

PAST PRESENT AND FUTURE CHALLENGES IN THE DETERMINATION OF THE STRUCTURE OF THE PROTON

LECTURE IV

Maria Ubiali University of Cambridge

11th April 2019

Grad Days 2019

Outline

- First lecture (Monday)
 - Motivation: the big picture
 - Parton Model and QCD
 - Collinear Factorisation and definition of PDFs
- Second lecture (Tuesday)
 - Experimental Data
 - Disentangling proton's components
- Third lecture (Wednesday)
 - Photon and EW corrections
 - Beyond DGLAP
 - Statistics and Methodology

•<u>Fourth lecture</u> (today)

- State-of-the art PDFs
- New frontiers and challenges

State-of-the-art PDFs

The choice of PDFs matters

- What does PDF uncertainty include? How reliable it is?
- How do we interpret the difference predictions using different PDF sets?
- Shall we just pick a set out of the PDFs "supermarket" shelf or take the envelope of ALL predictions?

ysicist>

LHAPDF

The choice of PDFs matters

- What does PDF uncertainty include? How reliable it is?
- How do we interpret the difference predictions using different PDF sets?
- Shall we just pick a set out of the PDFs "supermarket" shelf or take the envelope of ALL predictions?

 $\delta \sigma PDF = 5\%$

 $\delta \sigma_{PDF} = 2\%$

J. Rojo's talk at DIS2016

The choice of PDFs matters

- What does PDF uncertainty include? How reliable it is?
- How do we interpret the difference predictions using different PDF sets?
- Shall we just pick a set out of the PDFs "supermarket" shelf or take the envelope of ALL predictions?

J. Rojo's talk at DIS2016

The players

April 2019	NNPDF3.1	MMHT2014	СТ14	ABMP16
Fixed Target DIS	 ✓ 	 ✓ 	 ✓ 	
HERA I+II	 ✓ 	✓	 	 ✓
HERA jets	×	 	×	×
Fixed Target DY	 	 	 	 ✓
Tevatron W,Z	 	✓	 	 ✓
Tevatron jets	 	 	 	×
LHC jets	 	 	 	×
LHC vector boson	 ✓ 	 ✓ 	 ✓ 	
LHC top	 ✓ 	×	×	V
Stat. treatment	Monte Carlo	Hessian Δχ² dynamical	Hessian Δχ² dynamical	Hessian Δχ²=1
Parametrization	Neural Networks (259 pars)	Chebyshev (37 pars)	Bernstein (30-35 pars)	Polynomial (15 pars)
HQ scheme	FONLL	TR'	ΑСΟΤ-χ	FFN (+BMST)
Order	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO/NNLO

(2014)

Gluon luminosity

NNPDF2.3 / CT10 / MSTW2008

<u>NNPDF3.0 / CT14 / MMHT14</u>

LHC 13 TeV, NNLO, α_s(M_z)=0.118

J. Butterworth et al, J.Phys. G43 (2016) 023001

Consequence: Higgs physics

Impact on Higgs physics

NNPDF3.1 / CT14 / MMHT14/ABMP16

NNLO, α_s =0.118, Q = 100 GeV

J. Gao et al, arXiv:1709.04922

New LHC data?

NNPDF3.1 NNLO, Q = 100 GeV

NNPDF3.1 NNLO, Q = 100 GeV

NNPDF3.1 NNLO, Q = 100 GeV

Multiple independent handles on the gluon PDF

10⁻¹

0.9

10-2

NNPDF2.3 / CT10 / MSTW2008

(2014)

LHC 13 TeV, NNLO, α_s(M_z)=0.118

<u>NNPDF3.0 / CT14 / MMHT14</u>

(2016)

LHC 13 TeV, NNLO, $\alpha_{s}(M_{7})=0.118$

NNPDF3.1 / CT14 / MMHT/ABMP16

NNLO, α_s =0.118, Q = 100 GeV

Data convergence

- Increasingly wide dataset used in PDF analyses: from DIS structure functions only to global analyses including jets, top, W/Z, HQ observables
- HERA PDFs based on maximally consistent set of data, others have to deal with inconsistencies

