

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Sampling Statistical Distributions in
Physics: A Machine Learning Approach

Michael Wilson

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Doctor of Philosophy
The University of Edinburgh

October 2021

Abstract

This thesis presents work which uses Machine Learning techniques in a variety of

sampling situations which appear in physics. In the first Chapter some background

on Machine Learning will be presented which will lay the foundations required for

the later Chapters.

Next we will look at how a specific Machine Learning model, the Restricted

Boltzmann Machine, can be trained to approximate a target distribution from

data which has already been sampled from the target distribution. We estimate

observables on states sampled from trained models and compare them to

observables estimated directly from the training data. We present a technique

for estimating the likelihood function of the model using annealed importance

sampling. Finally we present a closed form expression for extracting the N-point

interactions which the model learns from the data directly from the parameters of

the model, a result which is useful for a range of fields which study binary data.

In the next Chapter we investigate a different generative model, the normalizing

flow, and investigate its efficacy of generating configurations for a lattice scalar

field theory. An initial study which quantifies how the cost of training this model

scales with the system size is performed. Whilst the cost of training our models is

significantly less than those reported in the proof of principle study which first

presented using these models for this purpose [1], we discuss how there is still

an exponential scaling of the training cost with the system size which must be

overcome in order for these models to be practically useful.

Finally we investigate inverse problems from a Bayesian perspective. With this

framework, we are faced with the task of sampling from the posterior distributions

in model space given the data. An approach for sampling in model space presented

by the NNPDF collaboration is examined within this formal framework. We present

some statistical estimators which can be used to validate a methodology which

i

produces a sample of models. These estimators can be implemented in a closure

test [2], where the data is artificially generated from a pre-existing underlying law.

We show how these estimators can be used to check that the model distribution

is self consistent when the data is fluctuated according to its prior. A proof

of principle example is presented by performing a closure test using the latest

NNPDF methodology and we show that the NNPDF MC approach is successful

at producing a sample of model replicas which have faithful uncertainties. Whilst

these estimators are practical to implement and are shown to be useful in a

non-trivial setting, we discuss the possibility of defining some estimators directly

in model space which could give more general information on model uncertainties

for a wide range of inverse problems.

ii

Declaration

I declare that this thesis was composed by myself, and is a record of work performed
as part of the NNPDF collaboration or separate collaborations with Guido Cossu,
Tommaso Giani, Ava Khamseh, Joe Marsh Rossney and my supervisor Luigi Del
Debbio. Unless explicitly stated, the results presented in this thesis are either mine,
or the product of collaboration in which I have made a significant contribution.

The work in Chapter 2 is based on work published in [3]

The work in Chapter 3 is based on work published in [4]

The work in Chapter 4 is based on work published in [5], with some results
published in [6]. The analysis tools, used to produce the results, are published in
[7].

(Michael Wilson, October 2021)

iii

Acknowledgements

During my time in Edinburgh I’ve interacted with many brilliant people. Firstly,
I would like to thank my supervisor Luigi Del Debbio for the support, stimulating
discussions and providing opportunities to do interesting and exciting research.

I’d also like the thank all members of the NNPDF collaboration for creating a
brilliant and supportive environment within which I was able to develop myself
personally, academically and professionally and contribute to some amazing work
with some exceptional researchers. For their consistently useful advice, fantastic
work ethic and thought provoking discussions I am greatly appreciative. I am
extremely grateful for the guidance of some of the more senior members of the
collaboration, in particular Richard Ball, Stefano Carazza, Stefano Forte, Juan
Rojo and Maria Ubiali. I’d also like to specially mention the following individuals
who I worked with on a day to day basis, and were able to teach me technical
skills, provide emotional support and unblock me when I was stuck: Juan Cruz-
Martinez, Shayan Iranipour, Zahari Kassabov, Emanuele Nocera and Cameron
Voisey. Furthermore, I’d like to thank Tommaso Giani and Rosalyn Pearson who
not only were fantastic colleagues in NNPDF, but also shared the experience of
being PhD students in Edinburgh. Whilst the events of the last couple of years
prevented us from meeting up in person, the camaraderie which formed between
us was invaluable, and I will always remember the fun we had, especially when
we shared an office in our third year.

