthusiasm, triggering

1Quasi-PDFs are one example of the more general LaMET formalism [157, 158], but here
we focus on the collinear x-dependent distributions.
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several dedicated studies; on the other hand it has been criticized in refs. [191,

192] on the basis that equal-time correlators do not give access to the full non-

perturbative PDF. Both reactions are healthy and show the importance of the

original proposal in [159]. This criticism mentioned above has, in turn, been

addressed in refs. [169, 193]. Given the increasing number of lattice calculations,

there is a need to revise and clarify the main conceptual questions: that is, how

do we extract information on PDFs from quasi- and pseudo-PDFs, and what is

the interplay between quasi- and pseudo-PDFs with experimental data?

In this chapter, following ref. [11], we introduce and study these topics in the

context of a renormalizable scalar theory, setting the stage for the phenomeno-

logical studies presented in the next two chapters. Scalar field theory is a valuable

model for understanding the essential theoretical issues in a simple framework,

as shown in the pioneering study of PDFs by Collins in ref. [4]. We follow the

ideas presented there, which we extend to account for quasi- and pseudo-PDFs.

Our aim is to investigate, clarify and highlight some subtle points using scalar

field theory as a simple playground, and to assess how the lattice QCD results

that are currently available can be used to extract PDFs.

We will consider a massive scalar field theory, with a φ3 interaction term in d = 6

dimensions, in order to have a marginal interaction. The bare Lagrangian L is

given by

L =
1

2
(∂φ)2 − m2

2
φ2 − g

3!
φ3. (7.1)

Working within this model allows us to analyze the conceptual framework

for quasi- and pseudo-PDFs in a clean and straightforward way, avoiding

complications associated with QCD that are unnecessary for understanding the

basics of these approaches. We focus in particular on the matrix element of a

field bilinear between “nucleon” states:

M = 〈P |φ (z)φ (0) |P 〉 , (7.2)

when the separation z between the fields is either light-cone like, z2 = 0, or purely

spatial, z2 = −z2
3 . In the first case, we obtain the matrix element that underlies

the formal definition of collinear PDFs [4, 5], which are obtained as the Fourier
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transform along a light-cone direction of the matrix element in eq.(7.2) 2:

f(x) = xP+

∫
dz−

2π
e−ixP

+z− 〈P |φ (z)φ (0) |P 〉 , (7.3)

where P+ and z− are the usual light-cone coordinates of the four-vectors P and

z respectively. Eq. (7.3) is the scalar analogous of eq. (2.26), giving the PDF

definition in QCD. In the second case we obtain an equal-time correlator that can

be computed on the lattice. We address the problem of the renormalization of

these quantities and study the relation between them at one loop in perturbation

theory, both in position and momentum space. As we shall see, the main features

of the computation are the same as in QCD. This allows us to understand

easily the main concepts, relations and limitations of the quasi- and pseudo-

PDF approaches. With a clear picture of the theoretical background and of what

is currently available in the literature, we then propose a general framework to

extract collinear PDFs from the available lattice data, based on the optimization

of a parametric form of the PDFs within the NNPDF framework. Such program is

carried on in chapters 8, 9.

We address, in turn, a number of questions that have been raised in the context of

QCD, and analyze the lessons that we can draw from the scalar model. First we

discuss issues that are related to the analysis of ultraviolet (UV) divergences of

the bilinear operator and their subtraction through the renormalization process.

In particular in sec. 7.1 we perform the computation of M in the case of a

light-cone separation, recovering the results of ref. [4] through a position space

calculation. In sec. 7.2 we perform the same exercise outside the light-cone,

choosing a purely spatial separation between fields, and we discuss the main

differences with respect to the light-cone case. In both cases, we define quantities

that are free of divergences when the regulator is removed, and then focus on the

relation between light-cone and equal-time correlators. In sec. 7.3 we work out

this relation explicitly at one loop in perturbation theory, and analyze the limits

leading to a factorization theorem, in both position and momentum space, and

in sec. 7.4 we extend the discussion to include smeared equal-time correlators. In

sec. 7.5 we summarize, discuss how these ideas can be used in a fitting framework

to extract PDFs, and draw our conclusions. In app. E we report the technical

details of the computations and we address the objections raised in refs. [191, 192].

2The field bilinear needs to undergo a proper renormalization, which we explore in detail in
this Chapter.
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7.1 Light-cone separation

As stressed in ref. [160], the matrix element defined in eq. (7.2) is a function of

the Lorentz invariants z2 and ν = P · z, the “Ioffe time”, so that we can write

M = M (ν, z2). In this section we focus on the perturbative renormalization of

M (ν, z2) at the one-loop level, in the light-cone separation case, z2 = 0. We

work in perturbation theory, denoting the bare field of our theory as φ, and we

consider partonic matrix elements

M̂
(
ν, z2

)
= 〈p|φ (z)φ (0) |p〉 (7.4)

between on-shell quark states with four-momentum p, with p2 = m2
pole.

Throughout this calculation, we denote partonic quantities with a “hat”, while

the lower-case p refers to the momentum of the parton. In what follows the

Lorentz invariant ν is defined as ν = p · z. Restricting ourselves to the case for

which z0 > 0, we have

M̂
(
ν, z2

)
= 〈p|T [φ (z)φ (0)] |p〉

= lim
p2→m2

pole

(
p2 −m2

pole + iε
)2
∫
dz1 dz2 e

−ip·z1eip·z2 〈0|T [φ (z)φ (0)φ (z1)φ (z2)] |0〉 ,

(7.5)

where m2
pole is defined by the location of the pole in the scalar propagator, and

can be computed at each order in perturbation theory. At tree level we have

m2
pole = m2, while in general m2

pole −m2 = O (g2).

When computing the 4-point function entering eq. (7.5), we will not consider

diagrams like those in fig. 7.1. Following ref. [4], we are only interested in the

contribution proportional to exp(−ip · z), and therefore discard topologies like

the one in diagram (a). Diagram (b) is removed by considering the connected

contribution only.

Therefore the only Feynman diagrams contributing to eq. (7.5) up to one-loop

order are those shown in fig. 7.2. Denoting the propagator in position space as

〈0|T [φ (x)φ (y)] |0〉 = φxφy , (7.6)

the Wick contraction that contributes to the tree level diagram (a) of fig. 7.2 is
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Figure 7.1 Contractions that are not considered in the present discussion.
Diagram (a) is excluded when considering contributions proportional
to exp(−ip · z), while diagram (b) cancels when looking at the
connected correlator.
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Figure 7.2 Feynman diagrams up to one loop for the matrix element
〈0|T [φ (z)φ (0)φ (z1)φ (z2)] |0〉.

given by

φzφz1φz2φ0 =

∫
l1

i e−il1·(z−z1)

l21 −m2 + iε

∫
l2

i e−il2·z2

l22 −m2 + iε
, (7.7)

where we use the notation ∫
k

=

∫
ddk

(2π)d
. (7.8)

Plugging eq. (7.7) in eq. (7.5) we obtain the tree level expression for M̂ (ν, z2)

M̂(0)
(
ν, z2

)
= −e−iν ≡ M̂(0) (ν, 0) . (7.9)

Note that the tree level result does not depend on the invariant separation z2 and

therefore we can set z2 = 0 in the second equality above.

At one-loop order the self-energy diagram (b) yields the mass and wave function
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renormalization. Its contribution to eq. (7.5) is

M̂self

(
ν, z2

)
= RM̂(0) (ν, 0) , (7.10)

where R is the O (g2) contribution to the residue of the propagator at the pole

mass. In d = 6− 2ε dimensions, we have

R =
dΠ (l2)

dl2 l2=p2pole

= α

[
1

12
log

m2

µ2
+

1

12

1

ε
+
b

2

]
, (7.11)

where b/2 is a finite contribution and α = g2/(64π3). The same O (α)

contribution is obtained from the diagram with the self energy corrections on

the second leg, so that the total contribution coming from the tree level plus

self-energy corrections is

M̂self

(
ν, z2

)
=

[
1 + α

(
1

6
log

m2

µ2
+

1

6

1

ε
+ b

)]
M̂(0) (ν, 0) +O

(
α2
)
. (7.12)

Note the absence of any z2 dependence: as far as the first two diagrams of fig. 7.2

are concerned, there are no differences between the light-cone and the pure spatial

case. This is to be expected, since the one-loop diagrams (b) simply implement

the mass and wave function renormalization.

We can now move to the computation of the remaining O (α) term, i.e. diagram

(c). This contraction is given by∫
dw1 dw2 φzφw1φw1

φz1φw2
φw1φw2

φ0φz2φw2 =

= (−ig)2

∫
dw1 dw2

∫
l1

ie−il1·(z−w1)

l21 −m2 + iε

∫
l2

ie−il2·(w1−z1)

l22 −m2 + iε

∫
l3

ie−il3·(w2−w1)

l23 −m2 + iε
×

×
∫
l4

ie−il4·w2

l24 −m2 + iε

∫
l5

ie−il5·(z2−w2)

l25 −m2 + iε
. (7.13)

Plugging this into eq. (7.5), we have

M̂(1)
(
ν, z2

)
= −i g2

∫
k

e−ik·z

(k2 −m2 + iε)2

1

(p− k)2 −m2 + iε

= g2

∫ 1

0

dξ (1− ξ)K
(
z2,M2

)
M̂(0) (ξν, 0) , (7.14)
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where we have introduced a Feynman parameter ξ and defined

K
(
z2,M2

)
= 2i

∫
q

e−iq·z

(q2 −M2 + iε)3 , (7.15)

with

q = k − ξp , (7.16)

M2 = m2
(
1− ξ + ξ2

)
. (7.17)

The integral K (z2,M2) can be computed by performing a Wick rotation zµE =

(iz0, ~z) and using

1

(q2
E +m2)

α =
1

Γ (α)

∫ ∞
0

dT Tα−1e−T(q2E+m2) . (7.18)

We obtain

K
(
z2,M2

)
= 2

∫
ddqE

(2π)d
eiqEzE

(q2
E +M2)

3 =

∫ ∞
0

dT T 2e−TM
2

∫
ddqE

(2π)d
eiqEzE−Tq

2
E

=
1

(4π)
d
2

∫ ∞
0

dT

T
T 3− d

2 e−TM
2

e−
z2E
4T , (7.19)

where in the last line we have performed the Gaussian integral over ddqE.

Since we are considering the case of a light-cone separation z2
E = −z2 = 0,

K (0,M2) in d = 6 dimensions is logarithmically divergent. The divergence arises

from the lower end of the integral over T , as the exponential suppression factor

in the integrand vanishes on the light-cone. We apply dimensional regularization,

taking d = 6 − 2ε and introducing the MS scale µ through the rescaling of the

coupling g2 → g2eγEµ2/(4π). We find

K
(
0,M2;µ2

)
=

∫ ∞
0

dT

T

(
Tµ2eγE

)ε
e−TM

2

= Γ (ε)

(
µ2eγE

M2

)ε
=

1

ε
+ log

µ2

M2
,

(7.20)

where the pole in 1/ε reflects the original logarithmic divergence in dimensional

regularization. Putting everything together, we obtain the full one-loop expres-
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sion of the bare position space matrix element in dimensional regularization

M̂ (ν, 0) =

[
1 + α

(
1

6
log

m2

µ2
+

1

6

1

ε
+ b

)]
M̂(0) (ν, 0)

+ α

∫ 1

0

dξ (1− ξ)
(

1

ε
+ log

µ2

m2 (1− ξ + ξ2)

)
M̂(0) (ξν, 0) . (7.21)

The structure of the divergences in eq. (7.21) shows that this quantity can be

renormalized by convolution with a renormalization kernel K. Denoting the

renormalized matrix element as M̂R (ν, 0, µ2), we have

M̂R

(
ν, 0, µ2

)
=

∫ 1

0

dyK (y) M̂ (yν, 0) . (7.22)

The specific choice of the finite terms that appear in the kernel K (y), together

with subtraction of the 1/ε poles, defines the renormalization scheme. For

example, in the MS scheme, the renormalization kernel is

K (y) = δ (1− y)− α
[

1

6 ε
δ (1− y) +

1

ε
(1− y)

]
, (7.23)

and the corresponding renormalized quantity is

M̂R

(
ν, 0, µ2

)
=

[
1 + α

(
1

6
log

m2

µ2
+ b

)]
M̂(0) (ν, 0)

+ α

∫ 1

0

dξ (1− ξ) log
µ2

m2 (1− ξ + ξ2)
M̂(0) (ξν, 0) . (7.24)

We conclude this derivation with a comment on the form of the renormalization

kernel K given in eq. (7.23): the contribution proportional to a delta function

is a multiplicative renormalization term, implementing the subtraction of the

singularities generated by diagram (b) of fig. 7.2, which is basically the wave

function renormalization. The second contribution, −α
ε

(1− y), implements

the renormalization of the one-loop diagram (c) of fig. 7.2, and because this

contribution is not proportional to a delta function, the renormalization of this

term is not multiplicative, but requires a convolution.

Taking the log derivative of eq. (7.24) we obtain

µ2 d

dµ2
M̂R

(
ν, 0, µ2

)
= α

∫ 1

0

dξ P (ξ) M̂R

(
ξν, 0, µ2

)
+O

(
α2
)
, (7.25)
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where the O (α) Altarelli-Parisi splitting kernel is given by

P (ξ) = (1− ξ)− 1

6
δ (1− ξ) = (1− ξ)+ +

1

3
δ (1− ξ) . (7.26)

The renormalized collinear PDF is defined from the renormalized matrix element,

M̂R

(
ν, 0, µ2

)
=

∫ 1

0

dx eixν f̂
(
x, µ2

)
, (7.27)

and therefore, from eq. (7.25),

µ2 d

dµ2
f̂
(
x, µ2

)
= α

∫ 1

x

dξ

ξ
P (ξ) f̂

(
x

ξ
, µ2

)
, (7.28)

which yields the standard DGLAP evolution equations, which were already

obtained in ref. [4] for the scalar theory. As detailed in sec. 2.3.2, the solution

of eq. (7.28) in perturbation theory is given by an evolution kernel Γ (x, µ, µ0, α),

which resums the large collinear logarithms and allows the PDF at a generic scale

µ to be computed in terms of the PDF at the scale µ0 as

f̂
(
x, µ2; θ

)
=

∫ 1

x

dξ

ξ
Γ

(
x

ξ
, µ, µ0, αs

)
f̂
(
ξ, µ2

0; θ
)
. (7.29)

7.2 Spatial separation

We now consider the case in which the separation between the fields is purely

spatial z2
E = z2

3 . As seen in the previous section, the z2 dependence enters

only through diagram (c) of fig. 7.2. Considering this contribution, the kernel

K (z2,M2) defined in eq. (7.19) is no longer divergent for z3 6= 0, as the term

exp [−z2
E/(4T )] regulates the small-T behaviour. The integral can evaluated

directly in d = 6 dimensions, yielding

K
(
−z2

3 ,M
2
)

=
1

64π3

∫ ∞
0

dT

T
e−T e−

(Mz3)
2

4T =
1

64π3
2K0 (Mz3) , (7.30)

where K0 is the modified Bessel function. Plugging eq. (7.30) into eq. (7.14) we

obtain the contribution from diagram (c) in the case of purely spatial separation:

M̂(1)
(
ν,−z2

3

)
= α

∫ 1

0

dξ (1− ξ) 2K0 (Mz3)M̂(0) (ξν, 0) . (7.31)
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Note that, as long as z3 6= 0, this contribution does not contain any UV

divergences. For Mz3 → 0 the Bessel function diverges logarithmically, and

we recover the UV divergence of the light-cone case.

The full one-loop bare matrix element is then given by

M̂
(
ν,−z2

3

)
=

[
1 + α

(
1

6
log

m2

µ2
+

1

6

1

ε
+ b

)]
M̂(0) (ν, 0)

+ α

∫ 1

0

dξ (1− ξ) 2K0 (Mz3)M̂(0) (ξν, 0) . (7.32)

As before, this quantity can be renormalized by convolution,

M̂R

(
ν,−z2

3 ; µ2
)

=

∫ 1

0

dy K̃ (y)M̂
(
yν,−z2

3

)
. (7.33)

However, since the only UV pole comes from the self-energy contributions, the

kernel K̃ (y) is proportional to a delta function. For example, in the MS scheme

we can take

K̃ (y) = δ (1− y)

[
1− α 1

6 ε

]
. (7.34)

In other words, in the case of purely spatial separation the renormalization of the

matrix element is purely multiplicative [167]. The additional UV divergence we

had to remove in the light-cone case is substituted here by a finite contribution

K0 (Mz3). The corresponding renormalized quantity is

M̂R

(
ν,−z2

3 ; µ2
)

=

[
1 + α

(
1

6
log

m2

µ2
+ b

)]
M̂(0) (ν, 0)

+ α

∫ 1

0

dξ (1− ξ) 2K0 (Mz3)M̂(0) (ξν, 0) . (7.35)

Note also that both eqs. (7.24) and (7.35) contain an infrared (IR) divergence

regularized by the mass m: in the former the mass is manifest in the log, while in

the latter the mass appears in the Bessel function, which diverges logarithmically

for m→ 0.
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7.3 Factorization theorem

Having defined the renormalized correlators in the previous sections, let us

investigate the one-loop relation between the light-cone and the equal-time

correlators. Combining eqs. (7.24) and (7.35) we write

M̂R

(
ν,−z2

3 ; µ2
)

=M̂R

(
ν, 0, µ2

)
+ α

∫ 1

0

dξ (1− ξ)
(

2K0 (Mz3)− log
µ2

M2

)
M̂R

(
ξν, 0, µ2

)
,

(7.36)

and using eq. (7.27) we find

M̂R

(
ν,−z2

3 ;µ2
)

=

∫ 1

0

dx C̃

(
xν,mz3,

µ2

m2

)
f̂
(
x, µ2

)
, (7.37)

with

C̃

(
xν,mz3,

µ2

m2

)
= eixν − α

∫ 1

0

dξ (1− ξ)
(

2K0 (Mz3)− log
µ2

M2

)
eiξxν .

(7.38)

This expression shows the connection between the collinear PDFs and an equal-

time correlator, through a convolution with a perturbative kernel. In general,

the latter contains a logarithmic dependence on m2, namely the kernel contains

IR singularities. However, as we will see, these singularities cancel exactly when

taking a specific limit, leaving an expression free from IR poles, which therefore

has the form of a proper factorization theorem. Before discussing this in detail,

we recall that, although eq. (7.37) has been worked out in perturbation theory,

considering matrix elements between on-shell quark states, the renormalization

of the bilocal operators discussed so far does not depend on our choice of specific

external states. It follows that eq. (7.37) holds also for external proton states.

From now on we will refer to full proton matrix elements rather than partonic

ones, removing the symbol ‘̂’ used so far to denote partonic quantities.

116



7.3.1 Factorization theorem in position space: small-z2
3 limit

The behavior of the coefficient C̃ in the small-z2
3 limit is obtained by expanding

the Bessel function as

2K0 (Mz3) = − log
(
M2z2

3

)
+ 2 log

(
2e−γE

)
+O

(
M2z2

3

)
, (7.39)

so that eq. (7.37) becomes

MR

(
ν,−z2

3 ; µ2
)

=

∫ 1

0

dx C̃
(
xν, µ2z2

3

)
f
(
x, µ2

)
, (7.40)

with

C̃
(
xν, µ2z2

3

)
= eixν − α

∫ 1

0

dξ (1− ξ) log

(
µ2z2

3

e2γE

4

)
eiξxν +O

(
m2z2

3

)
. (7.41)

We note that in this limit the logarithmic behaviour of the Bessel function

matches that of the light-cone quantity, so that the two matrix elements display

the same IR behaviour: as a result the coefficient C̃ is IR safe, and eq. (7.40)

represents a proper factorization theorem connecting a lattice computable

quantity on the left hand side with a collinear PDF on the right hand side.

We note that this factorization also applies to the so-called reduced distributions

[194, 195], the quantities usually determined in lattice calculations in the pseudo-

PDF approach, first introduced in ref. [160]. They were originally defined as

M
(
ν,−z2

3

)
=
MR (ν,−z2

3 ;µ2)

MR (0,−z2
3 ;µ2)

, (7.42)

although a double ratio was proposed in [196]. Here we restrict our attention to

the ratio defined in eq. (7.42). In the context of our model, using the small-z2
3

limit of eq. (7.36) we have

M
(
ν,−z2

3

)
=MR

(
ν, 0, µ2

)
− α log

(
µ2z2

3

e2γE

4

)∫ 1

0

dξ (1− ξ)
[
MR

(
ξν, 0, µ2

)
−MR

(
ν, 0, µ2

)]
=MR

(
ν, 0, µ2

)
− α log

(
µ2z2

3

e2γE

4

)∫ 1

0

dξ (1− ξ)+MR

(
ξν, 0, µ2

)
, (7.43)
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and therefore

M
(
ν,−z2

3

)
=

∫ 1

0

dx C̃+

(
xν, µ2z2

3

)
f
(
x, µ2

)
, (7.44)

with

C̃+

(
xν, µ2z2

3

)
= eixν − α log

(
µ2z2

3

e2γE

4

)∫ 1

0

dξ (1− ξ)+ e
iξxν +O

(
m2z2

3

)
.

(7.45)

Note the absence of any µ2 dependence on the left hand side of eqs. (7.42)

and (7.44): the perturbative dependence on the renormalization scale µ2 cancels

exactly in the ratio, leaving a quantity that depends only on the scale z2
3 . More

precisely, eqs. (7.44), (7.45) show how, in the small-z2
3 limit, the renormalization

scale dependence ofMR (ν, 0, µ2) generated by diagram (c) is replaced by an equal

z2
3 dependence that can be obtained from the former through the substitution

µ2 → 4e−2γE

z2
3

.

In other words, the factorization formula worked out in this section predicts a

logarithmic dependence on z2
3 for the equal-time correlator, which replaces the

analogous logarithmic behaviour of the PDFs on the renormalization scale µ2,

predicted by the one-loop DGLAP. Such dependence on z2
3 should be visible in

real lattice QCD data when working in the factorization regime, and indeed it

was observed in refs. [195, 196].

7.3.2 Factorization theorem in momentum space: large P3

limit

A factorization theorem can also be established working in momentum rather

than in position space. Taking the Fourier transform of eq. (7.40) with respect

to z3 and defining

q
(
y, µ2, P 2

3

)
=
P3

2π

∫ ∞
−∞

dz3 e
−iyP3z3M̂

(
P3z3,−z2

3

)
, (7.46)

C

(
η,

m2

x2P 2
3

,
µ2

m2

)
=

∫ ∞
−∞

dθ

2π
e−iθη C̃

(
θ,
mθ

xP3

,
µ2

m2

)
, (7.47)
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we obtain

q
(
y, µ2, P 2

3

)
=

∫ 1

0

dx

x
f
(
x, µ2

)
C

(
y

x
,
m2

x2P 2
3

,
µ2

m2

)
, (7.48)

with

C

(
η,

m2

x2P 2
3

,
µ2

m2

)
=

∫ 1

0

dξ (1− ξ)

 1√
(η − ξ)2 + M2

x2P 2
3

− δ (ξ − η) log
µ2

M2

 .