	20	08	20	009	201	10	2011	201	12	201	3	20	14	2015
SET	CT6.6	NN1.0	MSTW	ABKM09	NN2.0	CT10(N) NN2.1(NN	ABM11	NN2.3	CT10(NN)	ABM12	NN3.0	MMHT	CT14
MONTH	(02)	(08)	(01)	(08)	(02)	(07)	(07)	(02)	(07)	(02)	(10)	(10)	(12)	(06)
F. T. DIS	-	×	×	 	•	~	×	•	×	~	-	×	×	•
ZEUS+H1-HI	~	~	~	 	 	~	v	~	× 1	~	~	× 1	× 1	~
COMB. HI	×	×	x	×	~	×	v	x	~	x	~	× 1	×	×
ZEUS+H1-HII	×	×	×	×	×	×	some	×	×	some	×	~	×	×
HERA JETS	x	x	~	x	x	x	x	x	x	x	x	x	1	x
F. T. DY		x	2		1	2		-	<i>.</i>		1	2	2	2
TEV. W+Z		r x	<u> </u>	x		<u> </u>		x	Č.			÷	<u> </u>	÷
TEV JETS		ſ.	· ·	ſ I		- -		^	· ·				· ·	· ·
10010000	 	×	 	×	 	 	×	×	×	~	×	×	×	~
LHC W+Z	×	×	×	×	×	×	×	×	×	×	some	×	×	×
LHC JETS	×	×	×	×	×	×	×	×	¥	×	×	×	× 1	×
тор	×	×	×	×	x	×	×	x	×	x	~	v	×	×
W+C	×	×	×	×	×	×	×	×	×	×	×	 Image: A second s	×	×
$\mathbf{W} p_T$	×	x	×	×	x	×	×	x	×	×	×	 Image: A second s	×	×

Theory convergence

- Comparable GM-VFN schemes for inclusion of HQ masses (sub-leading differences less important at NNLO)
- Common a_S(Mz) = 0.118 (external parameter)
- NNLO (although with some caveat especially concerning jets data)
- Extensive benchmarking

Frontiers #1: missing higher order uncertainties

The precision frontier

Can we trust 1% accuracy?

The precision frontier

Can we trust 1% accuracy?

Theory uncertainties

In updated PDF analysis, shift between old and new set may be larger than PDF uncertainties

• <u>Changes in theory?</u>

MHOU in theoretical predictions

Increasing order in perturbation theory reduced "scale" uncertainty (or MHOU) in theoretical predictions

MHOU in PDF fits

- PDF fits performed at given perturbative order
- PDF uncertainties only reflect lack of information from data
- Theoretical uncertainties (dominated by MHOU) ignored so far
- At NLO PDF uncertainties and MHOU comparable
- Near future: NNLO PDF uncertainties will go down to level of MHOU
- Inclusion of theory uncertainties is the next frontier

Ball et al, EPJC 77 (2017)

MHOU in PDF fits

- How to estimate MHOU in PDF fits?
- Compare fits with varied scales
- Useful to have indication on the size of MHOU in PDFs
- A posteriori combination?
- How to include them in the fitting methodology along with other sources of theoretical uncertainty?