Outside of NNPDF, I’m also grateful to other members of the particle theory
group at Edinburgh. Most notably were my collaborators Guido Cossu, Ava
Khamseh and Joe Marsh Rossney. Along the course of my PhD I’ve also had the
pleasure of befriending other students outside of particle theory: James Aston,
Lewis Conway, Pete Cooke, Oscar Hall, Conor Hamill, and Ashley Tattersall. I’d
like to thank them for helping create many fun memories during my time here in
Edinburgh.

At the end of my third year, I was lucky enough to get the opportunity to
undertake an internship at FreeAgent. I’d like to thank everyone there for making
the experience extremely useful and in particular David Edwards, Dave Evans and
Owen Turner for the huge amount of support and advice during my time there.

The support of my family can’t be understated, and I’d particularly like to thank

iv

my parents for providing support through all my endeavours. Finally, I’d like to
thank my partner Rachel whose support is immeasurable, this thesis is dedicated
to you.

v

Contents

Abstract i

Declaration iii

Acknowledgements iv

Contents vi

List of Figures xi

List of Tables xx

Introduction 1

1 Fundamentals of Machine Learning 4

1.1 Supervised learning ... 4

1.2 Neural networks.. 8

1.3 Hyperparameter tuning .. 10

1.4 Unsupervised learning .. 11

1.5 Bootstrap sampling estimators ... 14

2 Restricted Boltzmann Machine 16

2.1 Introduction .. 16

vi

2.2 Training the RBM & making predictions 17

2.2.1 Restricted Boltzmann Machines 17

2.2.2 Annealed importance sampling 22

2.2.3 1D and 2D Ising model simulations................................ 25

2.3 Validation in one dimension... 26

2.4 RBM for the 2D Ising model.. 29

2.4.1 Ising simulation and RBM training parameters................. 30

2.4.2 Gibbs sampling ... 32

2.4.3 Metropolis sampling ... 34

2.4.4 Observable predictions at all temperatures 35

2.5 Extracting couplings from the RBM .. 39

2.6 Conclusions ... 49

3 Normalizing flows 50

3.1 Introduction .. 50

3.2 Sampling in lattice field theory... 54

3.2.1 Markov Chain Monte Carlo.. 54

3.2.2 A generative approach to global updates 56

3.3 Normalizing flows.. 59

3.3.1 Training a flow model ... 60

3.3.2 Building flexible models .. 62

3.3.3 Affine and additive transformations 64

3.3.4 Rational quadratic splines.. 65

3.3.5 Enforcing sign-reversal equivariance 68

vii

3.4 Related work.. 70

3.5 Experimental setup ... 71

3.5.1 Field theory and observables .. 71

3.5.2 Model details .. 74

3.5.3 Summary of the procedure... 76

3.6 Results ... 77

3.6.1 Proof of principle... 77

3.6.2 Acceptance rates and autocorrelation times 79

3.6.3 Finding efficient representations 83

3.6.4 Scaling of training costs .. 88

3.7 Discussion ... 92

3.8 Conclusions ... 96

4 Bayesian Approach to inverse problems 98

4.1 Introduction .. 98

4.2 Inverse Problems... 101

4.2.1 Statement of the problem .. 101

4.2.2 Comparison with classical fitting 105

4.2.3 Linear Problems .. 108

4.2.4 The infinite-dimensional case.. 110

4.3 NNPDF Monte Carlo approach to inverse problems 112

4.3.1 Fitting replicas.. 112

4.3.2 Fluctuations of fitted values ... 114

4.3.3 Closure test.. 116

viii

4.4 Data space estimators .. 117

4.4.1 Deriving the data space estimators 117

4.4.2 Geometric Interpretation ... 120

4.4.3 Faithful uncertainties in data space................................ 121

4.4.4 Closure estimators - Linear problems.............................. 125

4.5 Experimental setup ... 128

4.5.1 Neural network parton distribution functions 129

4.5.2 Closure test setup .. 132

4.6 Results ... 133

4.6.1 Bias-variance ratio ... 133