(7.49)

Note that taking the Fourier transform, as in eq. (7.46), involves an integration of

the Bessel function K0 (z3M) through its singularity at z3 = 0, which is discussed

in detail in app. E.1. Looking at eq. (7.49), we note that, again, the coefficient C

contains explicit logarithms of the mass, rendering it infrared divergent. However,

these divergences cancel when considering the large P3 regime, by expanding the

Fourier transform of the Bessel function in the limit M2

ξ2P 2
3
→ 0. If η > 1 or η < 0,

then looking at eq. (7.49) we have

lim
P3→∞

C

(
η,

m2

x2P 2
3

,
µ2

m2

)
= C (η) = ±

∫ 1

0

dξ
1− ξ
η − ξ

= ±
[
(1− η) log

η

η − 1
+ 1

]
,

(7.50)

where the solution with the plus refers to η > 1, and the one with the minus to

η < 0. On the other hand, if η ∈ (0, 1), the factor 1/|η−x| generated in this limit

produces a non-integrable singularity at η = x [197]. To overcome this issue, as

detailed in app. E.1, we can write

1√
(η − ξ)2 + M2

x2P 2
3

= log 4η (1− η)
x2P 2

3

M2
δ (η − ξ) +

1

|η − ξ|+
+O

(
M2

P 2
3

)
,

(7.51)

so that in the region η ∈ (0, 1) we find

C

(
η,

M2

x2P 2
3

,
µ2

M2

)
P3→∞∼ C

(
η,

µ2

x2P 2
3

)
=

∫ 1

0

dξ (1− ξ)
[

1

|η − ξ|+
+ δ (η − ξ) log 4η (1− η)

x2P 2
3

µ2

]
+O

(
m2

P 2
3

)
= 2η − 1 + (1− η) log 4η (1− η)

x2P 2
3

µ2
+O

(
m2

P 2
3

)
. (7.52)
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Note the cancellation of the logarithmic dependence on the mass, which leads

again to a proper factorization formula, this time in momentum space. We

conclude that, in momentum space, the factorization theorem is realized in the

limit P3 →∞ and in our model this factorization theorem takes the form

q
(
y, µ2, P 2

3

)
=

∫ 1

0

dx

x
f
(
x, µ2

)
C

(
y

x
,
µ2

x2P 2
3

)
+O

(
m2

P 2
3

)
, (7.53)

with

C

(
η,

µ2

x2P 2
3

)
= δ (1− η) + α


(1− η) log η

η−1
+ 1 η > 1

(1− η) log 4η (1− η)
x2P 2

3

µ2
+ 2η − 1 0 < η < 1

− (1− η) log η
η−1
− 1 η < 0

.

(7.54)

Factorization in position space, given in eqs. (7.40) and (7.41), is equivalent to

factorization in momentum space, given in eqs. (7.53) and (7.54). In other words,

taking the small-z2
3 limit in position space is entirely equivalent to taking the

large-P3 limit in momentum space. This can be easily verified by computing the

Fourier transfom of the small-z2
3 coefficient C̃ of eq. (7.41), and checking that it

is equal to the high-P3 coefficient C of eq. (7.54)

1

x
C

(
η,

µ2

x2P 2
3

)
=
P3

2π

∫ ∞
−∞

dz3 e
−iyP3z3 C̃

(
xν, µ2z2

3

)
=

1

x

∫ ∞
−∞

dθ

2π
e−iθη C̃

(
θ,
µ2θ2

x2P 2
3

)
with η =

y

x
. (7.55)

This check, despite being conceptually straightforward, does require some

care [176]. We provide the details of the computation in app. E.1. The

implementation of the factorization theorem in position space, together with

the definition of reduced distributions, are the typical approach followed in

nonperturbative calculations of pseudo-PDFs [160, 196, 198–201], while the

realization of the factorization in momentum space characterizes the quasi-

PDF approach [159, 181, 202–204]. The latter will be addressed from a

phenomenological point of view in chapter 8, the former in chapter 9.

As we have shown in this section in the simplified context of our model, these two

approaches are conceptually equivalent, and related by a Fourier transform: in

one case the lattice calculation needs to provide the correlators for small values of
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z3, while in the other large values of P3 are required. In both scenarios, however,

the object that is actually computed is the matrix element of spatially-separated

fields. This is the only quantity of interest, without the need to define either

pseudo- or quasi-PDFs.

7.4 Smeared distributions

In ref. [205, 206], the gradient flow was proposed as an approach to control the

power divergence associated with the Wilson-line operator that defines the Ioffe

time distribution in QCD. The gradient flow [207–209] is a classical, gauge-

invariant, one-parameter mapping of the theory that exponentially damps the

UV fluctuations. This corresponds to smearing in real space, with a smearing

scale that is parametrised by the flow time. In the limit of small flow time, the

matrix elements of smeared fields can be related to those at vanishing flow time

by a short flow-time expansion [210].

In Yang-Mills theories, gauge invariance ensures that no new divergences are

introduced at finite flow time. Thus, provided the boundary theory is properly

renormalized, the matrix elements of composite operators composed of fields at

finite flow time are guaranteed to be finite. In the absence of gauge symmetries,

the simplest method for maintaining this property is to exclude interactions from

the flow time evolution of the fields, in which case this evolution corresponds to

simple Gaussian smearing [211–213].

The flow time can be viewed as a non-perturbative regulator that does not affect

the infrared properties of correlation functions. The smeared Ioffe-time matrix

elements, constructed from fields at finite flow time, therefore satisfy the same

factorization theorems as the original Ioffe-time matrix elements [205]. In the

scalar case, the boundary fields φ(x) in eq. (7.4) are replaced by fields at finite

flow time ρ(t;x), so that the partonic matrix element becomes

M̂t

(
ν, z2

)
= 〈p|ρ (t; z) ρ (t; 0) |p〉 . (7.56)

Here the subscript indicates that the fields are evaluated at flow time t, and

z2 = z2/t.

The gradient flow is only well-defined in Euclidean space, but for z2 < 0, the

matrix elements are signature independent [174]. The tree-level and one-loop
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diagrams that contribute to this matrix element are exactly those given in fig. 7.2,

with φ(x) replaced by ρ(t;x). Working in the small flow-time regime, where

contributions of O(t) can be neglected, the only diagram that must be calculated

is diagram (c) of fig. 7.2. Therefore, we can deduce the factorization properties of

the smeared matrix element directly from the analogue of eq. (7.14) at nonzero

flow time

M̂(1)
t

(
ν,−z2

3

)
= g2

∫
kE

e−2k2Et
e−ikEz3

(k2
E +m2)

2

1

(pE − kE)2 +m2

= g2

∫ 1

0

dξ (1− ξ)Kt

(
−z2

3,M
2
)
M̂(0) (ξν, 0) , (7.57)

where the exponential damping is the result of the smearing of the fields and we

have introduced M
2

= M2t. Here the kernel Kt

(
−z2

3,M
2
)

is given by

Kt

(
−z2

3,M
2
)

=
µ6−d

(4π)d/2
e−2m2tξ

∫ ∞
0

dT
T 2

(T + 2t)d/2
e−TM

2

e(4ξtpE−izE)2/(4(T+2t)) ,

(7.58)

which reduces to the kernel in eq. (7.19) when t = 0.

By introducing the further dimensionless variables µ2 = µ2t, m2 = m2t, and

β2 = −1

t

(
ξtpµE −

izµE
2

)2

= ξ2m2 + iξν +
z2

3

4
, (7.59)

and changing variables to u = T/t+ 2, the integral becomes

Kt

(
−z2

3,M
2
)

=
µ6−d

(4π)d/2
e−2(ξ−1)2m2

∫ ∞
2

du
(u− 2)2

ud/2
e−uM

2−β2/u . (7.60)

This integral can be solved in terms of incomplete Bessel functions [214–216],

which can be studied in various asymptotic regimes. In particular,

Kt

(
−z2

3,M
2
)

=
2µ6−d

(4π)d/2
e
−2

(ξ−1)2

1−ξ+ξ2
M

2

×

[
K0(2 |Mβ|, 2)− 4

M

|β|
K1(2 |Mβ|, 2) + 4

M
2

β2
K2(2 |Mβ|, 2)

]
,

(7.61)

where

Kn(y, a) = Kn(y)− J(y, n, a) , (7.62)
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with J(y, n, a) the finite integral

J(y, n, a) =

∫ a

0

dv e−y cosh(v) cosh(nv) . (7.63)

This result is finite in six dimensions, because the incomplete Bessel functions are

finite at finite flow time and quark mass. Indeed, one can evaluate these integrals

numerically by imposing a cutoff. For sufficiently large cutoff, the results are

independent of the cutoff value. Using eq. (7.62), eq. (7.61) can be written as

Kt

(
−z2

3,M
2
)

=
2

(4π)3
e
−2

(ξ−1)2

1−ξ+ξ2
M

2
{
K0(2 |Mβ|)− 4

M

|β|
K1(2 |Mβ|) + 4

M
2

β2
K2(2 |Mβ|)

− J(2 |Mβ|, 0, 2) + 4
M

|β|
J(2 |Mβ|, 1, 2)− 4

M
2

β2
J(2 |Mβ|, 2, 2)

}
.

(7.64)

In the limit where

t2m2

z2
E

� 1 , (7.65)

the argument of the Bessel functions, |Mβ|, can be expressed as

2|Mβ| = M |zE|+O
(
t2m2

z2
E

)
= Mz3 +O

(
t2m2

z2
E

)
, (7.66)

so that, in the limit of small z3 we can expand them as

2K0(2 |Mβ|) = − log
(
M2z2

3

)
+ 2 log

(
2e−γE

)
+O

(
m2z2

3 ,
t2m2

z2
E

)
, (7.67)

2
M

|β|
K1(2 |Mβ|) = 0 +O

(
m2z2

3 ,
t2m2

z2
E

, 1/z2

)
, (7.68)

2
M

2

β2
K2(2 |Mβ|) = 0 +O

(
m2z2

3 ,
t2m2

z2
E

, 1/z2

)
. (7.69)

Care must be taken when matching these expressions to the light-cone case. The

limits need to be taken in the right order so that the quantity t2m2

z2E
remains small

in the process. One must first consider the small flow time regime at fixed z3, in

which z � 1, and then consider the limit in which m2z2
3 goes to zero. Taking the

limit of small m2z2
3 at fixed t would violate the condition above and invalidate the

factorization theorem, viz. data for values of t and z3 that correspond to large
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values of t2m2/z2
E are not described by the factorization theorems discussed here.

With this in mind, the only logarithmic infrared divergence occurs in the first

Bessel function, which has been expanded using eq. (7.39). Thus, in the small

flow-time regime eq. (7.64) becomes

Kt

(
−z2

3,M
2
)

=
1

(4π)3

[
− log

(
M2z2

3

)
+ 2 log

(
2e−γE

)
+R(Mz3)

]
+O

(
m2z2

3 ,
t2m2

z2
E

, 1/z2

)
, (7.70)

where the rational functionR(Mz3) contains the IR finite contributions generated

by the J functions of eq. (7.63). The logarithmic IR divergence in eq. (7.70),

regularized by the mass m, matches those in eqs. (7.24) and (7.35).

In the short flow-time regime, the one-loop contributions to eq. (7.56) from

diagrams (a) and (b) are just those given in eq. (7.12). The corresponding

renormalized quantity at one loop is therefore

M̂t

(
ν,−z2

3 ; µ2
)

=

[
1 + α

(
1

6
log

m2

µ2
+ b

)]
M̂(0) (ν, 0)

+ α

∫ 1

0

dξ (1− ξ)
[
− log

(
M2z2

3

)
+ 2 log

(
2e−γE

)
+R(Mz3)

]
M̂(0) (xν, 0) .

(7.71)

We can now directly relate this quantity, via a factorization relation, to the light-

cone quantity f(x, µ2) using eq. (7.27). We obtain

M̂t

(
ν,−z2

3 ;µ2
)

=

∫ 1

0

dxC
(
xν, µ2z2

3

)
f̂
(
x, µ2

)
, (7.72)

with

C
(
xν, µ2z2

3

)
= eixν − α

∫ 1

0

dξ (1− ξ)
[
log

(
µ2z2

3

e2γE

4

)
−R(Mz3)

]
eiξxν

+O
(
m2z2

3 ,
t2m2

z2
E

, 1/z2

)
. (7.73)

This factorization relation provides the explicit connection between the collinear

PDFs and an equal-time correlator at nonzero flow time, through a convolution

with a perturbative kernel. Equal-time correlators at nonzero flow time therefore

represent an additional class of lattice observables related to PDFs through a

factorization theorem.
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7.5 Towards PDFs from lattice data

We have addressed the definition and renormalization of equal-time correlators

whose computation can be performed on the lattice, studying their relation with

the corresponding light-cone matrix elements underlying the definition of collinear

PDFs via factorization theorems. To highlight and clarify the most important

aspects of the factorization theorems, we have studied them in the context of

a nongauge theory. This allows us to avoid the formal complications that arise

in QCD, which can obscure the key concepts. We derive the relation between

the light-cone and Euclidean matrix elements at the one-loop level, and then

study the limits that lead to well-defined factorization theorems. These relations

express suitable correlators that are evaluated by Monte Carlo calculations in

terms of a convolution between a collinear PDF and an infrared safe coefficient

function, which can be evaluated in perturbation theory. We obtain factorization

theorems in both position and momentum space, by considering the regimes of

small-z2
3 and large-P3 respectively, and show that these limits are equivalent at

one loop, which highlights the formal equivalence of the pseudo- and quasi-PDFs

approach. In addition, we demonstrate that the gradient flow can be used to

define a new class of lattice observables that satisfy factorization.

These ideas naturally suggest that the lattice data should be used in a fitting

framework to extract PDFs, in the same way experimental data are usually

included in global QCD analyses: the unknown x-dependence of the PDF at

a specific fitting scale is parametrized by introducing a suitable functional form.

The PDF at a generic scale can be computed in terms of its parametric form at the

fitting scale, which then leads to a theoretical prediction for the lattice observable

when working in either the small-z2
3 or large-P3 limit. Assuming that we have

a set of lattice results for the real and imaginary part of the Ioffe-time matrix

elements, a standard minimum-χ2 fit yields the values of the free parameters that

best describe such data. As in any other PDF determination, we highlight the

importance of having a robust estimate of the full covariance matrix that enters

the χ2 definition, and this should be provided by the lattice group performing

the calculation. It is important to stress that this procedure is exactly the one

described in chapter 3, with the lattice matrix elements playing the same role

as the cross-sections for high-energy processes. Given a discrete set of points for

quantities that are connected to collinear PDFs through a factorization theorem,

we can use them to perform a fit, thereby obtaining an estimate of the PDFs and
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their corresponding error.

We conclude this chapter with an important remark. We have discussed the

conceptual equivalence of the pseudo and quasi distribution methods, however

we emphasize that conceptual equivalence may not translate to equivalence in

practice. On the one hand, the LaMET approach relies on large hadronic

momenta to suppress higher twist contamination. On the other hand, the pseudo

distribution approach uses small spatial separations to suppress higher twist

effects, but requires large momenta to cover a range of Ioffe times. In both

cases, large values of the hadron momentum can lead to significant signal-to-noise

challenges and discretization effects of the form (aP )n. The interplay of higher

twist contamination and discretization effects is nontrivial and will depend both

on the details of the distribution itself and on the specific choice of discretization.

These effects must be studied systematically, across a wide range of observables,

to pin down systematic uncertainties and strengthen the role that lattice QCD

can play in the determination of hadron structure.

In the next chapters we will address these issues from a phenomenological point of

view, considering lattice QCD data for quasi- and pseudo-PDFs matrix elements

and performing a first study of them within the NNPDF framework.
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8
PDFs from quasi-PDFs matrix elements

Data for equal-time correlators coming from first lattice QCD simulations have

started appearing and have gotten into already a relatively advanced stage over

the last few years [164, 181–184, 202, 217–228]. Results from these studies give

an idea of what PDFs from the lattice might look like, not only for nonsinglet

quark PDFs of the nucleon, but also for the pion PDF and distribution amplitude,

as well as for the gluon PDF of the nucleon. Given the general interest shown

by the community, a quick improvement in the technologies involved in such

lattice simulations is to be expected in the next few years. A great quantity of

increasingly precise lattice data is then likely to be available in the near future,

requiring detailed studies about the possible impact they might have on the overall

precision of PDFs determination.

Despite the increasing number of numerical results becoming available, an

optimal strategy for reconstructing the PDFs from these data has not been

entirely addressed yet. The approach which has been initially used within the

lattice community (and that is still employed in many analyses) consists in

approximating the quasi-PDFs by mean of a discrete Fourier transform, starting

from the limited number of points for the corresponding equal-time correlator

available from numerical simulations. The continuous function resulting from this

procedure is subsequently convoluted with the perturbative matching coefficients

relating euclidean and light-cone distributions, (see eq. (7.54)) in order to obtain

the final PDF. The numerical error introduced by this procedure is rather large

and difficult to control, so that it generally provides unstable and inaccurate

results. This problem was first addressed within the lattice community in ref. [229]

where a series of possible approaches to tackle the problem of incomplete and

discretized Fourier transform has been presented.
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In this chapter, based on ref. [12], following the ideas of sec. 7.5 and the formalism

described in sec. 7.3.2, we exploit the momentum space factorization of quasi-

PDFs in PDFs and perturbatively computable coefficients to extract nonsinglet

distributions from the data of refs. [181, 202], using the NNPDF framework

described in chapter 3 and treating the lattice data on the same footing as

experimental ones.

8.1 quasi-PDFs in QCD

In this section we extend the formalism introduced in chapter 7 to the full

QCD case, giving formulas and expressions which have to be used when working

with data coming from lattice QCD simulations, and referring to the original

publications where they were first presented to further details. Denoting by Γ a

generic Dirac structure and by the suffix A the specific nonsinglet distribution

we want to consider, we consider the matrix element between nucleon states with

momentum P given by

M
(0)
Γ,A (z, P ) = 〈P |M(0)

Γ,A (z) |P 〉 , (8.1)

with

M(0)
Γ,A (z) = ψ̄(0) (z)λAΓU (z, 0)ψ(0) (0) . (8.2)

with λA denoting the flavour structure and the gauge-link U (z, 0) given by

eq. (2.27). eqs. (8.1), (8.2) represent the QCD generalization of the scalar quantity

defined in eq. (7.2).

The vector bilocal operator obtained for Γ = γµ can be decomposed in terms of

two form factors which only depend on the Lorentz invariants z2 and ν ≡ −z · P
as

M
(0)
γµ,A (z, P ) ≡M

(0)
µ,A (z, P ) = 2PµM(0)

A

(
ν, z2

)
+ zµN (0)

A

(
ν, z2

)
. (8.3)

By choosing a light-cone separation z = (0, z−, 0⊥) together with γµ = γ+ and

P = (P+, 0, 0⊥) we get

M
(0)
+,A (z, P ) = 2P+M(0)

A (ν, 0) = 2P+

∫ 1

−1

dx eixνf
(0)
A (x) (8.4)
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with f
(0)
A (x) being the bare collinear nonsinglet parton distribution given in

eq. (2.34). Because of the light-cone separation z involved in its definition, M
(0)
+ is

not directly computable on a Euclidean lattice. We can define a different quantity

that is amenable to lattice simulations by choosing a purely spatial separation,

z = (0, 0, 0, z3), together with γµ = γ0 and P = (E, 0, 0, P3). Then taking the

time component of eq. (8.3) we get

M
(0)
0,A (z, P ) = 2EM(0)

A

(
ν,−z2

3

)
. (8.5)

The correlators defined in eqs. (8.4) and (8.5) are known in the literature

as (bare) Ioffe-time distribution (ITD) and pseudodistribution (pseudo-ITD)

respectively [160, 230].

Taking the Fourier transform with respect to z, we obtain the definition of the

quasi-PDF

f̃
(0)
A (x, Pz) = 2E

∫ ∞
−∞

dz

4π
eixPzzM(0)

A

(
zPz,−z2

3

)
. (8.6)

As in the case of standard PDFs, the matrix elements defining the quasi-PDFs

contain UV divergences, and need to be renormalized. The main features of

the perturbative renormalization of a bilocal operator, as the one appearing in

eq. (8.6), have been described in chapter 7 in the context of the scalar theory.

When considering the QCD case, for z2
3 6= 0 in addition to usual ultraviolet (UV)

divergences described in the scalar QFT case, specific link-related UV divergences

arise, which are regularized by a finite lattice spacing a. Thus,M(0)
A (ν,−z2

3) is in

fact M(0)
A (ν,−z2

3 ; a2). As we found out looking at the scalar QFT, the position

space operator appearing in eq. (8.6) can be multiplicatively renormalized [167],

according to

MA

(
zPz,−z2

3 , µ
)

= ZA(z2
3) eδm|z|/aM(0)

A

(
zPz,−z2

3 ; a2
)
. (8.7)

The only difference with respect to the scalar model is given by the exponential

factor eδm|z|/a, which reabsorbs the power divergence from the Wilson line which

appears in the QCD case. The position-dependent factor ZA(z2
3) takes care of

the remaining UV logarithmic divergences. Importantly, we recall that the quasi-

PDFs retain a dynamical dependence on the hadron momentum P , unlike PDFs,

which are defined to be invariant under Lorentz boosts. Also, their support is

defined to be the full real axis.
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The interest in quasi-PDFs comes from the potential to relate them to light-cone

PDFs in the limit of high values of Pz, as detailed in sec. 7.3.2; factorization

allows us to rewrite the quasi-PDFs as a convolution of the light-cone PDFs

with a coefficient function that can be computed in perturbation theory, up to

corrections that are suppressed by inverse powers of Pz. It follows that they can

be written as

f̃A
(
x, µ2

)
=

∫ 1

−1

dy

|y|
CA

(
x

y
,

µ

|y|Pz
,
µ

µ′

)
fA

(
y, µ′

2
)

+O
(
M2

P 2
z

,
Λ2

QCD

P 2
z

)
, (8.8)

where the terms O
(
M2

P 2
z
,

Λ2
QCD

P 2
z

)
include the power corrections suppressed by the

hadron momentum. The functions CA, usually called matching coefficients,

depend on the choice of the renormalization scheme, and on the kind of quasi-

PDF under consideration. The first matching expressions, for all Dirac structures,

were derived in ref. [172], using a simple transverse momentum cutoff scheme. In

later works, matching coefficients were derived that relate the quasi-PDFs in

different renormalization schemes to light-cone PDFs in the MS scheme. The

matching from MS quasi-PDFs was first considered in ref. [179], both for non-

singlet and singlet quark PDFs, as well as for gluons. Even though one can

choose operators for the latter that do not mix with singlet quark quasi-PDFs

under renormalization [170, 171], mixing under matching is inevitable. No mixing

of the flavour nonsinglet sector with flavour singlet or gluon sectors occurs, as

stated in eq. (8.8). Ref. [179] did not, however, address the known issue of self-

energy corrections, exhibiting a logarithmic UV divergence. This was resolved

in ref. [176] by adding terms outside of the plus prescription in the matching

coefficient. As noticed in ref. [181], such prescription for renormalizing this

divergence violates vector current conservation, i.e. the integral of the matched

PDF is different from the integral of the input quasi-PDF, and not necessarily

equal to 1 over the whole integration range. As a remedy, a modified matching

expression, which is given explicitly in eq. (F.0.1) of app. F, was proposed in

ref. [181]. It consists in resorting to pure plus functions when subtracting the

logarithmic divergence in self-energy corrections. However, this is an additional

subtraction with respect to the minimal subtraction of the MS scheme and thus,

defines a modified MS scheme, the so-called MMS scheme. As such, it requires

the quasi-PDF to be expressed in this modified scheme. The expression for

the conversion of MS-renormalized matrix elements to the MMS scheme was

worked out in ref. [202] and we refer to it for the details of the procedure.