Covariance matrix

- $t_p = \sum c_m$ Theory is perturbative expansion to some order :
- Standard case:
- $P(d|t_p) \propto \exp\left(-\frac{1}{2}(\underline{d-t_p})^T \operatorname{cov}_{\exp}^{-1}(d-t_p)\right)$: $P(t_p|d) = \frac{P(d|t_p)P(t_p)}{P(d)} \propto P(d|t_p)P(t_p)$ Bayes' theorem:
- Assume Gaussian theory prior:

$$P(t_p) = \prod_{m=0}^{p} P(c_m) \quad \text{where} \quad P(c_m) \propto \exp\left(-\frac{1}{2} \underline{c_m^T \text{cov}_{\text{th},m}^{-1} c_m}\right) \chi_{\text{th}}^2$$

Assume MHOUs due to $\mathcal{O}(\alpha^{p+1})$ terms only \rightarrow marginalise these terms: ٠

$$P(t_p|d) \propto \int dc_{p+1} P(d|c_{p+1}) P(t_{p+1})$$
$$\propto \exp\left(-\frac{1}{2}(\underline{d-t_p})^T(\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})^{-1}(d-t_p)\right) \chi_{\operatorname{tot}}^2$$

Include higher order terms by induction

Covariance matrix

$$\chi^2 = \sum_{m,n=1}^{N} (d_m - t_m) (\operatorname{cov}_{\exp} + \operatorname{cov}_{\operatorname{th}})_{mn}^{-1} (d_n - t_n)$$

➡ How to build correlations between different points?

$$(\text{cov}_{\text{th}})_{mn} = \langle (t_p(\mu_R, \mu_F) - t_p(\mu_R^0, \mu_F^0))_m (t_p(\mu_R, \mu_F) - t_p(\mu_R^0, \mu_F^0))_n \rangle$$

- $\mu_{\rm F}$ variations correlated across all processes by PDF evolution
- $\mu_{\rm R}$ variation correlated by process (hard cross section)

- Several recipes possible (3-points prescriptions, 7-points...)
- Details of correlations are also important
- A lot to be investigated

Covariance matrix

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

DIS NC DIS CC DY JETS TOP DISCC DISNC DX 1EFOP

Experiment correlation matrix

Experiment + theory correlation matrix for 9 points

More reliable uncertainties?

Frontiers #2: beyond fixed order

Beyond fixed order

- Multi-scale processes: log(Qi/Qj) = L arise, which may spoil perturbative expansion
- If $(a_s * L) \sim O(1)$ fixed order perturbative QCD is no longer justified
- Resummation effectively rearranges perturbative series

• Various kinds of logs:

L = log (1-x)threshold (soft-gluon) resummationBall et al, JHEP09(2015)091L = log (1/x)high-energy (small-x) resummationBFKLL = log (pT/M)transverse momentum resummation

Threshold resummation

 Threshold resummation: initial energy just enough to produce final state with mass M, so emissions forced to be soft and logs at each order in PT are enhanced

$$x = \frac{M^2}{\hat{s}}$$
 NLO: $M^2 = z\hat{s}$ $\left[\frac{\log^k(1-z)}{(1-z)}\right]$

Transform factorised cross section into Mellin space

$$\sigma(x,Q^2) = x \sum_{a,b} \int_x^1 \frac{dz}{z} \mathcal{L}_{ab} \left(\frac{x}{z}, \mu_{\rm F}^2\right) \frac{1}{z} \hat{\sigma}_{ab} \left(z,Q^2, \alpha_s(\mu_{\rm R}^2), \frac{Q^2}{\mu_{\rm F}^2}, \frac{Q^2}{\mu_{\rm R}^2}\right)$$
$$\sigma(N,Q^2) = \int_0^1 dx \, x^{N-2} \sigma(x,Q^2) = \sum_{a,b} \mathcal{L}_{ab}(N,Q^2) \hat{\sigma}_{ab} \left(N,Q^2, \alpha_s\right)$$

 In the MSbar scheme PDF evolution does not contain large-x logs and the effect of resummation can be included in resummed coefficient functions

$$egin{aligned} &\hat{\sigma}_{ab}^{(ext{res})}(N,Q^2,lpha_s) = \sigma_{ab}^{(ext{born})}(N,Q^2,lpha_s) C_{ab}^{(ext{res})}(N,lpha_s) \ &C^{(N ext{-soft})}(N,lpha_s) = g_0(lpha_s) \exp \mathcal{S}(\ln N,lpha_s), \ &\mathcal{S}(\ln N,lpha_s) = \left[rac{1}{lpha_s}g_1(lpha_s\ln N) + g_2(lpha_s\ln N) + lpha_sg_3(lpha_s\ln N) + \dots
ight] \end{aligned}$$