4.6.2 Comparison to quantile statistics................................... 134

4.7 Summary .. 136

5 Conclusion 138

A Appendix: RBM 142

A.1 The training procedure in more detail: L2 = 8× 8 142

A.2 Training on a larger system: L2 = 16× 16 143

A.3 Changing the batch size.. 145

A.4 Changing the number of hidden nodes 147

A.5 3- and 4-point interaction histograms....................................... 149

A.6 Metropolis history plots.. 149

B Appendix: Normflow 152

B.1 φ4 theory on the lattice .. 152

B.2 Estimation of integrated autocorrelation time 153

ix

B.3 Comparison with literature results .. 155

C Appendix: Inverse Problems 157

C.1 Gaussian integrals ... 157

C.1.1 Integrating out the data .. 157

C.1.2 Integrating out the model .. 159

C.2 Closure test setup details .. 161

C.2.1 Data... 161

C.2.2 Models .. 162

C.3 Understanding NNPDF3.0 data estimators 164

Bibliography 166

x

List of Figures

(1.1) Representing a fully connected neural network as a graph. The
nodes represent inputs and outputs of each layer and are represented
by vectors each element corresponding to the value of a node, x.
The edges represent the weights of the network. Typically the
weights of each layer are represented as an Nin × Nout matrix,
wl, where l is the layer index. The biases for each node are not
explicitly shown in the figure and can be represented by a vector, bl.
Alternatively the biases can included by adding an additional node
to the previous layer, whose value is always 1, then the biases are
implicitly part of the weight matrix. With the former notation, the
output of a layer is given by gl(w

T
l x+ bl), where g is the activation

function which is often non-linear. 8

(1.2) Samples from the models presented in [8] for two typical datasets
used in the ML community. Each image is a sample from a trained
generative model, in the rightmost column, the nearest training
example of the neighboring sample is shown. The model which
generated the right sample was trained on the MNIST dataset [9],
an open source dataset which contains (binary) black and white
images of handwritten digits. The model which produced the left
sample was trained on the Toronto face dataset [10], grey scale
images of human faces. 12

(2.1) The top plot shows the RBM distributions obtained at different
number of training epochs, from 20 (blue) to 4000 (red) compared
to the target distribution (dotted black line). The bottom plot
presents is a comparison between the exact log-likelihood (blue)
and that obtained from the annealing algorithm (orange). The
uncertainty for the estimated log-likelihood is smaller than 10%. . 28

(2.2) We plot 〈H − HRBM〉v (blue) and logZ − logZIsing (orange) per
epoch. The vertical lines indicate standard deviation of 〈H−HRBM〉v. 29

xi

(2.3) From left to right, loss function and reconstruction error in the first
line, free energy and log-likelihood in the second one. The results
are presented for three different T = 1.8, T = 2.2 and T = 3.0. . 33

(2.4) From left to right, magnetization and energy in the first line,
susceptibility and heat capacity in the second one. The results are
presented for three different T=1.8, T=2.2 and T=3.0, as function
of the training epoch. 34

(2.5) Magnetisation and susceptibility vs temperature. Observables
are estimated on samples from performing Gibbs and Metropolis
sampling on the trained RBMs. The model values are compared to
the expected values from Magneto. 36

(2.6) Energy and heat capacity vs temperature. Observables are
estimated on samples from performing Gibbs and Metropolis
sampling on the trained RBMs. The model values are compared to
the expected values from Magneto. 37