Nevertheless, this modification is numerically very small, as also shown in
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ref. [202]. An alternative modification of the MS scheme that guarantees vector

current conservation was derived in an updated version of ref. [176]. This defines

the so-called “ratio” scheme. In this scheme, only pure plus functions are used,

like in the MMS scheme, but the modification is done also for the “physical” region

of 0 < z < 1 (in the notation of eq. (F.0.1)). Thus, the expected numerical effect

of this modification is larger, as shown explicitly in ref. [202]. For this reason, we

choose to use the MMS procedure, with details of the lattice computation of the

bare matrix elements and the renormalization in the MMS scheme outlined in

the next section. Yet another possibility of performing the matching consists in

directly relating the quasi-PDFs in the intermediate RI-type scheme to MS light-

cone PDFs. This was proposed in ref. [180] for the unpolarized case. Obviously,

such procedure is equivalent to the one adopted here, with possibly different

systematic effects. All of the discussed papers considered the matching to only

first order in perturbation theory, but NNLO results for the matching coefficients

have recently become available in both position and momentum space [231–235].

8.2 Nonsinglet distributions from quasi-PDFs

Matrix Elements

In this section, we describe the lattice data we will use in this chapter, presenting

briefly the quasi-PDFs matrix elements (MEs) computed in refs. [181, 202]. Using

the results recalled in the previous sections, we show that we can factorize

such matrix elements into two nonsinglet distributions and a perturbatively

computable coefficient, just as if they were experimental data for high-energy

cross sections.

8.2.1 Lattice data

The field of nucleon isovector (u − d) quasi-PDFs has matured in recent years.

Exploratory studies for all types of collinear PDFs – unpolarized, helicity

and transversity – were performed in 2014-2016 [217–220]. They used lattice

ensembles with non-physical pion masses and the results had unsubtracted

divergences, due to the lack of a well-defined renormalization procedure. The

latter was proposed and applied for the first time in refs. [163, 164], utilizing

a variant of the regularization-independent momentum subtraction scheme (RI’-
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MOM) [236]. Moreover, another major progress for unpolarized PDFs was the

identification of a lattice-induced mixing between the bilinear operator used in

the first exploratory studies, which was defined using γz to determine the Dirac

structure, and the scalar bilinear operator (in spin space) [163]. Even though

in principle it is possible to compute the matrix elements of the latter and a

mixing renormalization matrix to properly subtract the divergences [164], this is

bound to lead to much deteriorated precision, due to the rather poor signal for

the scalar operator. Instead, it is preferable to define the quark bilinear using

the γ0 Dirac matrix, since this procedure does not give rise to mixing. Moreover

the quasi-PDF computed with it converges faster in powers of 1/P 2
z to the light-

cone PDF, as argued in ref. [237]. Summarising in just one sentence, we could

say that the major progresses with respect to the early works for unpolarized

quasi-PDFs came from: (1) change of the Dirac structure in order to avoid the

mixing, (2) non-perturbative renormalization procedure, (3) simulations at the

physical pion mass. Matrix elements corresponding to such setup were computed

in refs. [181, 202, 224] and they are briefly described below. For a recent review

of other available results for quasi-PDF matrix elements, see e.g. ref. [188].

The data used in this chapter were computed by the Extended Twisted Mass

Collaboration (ETMC)1. They used one ensemble of gauge field configurations

with two degenerate light quarks [238] with masses chosen to reproduce the

physical value of the pion mass (mπ ≈ 130 MeV, i.e. slightly below the actual

physical value). The lattice spacing is a = 0.0938(3)(2) fm [239] and the

lattice has 483 × 96 sites, corresponding to the spatial extent L of around

4.5 fm and mπL = 2.98. ETMC calculated bare quasi-PDF matrix elements

for the unpolarized, helicity and transversity cases, but we concentrate only on

the unpolarized one. The lattice data are available for three nucleon boosts,

Pz = 6π/L, 8π/L and 10π/L (0.83 GeV, 1.11 GeV and 1.38 GeV in physical

units) and for four values of the temporal separation between the nucleon creation

and annihilation operators, ts/a=8, 9, 10, 12 (0.75, 0.84, 0.94, 1.13 fm). As shown

in refs. [181, 202], there are signs of convergence in the nucleon momentum (the

largest two momenta give compatible results), indicating that the boost is already

enough to suppress higher-twist effects below statistical precision. Moreover, as

pointed out in ref. [202], excited-states contamination at the largest source-sink

separation is small, i.e. the single-state fits at this ts are compatible with two-

state fits including all four values of ts. Hence, for the purpose of this study, we

consider only the data at the largest nucleon boost and at the largest source-sink

1Until 2018 known as the European Twisted Mass Collaboration.

132



0 2 4 6 8 10 12 14
z

1.0

0.5

0.0

0.5

1.0

Real part

0 2 4 6 8 10 12 14
z

1.25
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

Imaginary part

Figure 8.1 Real (left) and imaginary (right) part of the quasi-PDF ME for
the data used in this Chapter, computed in refs. [181, 202]. The
error band displayed accounts only for statistical uncertainty. The
separation z is expressed in units of the lattice spacing a.

separation. They are shown in fig. 8.1.

As seen previously, the bare lattice data contain two types of divergences. First

of all, there are standard logarithmic divergences with respect to the regulator,

i.e. terms that behave like log(aµ). Additionally, for non-zero Wilson line

lengths, further power-like divergences appear. They resum into a multiplicative

exponential factor, eδm|z|/a, where δm is operator-independent. The desired

renormalization scheme for the final results is the MS scheme of dimensional

regularization. However, obviously, the latter is impossible on a lattice, restricted

to integer dimensions. Thus, the usage of an intermediate lattice renormalization

scheme is required. In ref. [164], it was proposed to use an RI’-type prescription.

The renormalization conditions are enforced on the amputated vertex functions

of operators with different Wilson line lengths z, setting them to their tree-level

values. A similar renormalization condition is applied for the quark propagator.

This results in a set of matrix elements renormalized in the RI’ scheme. Thus,

a perturbative conversion from the RI’ to the MS scheme is needed. Such a

conversion was derived in ref. [163] to one-loop order and was applied to the

RI’-renormalized matrix elements. As we discussed in the previous section, to

guarantee vector current conservation, we use a modified MS scheme, termed the

MMS scheme. Thus, another perturbative conversion of the MS-renormalized

matrix elements is required, according to the formula given in ref. [202]. After

this conversion, renormalized matrix elements in the MMS scheme are the starting

point of the current analysis.

It is important to emphasize that despite having numerical evidence for the

smallness of the effects of the nucleon momentum and of excited states, matrix
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elements from lattice studies come with a variety of other systematic effects.

We discuss them in the next subsection. For more details about the lattice

computation of the matrix elements, we refer the reader to ref. [202].

8.2.2 Systematics in matrix elements of quasi-PDFs

A proper investigation of systematic effects in matrix elements evaluated in lattice

QCD simulations is a difficult task, necessitating dedicated efforts. Such efforts

consist in simulating with varied parameter values, such as the lattice spacing,

the lattice volume, or the temporal separation between the source and the sink in

nucleon three-point functions. Moreover, unrelated to the lattice regularization,

there are theoretical uncertainties intrinsic to the quasi-distribution approach

whose impact should also be assessed 2. For an extensive review of these different

uncertainties, we refer to refs. [186, 188], while a discussion of the systematic

effects in the ETMC quasi-PDFs computation can be found in ref. [202]. The

latter contains the analysis of the effects investigated so far and a discussion of

directions that need to be pursued to fully quantify all the relevant systematics.

Here, we briefly summarize the conclusions reached up to the present stage. It

is important to emphasize that while the impact of some systematics is already

known to a reasonable degree, reliable estimates of certain types of effects are still

largely unknown. Nevertheless, rough assessments can be made even in the case

of missing lattice data, by looking at the behaviour of related observables such as

the average quark momentum fraction or nucleon charges that have a long history

of evaluations on the lattice [240–244]. This allows us to build scenarios describing

the potential impact of the systematics on the matrix elements of quasi-PDFs.

We consider three scenarios where the systematic effect is a given percentage of

the central value of the matrix element and three further ones where it is a given

additive shift. We always exclude from the analysis the imaginary part of the

matrix element at z = 0, equal to 0 by antisymmetry with respect to the sign

change of z.

Cut-off effects. One of the most obvious systematic effects in lattice compu-

tations comes from the finite value of the lattice spacing, a, i.e. the ultraviolet

cut-off imposed for the regularization of the theory. While a proper investigation

of this uncertainty requires explicit simulations at a few values of the lattice

2Note that theoretical uncertainties can be included in global fits of PDFs as detailed in
chapter 5
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spacing, which are still missing for quasi-PDFs, we may assume that discretization

effects are not excessive. This expectation is based on two indirect, but related

premises. First, one of the manifestations of large cut-off effects is the violation

of the continuum relativistic dispersion relation, which is, however, not observed

in the lattice data in ref. [202]. Second, the first moment of the unpolarized u−d
PDF gives the quark momentum fraction 〈x〉u−d. This quantity was intensively

investigated on the lattice and we may take the typical size of discretization effects

found in such studies. Looking at a summary plot including data from different

lattice groups, such as fig. 12 from ref. [241], we see that cut-off effects at lattice

spacings comparable to the one of the present work are typically at the 5-15%

level in a fixed lattice setup (same discretization, pion mass, volume etc.). Thus,

we investigate 6 plausible choices for the magnitude of cut-off effects: 10%, 20%,

30% of the matrix element and additive effects of 0.1, 0.2 and 0.3.

Finite volume effects (FVE). Another natural source of uncertainty in all

lattice simulations is the finite size of the box, L, which acts as an infrared

regularization. Similarly to discretization effects, a robust investigation of these

effects necessitates running the computations for a few values of the lattice size.

However, the difference with respect to the lattice spacing effects, typically linear

in a or a2 in the asymptotic scaling regime, is that FVE are usually suppressed as

exp(−mπL), where mπ is the pion mass. This leads to typically O(1−5%) effects

in hadron structure observables if mπL ≥ 3. For the matrix elements used in this

work, mπL ≈ 3 – thus, the reasonable assumption about the size of FVE is approx.

5%. In addition to these “standard” FVE of lattice computations, it has been

recently pointed out that the usage of a spatially extended operator, including a

Wilson line, may lead to additional FVE [245]. The analysis of ref. [245] pertains

to a toy scalar theory and predicts a FVE of the form exp(−M(L− z)) (possibly

with a polynomial amplifying prefactor), with M being the analogue of the mass

of the investigated hadron in the quasi-PDF approach. Given that the nucleon

mass is at the physical point around 7 times larger than the pion mass, that

would lead to totally irrelevant effects, since the maximum considered z is more

than 3 times smaller than L. However, it can not be excluded that in QCD, the

form of this FVE can be more severe, e.g. exp(−mπ(L − z)). With the physical

mπ and zmax ≈ L/3, this could lead to the amplification of FVE from O(5%)

to even above 10% at large z. We remark that ETMC has investigated FVE

in the renormalization functions for the matrix elements and found no sign of

excessive FVE coming at large z (total FVE not larger than around 3%) [202].

We investigate 3 scenarios for fixed percentage effects: constant FVE of 2.5% and
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5%, as well as z-dependent ones of the form exp(−3 + 0.062z/a)%, where 0.062

is the pion mass value for the present ensemble, expressed in lattice units. In

addition, we consider 3 shifts: 0.025, 0.05 and exp(−3 + 0.062z/a).

Excited states contamination. One of the key uncertainties in nucleon

structure calculations is whether the ground state hadron state is isolated. If

the temporal separation between the interpolating operators creating the nucleon

and annihilating it is too small, uncontrolled excited states contamination may

appear, leading to a bias in the results. In the context of quasi-PDFs, an

important aspect is that this contamination strongly depends on the boost,

causing a delicate interplay between the need of large momentum, required for

robust matching to light-cone distributions, and excited states contamination,

larger for high boost. Thus, a careful analysis is needed to ensure ground state

dominance. Such an analysis was performed for the matrix elements used in this

work [202]. The conclusion that we use for the present case is that these matrix

elements are safe against excited states effects at the level of their statistical

precision. In this way, we choose three values of uncertainty from excited states:

5%, 10% and 15%. When the renormalized matrix elements are close to zero,

the relative uncertainty can be larger and thus, we consider also three additive

scenarios with magnitude 0.05, 0.1 and 0.15.

Truncation effects. The perturbative ingredients of the quasi-PDF approach

are of two kinds. One of them is related to the fact that the lattice

approach works in integer dimensions and thus, dimensional regularization of

the MS scheme is impossible. Instead, as discussed above, a non-perturbative

renormalization programme has been proposed by ETMC [164], utilizing a variant

of the regularization-independent momentum subtraction scheme (RI’-MOM).

The renormalization correlators obtianed in this way can then be translated

perturbatively to the MS scheme and finally to the MMS scheme, using formulae

derived in refs. [163, 202]. These formulae are currently available to the one-loop

level and thus subject to a truncation effect from unknown higher orders. A

manifestation of this effect is the fact that the Z-factors have a non-vanishing

imaginary part even after conversion to MS, where they should be purely real.

To evaluate the impact of this uncertainty, we compare the renormalized matrix

elements with the ones obtained from applying only the real parts of the Z-

factors. We find that the matrix elements obtained by this alternative procedure

are compatible with the actual ones within statistical uncertainties, with relatively

larger effects observed for small z/a in the imaginary part (up to O(5%)) and
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intermediate z/a in the real part (the real part is small there – thus, the

observed absolute effects of around 0.2 can be a large percentage of the value).

Apart from the scheme conversion truncation effects, the necessary perturbative

ingredient of the approach is the matching between quasi-PDFs and light-cone

distributions, also known to one loop [172, 176, 202]. We observe that comparing

the quasi-distribution and the resulting light-cone PDF, the numerical magnitude

of the matching factor can be significant and thus, the higher order effects may

be sizable. The “natural” size of such truncation effects is of O(α2
s), which

amounts to around 10% at the renormalization scale we consider. However,

they are rather uncertainties of the procedure, so they can not be translated

to uncertainties of the matrix elements. These uncertainties are the analogue of

the theoretical uncertainties that come from a truncated perturbative expansion

in the description of observables in phenomenological fits of the PDFs, which have

been described in chapter 5. Finally, we consider 6 scenarios for truncation effects

pertinent to matrix elements (i.e. originating from the perturbative uncertainty

in Z-factors): 10%, 20%, 30% of the central value of the matrix element, as well

as shifts of 0.1, 0.2 and 0.3.

Higher twist effects. For the current analysis we decide to ignore the effect

of higher twists, i.e. the presence of power-like corrections to the factorization

formula. At this preliminary stage, we are not concerned by their effects, but a

more precise phenomenological analysis should definitely take those into account.

In particular, it should be kept in mind that, as argued in refs. [176], power

corrections can be enhanced for both x→ 0 and x→ 1, limiting the quasi-PDFs

approach in the small-x and large-x regime. We will come back to this point in

the conclusions.

Other effects. Apart from the systematics mentioned above, there are some

other effects that potentially affect the results. One of them is the usage of a

setup including two degenerate light quarks. However, this effect, working in

the isospin limit instead of taking into account the different masses and electric

charges of the light quarks, is expected to be much below the level of the current

precision – of the order of the proton-neutron mass splitting, i.e. at the per mille

level. A similar magnitude can be expected for the contribution of the neglected

sea quark loops from heavier quarks. Such effects can at present be safely ignored

and will become important only when aiming at an O(1%) precision or better.

Final scenarios. In the end, we define 6 scenarios of possible impact of

systematic effects, summarized in tab. 8.1. Scenarios S1-S3 include uncertainties
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Scenario Cut-off FVE Excited states Truncation

S1 10% 2.5% 5% 10%

S2 20% 5% 10% 20%

S3 30% e−3+0.062z/a% 15% 30%

S4 0.1 0.025 0.05 0.1

S5 0.2 0.05 0.1 0.2

S6 0.3 e−3+0.062z/a 0.15 0.3

Table 8.1 Scenarios of the impact of different systematic effects in the
renormalized matrix elements of quasi-PDFs. Percentage values for
scenarios S1-S3 should be understood as a given fraction of the central
value of the matrix element, while absolute values for S4-S6 are shifts
independent from the matrix element.

that are a fixed percentage of the central value of the matrix element, while for

S4-S6, the uncertainties are additive shifts independent from the value of the

matrix element. Scenarios S1, S4 can be considered as the most “optimistic”

ones. More realistic estimates of uncertainties are included in S2 and S5. Finally,

S3 and S6 are “pessimistic”, i.e. assume largest plausible estimates of the various

systematic effects.

8.2.3 From parton distributions to lattice observables

In this chapter, we aim at fitting the data presented in the previous subsection;

further studies with different data and treatments of systematic errors are

presented in the next chapter. Hence, we specialize our discussion to the case

of the unpolarized isovector parton distribution. Following the notations of

sec. 2.3.1, the parton distribution f3 is defined as

f3

(
x, µ2

)
=

 u (x, µ2)− d (x, µ2) , if x > 0

−ū (−x, µ2) + d̄ (−x, µ2) , if x < 0
(8.9)

where the support is given by x ∈ [−1, 1]. The factorization theorem in eq. (8.8)

becomes

f̃3 (x, µ, Pz) =

∫ +1

−1

dy

|y|
C3

(
x

y
,

µ

|y|Pz

)
f3

(
y, µ2

)
, (8.10)
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where the quasi-PDF is the one given by Γ = γ0 and the explicit expression of

the matching coefficients is given in app. F. Starting from the definition of quasi-

PDFs given in eq. (8.6), it is clear that the lattice ME is given by the inverse

Fourier transform of eq. (8.10), which yields an equation relating the light-cone

PDFs on the right hand side to the lattice observable:

M3

(
zPz, z

2, µ
)

=

∫ ∞
−∞

dx e−i(xPz)z

∫ +1

−1

dy

|y|
C3

(
x

y
,

µ

|y|Pz

)
f3

(
y, µ2

)
. (8.11)

Since C3 is purely real, we can split the above complex identity into two real

equations, relating the real and imaginary part of the ME M3 (z) to the light-

cone distribution f3. For the purpose of this work, we introduce two lattice

observables, denoted by ORe
γ0 (z, µ) and OIm

γ0 (z, µ), defined as

ORe
γ0 (z, µ) ≡ Re

[
M3

(
zPz, z

2, µ2
)]

=

∫ ∞
−∞

dx cos (xPzz)

∫ +1

−1

dy

|y|
C3

(
x

y
,

µ

|y|Pz

)
f3

(
y, µ2

)
, (8.12)

OIm
γ0 (z, µ) ≡ Im

[
M3

(
zPz, z

2, µ2
)]

= −
∫ ∞
−∞

dx sin (xPzz)

∫ +1

−1

dy

|y|
C3

(
x

y
,

µ

|y|Pz

)
f3

(
y, µ2

)
, (8.13)

where we have only included z and µ in the arguments of ORe
γ0 and OIm

γ0 in order

to simplify the notation – since we are working here with only one value of Pz

there is little advantage in keeping all the arguments. The explicit expression of

C3 contains plus distributions. Making them explicit we can write the equations

above as

ORe
γ0 (z, µ) =

∫ 1

0

dx CRe
3

(
x, z,

µ

Pz

)
V3 (x, µ) = CRe

3

(
z,
µ

Pz

)
~ V3

(
µ2
)
, (8.14)

OIm
γ0 (z, µ) =

∫ 1

0

dx CIm
3

(
x, z,

µ

Pz

)
T3 (x, µ) = CIm

3

(
z,
µ

Pz

)
~ T3

(
µ2
)

(8.15)

where V3 and T3 are the nonsinglet distributions defined by

V3 (x) = u (x)− ū (x)−
[
d (x)− d̄ (x)

]
, (8.16)

T3 (x) = u (x) + ū (x)−
[
d (x) + d̄ (x)

]
, (8.17)

where, for simplicity, the µ dependence has been omitted. The equations above

relate the position space matrix elements computable on the lattice with the

collinear PDFs. Similar expressions were worked out in ref. [246] in the context of

139



the pion distribution amplitude. The proof of eqs. (8.14), (8.15) does require some

care, and it is fully worked out in app. F. The coefficients CRe,Im
3 are related to the

real and imaginary part of the Fourier transform of the matching coefficient C3

appearing in eq. (8.10). Since the latter is defined in terms of plus distributions,

the computation is quite involved, and the explicit expression of CRe,Im
3 is obtained

in app. F, making the action of the plus distributions explicit before taking the

Fourier transform. A discussion about the convergence of the integrals involved

is also reported there. The above results show how fixed z matrix elements

defining the quasi-PDF in position space give direct access to two independent

nonsinglet distributions, through the integration of the parton distribution over

its full support with a perturbatively computable coefficient. We will denote this

operation as ~.

It is useful at this point to recall the form of the QCD factorization formula for

the DIS nonsinglet structure function, given in eq. (2.23). Comparing eqs. (8.14),

(8.15) with eq. (2.23), we see that the lattice observables introduced above can

be treated on the same footing as experimental data for DIS structure functions,

as they are related to the nonsinglet distributions through a convolution with a

coefficient that can be computed in perturbation theory. However, the form of

such convolution, denoted by ~ , is quite different from the one appearing in the

DIS case, denoted by ⊗: the former involves a DIS-like convolution first, to go

from the PDFs to quasi-PDFs, followed by an integration over the full x-range to

go to position space. This suggests that this kind of convolution, if implemented

in a PDFs fit, may constrain the output much more than what the standard DIS

convolution can do.

8.3 Fit setting and FastKernel implementation

The main point of the discussion in sec. 7.5 is that the lattice equal-time

correlators are just another possible observable connected to PDFs through some

kind of factorization theorem. From a practical point of view, this means that we

can treat the lattice data on exactly the same footing as the experimental ones,

allowing a smooth and natural way to introduce them in a parton distributions

fit. The results presented in this and in the following chapter have therefore been

produced using the c++ fitting framework of the NNPDF collaboration described

in chapter 3: lattice data and the corresponding systematics are implemented in

the code, just as they were data for DIS structure functions, and the fitting
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code can be run using the standard methodology, based on neural network

parameterization, Monte Carlo replicas generation, numerical minimization of the

χ2 and cross validation. The χ2 minimized during the fit is given by eq (3.11),

where the explicit form of the covariance matrix is

C ij = σ2
i,s δij +

∑
k

σi,kσj,k (8.18)

where i and j run over the lattice points and σi,s, σi,k are respectively the total

statistical and the set of systematical uncertainties of the i-th lattice point,

described in sec. 8.2.2. The covariance matrix enters both the definition of the χ2

and the generation of Monte Carlo replicas, being therefore important for both

the central value of the fit and the final PDFs error. A solid knowledge of the

covariance matrix is therefore an essential ingredient to get reliable results. The

NNPDF methodology has been used to produce PDF sets for many years now, and

provides a flexible environment within which it has been possible to fit more than

4000 experimental points, coming from a variety of different high energy processes

in different kinematic ranges. Therefore it represents a reliable framework which

can be used to study and analyze the available lattice data, to assess how well

these are able to constrain the PDFs and to compare lattice results with those

coming from standard PDF sets.