Threshold resummation

- Threshold-resummed PDFs will be suppressed as compared to fixed-order PDFs
- Mostly due to enhancement of NLO+NLL xsecs used in the fit of DIS structure functions and DY distributions
- This suppression partially or totally compensates enhancements in partonic cross sections
- Phenomenologically relevant for new physics processes [Beenakker et al. EPJC76 (2016)2, 53]

Frontiers #3: PDFs and new

physics

New Physics and PDFs

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \dots, \qquad \mathcal{L}^{(d)} = \sum_{i=1}^{n_d} \frac{C_i^{(a)}}{\Lambda^{d-4}} Q_i^{(d)} \quad \text{for } d > 4$$

- Many studies analyse effect of higherdimensional operators on observables measured at the LHC
- Extract constraints on dim-6 operators that contribute to NC and CC Drell-Yan production at the LHC, H+V production and VFB

/ n

PDFs use some of these data and are determined within SM Framework

Alioli et al, 1804.07407

PDFs and New Physics

- As more data at higher energy will be released, how can we make sure that new physics effects are not absorbed in the PDFs?
- If effects were big we would have bad and signs of inconsistency but probably would show up as mild inconsistencies
- Inconsistency of any individual dataset with the bulk of global fit may suggest its understanding is incomplete but might be due to many factors

Are conservative partons the answer? - Not really: simultaneous fits of EFT coefficients and PDFs is the new frontier

$$egin{aligned} \mathcal{O}_{lu} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{u}_R \gamma_\mu u_R
ight) &, \quad \mathcal{O}_{ld} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{d}_R \gamma_\mu d_R
ight) \ \mathcal{O}_{lc} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{c}_R \gamma_\mu c_R
ight) &, \quad \mathcal{O}_{ls} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{s}_R \gamma_\mu s_R
ight) \end{aligned}$$

$$egin{aligned} \mathcal{O}_{lu} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{u}_R \gamma_\mu u_R
ight) &, \quad \mathcal{O}_{ld} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{d}_R \gamma_\mu d_R
ight) \ \mathcal{O}_{lc} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{c}_R \gamma_\mu c_R
ight) &, \quad \mathcal{O}_{ls} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{s}_R \gamma_\mu s_R
ight) \end{aligned}$$

Constrained by LEP and other experiments

Degrande, Iranipour, MU

$$egin{aligned} \mathcal{O}_{lu} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{u}_R \gamma_\mu u_R
ight) &, \quad \mathcal{O}_{ld} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{d}_R \gamma_\mu d_R
ight) \ \mathcal{O}_{lc} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{c}_R \gamma_\mu c_R
ight) &, \quad \mathcal{O}_{ls} &= \left(ar{l}_R \gamma^\mu l_R
ight) \left(ar{s}_R \gamma_\mu s_R
ight) \end{aligned}$$

Constrained by LEP and other experiments

 What happens in a PDF fit if we include in the hadronic tensor the effect of the Z'?

- What bounds do I get?
- Would they change if PDFs were fitted assuming new physics in the theory?

Degrande, Iranipour, MU

Error bars due to finite number of replicas. 90% CI: $-0.18 < a_u < 0.46$

Can PDFs absorb New Physics?