(2.7) Magnetisation and susceptibility, normalized by the expected
magneto value, vs temperature. 38

(2.8) Energy and heat capacity, normalized by the expected magneto
value, vs temperature. 39

(2.9) The matrix of interactions, Hj1j2 , for an 8 × 8 Ising lattice with
periodic boundary conditions as used in the generation of the
training set (left) and the one learnt by the RBM at the end of
the training (right). In this example T=2.0. The spins are labelled
from 0 to 64 and the nearest neighbour structure is evident. . . . 42

(2.10)Hj1j2 extracted from RBMs at different stages of the training (10,
20, 50, 100, 250 and 4000 epochs), for L2 = 8× 8, h2 = 8× 8 and
temperature T = 2.2. As the machine approaches the end of the
training, the expected structure of Fig.2.9 becomes more and more
evident. 44

(2.11)The interaction matrix Hj1j2 extracted from RBMs, with L2 = 8×8
and h2 = 8 × 8, trained at a temperature indicated above each
subplot. Again, the spins are labelled from 0 to 64 and show the
same structure as for the generic Ising training set in Fig. 2.9. . . 45

(2.12)Histograms of the entries of Hj1j2 extracted from RBMs trained at
a temperature indicated above each subplot. As it can be observed,
there are always two peaks: The smaller peak, represents the
number of nearest neighbour on the y-axis, with the value of the
coupling indicated on the x-axis; the larger peak represent all other
sites that are not nearest neighbours and are not expected to couple
to each other, hence it being centred around zero on the x-axis. . 45

xii

(2.13)The predicted 2-point interaction coupling, for L2 = 8 × 8 at
different values of temperature, normalized by the corresponding
true value 1/2T . The coupling is extracted from the nearest
neighbour diagonals observed in the interaction matrices, with
its error bar computed by taking the standard deviation of the
diagonal components. The predicted values agree with the expected
ones within statistics. 46

(2.14)The linear terms extracted by the trained machine, normalized
by the corresponding true value 8/T . All predicted values are
compatible with the true ones within 2σ. The largest discrepancies
are observed for the highest temperatures, where there is an
indication that the training hasn’t fully converged. As discussed
in Table 2.3, the training parameters were the same for all models
with T ≥ 2.2 and here we have an indication that the parameters
should have been further tuned for the highest temperature models. 46

(3.1) Graphical representation of the first coupling block under the
checkerboard partitioning scheme. The latent Gaussian variables,
v1 ≡ z, are split into two partitions (the red and black nodes). The
i-th coupling layer transforms the active partition Ci : vAi 7→ vPi+1

using information from the passive partition, vPi , via the neural
network(s) Ni(v

P
i). I denotes the identity transformation. Note

that there is no need to concatenate the active and passive partitions
until after the final coupling layer. 64

(3.2) An example 8-segment rational quadratic spline transforming the
degree of freedom at lattice site x. wk

i,x and hki,x are the widths and
heights of the rectangle containing the k-th polynomial segment.
dki,x is the derivative at the k-th knot. 66

(3.3) Metropolis-Hastings acceptance rates for a set of models trained at
different values of the inverse temperature, β, crossing the critical
temperature (β ≈ 0.67 for largest lattice). The inset figures show
the magnetisation and susceptibility over the same range of β.
Models consisted of a block of affine layers followed by a spline
block. The affine layers had Z2 equivariance enforced as described
in Sec. 3.3.5, but this was only true of the spline layers in the
low-temperature phase (see Fig. 3.11 for explanation). Emphasis
was placed on like-for-like comparison (rather than maximising the
acceptance rate); for each lattice size, models were identical and
were trained in an identical fashion for a fixed number of iterations. 78

xiii

(3.4) Relationship between Metropolis-Hastings acceptance fraction and
integrated autocorrelation time. Both the gradient and the intercept
were left unconstrained in the least-squares fit. The theoretical
lower bound from Equation (3.14) is also plotted in green, for
comparison. 79