In order to get theoretical predictions for the data entering the fit, the parton

distributions have to be evolved from the fitting scale up to the observable scale,

and then they have to be convoluted with the correct coefficient function. As

discussed in sec. 3.1.4, these two steps are performed by mean of the FastKernel

tables. We show an example of this also in chapter 4, when describing the

implementation of jets data in a global PDFs determination. The same procedure

has to be implemented for lattice data as well. As seen in sec. 8.2.3, in this case

the integration of the parton distributions over their full support is needed. This

makes the form of the convolution ~ more complicated than the one we usually

have for high-energy observables, which makes the general implementation of

the FastKernel tables slightly different from the standard case. This has been

achieved using a proprietary code and in the following we summarize the main

steps followed in the implementation. It is important to emphasise once again

that in this analysis, once the FastKernel tables have been generated, the lattice

data are treated exactly on the same footing as any other data, viz. the exact

same methodology and code are used for fitting experimental and lattice data.
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The lattice observables ORe,Im
γ0 (z, µ2) are determined at a given renormalization

scale µ2. They can be written in terms of the nonsinglet distributions at a given

reference scale µ2
0, by first evolving the parton distribution up to the scale µ2, and

then convoluting it with the coefficents CRe,Im
3 defined in eqs. (8.14), (8.15) and

worked out in app. F. For the nonsinglet distributions considered in this work,

the evolution is given by

T3

(
x, µ2

)
=

∫ 1

x

dy

y
K

(+)
3

(
x

y
, αs, α

0
s

)
T3

(
y, µ2

0

)
, (8.19)

V3

(
x, µ2

)
=

∫ 1

x

dy

y
K

(−)
3

(
x

y
, αs, α

0
s

)
V3

(
y, µ2

0

)
. (8.20)

where the kernels K(±) are obtained by solving the DGLAP evolution equations

in the nonsinglet sector, as described in sec. 2.3.2. For V3 and T3 we have two

different nonsinglet evolution kernels, denoted by K
(−)
3 and K

(+)
3 respectively.

Eqs. (8.19) and (8.20) can be rewritten expressing the parton distribution in

terms of an interpolation basis [53], for instance for the case of T3

T3

(
x, µ2

0

)
=
∑
β

T3

(
xβ, µ

2
0

)
I(β) (x) +O [(xβ+1 − xβ)p] , (8.21)

where p is the lowest order neglected in the interpolation. In other words, the

interpolating functions act by picking up the value of the PDF at some point xβ

of a predefined x-grid. Substituting in the evolution equation eq. (8.19) we get

T3

(
xα, µ

2
)

=
∑
β

K(+)
αβ T3

(
xβ, µ

2
0

)
. (8.22)

with

K(+)
αβ =

∫ 1

xα

dy

y
K(+)

(
xα
y
, αs, α

0
s

)
I(β) (y) . (8.23)

The interpolation basis used at the initial scale can also be used to interpolate

the parton distributions at the scale µ2 appearing in eqs. (8.14), (8.15). For the

imaginary part of the lattice observable we get

OIm
γ0 (z, µ) =

∑
α

CIm
zα T3

(
xα, µ

2
)
, (8.24)
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with

CIm
zα =

∫ 1

0

dx CIm
3

(
x, z,

µ

Pz

)
I(α) (x) . (8.25)

Putting together eqs. (8.22) and (8.24) we get

OIm
γ0 (z, µ) =

∑
β

HIm
zβ T3

(
xβ, µ

2
0

)
, (8.26)

where

HIm
zβ =

∑
α

CIm
zα K

(+)
αβ . (8.27)

Eq. (8.27) defines the FastKernel table which enters the computation of the χ2

during the fit. It connects the parton distribution at the fitting scale to the lattice

observable, taking into account the QCD evolution, the matching and the Fourier

transform, expressing them through a single matrix vector multiplication. Clearly

a similar set of equations defines a FastKernel table that yields the real part of

the lattice observable, ORe
γ0 , as a function of the valence parton distribution V3.

8.4 Results

Let us now proceed to presenting and discussing our numerical results. First, we

study the way the available lattice data might constrain the parton distributions

in a fit, by mean of closure tests: fake data for the real and imaginary part of the

ME are generated according to eqs. (8.14), (8.15) using as input a chosen PDFs

set. The fitting code is then run over these pseudo-data, using exactly the same

setting used in a common fit. By comparing the output of such fits with the

known input PDFs sets, we can assess the accuracy we may expect to get from

the current knowledge of the lattice data and their systematics.

Then we present results for fits run over the data presented in sec. 8.2.1, studying

the 6 different scenarios for the treatment of the systematic errors described in

sec. 8.2.2 and summarized in tab. 8.1. The results presented here have been

produced using the NNPDF fitting code [48] and the ReportEngine software [130].
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8.4.1 Closure tests

As shown in sec. 8.2.3, we can relate PDFs to lattice observables through the

matching convolution of eq. (8.10) followed by a Fourier transform. As already

pointed out at the end of sec. 8.2.3, the resulting convolution ~ is quite different

from the one entering standard QCD fits. In this section, we assess how much

this operation together with the available lattice data from refs. [181, 202] are

able to constrain parton distributions in a fit, running some preliminary closure

tests. For a detailed description of the closure test procedure, we refer to sec. 4

of ref. [55]. We generate pseudo-data corresponding to the data of ref. [181] using

NNPDF31 nlo as 0118 as our input PDFs set, and we run the fitting code over

them. The outcome of the closure test fit is then used to assess how well the

input PDFs can be reconstructed starting from the 16 position space ME points

and their uncertainties.

In order to get an idea of the impact on the fit of the statistical and systematic ME

errors, we consider three different scenarios: first we generate fake data assuming

no systematic uncertainties and a small uncorrelated statistical uncertainty for

each point, constant for all of them and of the order of the smallest real one. From

the results of this closure test we can estimate the real constraining power of the

convolution ~, assuming an ideal scenario where all the systematics are under

control and the statistical error is kept small. Second, we repeat the exercise

but using the real statistical uncertainties, to assess how much the real statistics

of the current simulations affect the conclusions of the previous case. Finally we

look at the effect of the systematics, considering as a specific example the scenario

S2 of table 8.1. The three cases are summarized in table 8.2 and the results are

shown in figs. 8.2, 8.3, 8.4.

Closure test Statistics Systematics
CT1 fake -
CT2 real -
CT3 real S2

Table 8.2 Closure tests with different choices of the statistical and systematic
error. The results for each option above is summarised in the plots
below.

Looking at the results for CT1, fig. 8.2, it is worth stressing that the lattice data

entering the fit are just 16 for the real part and 15 for the imaginary part of the
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Figure 8.2 Closure test fit with fixed small statistical error and no systematics
(CT1) compared to the input PDFs set. V3 (top line) and T3 (lower
line) combinations in linear and logarithmic scale are shown. The
input PDFs set is fully reconstructed within 1-sigma level, getting
PDFs with an error band comparable to the input one.
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Figure 8.3 Closure test fit with real statistical error and no systematics (CT2)
compared to the input PDFs set. Top line: V3 combination in linear
and logarithmic scale. V3 (top line) and T3 (lower line) combinations
in linear and logarithmic scale are shown. The error band of the
reconstructed set is way bigger than the one of the input PDFs,
showing a non negligible impact of the current statistics over the
final PDFs error.

matrix element. Just half of them are actually used in the training procedure,

while the other ones are used to build the validation set. In a standard NLO

QCD global fit, like the one used as input PDF here, the number of points

entering the analysis is O (4000). fig. 8.2 shows how good the convolution ~ is

in constraining the PDFs, assuming an ideal scenario where all the systematics

are under control, and the statistics are kept small. Looking at the results for

CT2 and CT3 in figs. 8.3 and 8.4, it is clear how big the impact of the statistical

and systematic uncertainties of the ME is on the PDFs error: in both cases the

input PDFs set is reconstructed within 1-sigma level, with some tension for V3 at

medium x in the first case. The PDFs error is increasingly big, becoming huge
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Figure 8.4 Closure test fit with real statistical and systematic error (CT3)
compared to the input PDFs set. V3 (top line) and T3 (lower line)
combinations in linear and logarithmic scale are shown. The errors
of the reconstructed PDFs are huge.

when the full systematics are considered. Fig. 8.4 shows what we may expect in

a real life scenario.

To sum up, the results from CT1 show how promising this kind of lattice data

might be in constraining PDFs. On the other hand, the results from CT2 and

CT3 highlight the importance of having a good control over both the statistical

and systematical uncertainties in the lattice simulations of the ME. It is worth

noticing, however, that the overall error band of the reconstructed PDFs, even

in presence of the full systematic errors, would surely be reduced when new data

are available.

8.4.2 Fit results

In this section, we present our results for fits ran over the data from refs. [181, 202],

described in sec. 8.2.1. As mentioned before, we consider 6 different scenarios

for the treatment of the systematic errors, summarized in table 8.1. We show

results for ”optimistic” (S1,S4), ”realistic” (S2,S5) and ”pessimistic” (S3,S6)

scenarios, the difference between the elements of each couple being the nature

of the systematic errors: an additive shift given by a percentage of the ME for

the first, a constant shift for all the ME points for the second one.

The results of the fit for the two optimistic scenarios are shown in fig. 8.5. S1

is sligthly more conservative than S4, but overall there is not much difference

between them. The situation changes for the more realistic scenarios (fig. 8.6),

where S2 is much more conservative than S5. In the former case the tension with
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NNPDF31 nlo 0118 is smaller than what we observe in the previous scenarios, due

to the increase in the error band and to a slight shift of the central replica of the

fit. Similar comments can be made for the most pessimistic scenarios, shown in

fig. 8.7, having S3 with a huge error band and a more remarkable shift of the

central replica towards the one of NNPDF31. Overall, we notice how, when the

systematics are given by a percentage of the ME, we get qualitatively different

results moving from one scenario to the other, while in the case we consider

constant shifts there is no much difference between different cases.
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Figure 8.5 S1 vs. S4: S1 results are sligthly more conservative than the S4
ones, but overall there is no significant difference between the two
optimistic scenarios.
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Figure 8.6 S2 vs. S5: S2 results are more conservative than the S5 ones,
showing also a small shift of the replica 0 towards the light-cone
PDFs. Overall, S2 results are comptible with NNPDF31 nlo 0118

within 1-sigma level.

To sum up, in this chapter, we have used the momentum space factorization

of quasi-PDFs in order to relate the unpolarized isovector parton distribution

to well-defined matrix elements computable on the lattice. Using some of the

currently available lattice data, we have used such result to extract the nonsinglet

distributions V3 and T3 within the NNPDF framework, studying also different
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Figure 8.7 S3 vs. S6: S3 results are extremely conservative, while those for S6
do not show a qualitative difference with respect to S4 and S5.

possible scenarios for the treatment of the systematic uncertainties from lattice

QCD simulations.

Our first results from closure tests show how effective these lattice data might

be in constraining PDFs, allowing a consistent determination of the target

distribution starting from O (15) ME points. On the other hand, we show

that a consistent treatment of the lattice systematics is extremely important,

and how the final result of the fit strongly depends on the specific systematics

scenario we consider. Considering the most realistic ones, agreement with

the phenomenological PDFs is observed within 1 sigma level, for both the

nonsiglet distributions considered here. The error bands are, however, very large

with respect to the corresponding phenomenological PDFs, showing again how

important the control over the lattice systematics is.

Despite having focused on the quasi-PDFs case, the framework we implemented

is general enough to allow for the treatment of different lattice data. In the next

chapter we will discuss a similar analysis addressing this time the pseudo-PDFs

approach. In this case more data are available and, as we are going to see, position

space factorization formulas allows for a number of additional advantages.
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9
PDFs from pseudo-Ioffe Time Distribution

In the previous chapter, starting from the momentum space factorization formula

connecting quasi-PDFs to collinear PDFs, upon numerical implementation of

the Fourier transform we obtained an expression relating parton distributions

directly to position space quasi-PDFs matrix elements. Such factorized expression

has been subsequently used in the NNPDF framework in order to extract two

nonsinglet distributions from data for quasi-PDFs matrix elements produced

in refs. [181, 202]. A similar analysis was recently performed by the JAM

collaboration in ref. [247] for the spin-averaged and spin-dependent PDFs

employing quasi-PDF lattice data. In this chapter, base on ref. [13] we extend

such analysis to the case of the pseudo-PDFs approach, which relies on the

position space formulation of the same factorization theorem. In particular, we

will consider data for reduced pseudo-ITD, introduced in sec. 7.3.1 in the context

of the scalar field theory and that we now revise in the context of QCD.

As we saw in sec. 8.1 the UV divergences of the Ioffe-time pseudodistribution

(pseudo-ITD) are multiplicatively renormalizable [166, 167]. The relevant

renormalization factor Z(z2
3) eδm|z|/a does not depend on ν and, for small z2

3 , is

known at one loop. Its explicit form is inessential if one introduces the so-called

reduced Ioffe-time pseudo-distributions first defined in ref. [160] as

M
(
ν, z2

3

)
=
M (ν,−z2

3 , µ
2)

M (0,−z2
3 , µ

2)
. (9.1)

The Z-factors of the numerator and denominator are the same and cancel in the

ratio leaving the reduced distribution on the left-hand side without any residual

dependence on unphysical scales.
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Working in the small-z2
3 limit, the pseudo-ITD can be matched at one-loop level

to the corresponding ITD through a finite perturbative kernel, expressing the

pseudo-ITD in terms of the collinear PDFs through a factorization formula based

on the operator product expansion (OPE). The computation of the relevant QCD

diagrams has been performed in a number of independent papers. The original

QCD computation is reported, for example, in refs. [165, 176, 197, 237]. The

result reads

M
(
ν, z2

3

)
=

∫ 1

−1

dxC
(
xν, µ2z2

3

)
f
(
x, µ2

)
+O

(
z2

3Λ2
)
, (9.2)

with

C
(
ξ, µ2z2

3

)
= eiξ − αs

2π
CF

∫ 1

0

dw

[
1 + w2

1− w
log

(
z2

3µ
2 e

2γE+1

4

)
+ 4

log (1− w)

1− w
− 2 (1− w)

]
+

eiξw +O
(
α2
s

)
. (9.3)

Eqs. (9.2), (9.3) allow to relate collinear PDFs to quantities which are computable

in lattice QCD simulations, through a factorized expression similar to those

relating collinear PDFs to physical cross sections. Just as described in the

previous chapter, this formula can be used in a fitting framework to extract

PDFs from lattice data.

This, besides being a complementary exercise to the one presented in chapter 8,

has also some practical advantages. First, when working in the pseudo-ITD

approach, the factorization is realized in the limit of small-z2. Unlike in the

quasi-PDFs approach, where the factorization is realized for high values of P ,

here we are allowed to keep in the analysis data coming from a wide range of

momentum values, without having to remove those with lower P . This advantage

is particularly important, because in lattice QCD, the low momentum data are

significantly more precise for a fixed computational cost. Second, we can directly

use the position space factorization formula of eq. (9.2), relying on the analytical

expression for the perturbative coefficient of eq. (9.3) and without having to

perform the numerical Fourier transform described in app. F.

The structure of the chapter is as follows. In sec. 9.1 we define the lattice

observable considered in the fit, describe the corresponding data and briefly

recall the main features of the NLO terms entering the factorization formulas.

In sec. 9.2 we present the first set of results: we consider the fits where only the
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statistical uncertainties of the lattice data are taken into account. Analyzing data

from different lattice ensembles we show that, in general, without accounting for

systematic effects it is not possible to obtain a good fit. In sec. 9.3 we discuss and

quantify some of the systematic uncertainties affecting the reduced pseudo-ITD

data. We include such systeatics in the analysis and we study their impact on

the final PDFs and on the fit quality.

9.1 Lattice data and observables

In this section we describe the lattice observables we will consider in the following,

together with the corresponding data. As in the case of the previous chapter we

will consider two different observables corresponding to the real and imaginary

part of the reduced pseudo-ITD defined in eq. (9.1).

Considering the case of the unpolarized isovector parton distribution, taking the

real and complex parts of eq. (9.2) and using eq. (9.3), we can define the two

lattice observables

Re [M]
(
ν,−z2

3

)
=

∫ 1

0

dxCRe
(
xν, µ2z2

3

)
V3

(
x, µ2

)
, (9.4)

Im [M]
(
ν,−z2

3

)
=

∫ 1

0

dxCIm
(
xν, µ2z2

3

)
T3

(
x, µ2

)
, (9.5)

with

CRe
(
ξ, µ2z2

3

)
= cos (ξ)

− αs
2π
CF

∫ 1

0

dw

[
B (w) log

(
z2

3µ
2 e

2γE+1

4

)
+ L (w)

]
cos (ξw) , (9.6)

CIm
(
ξ, µ2z2

3

)
= sin (ξ)

− αs
2π
CF

∫ 1

0

dw

[
B (w) log

(
z2

3µ
2 e

2γE+1

4

)
+ L (w)

]
sin (ξw) , (9.7)

where the kernels B (w) and L (w), according to eq. (9.3), are given by

B (w) =

[
1 + w2

1− w

]
+

, (9.8)

L (w) =

[
4

log (1− w)

1− w
− 2 (1− w)

]
+

. (9.9)
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It is worth recalling some important features of the NLO coefficients given in

eqs. (9.6), (9.7). The contributions proportional to the two kernels B (w) and

L (w) of eqs. (9.8), (9.9) can be seen as an evolution and a scheme change term

respectively [195, 198]: while the former is responsible for the evolution from

the PDF scale ẑ−2 = µ2 e2γE+1

4
to the pseudo-ITD scale z2, the latter takes into

account the finite terms characterizing the specific choice of the renormalization

scheme. They are plotted in fig. 9.1 for both the real and imaginary part, using the

PDFs set NNPDF31 nlo as 0118 as input. The evolution term B (w) also connects
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Figure 9.1 Upper plot: The NLO evolution term for the real (left) and
imaginary part (right). Lower plot: The NLO scheme change term
for the real (left) and imaginary part (right).

pseudo-ITD points having different values of z2: considering for example the real

part, from eqs. (9.4), (9.6) it follows

Re [M]
(
ν, z2

0

)
= Re [M]

(
ν, z2

)
− CF

αs
2π

log
z2

0

z2

∫ 1

0

dx

[∫ 1

0

dwB (w) cos (xνw)

]
V3

(
x, µ2

)
,

(9.10)

which relates the real part of the pseudo-ITD point at the scale z2 with the one

having the same Ioffe time at the scale z2
0 [196, 248].

We will consider the data for reduced pseudo-ITD from refs. [198, 200]: the
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Lattice
ensemble

a(fm) Mπ (MeV) L3 × T ndat Reference

fine 0.094(1) 358(3) 323 × 64 48

big 0.127(2) 415(23) 323 × 96 48 [198, 200]

coarse 0.127(2) 415(23) 243 × 64 36

280 0.094(1) 278(3) 323 × 64 64 [200]

170 0.091(1) 172(6) 643 × 128 80

Table 9.1 Lattice data details

datasets presented in ref. [198] have been produced starting from three different

lattice ensembles, denoted as fine, big and coarse and which differ for the volume

and lattice spacing used in the simulations. They have been produced using values

of the pion mass ranging from 358 MeV (fine) to 415 MeV (coarse and big). In

the present work we will focus on the datapoints produced from the fine ensemble,

while those from the coarse and big ones will be used to estimate systematic effects

due to continuum limit and finite lattice volume. We will also consider pseudo-

ITD points presented in ref. [200], produced using pion mass equal to 172 MeV.

Following the original convention of ref. [200] we will denote the corresponding

lattice ensemble as 170. Points from the ensemble 280, presented in the same

paper and produced using similar lattice spacing and pion mass 278 MeV, will

be used to estimate the pion mass effects in the analyses for the ensembles fine

and 170. These five ensembles of 2 + 1 flavor lattice QCD were generated by the

JLab/W&M collaboration using clover Wilson fermions and a tree level tadpole-

improved Symanzik gauge action. One iteration of stout smearing with the weight

ρ = 0.125 for the staples is used in the fermion action. A direct consequence of

the stout smearing is that the value of the tadpole corrected tree-level clover

coefficient cSW used is very close to the non-perturbative value determined, a

posteriori, using the Schrödinger functional method. The detailed features of

these ensembles are reported in tab. 9.1, together with the number of reduced

pseudo-ITD datapoints ndat computed from each of them.

Given a set of lattice data for the real and imaginary part of the reduced pseudo-

ITD, the distributions T3 and V3 can again be extracted from them through a

standard minimum-χ2 fit. Here we will implement them in the NNPDF framework

following the same approach as the one described in chapter 8.
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9.2 Fits over lattice data: statistical uncertainties

only

In this section, we will present results for fits performed over the lattice data

computed from the ensembles fine and 170, denoted as fine-stat and 170-stat

respectively. Such fits have been produced considering statistical uncertainties

only. We will show how, in general, without having the complete information

regarding the lattice systematic uncertainties it is not always possible to obtain a

good fit. In the next section, taking as example the case of the fine ensemble, we

will discuss and estimate some of the possible systematic effects, studying their

impact on the fit quality and on the resulting PDFs.

Parton distributions resulting from fits fine-stat and 170-stat, together with the

corresponding error bands, are plotted in the upper and lower plots of fig. 9.2, and

the χ2 values are reported in tab. 9.2: despite the PDFs extracted from the two

datasets are compatible within one σ, the error band of the fit fine-stat appears

to be slightly smaller than the other, with an average χ2 value per datapoint

equal to 8.36, pointing out a possible underestimation of the error and a bad fit

quality. This could be caused by inconsistencies between different datapoints,

due to unknown systematic uncertainties affecting them. On the other hand, the

fit 170-stat shows better χ2 values, with an average value per datapoint equal to

1.38.

Focusing on the more problematic case of the fine ensemble results, in order to

assess which points are more likely to be affected by large systematic errors, we

will study the contribution to the χ2 coming from each datapoint

δi =
(Di − Ti)2

σ2
i

, (9.11)

Di and Ti being the i-th lattice point and the corresponding prediction from the

fit respectively, and find out which points Di are more than 4σ (or 3σ) off from

the fitted distribution Ti. These are the points that, most likely, do not belong to

the fitted distribution and which therefore might be affected by larger systematic

effects.

The contributions
√
δi are plotted in the upper plot of fig. 9.3 as a function of

the Ioffe-time ν, with the red and yellow lines highlighting the 4σ and 3σ cut
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Figure 9.2 Upper plots: PDFs from datapoints computed from the ensembles
fine and 170. The shaded bands represent the PDFs error computed
as the 68 c.l. of the fit replicas, while the dashed line is obtained by
computing the standard deviation point by point in x. Lower plots:
corresponding PDFs errors, computed as standard deviation over fit
replicas and displayed in function of x.

respectively: it is clear that a bunch of points having small Ioffe-time values

are those giving the highest contribution to the total χ2, being more than 3σ

or 4σ off. We can implement 4σ and 3σ cuts, removing the problematic points

from the dataset and producing new fits, denoted as fine-stat-3σ and fine-stat-4σ:

the new fits show more reasonable χ2 values, reported in tab. 9.2, showing how,

upon removing the outliers, the remaining points, coming from a wide range of

momentum p and Euclidean separation z3, are fitted reasonably well. The PDFs

resulting from the 3σ cut are plotted in the lower plot of fig. 9.3, normalized

to the fit without any cuts: it is clear how, despite spoiling the total χ2, the

problematic points do not seem to have a big impact on the final PDFs.