- Take a point within region allowed by LEP and other low-energy experiments
- Gluon changes in significant way
- But chi2 of PDF fit within this new physics scenario gets worse, as data at higher Q are included
- Bottomline: PDFs cannot absorb new physics in this proof-of-concept case

Frontiers #4: nuclear PDFs

Collinear Factorisation Theorem:

- Provide theoretical definition of universal PDFs
- Make the formalism predictive
- Make a statement about the error of the factorisation formula
- For pp (pp~) and ep collisions we have rigorous factorisation proofs
- For eA factorisation works quite well (although need nuclear corrections)
- For pA and AA factorisation is a working hypothesis to be tested phenomenologically
- There might be breaking of QCD factorisation, from DGLAP evolutions or other nuclear effects to be included

- EMC effect = a shift in the quark momentum distributions towards lower x when nucleons are bound
- Elastic ep maxima smeared around x = 1 since nucleons are confined in a nucleus of radius ~ 1 fm. Thus a Fermi momentum

$$f_i^{p/A}(x_N,\mu_0) = R_i(x_N,\mu_0,A) f_i^{free\ proton}(x_N,\mu_0)$$
$$f_i^{p/A}(x_N,\mu_0) = f_i(x_N,A,\mu_0)$$
$$f_i(x_N,A=1,\mu_0) \equiv f_i^{free\ proton}(x_N,\mu_0)$$

Frontiers #4: neutrino telescopes

• Ultra-high energy (UHE) neutrinos: novel window to the extreme Universe

• Ultra-high energy (UHE) neutrinos: novel window to the extreme Universe

signal: cosmic neutrino - nucleus scattering

background: prompt charm production

Sensitive to small-x quarks (and thus gluons via evolution) down to $x = 10^{-8}$ and $Q = M_W$ Sensitive to small-x gluons down to $x \approx 10^{-6}$ and $Q \approx M_{charm}$ in the centre-of-mass frame

J. Rojo DIS2019

signal: cosmic neutrino - nucleus scattering

Sensitive to small-x quarks (and thus gluons via evolution) down to $x \approx 10^{-8}$ and $Q \approx M_W$

background: prompt charm production

Sensitive to small-x gluons down to x = 10⁻⁶ and Q = M_{charm} in the centre-of-mass frame

J. Rojo DIS2019

- The inclusion of LHCb prompt charm data reduces uncertainty of gluon at small x
- Using that gluon to predict prompt charm production background improves agreement between data and theoretical predictions

Comparison with IceCube data

J. Rojo DIS2019

Frontiers #6: heavy quark phenomenology

A rich phenomenology

Hadron colliders

• For all processes that feature bottom quarks at the hard-process level there are two ways of performing computations: **4F** and **5F** schemes

• Each supports the issues that arise in different kinematical regimes

t-channel kinematics Initial state

s-channel kinematics Final state

These logs for $m_b << s$, might be large, possibly spoiling perturbation theory!!

If logs dominate

- ♦ b quark treated as a light parton generated at threshold µ_b~m_b from DGLAP evolution
- \bullet Set m_b = 0 in the short-distance xsec
- Resummation of the collinear logs achieved through DGLAP evolution equations for bottom PDFs

4F scheme

- ➤ It does not resum possibly large logs, yet it has them explicitly
- X Computing higher orders is more difficult
- ✔ Mass effects are there at any order
- ✓ Straightforward implementation in MC event generators at LO and NLO

Decoupling or massive scheme

5F scheme

✓ It resums initial state large logs into b-PDFs leading to more stable predictions

- Computing higher orders is easier
- **X** p_T of bottom enters at higher orders

✗ Implementation in MC depends on the gluon splitting model in the PS

Massless scheme

NNLO correction in the 5FS

4F scheme

- ★ It does not resum possibly large logs, yet it has them explicitly
- ✗ Computing higher orders is more difficult
- ✔ Mass effects are there at any order
- ✓ Straightforward implementation in MC event generators at LO and NLO

Decoupling or massive scheme

5F scheme

✓ It resums initial state large logs into b-PDFs leading to more stable predictions

- ✓ Computing higher orders is easier
- \mathbf{X} p_T of bottom enters at higher orders
- ➤ Implementation in MC depends on the gluon splitting model in the PS

Massless scheme

A lot of (open) questions

- Why do the two schemes often lead to very different results?
- Why differences become smaller is a softer scale is used?
- For exclusive/differential observables: how to proceed?
- For inclusive observables: how to combine/match the two schemes to maximise the pros?