(3.5) The dependence of the estimate of the integrated autocorrelation
time of the magnetisation on the finite window used to estimate it
W . For small window sizes the estimate is biased, for larger window
sizes the estimate has statistical fluctuations. In practice we choose
an optimal window size, using a procedure which is detailed in
App. B.2, however we see from the plot that the estimates for
plotted window sizes greater than about 6 are fairly consistent with
each other. 81

(3.6) Left: Comparison of alternative estimates of the integrated
autocorrelation time. On the x-axis, τint,M is calculated in the
traditional way, by measuring the autocorrelation function of the
magnetisation (see Appendix B.2). On the y-axis, the estimator is
based on the Metropolis-Hastings rejection rate, using equations
(3.4) and (3.13). Right: Discrepancy between the alternative
estimates of the integrated autocorrelation time shown on the
left, with x-coordinates corresponding to the length of the longest
consecutive run of rejections occurring in the sampling phase. . . 82

(3.7) Empirical distributions describing the length of periods of consec-
utive rejections in MH sampling involving models with different
average acceptance rates. Each empirical distribution combines
accept/reject statistics from models with various combinations of
layers, trained against different target theories (in terms of lattice
size and couplings). The scale on the x-axis is logarithmic other
than between zero and one, zero consecutive rejections refers to
two successive candidates being accepted. 83

(3.8) Samples of field configurations drawn from each step in the process
of generating a representative sample of φ4 configurations with
{L, β, λ} = {10, 0.601, 0.5}, using a flow model consisting of two
affine coupling blocks, followed by a spline. The process starts with
uncorrelated latent variables, z ≡ v1, and we then sample from the
model after each coupling block (layers i = 3, 5, 7), and finally take
the output of the Metropolis-Hastings phase (keeping one in every
2τint configurations). The top row contains histograms of the field
variables and the bottom is the two point correlation function from
Eq. 3.41. The emerging correlations are emphasised by the linear
and logarithmic scaling of the colour map (a symmetric log scaling
with a linear threshold of 0.1). 84

xiv

(3.9) Comparison of flow models with different arrangements of affine
(Aff) and rational quadratic spline (RQS) coupling blocks. E.g. the
blue model contains a single RQS block, i.e. two RQS coupling
layers, whereas the orange model passes the latent variables through
an RQS block, then two affine blocks. All neural networks contained
a single hidden layer of size H = |Λ|. All models were trained for
16000 iterations with a batch size of 16000. 85

(3.10)Comparison between three groups of flow models using different
coupling layers. One RQS block contains approximately the same
number of parameters as six affine blocks. ‘Equivar’ refers to the
Z2-equivariant affine layers described in Sec. 3.3.5. The green data
points correspond to flows in which the affine layers were similar
to those used in [1]. Models were trained in an identical fashion,
for 16000 iterations with a batch size of 16000. 86

(3.11)Changes in the Metropolis-Hastings acceptance rate (denoted by
Ā) of spline-based models, due to enforcing Z2-equivariance in the
spline layers, as described in Section 3.3.5. 87

(3.12)Improvements in the Metropolis-Hastings acceptance rate due to
adding more affine coupling blocks, before a rational quadratic
spline block performs the final transformation. 88

(3.13)Comparison of Metropolis-Hastings acceptance rates for flow models
with a different number of trainable parameters, |θ|, within their
neural networks. The colour axis, |Φtrain|, denotes the total number
of configurations used in the optimisation (the batch size multiplied
by the number of training iterations). The dotted lines connect
models whose neural networks had a single hidden layer, of varying
width, whereas following the dashed lines equates to increasing
the number of hidden layers without changing the widths. Models
comprised one affine block followed by one RQS block and were
trained for 32000 training iterations with a range of batch sizes. . 89