We conclude that, depending on the specific lattice ensemble we consider, quite

a high number of small Ioffe-time points do not belong to the fitted distribution.

In order to get reasonable χ2 values, such points have to be removed from the

fit. This highlights possible tensions between datapoints and may point out the

presence of systematic effects. In order to avoid any underestimation of the PDFs
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Ensemble fit Obs ndat χ2 χ2
tot

fine fine-stat Re [M] 48 7.94 8.36

Im [M] 48 8.77

fine-stat-4σ Re [M] 39 2.68 3.28

Im [M] 39 3.89

fine-stat-3σ Re [M] 34 1.45 1.86

Im [M] 32 2.27

170 170-stat Re [M] 80 0.68 1.38

Im [M] 80 2.07

Table 9.2 Details of fits with statistical uncertainties only. From left to right
we report the lattice ensemble, the fit name, the observables included
in the analysis, the number of datapoints and finally the partial and
total χ2.
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Figure 9.3 Upper plots:
√
δi contributions for each datapoint of the fine

ensemble. The red and yellow lines highlight the 4σ and 3σ cut
respectively. Lower plots: PDFs from fits fine-stat (orange) and
fine-stat-3σ (green), normalized to the former.

error and to introduce back in the analysis all the available points, systematic

uncertainties need to be quantified and implemented in the fit.
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9.3 Systematic effects

9.3.1 Discussion

The high χ2 values of the fits presented in the previous section might point out the

presence of some tensions between datapoints. In the following, focusing on the

case of the fine ensemble results, we will show that this is indeed the case, and we

will investigate possible sources of systematic uncertainties and their numerical

values.

The matrix element defining the pseudo-ITD is a function of the Ioffe-time ν

and of the scale z2. Points having the same Ioffe-time but different Euclidean

separation can be related through eq. (9.10), which can be used to evolve each

pseudo-ITD point up to a chosen reference scale z2
0 = (0.7 a)2. Looking at fig. 9.1

it is clear that, given this choice for z0, the sign of the NLO correction of eq. (9.10)

will be positive for every datapoint, so that the evolution increases the real part of

the pseudo-ITD. Considering the imaginary part, the sign of the NLO evolution

term is initially negative, and it turns positive at bigger values of ν. Such effects

can be seen in fig. 9.4, where the pseudo-ITD points computed from the fine

ensemble are plotted before (blue) and after evolution (red). After evolution,
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Figure 9.4 Data for the real part of the pseudo-ITD at their original scale z2

and evolved at the common scale z2
0.

points having the same Ioffe time should have the same value. In practice, they

should be compatible within errors. Looking at the red points of fig. 9.4, where

each point is plotted with the corresponding statistical uncertainty, it is clear

how, expecially in the small Ioffe time region, this is not always the case: after

evolution, some points having the same Ioffe time are not compatible between

each other. Such discrepancies might be explained by the presence of systematic
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effects we are not accounting for.

As already mentioned in the previous chapter, a proper investigation of the

systematic effects affecting the computation of the equal time correlators

underlying the definition of pseudo-PDFs is a difficult and expensive task which

would require to run different lattice simulations varying a set of parameters, like

for example the lattice spacing, the lattice volume, the pion mass. Alongside

systematic effects due to the lattice simulation, other sources of errors are those

connected to the theoretical framework of the pseudo-PDFs approach, like the

presence of higher twist effects and perturbative matching truncation effects, as

detailed in sec. 8.2.2.

As mentioned in sec. 9.1, in ref. [198] additional pseudo-ITD points were

computed starting from other two lattice ensembles, with pion mass similar to

that of the fine one, but having different volume and lattice spacing, denoted as big

and coarse, whose features are reported in tab. 9.1. Systematic uncertainties due

to the continuum limit (CL) and finite volume (FV) can be directly estimated

using these additional results as detailed in ref. [198]: the real and imaginary

components of the pseudo-ITD are fitted to a polynomial as a function of

the Ioffe-time ν; the difference between coarse and fine ensemble results is

taken as an estimate for lattice spacing effects as a function of ν, while the

analogous difference considering the coarse and big ensembles gives an estimate

for uncertainties due to finite lattice volume. Systematic effects due to the pion

mass (PM) can be estimated in a similar way: as mentioned in sec. 9.1, in

ref. [200] the data of the ensembles fine and 170 have been supplemented with

additional pseudo-ITD results produced from a third ensemble having pion mass

equal to 278 MeV, denoted as ensemble 280. The difference between polynomial

fits for the ensembles fine and 280 is taken as an estimate for pion mass effects.

These differences will be considered as three independent sources of correlated

systematic, affecting each datapoint entering the analysis. They are shown in

the upper plots of fig. 9.5 as functions of the Ioffe-time, denoted as FV (finite

volume), CL (continuum limit) and PM (pion mass).

It is important to understand whether or not these systematic uncertainties are

enough to account for the discrepancies described at the beginning of the section.

In the lower plots of fig. 9.5 FV, CL and PM systematic effects are plotted for

the relevant Ioffe-time values, together with the aforementioned discrepancies.

Consistently with what observed previously, the latter seem to affect mostly low

Ioffe-time points, which are also those for which the estimated systematics reach
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their minimum values. Therefore from fig. 9.5 it follows that FV, CL and PM

systematics cannot be considered responsible for the big contributions to the χ2

noted in the fits of the previous section. In other words, they are likely not

enough to account for the observed discrepancies affecting low Ioffe-time points.

It should be noted that a study of more than 2 ensembles for each systematic

error may be necessary for a more definitive conclusion.
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Figure 9.5 Upper plots: finite volume (FV), continuum limit (CL) and pion
mass (PM) systematics provided as functions of the ioffe-time ν
for the real (left) and imaginary (right) part of the matrix element.
Lower plots: discrepancies between data having the same ioffe-time
(red) together with the total FV, CL and PM systematic effects
(blue).

Excited states contaminations might represent another possible source of sys-

tematic effects. Also missing higher orders in perturbation theory and higher

twist effects could in principle be treated as additional systematic uncertainties.

Unlike the case of the FV, CL and PM systematic uncertainties discussed above,

we cannot estimate the size of such effects using the current lattice results. One

could then follow the approach adopted in the previous chapter, where different

scenarios for the size of such systematics have been considered, and try to draw

conclusions about their impact on the PDFs and on the fit quality. Here we

will follow a different approach, trying to quantify an additional uncertainty
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which accounts for the unknown missing systematic effects, following a Bayesian

approach. The gaussian Bayesian approach that we are going to use here is the

same described in chapter 5 in the case of global QCD analysis in order to take

into account the theoretical error due to missing higher orders1.

As discussed in sec. 5.1, the figure of merit which is minimized during a Gaussian

fit is defined as the probability of the data D given the model parameters θ,

namely the likelihood

P (D|θ) = e−
1
2

(D−T (θ))T Σ−1 (D−T (θ)). (9.12)

where Σ is the covariance matrix of the data D, accounting for the known

statistical and systematic uncertainties, and T (θ) is the theoretical prediction,

function of the model parameters. If we assume the presence of unknown

systematic effect ∆ affecting the datapoints D, eq. (9.12) can be modified as

P (D,∆|θ) = e−
1
2

(D+∆−T (θ))T Σ−1 (D+∆−T (θ)). (9.13)

Assuming a Gaussian prior distribution P (∆) = exp
[
−1

2
∆T Σ̂−1 ∆

]
we can

marginalize over ∆ getting∫
d∆P (∆)P (D,∆|θ) ∝ e−

1
2

(D−T (θ))(Σ+Σ̂)
−1

(D−T (θ)), (9.14)

which defines the relevant likelihood to be minimized. Eq. (9.14) shows how the

presence of unknown systematic effects can be accounted for by introducing in

the likelihood an additional contribution to the covariance matrix, denoted by Σ̂,

which defines the prior probability distribution of these systematics. Its specific

definition is of course arbitrary, and depends on the knowledge of the missing

uncertainties we have. This Bayesian approach, despite not providing a general

method to estimate the missing systematics, allows to include in the analysis the

partial information we may have about them.

In the present case, we only know the discrepancies observed at the beginning

of this section, not described by continuum limit, finite volume and pion mass

effects. We can look at such discrepancies as an indication of the minimal size

of the systematic effects affecting the data and use them to construct a suitable

Σ̂: for each couple of points having a given Ioffe-time value, we will define the

two corresponding diagonal components of Σ̂ as half of the distance between

1In ref. [249] a similar approach was applied to cosmological data.
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evolved points, setting the off diagonal elements to zero. Each point sharing the

same Ioffe time value with at least another one will therefore be affected by an

additional, uncorrelated systematic such that, after evolution, datapoints having

the same Ioffe-time will be compatible between each other. Clearly, this global,

uncorrelated systematic will be the dominant one for small Ioffe-time points,

where most of the problematic points are, while for higher value of ν lattice

spacing, finite volume and mass effects will dominate.

9.3.2 Results

To sum up, in sec. 9.3.1, we have discussed and estimated four different source

of systematics: the first three, accounting for finite volume, lattice spacing and

pion mass effects, can be computed directly from the available lattice results

as a function of the Ioffe-time ν, and will be implemented in the fit as three

independent sources of correlated systematics; the fourth one has been estimated

using the size of the discrepancies observed between points having the same Ioffe-

time, and will be considered as an additional uncorrelated uncertainty, in order

to take into account the minimal size of all the remaining systematic effects we

have not directly computed. As mentioned in sec. 9.1, such systematics enter the

definition of the covariance matrix responsible for both replicas generation and

the χ2 definition, and therefore it has a central role in both the determination of

the fit central value and its error band. The new fit is denoted as fine-sys and

the resulting PDFs are plotted in fig. 9.6, together with the results from the fit

fine-stat presented sec. 9.2: the distribution T3 is only marginally affected by the

introduction of the systematic errors, showing a mild down shift of its central

value in the medium and large x regions; on the other hand both the central

value and the error band of V3 change, with an overall down shift of the former

and a sizable increase of the latter. The χ2 values are reported in tab. 9.3: the

average value per datapoint is now 1.15, showing a good fit quality. It should

be noted that after the inclusion of systematic uncertainties in the analysis, the

effect on the final result could be different depending on the specific situation we

are considering. In other words, it is not always the case that the inclusion of

new systematic effects leads to an increase of the final PDFs error, as we also

noticed in chapter 5. This can be seen for example in the case of the distribution

T3 plotted in fig. 9.6, from which it is clear how the error of the fit fine-sys has

not increased with respect to the one of fine-stat. The reason for this can be

traced back to the fact that the covariance matrix defined in eq. (8.18) enters
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Ensemble fit Obs ndat χ2 χ2
tot

fine no cuts Re [M] 48 1.00 1.15

Im [M] 48 1.30

Table 9.3 Details of the fit with systematic uncertainties. From left to right we
report the lattice ensemble, the fit name, the observables included in
the analysis, the number of datapoints and finally the partial and total
χ2.

both the Monte Carlo replicas generation and the χ2 definition: while the former

mostly controls the final PDFs error, the latter is responsible for the relative

weights different points have in the analysis. Points affected by bigger errors will

give smaller contributions to the χ2 and therefore will count less in the fit. Each

replica will be shifted by a certain amount, which takes into account both the

new replicas distribution and the different weights of the data entering the χ2, so

that the net effect on the final PDFs is non-trivial, and might consist in a global

shift of the central value of the replicas distribution rather than in an increase of

its error band.
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Figure 9.6 PDFs from the fits fine-stat and fine-sys.

Despite it is probably too early to draw comparisons between our results and

phenomenological distributions, it is interesting to see how they look when plotted

together, as we did in the previous chapter for quasi-PDFs results: given the fact

that nowadays V3 and T3 are very well constrained by experimental data, the

discrepancies we observe between lattice and phenomenological results might be

a good indication of the size of the systematic we are still missing, highlighting

specific x-region where the lattice PDFs error might have been underestimated. In

fig. 9.7, our result fine-sys and the corresponding distributions from the NLO PDF

sets NNPDF31 [48] are plotted together (orange and green curves respectively),

both as absolute values (upper plots) and normalized to NNPDF31 (lower plots).
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Looking at results from fine-sys, in the case of both V3 and T3 the two distributions

are compatible up to medium (∼ 0.25 and ∼ 0.45) and for large values of x (>

0.8), showing a probable underestimation of the PDFs error for the intermediate

x ranges.
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Figure 9.7 PDFs from the fits fine-sys compared with the corresponding
distributions from NNPDF31. In the lower plots results are
normalized to NNPDF31 PDFs.

To sum up, in this chapter we have considered the pseudo-ITD data produced

in refs. [198, 200]. Using the position space factorization theorem relating such

data to collinear PDFs, we have extracted two nonsinglet distributions within the

NNPDF framework.

After extracting PDFs from different data sets and considering statistical

uncertainties only, we have shown that in one of the cases considered, the fit

quality appears to be really poor, pointing out the need for a detailed knowledge

of the systematic effects. Using the results of ref. [198, 200] we have directly

estimated those connected to finite volume, lattice spacing and pion mass effects.

As for systematic uncertainties which cannot be directly computed from lattice

results (like for example truncation effects and higher twist corrections), starting

from the observed discrepancies between low Ioffe-time points we have used a

Bayesian approach to introduce an additional systematic which allows us to
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mitigate the tensions between the problematic datapoints, using the partial pieces

of information which are available to us.

The Bayesian approach however is not completely satisfying, since it relies on a

partial knowledge of the missing uncertainties and requires to make a number

of assumptions about them. More work has to be done to achieve a detailed

knowledge of the systematic uncertainties in lattice simulations: without a

stringent control over them, it is not possible to draw reliable conclusions and to

make comparisons with phenomenological distributions.

Finally, we stress once more that the analysis performed in this paper is

complementary to that presented in the previous chapter, where quasi-PDFs

matrix elements where considered instead, starting from the momentum space

version of the factorization theorem. In both cases, results have been produced

within the NNPDF environment, running the same machinery used for global QCD

analysis over experimental data. It is therefore interesting to compare our best

result of this chapter fine-sys with one of the more realistic cases of the previous

one, like for example those produced using the systematic scenario S2. Both PDFs

sets have been obtained using the same NNPDF methodology, the only difference

being the input data (pesudo-ITD and quasi-PDFs data) and the corresponding

errors, discussed in details in sec. 9.3 and 8.2.2 respectively. Quasi-PDFs and
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Figure 9.8 PDFs from the fits fine-sys compared with the corresponding
distributions from the fit presented in Chapter 8 produced with the
systematics scenario S2.

pseudo-ITD results are plotted together in fig. 9.8: both T3 and V3 distributions

appear to be in good agreement, the main difference being a huge decrease in

the PDFs error when considering results presented in this work. This difference

can be partially traced back to the number of points included in the analysis:

while in the analysis of chapter 8 16 points for quasi-PDFs matrix element

where included, in this chapter data corresponding to all momentum values are
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considered, for a total of 48 pseudo-ITD points. Clearly, having more points

in the analysis allows to better constraint the fit results, giving final PDFs with

smaller error. The size of the statistical and systematic uncertainties affecting the

points entering the two analyses is of course another reason for different PDFs

error. In general it is expected that, given equivalent computational cost, the

low momenta matrix elements, which are used in the pseudo-PDF approach, are

exponentially more precise than the large momenta matrix elements, to which the

quasi-PDF approach are restricted. However a detailed study of such differences

is left for a future study.

The next logical step might be a global lattice QCD fit within this same

framework, where data for multiple lattice observables coming from different

simulations are simultaneously included in the analysis. Given the results

presented here it is clear that, when combining the currently available data for

quasi-PDFs and reduced pseudo-ITD, the fit will be driven by the latter, and

the results won’t be much different from those of the fit fine-sys. However the

situation might change when some level of maturity in terms of precision and

systematic effects is achieved. One could then combine data from all pertinent

lattice formalisms including results from the so-called “Good Lattice Cross-

Sections” (LCS) approach, which is described in ref. [175] and represents a general

framework, where one computes matrix elements that can be factorized into PDFs

at short distances [246, 250–253], on the same lines of what described in chapter 7.

Clearly a global analysis only makes sense after having scrutinised each set

of data individually, and having understood the systematics that affect them.

Chapters 8, 9 represent a first step in this direction.
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10
Summary

In this thesis we have presented a number of studies connected to the general

topic of the proton Parton Distribution Functions. PDFs represent an essential

input to perform computations of processes involving hadrons in collider physics,

and nowadays they are responsible for the dominant source of theoretical

uncertainties in many important analyses. In order to achieve better accuracy

in theoretical predictions entering phenomenological studies, a better control of

PDFs uncertainties is therefore necessary. This can be achieved through both

improving the numerical frameworks and techniques commonly used to extract

PDFs from experimental data, and exploring new approaches and physical ideas.

In the first part of the thesis we have revised the general methodology adopted

by the NNPDF collaboration in global PDFs determination, describing its

implementation within the n3fit environment. In particular, we have described

the implementation of positivity and integrability constraints, studying their

impact in a global fit. Additionally, we have presented studies regarding fit

basis independence, showing how the final results are driven by the experimental

input and do not depend on the methodological details, such as the choice of the

distributions that are independently parameterized.

We have then presented a systematic study of the inclusion of inclusive jet

production measurements at LHC in the context of global PDFs determination.

Single-inclusive jets were considered and, for the first time in a PDFs fit,

dijets data. In order to perform this study we have used recent NNLO QCD

computations supplemented by EW corrections, both implemented in the fit by

mean of K-factors.

Using a Bayesian approach, we have set up a general formalism to include different
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sources of theoretical error in a global PDFs determination by means of a covari-

ance matrix, and we have considered the case of missing higher order corrections

in the QCD calculations entering the global analysis. After constructing and

validating the corresponding covariance matrix, we have presented a first NLO

global PDFs fit including missing higher order uncertainties, studying the impact

of the theory error on the PDFs central value and uncertainty.

We have generalized the FONLL matching of massive and massless computations

for hadronic processes involving heavy quarks to the case in which the heavy

quark PDF is freely parameterized. As a first application we have studied the

case of Higgs production in bottom fusion, showing how b PDF effect are likely

to be comparable to mass effect. The determination of the bottom PDF from

experimental data is therefore likely to be necessary for precision studies of b-

induced hadron collider processes.

In the final chapters of the thesis we have addressed the problem of PDFs

determination from a different point of view, exploring a number of recent ideas

which have been developed within the lattice community. We have first revised

and clarified the main conceptual points of such ideas in the context of a simple

nongauge theory, proposing a general strategy to extract PDFs from lattice

simulation in a systematic way. We have then considered some of the data which

are currently available from lattice QCD simulations, and we have presented a

first study of PDFs determination from lattice QCD observables adopting the

NNPDF methodology. Our results show how promising lattice data might be in

constraining PDFs, but also highlight the necessity for a deeper understanding

and control of the different systematic errors entering lattice simulations.
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A
Statistical estimators

A.1 PDF distance

Considering a set of Nrep replicas qi of a given parton distribution q, the estimator

for the expected true value of q is given by

〈q〉 =
1

Nrep

Nrep∑
i=1

qi . (A.1.1)

The square distance between two estimates for the expected true value obtained

from two different fits is given by [53]

d2
(
〈q(1)〉, 〈q(2)〉

)
=

(
〈q(1)〉 − 〈q(2)〉

)2

σ2 [〈q(1)〉] + σ2 [〈q(2)〉]
, (A.1.2)

with the variance of the mean given by

σ2
[
〈q(k)〉

]
=

1

Nrep

σ2
[
q(k)
]
, (A.1.3)

with σ2
[
q(k)
]

the variance of the variable q
(k)
i

σ2
[
q(k)
]

=
1

Nrep − 1

Nrep∑
i=1

(
q

(k)
i − 〈q(k)〉

)2

. (A.1.4)

According to this definitions, d ' 1 corresponds to statistically equivalent fits,

while, considering a fit with Nrep = 100 replicas , d ' 10 corresponds to a

difference of one-sigma in units of the corresponding variance.
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A.2 φ estimator

In chapter 5 we introduced the estimator φ, defined as

φ =
√
〈χ2

exp [T (k)]〉 − χ2
exp [〈T (k)〉] . (A.2.1)

Here, following ref. [55], we show how such quantity measures the standard

deviation over the replica sample in units of the data uncertainty. Using the

χ2 definition the first term of eq. A.2.1 can be written as

ND〈χ2
exp

[
T (k)

]
〉 =

∑
IJ

〈T (k)
I C−1

IJ T
(k)
J 〉 −

∑
IJ

DIC
−1
IJ 〈T

(k)
J 〉

−
∑
IJ

〈T (k)
I 〉C

−1
IJ DJ +

∑
IJ

DIC
−1
IJ DJ , (A.2.2)

so that subtracting χ2
exp

[
〈T (k)〉

]
we get

ND

(
〈χ2

exp

[
T (k)

]
〉 − χ2

exp

[
〈T (k)〉

])
=
∑
IJ

〈T (k)
I C−1

IJ T
(k)
J 〉 −

∑
IJ

〈T (k)
I 〉C

−1
IJ 〈T

(k)
J 〉

(A.2.3)

from which

φ2 =
1

ND

∑
IJ

C−1
IJ TJI , (A.2.4)

i.e. the average over all the data points of the uncertainties and correlations

of the theoretical predictions, TIJ , normalized according to the corresponding

uncertainties and correlations of the data as expressed through the covariance

matrix CI .
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B
Impact of the choice of the correlation model

In this appendix we discuss the impact of different decorrelation models for the 8

TeV single-inclusive jet data from ATLAS. As discussed in sec. 4.3.1, these data

appear to be fully consistent with the corresponding 7 TeV ones, yet they show

a poor χ2 when included in the global fit. The problem might be due to some

issues in the covariance matrix of these data, in a similar way to what discussed

in ref. [254] for 7 TeV dataset.

To check whether or not this is indeed the case, starting from the default fit

(#janw) we produce two variants by modifying the treatment of three (out of 659)

correlated systematic uncertainties related to the jet energy scale, as suggested

in ref. [119]. Specifically, in the first variation, denoted as #janw-8dec, these

three uncertainties are completely decorrelated; in the second variation, denoted

as #janw-8pcor, they are partially decorrelated, splitting each uncertainty into

three components and decorrelating one of them. From Table. B.1 we see how,

upon decorrelation the χ2 for ATLAS improves considerably, leaving the values

for the other datasets almost unaffected. Very similar results are obtained when

fully or partially decorrelating the relevant sources of systematics, thus validating

the prescription of ref. [119]. At the PDFs level the results are very stable, as we

see by inspection of fig. , where the gluon PDF for #janw and #janw-8dec are

compared.

We conclude that the decorrelation models suggested in ref. [119] solve the issue

observed in sec. 4.3, leading to a good fit quality of the ATLAS single-inclusive

jet data at 8 TeV without significant change in the PDFs.
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Dataset ndat janw janw-8dec janw-8pcor

ATLAS 7 TeV 31 1.59 1.59 1.61

ATLAS 8 TeV 171 3.22 0.83 0.98

CMS 7 TeV 133 1.09 1.12 1.12

CMS 8 TeV 185 1.25 1.42 1.42

ATLAS 7 TeV 90 [1.95] [1.98] [1.98]

CMS 7 TeV 54 [2.08] [2.19] [2.17]

CMS 8 TeV 122 [2.21] [2.96] [3.04]

Table B.1 Same as Table 4.3 for fits performed with alternative choices of
decorrelation models. Now only χ2 values for jet data are shown.
Results for the fits with default settings #janw already shown in
Table 4.3 are included for ease of reference.