Combining the 4F and 5F schemes

- There are cases when both mass terms and resummation of collinear logs must be included, as they both play a role in getting accurate predictions (e.g. DIS)
- What about predictions for partonic cross sections at the LHC?

	4F scheme		5F scheme
pp → bb	Nason et al (1989), Mangano et al (1992)		
pp → bbbb	Greiner et al (2011)		
pp → ttbb	Bevilacqua et al (2009), Bredenstein et al (2010)	pp → tW	Campbell et al (2005),Frixione et al (2008)
pp → tbj	Campbell et al (2009)	pp → tj	Harris et al (2002), Campbell et al (2005)
pp → tbH±	Dittmaier et al (2009), Degrande et al (2015)	pp → tH±	Plehn et al (2003), Weydert et al (2010)
$pp \rightarrow \Phi bb$	Dawson et al (2005), Dittmaier et al (2004)	$pp \rightarrow \Phi(bb), \Phi b(b)$	Campbell et al (2003), Harlander et al (2003)
$pp \rightarrow Vbb$ Badger et al (2011),	Ellis et al (1999,2000), Reina et al (2008,2009), Frederix et al (2011)	pp → Z(bb),Vbj,Vb Maltoni et al (2005)	Campbell et al (2004,2006,2007,2009),

Combining the 4F and 5F schemes

- Independently of the size of the mass effects and of collinear resummation effects, a prediction that combines the best available 4F and 5F scheme predictions based on standard QCD factorisation is the best one could get
- For inclusive cross sections a "phenomenological approach" is often adopted (HXSWG). Not too harmful is predictions do not differ much, but not theoretically sound!

Santander matching:

Weighted average between the 4F and the 5F scheme predictions $\sigma = \frac{\sigma^{(4F)} + w \sigma^{(5F)}}{1 + w}$ $w = \log\left(\frac{M}{m_b}\right) - 2$

Harlander, Kramer, Schumacher, 1112.3478

Combining the 4F and 5F schemes

- Independently of the size of the mass effects and of collinear resummation effects, a prediction that combines the best available 4F and 5F scheme predictions based on standard QCD factorisation is the best one could get
- Can we do better than that?

DIS	[ACOT (1993), TR(2002), FONLL(2010)]
b hadro-production	[Cacciari et al (1998)]
single top t -channel	[MCFM, Campbell et al (2002,2009)]
 W+Q, Z+Q 	[MCFM, Campbell et al (2004)]
▶ ttH′	[Han et al (2015)]
▶ bbH	[Forte et al (2015) Bonvini et al (2015)]

- Bottom-fusion initiated H production relevant in models in which bH coupling is enhanced (e.g. 2HDM with large tanB) 5F known up to NNLO (diff.)
- 5F known up to NNLO (diff.)
 - Dicus et al (1999)
 - Ballasz et al (1999)
 - Harlander et al (2003)
 - Busheler et al (2012)
- 4FS known up to NLO
 - Dittmaier et al (2004)
 - Dawson et al (2004)
 - Wiesemann et al (2015)

MSTW08 PDFs

Scale + PDF + a_s uncertainties,

 $m_b^{pole} = 4.75 \text{ GeV}$, y_b evolved at μ_R at n+1 loops

HXSWG, YR3, 1201.3084

- Anatomy of bottom-fusion initiated Higgs production.
- For simplicity take 4FS LO diagrams (exclude cross diagrams and gluon emission from b)

In the massless/collinear limit, this diagram factorises into

These logs are doublecounted in the 4FS and the 5FS. In the 4FS only the first one (two) log of the tower of logs resummed in the b PDFs are explicitly present and must be subtracted in the matching procedure

- Bottomline: a matched cross section can be obtained for total cross section (normalisation)
- For differential cross section (distributions) one has to choose which scheme is more adequate depending on the process

Thank you for listening and for your questions!