(3.14)Dependence of the average acceptance rate on the total number
of configurations to which it has been exposed during the training
phase, i.e. the product of the batch size and the number of training
iterations. Error bars are standard deviations over a number of
different models trained using different batch sizes and training
lengths, as well as a variable number of affine layers. 90

xv

(3.15)Scaling of the training cost, measured by the total number of
configurations used for optimisation, for models to reach a certain
target sampling efficiency. Models were sorted into ‘bins’ by the
integrated autocorrelation time measured during the sampling
phase, and data points represent the best model from each bin.
The values in the legend can in some sense be compared to the
critical exponent zO which determines the critical slowing down in
traditional simulations. 91

(3.16)Examples of typical training profiles for hybrid affine-spline flow
models being trained against interacting theories with correlation
length ξ ≈ L/4. The objective function (right-axis) has been shifted
for the purpose of fitting both profiles on one figure. The learning
rate is being annealed down from η0 to zero according to Equation
(3.47). 93

(3.17)Histograms of field variables taken from three samples of 105

configurations, generated by three different models. The colour
labels the sign of the magnetisation. The φ4 parameters are
{L, β, λ} = {6, 0.8, 0.5}. The models had two blocks of affine layers
for which Z2-equivariance was not enforced. In the top sub-figure,
the large learning rate and small batch size result in the breaking
of the Z2 symmetry during optimisation. This is easily avoided by
using more sensible learning rates and batch sizes. However, note
that the acceptance rate for the top model is larger. 94

(3.18)Example of samples drawn from model during the training vs. a
sample from a target distribution which has high correlations in
the covariance matrix. The majority of samples from the model
are in regions where p̃θ(φ) � pθ(φ), and so have the zero-forcing
effect. The direction for which the target distribution is highly
correlated is rarely sampled by the model and so learning the tails
of the target distribution in this direction has high training costs. 96

(4.1) Histogram showing the distribution of 104 replicas generated around
an experimental value y0 with unit variance. The central value
y0, which is represented by the solid dot at the centre of the
replica distribution, is drawn from a Gaussian distribution with
unit variance centred at the true value f , which is assumed to be
the origin in this plot. 113

xvi

(4.2) Example of geometric interpretation of closure test estimators. The
origin is the true observable values for each data point. The level
one data (or experimental central values) are shifted away from
this by η. In this example the covariance matrix is diagonal, so
the eigenvectors correspond to the two data points, the square
root of the eigenvalues are simply the standard deviation of those
points. This is without loss of generality because any multivariate
distribution can be rotated into a basis which diagonalises the
covariance matrix. The 1-sigma observational noise confidence
interval is a unit circle centered on the origin. Some closure
estimators can be understood as l2-norms of the vectors connecting
points, i.e the bias is the l2-norm of the vector from the origin to
the central value of the predictions. 120

(4.3) The green line is the input underlying law for the gluon PDF,
which is sampled from the ensemble from a fit to data. The 68%
confidence interval is plotted for those replicas as the orange band. 132

(4.4) The green histogram is the distribution of the total bias across fits,
the orange histogram is the distribution of the difference between
the replica and central predictions squared, in units of the covariance
across all fits and replicas. This gives a qualitative picture of the
full distribution, in Tab. 4.1 we compare the square root of the
mean of each distribution. 134

(A.1)From left to right, log-likelihood and loss function between 3000
and 4000 epochs for three different values of k. While the former
shows different behaviors, keeping an increasing trend just for the
highest k value, the latter doesn’t change at all, always remaining
near zero. 143

(A.2)Observables for T = 1.8 normalized by their expected values as
a functions of the training epoch. Magnetization and energy are
shown on the left, susceptibility and heat capacity are on the right. 143

(A.3)Log-likelihood for different values of k and α. 144

(A.4)Here we observed the increase in the log-likelihood behaviour for
our chosen values of k and α, as given in Table 2.3. Both the loss
function and reconstruction error decrease as the training progresses.144