Figure B.1 Same as fig. 4.3, but now comparing the default fit to single-
inclusive jet data (fit #janw), to a fit in which selected systematic
uncertainties are decorrelated in the ATLAS 8 TeV data (fit #janw-
8dec). The gluon is shown as ratio to the former fit.
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C
Alternative points prescription for theory error

In sec. 5.2 we have discussed how to construct the theory covariance matrix using

the so-called 9-points prescription, where the renormalization and factorization

scales of a specific process are varied completely independently. In ref. [9] a series

of alternative options are investigated, and the 9-points prescription is selected as

the most suitable one according to the validation procedure described in sec. 5.3.

In this appendix we present an alternative simpler choice, denoted as 3-points

prescription, studying how the fit and validation results change, and showing

how the 9-points prescription is indeed a better option.

In the 3-points prescription both the renormalization and factorization scales are

varied coherently by a fixed amount about the central value. In other words,

considering a single process we set kf = kr and we only vary the single resulting

scale, obtaining the 2+1 points in the scales space shown in fig. C.1. The resulting

entries for the theory covariance matrix are

S
(3pt)
ij =

1

2

{
∆++
i ∆++

j + ∆−−i ∆−−j
}
, (C.0.1)

where the indices i, j label point belonging to the same process π. Considering

two different processes π1 and π2 we set kf = kr1 for π1 and kf = kr1 for π2 and

then vary kr1 and kr2 independently. Note that in this way the correlation in the

variation of kf between π1 and π2 is necessarily ignored so that the variations

for each process are entirely uncorrelated. eq. (C.0.1) is generalized to the off-

diagonal entries of the theory covariance matrix getting

S
(3pt)
i1j2

=
1

4

{(
∆++
i1

+ ∆−−i1
)(

∆++
j2

+ ∆−−j2
)}
, (C.0.2)
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κr

κf

Figure C.1 3-points prescription for a single process.

where the indices i1, j2 now label point belonging to the processes π1 and π2

respectively. The validation of such covariance matrix proceeds like described

in sec. 5.3, through the computation of the angle θ between the shift δ and its

component on the subspace S, defined in eq. (5.30). In Table C.1 we compare

the values of such angle for each process in the case of the 3- and 9-points

prescriptions. We note how the former performs rather poorly in comparison

to the 9-points one, suggesting that the lack of correlation in the factorization

scale between processes in this prescription implies that much of the correlation

pattern in the MHOU due to universal PDF evolution has been missed.

Presc. DIS NC DIS CC DY JET TOP

9-pt 32o 16o 22o 14o 3o

3-pt 54o 36o 39o 24o 12o

Table C.1 Comparison between the θ values for the 3- and 9-points
prescriptions.

In Table. C.2 we compare the values for the total χ2 and φ estimator for

fits performed with the 9-points, already shown in sec. 5.4, and the 3-points

prescription, together with values for the baseline NLO fit produced without any

theory error. Unlike the 9-points prescription case, for which as observed in

sec. 5.4 the χ2 improves with respect to the baseline, in the case of the 3-points

prescription the fit quality remains unchanged after the inclusion of the MHOU.

Both prescriptions show an increase in the value of φ, which is bigger in the case

of the 9-points one.

Finally in fig. C.2 we study the dependence of the fit results on the choice of

the prescription for the theory covariance matrix, taking as example the gluon

distribution. In the same plot we report also the central value of the NNLO

fit with experimental uncertainties only and all the distributions are normalized

to the 3-points prescription results. In general the two results are consistent,
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C C + S(3pt) C + S(9pt)

χ2 1.139 1.139 1.109

φ 0.314 0.394 0.405

Table C.2 Comparison between χ2 and φ total values of 3- and 9-points
prescriptions
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Figure C.2 Comparison between the gluon PDF produced using the 3-points and
9-points prescription for the theory covariance matrix. The central
value of the NNLO fit without any theory error is also shown. All
the distributions are normalized to the 3-points prescription results.

but the central value of the 9-points prescription result is much closer to the

NNLO central value, providing further confirmation for preferring the 9-point

prescription.
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D
Massive-b scheme

D.1 Matching coefficients

We collect for ease of reference the well-known matching coefficients which relate

the four and five scheme PDFs. Up to O(αs)

Kij(z,Q
2) = δijδ(1− z) + αs(Q

2)K
(1)
ij (z,Q2) +O(α2

s) . (D.1.1)

so that

K−1
ij (z,Q2) = δijδ(1− z)− αs(Q2)K

(1)
ij (z,Q2) +O(α2

s) . (D.1.2)

The only non-zero contributions at order O(αs) are the heavy quark-heavy quark

and the heavy quark-gluon matching functions, which are respectively given by

K
(1)
bb

(
x,
Q2

µ2
b

)
=
CF
2π

{
Pqq(x)

[
ln
Q2

µ2
b

− 2 ln(1− x)− 1

]}
+

K
(1)
bg

(
x,
Q2

µ2
b

)
=
TR
2 π

Pqg(x) ln
Q2

µ2
b

(D.1.3)

where

Pqg(x) =
(
1 − 2x + 2x2

)
and Pqq(x) =

2

1− x
− (1 + x) . (D.1.4)
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D.2 Massive coefficient functions

In this appendix we summarize the computation of the coefficient functions in the

massive scheme and of their massless limit up to O(αs). The NLO corrections are

computed using the extension of Catani-Seymour subtraction for massive initial

states developed in ref. [147] and extended to QCD in ref. [139]. This way of

preforming the computation has the main advantage of following closely that of

the five-flavor massive scheme, so that a direct comparison is much easier to at the

analytic level. Indeed, strictly speaking because of eq. (6.15) the massless limit

is not needed. However, we have computed it explicitly in order to check that

it matches the massless-scheme result (thereby verifying eq. (6.14) explicitly),

and also in order to produce fig. 6.2, which provides a further consistency check.

Another advantage of this way of performing the computation (though we do not

use it here) is that it allows for the computation of the fully differential cross

section in this scheme.

D.2.1 Leading order

The leading order partonic cross section for the production of a Higgs boson,

accounting for the mass of the initial state b and b̄, is given by

σ̂0(xs) =

(
g2
bb̄H

β0 π

6

)
δ(xs−m2

H) = σ0 x δ

(
x− m2

H

s

)
(D.2.1)

where

σ0 =
g2
bb̄H

β0 π

6m2
H

, and β0 =

√
1− 4m2

b

m2
H

. (D.2.2)

where gbb̄H is the coupling of the b quark to the Higgs boson, obtained as the

mass of the quark divided by vacuum expectation value of the Higgs sector:

gbb̄H =
mb

v
. (D.2.3)

In the following we will also use the notation

B(x) ≡ σ̂0(xs) , and B ≡ σ̂0(s) . (D.2.4)

176



D.2.2 Next-to-leading order: bb̄-channel

The next to leading order corrections to the Higgs production in bottom quark

fusion consist in virtual corrections (V) to the left diagram of fig. 6.1, as well as

of real emission corrections (R) , represented by the central diagram of fig. 6.1.

Both this contributions are separately divergent when the additional gluon, real

or virtual, becomes soft, though the final result remains finite. In order to handle

these soft divergences we employ the subtraction scheme defined in [139]. This

implies that we need two more ingredients: a subtraction term, S, and its integral

over the gluon phase space, I =
∫

dΦgS. Our final result is then given by:

σ̂NLO =

∫
dΦ1B + V + I +

∫
dΦ2R− S . (D.2.5)

Real corrections, and subtraction term

The real emission partonic differential cross section, is given by∫
dΦ2R =

∫
dΦ2

∣∣Mbb̄Hg

∣∣ (s, t, u) , (D.2.6)

where

dΦ2 =
1

32 π β s
d cos θΘ(1 + cos θ) Θ(1− cos θ) , β =

√
1− 4m2

b

s
, (D.2.7)

and

∣∣Mbb̄Hg

∣∣(s, t, u) =
4

3
πg2

bb̄HCFαs

{(
s−m2

H

) [ 1

m2
b − t

+
1

m2
b − u

]
+(m2

H − 4m2
b)

[
2 (s− 2m2

b)

(m2
b − t)(m2

b − u)
− 2m2

b

(m2
b − t)2

− 2m2
b

(m2
b − u)2

]}
.

(D.2.8)

The Mandelstam variables in terms of scalar products and cos θ are given by
t = m2

b −
s−m2

H

2
(1− β cos θ)

u = m2
b −

s−m2
H

2
(1 + β cos θ)

. (D.2.9)

In order to remove the soft divergence which appears in the s → m2
H limit we
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need to construct a suitable subtraction term. Using the relevant equations in

ref. [139] we find

S =
2

3
π αsCF g

2
bb̄H β

2
0 m

2
H

1

x̃

[
2

m2
b − t

(
Pqq(x̃)− 2 x̃m2

b

m2
b − t

)
+

2

m2
b − u

(
Pqq(x̃)− 2 x̃m2

b

m2
b − u

)]
, (D.2.10)

where

x̃ =
m2
H − 2m2

b

s− 2m2
b

. (D.2.11)

Combining eqs. (D.2.8) and (D.2.10) and factoring the trivial αs CF σ0
π

dependence

we get

αsCF σ0

π

∫
dΦ2 [R− S] =

αsCF σ0

π

m2
b

2

∫ 1

−1

d cos θ

[
s (s−m2

H)2

(m2
H − 2m2

b)(m
2
b − t)(m2

b − u)

]
= −αsCF σ0

π

1

β0

(
1− β2

β2

)
x

(1− 2x− β2)
ln d ,

(D.2.12)

where we defined

d ≡ 1 + β

1− β
, and x ≡ m2

H

s
. (D.2.13)

Virtual corrections, and integrated subtraction term

QCD virtual corrections to the Born process in this simple case completely

factorize in a vertex form factor:

V =
αsCF
π
B δg , (D.2.14)

with

δg = −1− Lλ +
(1− β2

0)

β0

ln d0

− 1 + β2
0

2 β0

[
− ln d0 Lλ + ln2 d0 + Li2

(
1− 1

d0

)
− π2

2

]
, (D.2.15)

where

Lλ ≡
1

ε
+ ln

4 π µ2
R

m2
b

+O(ε2) . (D.2.16)
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The integrated subtraction term I is obtained by integrating S, eq. (D.2.10),

over the phase space of the emitted gluon. This term can be separated into two

pieces: a term proportional to δ(1−x), which contains the singularity, and a plus

distribution:

I = δ(1− x) I + {G(x)}+ , (D.2.17)

where

I =2 + Lλ − ln
(1 + β2

0)2

1− β2
0

+
1− 3 β2

0

4β0

ln d0

+
1 + β2

0

2 β0

[
1

2
ln2 d0 − ln d0 ln

4 β2
0

(1 + β)2
− Lλ ln d0 − 1 + 2 Li2

(
1

d0

)
− π2

3

]
,

(D.2.18)

and

{G(x)}+ =

{
Pqq(x)

[
1 + β2

2β
ln d− 1

]
+ (1− x)

}
+

. (D.2.19)

Final formulae, mass and PDF renormalization

We now combine the various partial results obtained in the previous subsections

into the full expression for the bb̄-channel coefficient functions. First, however,

we need to adjust b-quark mass and the PDFs. Renormalization of the b mass

leads to the replacement

g2
hbb̄ = g2

hbb̄(µ
2
R)

(
1− αsCF

π

(
3

2
ln
m2
b

µ2
R

− 2

))
. (D.2.20)

in σ0, eq. (D.2.2).

The massive b PDF is free of collinear singularities and thus it does not have to

undergo subtraction: indeed it is scale independent. However, we must perform

the change of renormalization scheme eq. (6.11) which relates the massive and

massless schemes. Up to O(αs) we get

Bbb̄

(
x, µ2

R, µ
2
F , µ

2
b

)
=

[
σ0(µ2

R)δ(1− x)+

αs(µ
2
R)B

(1)

bb̄

(
x, µ2

R, µ
2
F , µ

2
b

)]
+O(α2

s) (D.2.21)
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where

B
(1)

bb̄

(
x, µ2

R, µ
2
F , µ

2
b

)
=
σ0(µ2

R)CF
π

{[
3

2
ln
µ2
R

µ2
b

+ 2 + I + δg

]
δ(1− x)

+

∫ 1

0

dz{G(z)− 2K
(1)

bb̄
(z)}+z δ(z − x) +

∫
dΦ2 [R− S]

}
.

(D.2.22)

Performing the z integration gives the final result

B
(1)

bb̄

(
x, µ2

R, µ
2
F , µ

2
b

)
=

σ0(µ2
R)CF
π

{
δ(1− x)

[
ξ − 2 +

3

2

(
γ0 ln

(1 + β)2

4
− γ0 ln

m2
H

m2
b

+ ln
µ2
R

µ2
F

)]
+ 4D1(1− x) + 2

[
γ ln

(1 + β)2

4
+ γ ln

m2
H

m2
b

+ ln
µ2
b

µ2
F

]
D0(1− x)

−(2 + x+ x2)

[
γ ln

(1 + β)2

4
+ γ ln

m2
H

m2
b

− γ lnx+ ln
µ2
b

µ2
F

+ 2 ln(1− x)

]
+ x (1− x)

−2 γ lnx

1− x
− 1

β0

(
1− β2

β2

)
x

(1− 2x− β2)
ln d

}
,

(D.2.23)

where

ξ = 1 + ln

(
1− β2

0

(1 + β0)2

)
+

(5− 7β2
0)

4 β0

ln d0

+
(β2

0 + 1)

β0

(
2 Li2

(
1

d0

)
+
π2

6
− ln d0 ln

4β2
0

(1 + β2
0)(1 + β0)

)
, (D.2.24)

and

γ =
1 + β2

2 β
, γ0 =

1 + β2
0

2β0

and Dn(x) =

(
lnn(1− x)

1− x

)
+

. (D.2.25)

Massless limit

The massless limit of the bb̄-channel can be computed directly from eq. (D.2.23),

by setting β = 1 everywhere except in the logarithms, where one can use the

simple expansion

β ∼ 1 − 2xm2
b

m2
H

+O
(
m4
b

m4
H

)
. (D.2.26)
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We get

B
(1),(0)

bb̄

(
x, µ2

R, µ
2
F , µ

2
b

)
=
αsCF σ0(µ2

R)

π

{
δ(1− x)

[
−1 +

π2

3
+

3

2
ln
µ2
R

µ2
F

]
+ 4D1(1− x) + 2

(
ln
m2
H

µ2
F

+ ln
µ2
b

m2
b

)
D0(1− x)− 2 lnx

1− x

− (2 + x+ x2)

[
ln
m2
H

µ2
F

+ ln
µ2
b

m2
b

+ ln
(1− x)2

x

]
+ x (1− x)

}
.

(D.2.27)

As it can be easily verified, this exactly corresponds to its massless scheme

equivalent, which can be found in eq. (A6) of ref. [255].

D.2.3 Next-to-leading order: bg-channel

In the presence of initial-state massive quarks, the cross-section for the bg-channel

is free of soft or collinear divergences, and no subtraction is accordingly necessary.

Also in this case, however, we must perform the scheme change eq. (6.11). We

get

B
(1)
bg (x, µ2

R, µ
2
F , µ

2
b) = σ̂bg(x, µ

2
R)− αs

∫ 1

0

dz K
(1)
bg (z, µ2

F )σ(zs)

= σ̂bg(x, µ
2
R)− αs TR σ0

π

[
x

2
Pqg(x) ln

µ2
F

µ2
b

] ∣∣∣∣
x=

m2
H

s

,
(D.2.28)

where

σ̂bg(x, µ
2
R) =

∫
dΦ

(b)
2

∣∣MbgHb

∣∣2 (s, t, u) , (D.2.29)

and the subscript (b) in Φ
(b)
2 denotes the fact that now the phase-space has a

massive b instead of a massless gluon, in the final state. The color- and helicity-

averaged square matrix element, can be obtained from eq. (D.2.8) using crossing

symmetry. In addition, we have to take into account that the gluon can have 8

possible colors (as opposed to 3 for a quark),

∣∣MbgHb

∣∣2 (s, t, u) = −3

8

∣∣Mbb̄Hg

∣∣2 (t, s, u) , (D.2.30)
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where now the Mandelstam invariants are given by t = 2m2
b +

s

32

(
(5− β2)(β2 + 4x− 5)− (3 + β2) Λ cos θ

)
u = m2

b +
s

32

(
(5− β2)(β2 + 4x− 5) + (3 + β2) Λ cos θ

)
,

(D.2.31)

where

Λ =

√
(3 + β2)2 + 16x2 − 8x (5− β2) , (D.2.32)

while the phase-space dΦ
(b)
2 is given by

dΦ
(b)
2 =

Λx

32π (3 + β2) m2
H

d cos θΘ(1 + cos θ) Θ(1− cos θ) . (D.2.33)

Performing the cos θ integration gives

σ̂bg(x, µ
2
R) =

αs TR σ0(µ2
R)

π

x

16β0 (β2 + 3)3

×

{
−64

(
9β4 + (40x− 42)β2 + 8x(4x− 9) + 49

)
arctanh

(
Λ

β2 + 4x− 5

)
4096 Λ (1− β2) (β2 + x− 1)

(−Λ + β2 + 4x− 5) (Λ + β2 + 4x− 5)

+ Λ
(
5− β2

) (
β4 + (4x+ 22)β2 + 44x− 71

)}
.

(D.2.34)

Massless limit

As in the case of the bb̄ channel, taking the massless limit requires setting β = 1

everywhere except in the logarithms where one can use eq. (D.2.26), which gives

B
(1),(0)
bg (x, µ2

R, µ
2
F , µ

2
b) =

TR
π

{
x

2
Pqg(x)

[
ln

(
(1− x)2

x

)
+ ln

m2
H

µ2
F

+ ln
µ2
b

m2
b

]
− x

4
(1− x)(3− 7x)

}
. (D.2.35)

Once again, one can explicitly check that this exactly corresponds to it massless

limit counterpart, which can be found in eq. (A9) of ref. [255].
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E
Lattice observables

E.1 Momentum space factorization

In this appendix we report in detail some of the computations performed in

sec. 7.3.2, to obtain the coefficient C of eq. (7.49) and its high momentum limit

of eq. (7.54). In order to compute the Fourier transform of the coefficient C̃

entering eq. (7.37), we perform a change variable, θ = ξP3z3, and define η = y
ξ
,

so that

P3

2π

∫ ∞
−∞

dz3 e
−iyP3z3 C̃

(
xP3z3,mz3,

µ2

m2

)
=

1

x

∫ ∞
−∞

dθ

2π
e−iηθ C̃

(
θ,
mθ

xP3

,
µ2

m2

)
=

=
1

x

[
δ (η − 1)− α

∫ 1

0

dξ (1− ξ)
∫ ∞
−∞

dθ

2π
e−i(η−ξ)θ

(
2K0

(
Mθ

xP3

)
− log

µ2

M2

)]
.

(E.1.1)

The Fourier transform of the Bessel function, obtained also in ref. [237], can be

computed using the integral representation in eq. (7.30), computing the gaussian

integral over θ first:∫ ∞
−∞

dθ

2π
e−i(η−ξ)θ

∫ ∞
0

dT

T
e−T e

−
(
Mθ
xP3

)2
1
4T =

1√
(η − ξ)2 + M2

x2P 2
3

, (E.1.2)

so that the O(α) contribution to (E.1.1) can be written as

∫ 1

0

dξ (1− ξ)

 1√
(η − ξ)2 + M2

x2P 2
3

− δ (ξ − η) log
µ2

M2

 . (E.1.3)
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As mentioned in sec. 7.3.2, the computation of the large-P3 limit when η ∈ (0, 1)

requires additional care, since the integrand develops a non-integrable divergence

for ξ = η when M2/(x2P 2
3 ) → 0. This issue was first addressed and solved in

ref. [197] in the context of QCD. Since in the scalar theory the same kind of

Bessel function appears, its Fourier transform leads to an analogous singularity.

In order to elucidate this problem, given a generic test function φ (ξ), we consider

the integral ∫ 1

0

dξ
φ (ξ)√

(η − ξ)2 + κ2

(E.1.4)

in the limit where κ→ 0. Defining

G
(
η, κ2

)
=

∫ 1

0

dξ√
(ξ − η)2 + κ2

(E.1.5)

allows us to rewrite eq. (E.1.4) above as∫ 1

0

dξ
φ (ξ)√

(η − ξ)2 + κ2

= φ(η)G
(
η, κ2

)
+

∫ 1

0

dξ
1√

(η − ξ)2 + κ2

(φ (ξ)− φ (η)) .

(E.1.6)

The divergence of the original integral is encoded in the function G (η, κ2), which

can be readily evaluated:

G
(
η, κ2

)
= log

(
4η (1− η)

1

κ2

)
+O

(
κ2
)
. (E.1.7)

The integral on the RHS of eq. (E.1.6) is convergent for κ→ 0, and we have∫ 1

0

dξ
1√

(η − ξ)2 + κ2

(φ (ξ)− φ (η)) =

=

∫ 1

0

dξ
1

|ξ − η|
(φ (ξ)− φ (η)) +O(κ2)

=

∫ 1

0

dξ
1

|ξ − η|+
φ (ξ) +O(κ2) . (E.1.8)
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Therefore, collecting both contributions,

1√
(η − ξ)2 + κ2

= δ(η − ξ) log

(
4η(1− η)

1

κ2

)
+

1

|η − ξ|+
+O

(
κ2
)
. (E.1.9)

E.2 equivalence between pseudo- and quasi-PDF

approaches

As discussed at the end of sec. 7.3, taking the small-z2
3 limit in position space is

equivalent to taking the large-P3 limit in momentum space. This can be verified

at 1-loop by showing that the coefficent functions of eqs. (7.41) and (7.54) are

related through a Fourier transform, as stated in eq. (7.55). Here we report

the details of the computation. Taking the Fourier transform of the small-z2
3

coefficient of eq.(7.41) and defining η = y/x we have

P3

2π

∫ ∞
−∞

dz3 e
−iyP3z3 C̃

(
xν, µ2z2

3

)
=

1

x

∫ ∞
−∞

dθ

2π
e−iθη C̃

(
θ,
µ2θ2

x2P 2
3

)
=

1

x

[
δ (η − 1) + α log

4 (xP3)2

µ2e2γE

∫ 1

0

dξ δ (ξ − η) (1− ξ)

− α
∫ 1

0

dξ (1− ξ)
∫ ∞
−∞

dθ

2π
e−i(η−ξ)θ log θ2

]
. (E.2.1)

Following ref. [176], the Fourier transform of log θ2 can be defined as∫
dθ

2π
e−itθ log θ2 =

[
d

dτ

∫
dθ

2π
e−itθ

(
θ2
)τ]

τ=0

= −2γE δ (t)− θ (1− |t|)
|t|(+0)

− θ (|t| − 1)

|t|(+∞)

+
1

(t)2 δ

(
1

|t|

)
, (E.2.2)

with

1

|t| (+0)

= lim
a→0

[
θ (|t| − a)

|t|
+ δ (|t| − a) log a

]
, (E.2.3)

1

|t| (+∞)

=
1

(t)2 lim
a→0

[
θ

(
1

|t|
− a
)
|t|+ δ

(
1

|t|
− a
)

log a

]
, (E.2.4)

δ

(
1

|t|

)
= lim

a→0
δ

(
1

|t|
− a
)
. (E.2.5)

The proof of eq. (E.2.2) can be found, for example, in the appendix A and C

of ref. [176], to which we refer for more details. Setting t = η − ξ and plugging
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everything in eq. (E.2.1), remembering that ξ ∈ [0, 1], we get different answers

depending on the value of η. For η ∈ [0, 1], just the first two terms in eq. (E.2.2)

contribute, giving∫ 1

0

dξ

[
2γE δ (η − ξ)− lim

a→0

(
θ (|η − ξ| − β)

|η − ξ|
+ δ (|η − ξ| − a) log a

)]
(1− ξ)

= log e2γE (1− η) + (1− η) log η (1− η) + 2η − 1 , (E.2.6)

while for η > 1 or η < 0 the third contribution in eq. (E.2.2) gives simply

−
∫ 1

0

dξ (1− ξ) |η − ξ|
(η − ξ)2 . (E.2.7)

Looking at the last term in eq. (E.2.2), considering its contribution to the

convolution integral with the PDF and doing the integral over x first we find

lim
a→0

∫ 1

0

dx

x

∫ 1

0

dξ (1− ξ) δ
(

1

| y
x
− ξ|

− a
)
f (x) ∝ lim

a→0
a2f (a) = 0. (E.2.8)

Using eqs. (E.2.6), (E.2.7), (E.2.8) in eq. (E.2.1) we find back the expression for

C
(
η, µ2

x2P 2
3

)
as in eq. (F.0.1), which completes our check.

E.3 quasi-PDFs and their moments

As mentioned at the beginning of chapter 7, the works where the concept of quasi-

PDF was first introduced have been criticized in refs. [191, 192], where it was

argued that such approach does not give access to the full nonperturbative PDF.

In support of their argument, the Authors have shown that moments of quasi-

PDFs are divergent: since the moments of parton distributions should reproduce

the (finite) matrix elements of the renormalized local DIS operator, they conclude

that the quasi-PDF cannot be considered as an euclidean generalization of the

light-cone PDF. The problem has been addressed in several independent papers,

see e.g. refs. [165, 169, 193]. In this appendix we revise these criticisms in

the framework of the scalar model: first we show how the points raised in

ref. [191, 192] can be easily seen and understood within the toy model presented

in chapter 7, showing explicitly how all the moments of quasi-PDFs are indeed

divergent; second we discuss how such feature does not invalidate the programme

presented in sec. 7.5, based on the determination of a parametric form of the
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light-cone PDF based on a discrete set of data for the euclidean matrix element.

We start this section by computing the moments of the quasi-PDF. From

eq. (7.31), using the integral representation of the Bessel function, the O (α)

contribution to the euclidean matrix element reads

M̂(1)
(
ν,−z2

3

)
= α

∫ 1

0

dξ (1− ξ)
∫ ∞

0

dT

T
e−T e−

z23M
2

4T e−iξP3z3 . (E.3.1)

The corresponding contribution to the quasi-PDF is found by taking the Fourier

transform of the expression above:

q̂(1) (y) =
P3

2π

∫ ∞
−∞

dz3 e
−iyP3z3M̂(1)

(
ν,−z2

3

)
(E.3.2)

= α
P3√
π

∫ 1

0

dξ (1− ξ) 1

M

∫ ∞
0

dT√
T
e−T e−T (y+ξ)2

P2
3

M2 , (E.3.3)

where in the last line we have computed the gaussian integral over z3. Taking

the n-th moment of q̂(1) (y) yields∫ ∞
−∞

dy ynq̂(1) (y) = α
P3√
π

∫ 1

0

dξ (1− ξ) 1

M

∫ ∞
0

dT√
T
e−T

∫ ∞
−∞

dy (y − ξ)n e−Ty
2 P

2
3

M2 .

(E.3.4)

We can expand the polynomial term as

(y − ξ)n =
n∑
k=0

(
k

n

)
yn−kξk (E.3.5)

and evaluate each contribution in turn. The term with k = n, performing the

integral over y first, yields

α
P3√
π

∫ 1

0

dξ (1− ξ) ξn 1

M

∫ ∞
0

dT√
T
e−T

∫ ∞
−∞

dy e−Ty
2 P

2
3

M2 (E.3.6)

= α

∫ 1

0

dξ (1− ξ) ξn
∫ ∞

0

dT

T
e−T . (E.3.7)

The integral over T is divergent, with the divergence originating from the lower

end of the integration region, i.e. when T → 0. Introducing a cutoff a2 for small

values of T 1 and considering the limit a2 → 0, we get the logarithmic divergent

1The cutoff a has dimensions of length and can be thought of as a lattice spacing if the
theory were regulated on a lattice.
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contribution

α

∫ 1

0

dξ (1− ξ) ξn
∫ ∞
a2

dT

T
e−T

a2→0∼ −α
∫ 1

0

dξ (1− ξ) ξn log a2 . (E.3.8)

Similarly we can consider contributions coming from even values of n− k. Using∫ ∞
−∞

dy y2me−Ty
2 P

2
3

M2 =
M

P3

(
−M

2

P 2
3

d

dT

)m ∫ ∞
−∞

dy e−Ty
2

=
M
√
π

P3

(
−M

2

P 2
3

d

dT

)m
1√
T
∝ M

√
π

P3

1

Tm+ 1
2

, (E.3.9)

and considering n− k = 2m, we get

α
P3√
π

∫ 1

0

dξ (1− ξ) ξn−2m 1

M

∫ ∞
0

dT√
T
e−T

∫ ∞
−∞

dy y2me−Ty
2 P

2
3

M2

∝ α

∫ 1

0

dξ (1− ξ) ξn−2m

∫ ∞
a2

dT

Tm+1
e−T

a2→0∼ α

∫ 1

0

dξ (1− ξ) ξn−2m 1

m

(
1

a2

)m
, (E.3.10)

where again we have introduced a cutoff a2 for small values of T and considered

the limit a2 → 0. Contributions from odd values of n − k vanish. Looking at

eqs. (E.3.8), (E.3.10) it is then clear that all the moments of the quasi-PDFs

will be at least logarithmically divergent with the cutoff a2, with higher moments

affected by higher power divergences.

This relatively simple calculation shows that we obtain divergent contributions

for the moments of the quasi-PDF and therefore quasi-PDFs cannot be considered

as the proper euclidean generalization of the light-cone parton distribution. This,

however, does not invalidate the approach described in sec. 7.5: as mentioned,

what really matters is the existence of a factorization theorem connecting the

collinear PDF with a renormalizable quantity that can be computed on the lattice,

which in our case will be the euclidean matrix element of eq. (7.35), computed

for fixed values of P3 and z3. As long as z3 is kept small and different from 0,

the factorization formula (7.40) holds, and can be used to fit the light-cone PDF

using the available lattice data. How well such data can constrain the PDF is

something which should be investigated, just as in the same way the constraints

from new experimental measurements are usually analyzed.
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F
PDFs from quasi-PDFs matrix elements:

matching coefficient and lattice convolution

As detailed at the end of sec. 8.2.1, the matching coefficients to be used to relate

the data of refs. [181, 202] to the light-cone PDFs are those expressed in the MMS

scheme. Their explicit expression is given by [181, 202]

C3 (ξ, η (ξ)) = δ (1− ξ) + CNLO
3 (ξ, η (ξ))+ ,

CNLO
3 (ξ, η (ξ))+ =

αs
2π
CF



[
1+ξ2

1−ξ log ξ
ξ−1

+ 1 + 3
2ξ

][1,+∞]

+(1)
ξ > 1[

1+ξ2

1−ξ log
[

1
η2(ξ)

(4ξ (1− ξ))
]
− ξ(1+ξ)

1−ξ

][0,1]

+(1)
0 < ξ < 1[

−1+ξ2

1−ξ log ξ
ξ−1
− 1 + 3

2(1−ξ)

][−∞,0]

+(1)
ξ < 0

.

(F.0.1)

where the superscripts indicate the domain over which the plus prescription acts.

The matching coefficients relate the light-cone PDF to the quasi-PDF up to power

suppressed terms according to

f̃3

(
xPz, µ

2
)

=

∫ 1

−1

dy

|y|
C3

(
x

y
,
µ

yPz

)
f3

(
y, µ2

)
. (F.0.2)

In the following, we work out the full expression of the coefficients appearing in

eqs. (8.14), (8.15). Starting from eq. (F.0.2) we have

f̃3

(
x, µ2, Pz

)
=

∫ 1

−1

dy

|y|
δ

(
1− x

y

)
f3

(
y, µ2

)
+

∫ 1

−1

dy

|y|
CNLO

3

(
x

y
,
µ

yPz

)
+

f3

(
y, µ2

)
.

(F.0.3)
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Let us focus on the next-to-leading order term, making the plus distribution

explicit. In order to do so, we find it useful to split the integral in the two

contributions for y < 0 and y > 0. A change of variables, x
y

= ξ, yields

f̃NLO
3

(
x, µ2, Pz

)
≡
∫ 1

−1

dy

|y|
CNLO

3

(
x

y
,
µ

yPz

)
+

f3

(
y, µ2

)
=

∫ ∞
|x|

dξ CNLO
3

(
ξ,

µξ

xPz

)
+

1

|ξ|
f3

(
x

ξ
, µ2

)
+

+

∫ −|x|
−∞

dξ CNLO
3

(
ξ,

µξ

xPz

)
+

1

|ξ|
f3

(
x

ξ
, µ

)
. (F.0.4)

The plus distribution appearing in the matching coefficients is defined in ref. [176]

and implemented as follows∫
D

dξ C (ξ, g (ξ))+ f (ξ) =

∫
D

dξ [C (ξ, g (ξ)) f (ξ)− C (ξ, g (1)) f (1)] , (F.0.5)

with g (ξ) = µξ
xPz

and D representing a generic integration domain, which in our

case will be, according to eq. (F.0.4), either (−∞,−|x|) or (|x|,+∞). It follows

f̃NLO
3

(
x, µ2, Pz

)
=

∫ ∞
|x|

dξ

CNLO
3

(
ξ,

µξ

xPz

) f3

(
x
ξ
, µ2
)

|ξ|
− CNLO

3

(
ξ,

µ

xPz

)
f3

(
x, µ2

)
+

∫ −|x|
−∞

dξ

CNLO
3

(
ξ,

µξ

xPz

) f3

(
x
ξ
, µ2
)

|ξ|
− CNLO

3

(
ξ,

µ

xPz

)
f3

(
x, µ2

) .
(F.0.6)

It can be easily verified that the two contributions appearing in the above equation

are indeed well defined for every fixed x: the singularity in ξ = +1 is cured by

the plus prescription, while for ξ → ±∞ the matching coefficient behaves like

C (ξ) ∼ 1
ξ2

, which is enough to guarantee the convergence of all the integrals

above. For numerical stability we find it useful to avoid the singularity in ξ =

+1 introducing a suitable small parameter δ ∼ 10−6, and rewriting the above
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equation as

f̃NLO
3

(
x, µ2, Pz

)
=

∫ 1−δ

|x|
dξ CNLO

3

(
ξ,

µξ

xPz

) f3

(
x
ξ
, µ
)

ξ
− f3 (x, µ)

∫ 1−δ

|x|
dξ CNLO

3

(
ξ,

µ

xPz

)

+

∫ ∞
1+δ

dξ CNLO
3

(
ξ,

µξ

xPz

) f3

(
x
ξ
, µ
)

ξ
− f3 (x, µ)

∫ ∞
1+δ

dξ CNLO
3

(
ξ,

µ

xPz

)

−
∫ −|x|
−∞

dξ CNLO
3

(
ξ,

µξ

xPz

) f3

(
x
ξ
, µ
)

ξ
− f3 (x, µ)

∫ −|x|
−∞

dξ CNLO
3

(
ξ,

µ

xPz

)
.

(F.0.7)

In order to obtain the lattice ME, we need to compute the real and imaginary

part of the Fourier transform of eq. (F.0.3) as shown in eq. (8.11). Starting from

the leading-order contribution, we get∫ ∞
−∞

dx cos (xPzz)

∫ 1

−1

dy

|y|
δ

(
1− x

y

)
f3

(
y, µ2

)
=

∫ 1

0

dy cos (yPzz)
(
f3

(
y, µ2

)
+ f3

(
−y, µ2

))
=

∫ 1

0

dx cos (xPzz)V3

(
x, µ2

)
=

∫ 1

0

dxARe,LO (xPzz)V3

(
x, µ2

)
(F.0.8)

where we have integrated in x first, re-expressed the integral
∫ 1

−1
dy as

∫ 1

0
dy, used

f3 (x) + f3 (−x) = f sym
3 (x) = u− (x)− d− (x) = V3 (x) (F.0.9)

and finally changed variables back to x. Moving now to the next-to-leading order

part, we analyse each of the six contributions listed in eq. (F.0.7), defining for each

lattice observable six integrals to be computed, denoted as IRe
i , IIm

i i = 1, .., 6.

Starting from the first contribution to the real part we get

IRe
1 =

∫ ∞
−∞

dx cos (xPzz)

∫ 1−δ

|x|
dξ CNLO

3

(
ξ,
µ ξ

xPz

) f3

(
x
ξ
, µ
)

ξ

=

∫ ∞
0

dx cos (xPzz)

∫ 1−δ

x

dξ

ξ
CNLO

3

(
ξ,
µ ξ

xPz

)(
f3

(
x

ξ
, µ

)
+ f3

(
−x
ξ
, µ

))
=

∫ 1

0

dx cos (xPzz)

∫ 1

x/(1−δ)

dy

y
CNLO

3

(
x

y
,
µ

yPz

)
V3 (y, µ) , (F.0.10)

where in the last line we have changed variables back to x
ξ

= y. Also, the

integration range for x becomes (0, 1), since x < y < 1. Renaming variables, we
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have

IRe
1 =

∫ 1

0

dx

[
1

x

∫ 1

0

dyΘ

(
x− y

1− δ

)
cos (yPzz)CNLO

3

(
y

x
,
µ

xPz

)]
V3

(
x, µ2

)
=

∫ 1

0

dxARe,NLO
1

(
x, z,

µ

Pz

)
V3

(
x, µ2

)
. (F.0.11)

Analogously, we find out that the other five contributions can be written as

IRe
i =

∫ 1

0

dxARe,NLO
i

(
x, z,

µ

Pz

)
V3

(
x, µ2

)
. (F.0.12)

with

ARe,NLO
2 = cos(xPzz)

∫ 1−δ

x

dξ CNLO
3

(
ξ,

µ

xPz

)
, (F.0.13)

ARe,NLO
3 =

1

x

∫ ∞
0

dyΘ

(
y

1 + δ
− x
)

cos (yPzz)CNLO
3

(
y

x
,
µ

xPz

)
, (F.0.14)

ARe,NLO
4 = cos(xPzz)

∫ ∞
1+δ

dξ CNLO
3

(
ξ,

µ

xPz

)
, (F.0.15)

ARe,NLO
5 = −1

x

∫ ∞
0

dy cos (yPzz)CNLO
3

(
−y
x
,
µ

xPz

)
, (F.0.16)

ARe,NLO
6 = cos(xPzz)

∫ −x
−∞

dξ CNLO
3

(
ξ,

µ

xPz

)
(F.0.17)

Collecting all the terms yields eq. (8.14)

ORe
γ0 (z, µ) =

∫ 1

0

dx CRe
3

(
x, z,

µ

Pz

)
V3

(
x, µ2

)
, (F.0.18)

where

CRe
3

(
x, z,

µ

Pz

)
= ARe,LO + ARe,NLO (F.0.19)

with

ARe,NLO = ARe,NLO
1 − ARe,NLO

2 + ARe,NLO
3 − ARe,NLO

4 − ARe,NLO
5 − ARe,NLO

6 .

(F.0.20)

We now turn to the imaginary part of the Fourier transform. The computation

is exactly the same as in the previous case, with the only difference that now

we have a sin instead of a cos. Because of this, when re-expressing the integral
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∫∞
−∞ dx as

∫∞
0
dx, we get an additional minus sign, which gives the combination

f (x)− f (−x) = f asy
3 (x) = u+ (x)− d+ (x) = T3 (x) . (F.0.21)

Therefore, the results for the imaginary part can be obtained from those for the

real part simply by replacing cos with sin and V3 with T3.
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G
PDFs from reduced pseudo-ITD data:

Pion Mass dependence for 170 ensemble

Similarly to what done for the fine ensemble in sec. 9.3.1, the data for the ensemble

280 presented in ref. [200] can also be used to estimate pion mass effects for results

concerning the ensemble 170. The corresponding polynomial curves are plotted

in fig. G.1 as functions of the Ioffe-time.

0 1 2 3 4 5 6 7

0.00
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0.08

Error real part
PM sys
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PM sys

Figure G.1 Pion mass (PM) systematic provided as functions of the ioffe-time ν
for the real (left) and imaginary (right) part of the matrix element.

As in the case of the analysis for the fine ensemble, the curves in fig. G.1 are

used to define a source of correlated systematic. The resulting PDFs, denoted

as 170-sys, are plotted in fig. G.2 together with the results for the ensemble 170

presented in sec. 9.2, where only statistical uncertainties have been considered.

From fig. G.2 it is clear how introducing pion mass systematic effects in the

analysis has very little impact on the distributions, the major effect being a mild

down shift of the central value of V3 in the medium x region. We conclude that

the mild pion mass dependence observed in pseudo-ITD data of ref. [200] has no
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Figure G.2 PDFs from the fits 170-stat and 170-sys.

sizable impact on the final PDFs.
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[41] M. Krämer, F. I. Olness, and D. E. Soper, Treatment of heavy quarks in

deeply inelastic scattering, Phys. Rev. D 62 (2000) 096007,

[hep-ph/0003035].

[42] R. Thorne and R. Roberts, An Ordered analysis of heavy flavor production

in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871–6898,

[hep-ph/9709442].

[43] M. Cacciari, M. Greco, and P. Nason, The P(T) spectrum in heavy flavor

hadroproduction, JHEP 9805 (1998) 7, [hep-ph/9803400].

[44] S. Forte, E. Laenen, P. Nason, and J. Rojo, Heavy quarks in deep-inelastic

scattering, Nucl.Phys. B834 (2010) 116–162, [arXiv:1001.2312].

[45] S. Forte, D. Napoletano, and M. Ubiali, Higgs production in bottom-quark

fusion in a matched scheme, Phys. Lett. B751 (2015) 331–337,

[arXiv:1508.01529].

[46] S. Forte and S. Carrazza, Parton distribution functions,

arXiv:2008.12305.

199

http://arxiv.org/abs/hep-ph/0408244
http://arxiv.org/abs/hep-ph/9312319
http://arxiv.org/abs/hep-ph/9312318
http://arxiv.org/abs/hep-ph/0110247
http://arxiv.org/abs/hep-ph/0003035
http://arxiv.org/abs/hep-ph/9709442
http://arxiv.org/abs/hep-ph/9803400
http://arxiv.org/abs/1001.2312
http://arxiv.org/abs/1508.01529
http://arxiv.org/abs/2008.12305


[47] S. Forte, L. Garrido, J. I. Latorre, and A. Piccione, Neural network

parametrization of deep inelastic structure functions, JHEP 05 (2002) 062,

[hep-ph/0204232].

[48] NNPDF Collaboration, R. D. Ball et al., Parton distributions from

high-precision collider data, Eur. Phys. J. C77 (2017), no. 10 663,

[arXiv:1706.00428].

[49] S. Carrazza and J. Cruz-Martinez, Towards a new generation of parton

densities with deep learning models, Eur. Phys. J. C 79 (2019), no. 8 676,

[arXiv:1907.05075].

[50] NNPDF Collaboration, R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti,

J. I. Latorre, A. Piccione, J. Rojo, and M. Ubiali, A Determination of

parton distributions with faithful uncertainty estimation, Nucl. Phys.

B809 (2009) 1–63, [arXiv:0808.1231]. [Erratum: Nucl.

Phys.B816,293(2009)].

[51] NNPDF Collaboration, L. Del Debbio, S. Forte, J. I. Latorre,

A. Piccione, and J. Rojo, Unbiased determination of the proton structure

function F(2)**p with faithful uncertainty estimation, JHEP 03 (2005)

080, [hep-ph/0501067].

[52] NNPDF Collaboration, L. Del Debbio, S. Forte, J. I. Latorre,

A. Piccione, and J. Rojo, Neural network determination of parton

distributions: The Nonsinglet case, JHEP 03 (2007) 039,

[hep-ph/0701127].

[53] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo,

and M. Ubiali, A first unbiased global NLO determination of parton

distributions and their uncertainties, Nucl. Phys. B838 (2010) 136–206,

[arXiv:1002.4407].

[54] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867

(2013) 244–289, [arXiv:1207.1303].

[55] NNPDF Collaboration, R. D. Ball et al., Parton distributions for the

LHC Run II, JHEP 04 (2015) 040, [arXiv:1410.8849].

[56] NNPDF Collaboration, R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti,

J. I. Latorre, J. Rojo, and M. Ubiali, Fitting Parton Distribution Data

200

http://arxiv.org/abs/hep-ph/0204232
http://arxiv.org/abs/1706.00428
http://arxiv.org/abs/1907.05075
http://arxiv.org/abs/0808.1231
http://arxiv.org/abs/hep-ph/0501067
http://arxiv.org/abs/hep-ph/0701127
http://arxiv.org/abs/1002.4407
http://arxiv.org/abs/1207.1303
http://arxiv.org/abs/1410.8849


with Multiplicative Normalization Uncertainties, JHEP 05 (2010) 075,

[arXiv:0912.2276].

[57] N. Hansen, The CMA evolution strategy: A tutorial, CoRR

abs/1604.00772 (2016) [arXiv:1604.00772].

[58] NNPDF Collaboration, V. Bertone, S. Carrazza, N. P. Hartland, E. R.

Nocera, and J. Rojo, A determination of the fragmentation functions of

pions, kaons, and protons with faithful uncertainties, Eur. Phys. J. C77

(2017), no. 8 516, [arXiv:1706.07049].

[59] V. Bertone, S. Carrazza, and N. P. Hartland, APFELgrid: a high

performance tool for parton density determinations, Comput. Phys.

Commun. 212 (2017) 205–209, [arXiv:1605.02070].

[60] F. Chollet et al., Keras, 2015.

[61] M. Abadi et al., TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

[62] New Muon Collaboration, P. Amaudruz et al., The Gottfried sum from

the ratio F2(n) / F2(p), Phys. Rev. Lett. 66 (1991) 2712–2715.

[63] A. Candido, S. Forte, and F. Hekhorn, Can MS parton distributions be

negative?, JHEP 11 (2020) 129, [arXiv:2006.07377].

[64] New Muon Collaboration, M. Arneodo et al., Accurate measurement of

F2(d) / F2(p) and R**d - R**p, Nucl. Phys. B 487 (1997) 3–26,

[hep-ex/9611022].

[65] New Muon Collaboration, M. Arneodo et al., Measurement of the proton

and deuteron structure functions, F2(p) and F2(d), and of the ratio

sigma-L / sigma-T, Nucl. Phys. B 483 (1997) 3–43, [hep-ph/9610231].

[66] L. W. Whitlow, E. M. Riordan, S. Dasu, S. Rock, and A. Bodek, Precise

measurements of the proton and deuteron structure functions from a global

analysis of the SLAC deep inelastic electron scattering cross-sections,

Phys. Lett. B282 (1992) 475–482.

[67] BCDMS Collaboration, A. C. Benvenuti et al., A High Statistics

Measurement of the Proton Structure Functions F2(x,Q2) and R from

Deep Inelastic Muon Scattering at High Q2, Phys. Lett. B223 (1989) 485.

201

http://arxiv.org/abs/0912.2276
http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1706.07049
http://arxiv.org/abs/1605.02070
http://arxiv.org/abs/2006.07377
http://arxiv.org/abs/hep-ex/9611022
http://arxiv.org/abs/hep-ph/9610231


[68] CHORUS Collaboration, G. Onengut et al., Measurement of nucleon

structure functions in neutrino scattering, Phys. Lett. B632 (2006) 65–75.

[69] NuTeV Collaboration, M. Goncharov et al., Precise measurement of

dimuon production cross-sections in νµFe and ν̄µFe deep inelastic

scattering at the Tevatron, Phys. Rev. D64 (2001) 112006,

[hep-ex/0102049].

[70] D. A. Mason, Measurement of the strange - antistrange asymmetry at

NLO in QCD from NuTeV dimuon data. PhD thesis, Oregon U., 2006.

[71] ZEUS, H1 Collaboration, H. Abramowicz et al., Combination of

measurements of inclusive deep inelastic e±p scattering cross sections and

QCD analysis of HERA data, Eur. Phys. J. C75 (2015), no. 12 580,

[arXiv:1506.06042].

[72] H1 , ZEUS Collaboration, H. Abramowicz et al., Combination and QCD

Analysis of Charm Production Cross Section Measurements in

Deep-Inelastic ep Scattering at HERA, Eur.Phys.J. C73 (2013) 2311,

[arXiv:1211.1182].

[73] H1 Collaboration, F. D. Aaron et al., Measurement of the Charm and

Beauty Structure Functions using the H1 Vertex Detector at HERA, Eur.

Phys. J. C65 (2010) 89–109, [arXiv:0907.2643].

[74] ZEUS Collaboration, H. Abramowicz et al., Measurement of beauty and

charm production in deep inelastic scattering at HERA and measurement

of the beauty-quark mass, JHEP 09 (2014) 127, [arXiv:1405.6915].

[75] NuSea Collaboration, J. C. Webb et al., Absolute Drell-Yan dimuon cross

sections in 800-GeV/c p p and p d collisions, hep-ex/0302019.

[76] J. C. Webb, Measurement of continuum dimuon production in 800-GeV/c

proton nucleon collisions, hep-ex/0301031.

[77] FNAL E866/NuSea Collaboration, R. S. Towell et al., Improved

measurement of the anti-d/anti-u asymmetry in the nucleon sea, Phys.

Rev. D64 (2001) 052002, [hep-ex/0103030].

[78] G. Moreno et al., Dimuon production in proton - copper collisions at
√
s

= 38.8-GeV, Phys. Rev. D43 (1991) 2815–2836.

202

http://arxiv.org/abs/hep-ex/0102049
http://arxiv.org/abs/1506.06042
http://arxiv.org/abs/1211.1182
http://arxiv.org/abs/0907.2643
http://arxiv.org/abs/1405.6915
http://arxiv.org/abs/hep-ex/0302019
http://arxiv.org/abs/hep-ex/0301031
http://arxiv.org/abs/hep-ex/0103030


[79] CDF Collaboration, T. A. Aaltonen et al., Measurement of dσ/dy of

Drell-Yan e+e− pairs in the Z Mass Region from pp̄ Collisions at
√
s = 1.96 TeV, Phys. Lett. B692 (2010) 232–239, [arXiv:0908.3914].

[80] D0 Collaboration, V. M. Abazov et al., Measurement of the shape of the

boson rapidity distribution for pp̄→ Z/γ∗ → e+e− + X events produced at
√
s=1.96-TeV, Phys. Rev. D76 (2007) 012003, [hep-ex/0702025].

[81] D0 Collaboration, V. M. Abazov et al., Measurement of the muon charge

asymmetry in pp̄ → W+X → µν + X events at
√
s=1.96 TeV, Phys.Rev.

D88 (2013) 091102, [arXiv:1309.2591].

[82] D0 Collaboration, V. M. Abazov et al., Measurement of the electron

charge asymmetry in pp̄ → W +X → eν +X decays in pp̄ collisions

at
√
s = 1.96 TeV, Phys. Rev. D91 (2015), no. 3 032007,

[arXiv:1412.2862]. [Erratum: Phys. Rev.D91,no.7,079901(2015)].

[83] ATLAS Collaboration, G. Aad et al., Measurement of the high-mass

Drell–Yan differential cross-section in pp collisions at
√
s=7 TeV with the

ATLAS detector, Phys.Lett. B725 (2013) 223, [arXiv:1305.4192].

[84] ATLAS Collaboration, G. Aad et al., Measurement of the low-mass

Drell-Yan differential cross section at
√
s = 7 TeV using the ATLAS

detector, JHEP 06 (2014) 112, [arXiv:1404.1212].

[85] ATLAS Collaboration, G. Aad et al., Measurement of the inclusive W±

and Z/γ∗ cross sections in the electron and muon decay channels in pp

collisions at
√
s= 7 TeV with the ATLAS detector, Phys.Rev. D85 (2012)

072004, [arXiv:1109.5141].

[86] ATLAS Collaboration, M. Aaboud et al., Precision measurement and

interpretation of inclusive W+, W− and Z/γ∗ production cross sections

with the ATLAS detector, arXiv:1612.03016.

[87] ATLAS Collaboration, G. Aad et al., Measurement of the transverse

momentum and φ∗η distributions of Drell–Yan lepton pairs in

proton–proton collisions at
√
s = 8 TeV with the ATLAS detector, Eur.

Phys. J. C76 (2016), no. 5 291, [arXiv:1512.02192].

[88] ATLAS Collaboration, G. Aad et al., Measurement of the tt̄ production

cross-section using eµ events with b-tagged jets in pp collisions at
√
s = 7

203

http://arxiv.org/abs/0908.3914
http://arxiv.org/abs/hep-ex/0702025
http://arxiv.org/abs/1309.2591
http://arxiv.org/abs/1412.2862
http://arxiv.org/abs/1305.4192
http://arxiv.org/abs/1404.1212
http://arxiv.org/abs/1109.5141
http://arxiv.org/abs/1612.03016
http://arxiv.org/abs/1512.02192


and 8 TeV with the ATLAS detector, Eur. Phys. J. C74 (2014), no. 10

3109, [arXiv:1406.5375]. [Addendum: Eur. Phys. J.C76,no.11,642(2016)].

[89] ATLAS Collaboration, M. Aaboud et al., Measurement of the tt̄

production cross-section using eµ events with b-tagged jets in pp collisions

at
√
s=13 TeV with the ATLAS detector, Phys. Lett. B761 (2016)

136–157, [arXiv:1606.02699].

[90] ATLAS Collaboration, G. Aad et al., Measurements of top-quark pair

differential cross-sections in the lepton+jets channel in pp collisions at
√
s = 8 TeV using the ATLAS detector, Eur. Phys. J. C76 (2016), no. 10

538, [arXiv:1511.04716].

[91] CMS Collaboration, S. Chatrchyan et al., Measurement of the electron

charge asymmetry in inclusive W production in pp collisions at
√
s = 7

TeV, Phys.Rev.Lett. 109 (2012) 111806, [arXiv:1206.2598].

[92] CMS Collaboration, S. Chatrchyan et al., Measurement of the muon

charge asymmetry in inclusive pp to WX production at
√
s = 7 TeV and

an improved determination of light parton distribution functions,

Phys.Rev. D90 (2014) 032004, [arXiv:1312.6283].

[93] CMS Collaboration, S. Chatrchyan et al., Measurement of the differential

and double-differential Drell-Yan cross sections in proton-proton collisions

at
√
s = 7 TeV, JHEP 1312 (2013) 030, [arXiv:1310.7291].

[94] CMS Collaboration, V. Khachatryan et al., Measurement of the

differential cross section and charge asymmetry for inclusive

pp→W± +X production at
√
s = 8 TeV, Eur. Phys. J. C76 (2016),

no. 8 469, [arXiv:1603.01803].

[95] CMS Collaboration, V. Khachatryan et al., Measurement of the Z boson

differential cross section in transverse momentum and rapidity in

proton–proton collisions at 8 TeV, Phys. Lett. B749 (2015) 187–209,

[arXiv:1504.03511].

[96] CMS Collaboration, V. Khachatryan et al., Measurement of the t-tbar

production cross section in the e-mu channel in proton-proton collisions at

sqrt(s) = 7 and 8 TeV, JHEP 08 (2016) 029, [arXiv:1603.02303].

204

http://arxiv.org/abs/1406.5375
http://arxiv.org/abs/1606.02699
http://arxiv.org/abs/1511.04716
http://arxiv.org/abs/1206.2598
http://arxiv.org/abs/1312.6283
http://arxiv.org/abs/1310.7291
http://arxiv.org/abs/1603.01803
http://arxiv.org/abs/1504.03511
http://arxiv.org/abs/1603.02303


[97] CMS Collaboration, V. Khachatryan et al., Measurement of the top quark

pair production cross section in proton-proton collisions at
√

(s) = 13

TeV, Phys. Rev. Lett. 116 (2016), no. 5 052002, [arXiv:1510.05302].

[98] CMS Collaboration, V. Khachatryan et al., Measurement of the

differential cross section for top quark pair production in pp collisions at
√
s = 8 TeV, Eur. Phys. J. C75 (2015), no. 11 542, [arXiv:1505.04480].

[99] LHCb Collaboration, R. Aaij et al., Inclusive W and Z production in the

forward region at
√
s = 7 TeV, JHEP 1206 (2012) 058,

[arXiv:1204.1620].

[100] LHCb Collaboration, R. Aaij et al., Measurement of the cross-section for

Z → e+e− production in pp collisions at
√
s = 7 TeV, JHEP 1302 (2013)

106, [arXiv:1212.4620].

[101] LHCb Collaboration, R. Aaij et al., Measurement of the forward Z boson

production cross-section in pp collisions at
√
s = 7 TeV, JHEP 08 (2015)

039, [arXiv:1505.07024].

[102] LHCb Collaboration, R. Aaij et al., Measurement of forward W and Z

boson production in pp collisions at
√
s = 8 TeV, JHEP 01 (2016) 155,

[arXiv:1511.08039].

[103] ATLAS Collaboration, G. Aad et al., Measurement of the inclusive jet

cross-section in proton-proton collisions at
√
s = 7 TeV using 4.5 fb−1 of

data with the ATLAS detector, JHEP 02 (2015) 153, [arXiv:1410.8857].

[104] CMS Collaboration, V. Khachatryan et al., Measurement of the inclusive

jet cross section in pp collisions at
√
s = 2.76 TeV, Eur. Phys. J. C 76

(2016), no. 5 265, [arXiv:1512.06212].

[105] S. D. Ellis, Z. Kunszt, and D. E. Soper, The One Jet Inclusive

Cross-section at Order $α−sˆ{3}$ Quarks and Gluons, Phys. Rev. Lett.

64 (1990) 2121.

[106] F. Aversa, P. Chiappetta, M. Greco, and J. Guillet, Higher Order

Corrections to QCD Jets, Phys. Lett. B 210 (1988) 225.

[107] W. Giele, E. Glover, and D. A. Kosower, The inclusive two jet triply

differential cross-section, Phys. Rev. D 52 (1995) 1486–1499,

[hep-ph/9412338].

205

http://arxiv.org/abs/1510.05302
http://arxiv.org/abs/1505.04480
http://arxiv.org/abs/1204.1620
http://arxiv.org/abs/1212.4620
http://arxiv.org/abs/1505.07024
http://arxiv.org/abs/1511.08039
http://arxiv.org/abs/1410.8857
http://arxiv.org/abs/1512.06212
http://arxiv.org/abs/hep-ph/9412338


[108] J. Currie, E. Glover, T. Gehrmann, A. Gehrmann-De Ridder, A. Huss,

and J. Pires, Single Jet Inclusive Production for the Individual Jet pT

Scale Choice at the LHC, Acta Phys. Polon. B 48 (2017) 955–967,

[arXiv:1704.00923].

[109] J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. N. Glover, A. Huss,

and J. a. Pires, Infrared sensitivity of single jet inclusive production at

hadron colliders, JHEP 10 (2018) 155, [arXiv:1807.03692].

[110] M. Cacciari, S. Forte, D. Napoletano, G. Soyez, and G. Stagnitto,

Single-jet inclusive cross section and its definition, Phys. Rev. D 100

(2019), no. 11 114015, [arXiv:1906.11850].

[111] E. R. Nocera and M. Ubiali, Constraining the gluon PDF at large x with

LHC data, PoS DIS2017 (2018) 008, [arXiv:1709.09690].

[112] ATLAS Collaboration, M. Aaboud et al., Measurement of inclusive jet

and dijet cross-sections in proton-proton collisions at
√
s = 13 TeV with

the ATLAS detector, JHEP 05 (2018) 195, [arXiv:1711.02692].

[113] CMS Collaboration, V. Khachatryan et al., Measurement of the

double-differential inclusive jet cross section in proton–proton collisions at
√
s = 13 TeV, Eur. Phys. J. C 76 (2016), no. 8 451, [arXiv:1605.04436].

[114] CMS Collaboration, A. M. Sirunyan et al., Dependence of inclusive jet

production on the anti-kT distance parameter in pp collisions at
√
s = 13

TeV, JHEP 12 (2020) 082, [arXiv:2005.05159].

[115] ATLAS Collaboration, G. Aad et al., Measurement of three-jet

production cross-sections in pp collisions at 7 TeV centre-of-mass energy

using the ATLAS detector, Eur. Phys. J. C 75 (2015), no. 5 228,

[arXiv:1411.1855].

[116] ATLAS Collaboration, G. Aad et al., Measurement of four-jet differential

cross sections in
√
s = 8 TeV proton-proton collisions using the ATLAS

detector, JHEP 12 (2015) 105, [arXiv:1509.07335].

[117] CMS Collaboration, V. Khachatryan et al., Measurement of the inclusive

3-jet production differential cross section in proton–proton collisions at 7

TeV and determination of the strong coupling constant in the TeV range,

Eur. Phys. J. C 75 (2015), no. 5 186, [arXiv:1412.1633].

206

http://arxiv.org/abs/1704.00923
http://arxiv.org/abs/1807.03692
http://arxiv.org/abs/1906.11850
http://arxiv.org/abs/1709.09690
http://arxiv.org/abs/1711.02692
http://arxiv.org/abs/1605.04436
http://arxiv.org/abs/2005.05159
http://arxiv.org/abs/1411.1855
http://arxiv.org/abs/1509.07335
http://arxiv.org/abs/1412.1633


[118] CMS Collaboration, S. Chatrchyan et al., Measurements of differential jet

cross sections in proton-proton collisions at
√
s = 7 TeV with the CMS

detector, Phys.Rev. D87 (2013) 112002, [arXiv:1212.6660].

[119] ATLAS Collaboration, M. Aaboud et al., Measurement of the inclusive

jet cross-sections in proton-proton collisions at
√
s = 8 TeV with the

ATLAS detector, JHEP 09 (2017) 020, [arXiv:1706.03192].

[120] CMS Collaboration, V. Khachatryan et al., Measurement and QCD

analysis of double-differential inclusive jet cross sections in pp collisions

at
√
s = 8 TeV and cross section ratios to 2.76 and 7 TeV, JHEP 03

(2017) 156, [arXiv:1609.05331].

[121] ATLAS Collaboration Collaboration, G. Aad et al., Measurement of

dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using

the ATLAS detector, JHEP 1405 (2014) 059, [arXiv:1312.3524].

[122] CMS Collaboration, A. M. Sirunyan et al., Measurement of the

triple-differential dijet cross section in proton-proton collisions at
√
s = 8 TeV and constraints on parton distribution functions, Eur. Phys.

J. C77 (2017), no. 11 746, [arXiv:1705.02628].

[123] J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover,

A. Huss, and J. Pires, Precise predictions for dijet production at the LHC,

Phys. Rev. Lett. 119 (2017), no. 15 152001, [arXiv:1705.10271].

[124] J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss,

and J. Pires, Jet cross sections at the LHC with NNLOJET, PoS LL2018

(2018) 001, [arXiv:1807.06057].

[125] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, and

J. Pires, Triple Differential Dijet Cross Section at the LHC, Phys. Rev.

Lett. 123 (2019), no. 10 102001, [arXiv:1905.09047].

[126] Z. Nagy, Three jet cross-sections in hadron hadron collisions at

next-to-leading order, Phys. Rev. Lett. 88 (2002) 122003,

[hep-ph/0110315].

[127] fastNLO Collaboration, M. Wobisch, D. Britzger, T. Kluge, K. Rabbertz,

and F. Stober, Theory-Data Comparisons for Jet Measurements in

Hadron-Induced Processes, arXiv:1109.1310.

207

http://arxiv.org/abs/1212.6660
http://arxiv.org/abs/1706.03192
http://arxiv.org/abs/1609.05331
http://arxiv.org/abs/1312.3524
http://arxiv.org/abs/1705.02628
http://arxiv.org/abs/1705.10271
http://arxiv.org/abs/1807.06057
http://arxiv.org/abs/1905.09047
http://arxiv.org/abs/hep-ph/0110315
http://arxiv.org/abs/1109.1310


[128] A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, A. Huss, and T. A.

Morgan, NNLO QCD corrections for Z boson plus jet production, PoS

RADCOR2015 (2016) 075, [arXiv:1601.04569].

[129] S. Dittmaier, A. Huss, and C. Speckner, Weak radiative corrections to dijet

production at hadron colliders, JHEP 11 (2012) 095, [arXiv:1210.0438].

[130] Z. Kassabov, “Reportengine: A framework for declarative data analysis.”

https://doi.org/10.5281/zenodo.2571601, Feb., 2019.

[131] V. Bertone, S. Carrazza, and J. Rojo, APFEL: A PDF Evolution Library

with QED corrections, Comput. Phys. Commun. 185 (2014) 1647–1668,

[arXiv:1310.1394].

[132] T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G. P. Salam,

F. Siegert, P. Starovoitov, and M. Sutton, A posteriori inclusion of parton

density functions in NLO QCD final-state calculations at hadron colliders:

The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503–524,

[arXiv:0911.2985].

[133] LHC Higgs Cross Section Working Group Collaboration,

D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4.

Deciphering the Nature of the Higgs Sector, arXiv:1610.07922.

[134] S. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The Intrinsic Charm of

the Proton, Phys. Lett. B 93 (1980) 451–455.

[135] S. J. Brodsky, C. Peterson, and N. Sakai, Intrinsic heavy-quark states,

Phys. Rev. D 23 (Jun, 1981) 2745–2757.

[136] F. Maltoni, G. Ridolfi, and M. Ubiali, b-initiated processes at the LHC: a

reappraisal, JHEP 07 (2012) 022, [arXiv:1203.6393]. [Erratum: JHEP

04, 095 (2013)].

[137] M. Lim, F. Maltoni, G. Ridolfi, and M. Ubiali, Anatomy of double

heavy-quark initiated processes, JHEP 09 (2016) 132,

[arXiv:1605.09411].

[138] E. Bagnaschi, F. Maltoni, A. Vicini, and M. Zaro, Lepton-pair production

in association with a bb pair and the determination of the W boson mass,

JHEP 07 (2018) 101, [arXiv:1803.04336].

208

http://arxiv.org/abs/1601.04569
http://arxiv.org/abs/1210.0438
http://arxiv.org/abs/1310.1394
http://arxiv.org/abs/0911.2985
http://arxiv.org/abs/1610.07922
http://arxiv.org/abs/1203.6393
http://arxiv.org/abs/1605.09411
http://arxiv.org/abs/1803.04336


[139] F. Krauss and D. Napoletano, Towards a fully massive five-flavor scheme,

Phys. Rev. D98 (2018), no. 9 096002, [arXiv:1712.06832].

[140] D. Figueroa, S. Honeywell, S. Quackenbush, L. Reina, C. Reuschle, and

D. Wackeroth, Electroweak and QCD corrections to Z-boson production

with one b jet in a massive five-flavor scheme, Phys. Rev. D98 (2018),

no. 9 093002, [arXiv:1805.01353].

[141] R. D. Ball, V. Bertone, M. Bonvini, S. Forte, P. Groth Merrild, J. Rojo,

and L. Rottoli, Intrinsic charm in a matched general-mass scheme, Phys.

Lett. B754 (2016) 49–58, [arXiv:1510.00009].

[142] R. D. Ball, M. Bonvini, and L. Rottoli, Charm in Deep-Inelastic

Scattering, JHEP 11 (2015) 122, [arXiv:1510.02491].

[143] R. D. Ball, V. Bertone, M. Bonvini, S. Carrazza, S. Forte, A. Guffanti,

N. P. Hartland, J. Rojo, and L. Rottoli, A Determination of the Charm

Content of the Proton, Eur. Phys. J. C76 (2016), no. 11 647,

[arXiv:1605.06515].

[144] S. Forte, D. Napoletano, and M. Ubiali, Higgs production in bottom-quark

fusion: matching beyond leading order, Phys. Lett. B763 (2016) 190–196,

[arXiv:1607.00389].

[145] M. Bonvini, A. S. Papanastasiou, and F. J. Tackmann, Resummation and

matching of b-quark mass effects in bbH production, JHEP 11 (2015) 196,

[arXiv:1508.03288].

[146] M. Bonvini, A. S. Papanastasiou, and F. J. Tackmann, Matched

predictions for the bbH cross section at the 13 TeV LHC, JHEP 10 (2016)

53, [arXiv:1605.01733].

[147] S. Dittmaier, A general approach to photon radiation off fermions, Nucl.

Phys. B565 (2000) 69–122, [9904440].

[148] M. Buza, Y. Matiounine, J. Smith, and W. L. van Neerven, Charm

electroproduction viewed in the variable flavor number scheme versus fixed

order perturbation theory, Eur. Phys. J. C1 (1998) 301–320,

[hep-ph/9612398].

[149] R. V. Harlander and W. B. Kilgore, Next–to-next–to–leading order Higgs

production at hadron colliders, Phys.Rev.Lett. 88 (2002) 201801,

[hep-ph/0201206].

209

http://arxiv.org/abs/1712.06832
http://arxiv.org/abs/1805.01353
http://arxiv.org/abs/1510.00009
http://arxiv.org/abs/1510.02491
http://arxiv.org/abs/1605.06515
http://arxiv.org/abs/1607.00389
http://arxiv.org/abs/1508.03288
http://arxiv.org/abs/1605.01733
http://arxiv.org/abs/9904440
http://arxiv.org/abs/hep-ph/9612398
http://arxiv.org/abs/hep-ph/0201206


[150] S. Forte, D. Napoletano, and M. Ubiali, “bbhfonll.”

http://bbhfonll.hepforge.org/, 2017.

[151] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer,

H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated

computation of tree-level and next-to-leading order differential cross

sections, and their matching to parton shower simulations, JHEP 1407

(2014) 79, [arXiv:1405.0301].

[152] M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, and

P. Torrielli, Higgs production in association with bottom quarks, JHEP 02

(2015) 132, [arXiv:1409.5301].

[153] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht,
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