(A.5)Observables vs epochs for L2 = 16× 16, h2 = 16× 16 and batch
size 200. The value of each observable, computed from the RBM,
is normalized by its expected value, computed from the training
set. Magnetisation (blue) and energy (orange) are plotted on the
right hand side, susceptibility (blue) and head capacity (orange)
are on the left. 145

xvii

(A.6)The 2-point interaction matrix, Hj1,j2 (left) and its corresponding
histogram (right) for the machine with L2 = 16× 16, h2 = 16× 16
and batch size 200. Again, we observed the larger peak centred
around zero, corresponding to non nearest neighbour interactions,
while there is a second peak representing the coupling with the
nearest neighbour spins. 146

(A.7)The dependence of log likelihood on batch size. The curves
correspond to L2 = 16 × 16 lattice with batch size 500 (blue)
and batch size 200 (yellow). The choice of a smaller batch size,
results in a steeper rise to the log-likelihood. 146

(A.8)Observables, normalized by their expected values, vs epochs for
L2 = 16× 16, h2 = 16× 16 and batch size 500. We observe that it
takes the observables longer to converge to the correct values, as
compared to the case where a smaller batch size is used, e.g. , see
Fig. A.5. 146

(A.9)The 2-point interaction matrix, Hj1,j2 (left) and its corresponding
histogram (right) for the machine with L2 = 16× 16, h2 = 16× 16
and batch size 500. There is a large peak centred around zero,
corresponding to non nearest neighbour interactions, however, a
second smaller peak can also be observed next to it. As already
discussed, the machine with a larger batch size, i.e. 500, has to be
trained for longer epochs as compared to the machine with batch
size 200, in order to learn that non nearest neighbour interactions
are zero. Finally, the distinct peak on the right hand side of the
plot represents the expected coupling with the nearest neighbour
spins, compare with Fig.A.6 . 147

(A.10)Log-likelihood for an RBM with less hidden nodes than visible
nodes, L2 = 16× 16 and h2 = 12× 12. The first 4500 epochs were
trained using α = 0.01, k = 10 and batch size 50. According the
prescription, we then reduced the value of α and increased k, i.e.
, From 4500 to 8000, we set α = 0.001 and k = 20. From 8000
to 8700 epochs α and k were kept fixed at their previous value,
while the batch size was increase to 200, in order to reduce the
fluctuations in the estimate of the log-likelihood. In the last steps
we chose α = 0.0001 and k = 30, and α = 0.00001 and k = 40. . . 148

(A.11)Observables vs epochs for L2 = 16× 16, h2 = 12× 12. It can be
observed that the machine has to run for more epochs for it to
learn the observables and hence the correct structure. 148

xviii

(A.12)The two-point interaction matrix for the L2 = 16× 16 system (left)
and the corresponding histogram (right) with h2 = 12× 12. The
first peak is centred around zero, corresponding the the non nearest
neighbour interactions. The second peak around 0.15 indicates
other non nearest correlations that the machine has to learned to
set to zero and are expected to vanish as it trains further. The
final peak on the right hand side, corresponds to the correct nearest
neighbour coupling. 149

(A.13)The histograms of the entries of the 3-point interaction tensor
extracted from RBMs trained at a temperature indicated above
each subplot. 150

(A.14)The histograms of the entries of the 4-point interaction tensor
extracted from RBMs trained at a temperature indicated above
each subplot. 150

(A.15)Histogram of |m| (left) and energy (right) for the Metropolis
algorithm at T = 1.8. The blue line represent the normal
distribution with values of its mean and standard deviation obtained
from the data producing the histogram. 151

(A.16)Histogram of |m| (left) and energy (right) for the Metropolis
algorithm at T = 3.0. The blue line represent the normal
distribution with values of its mean and standard deviation obtained
from the data producing the histogram. 151

(A.17)Error on |m| plotted for choice of bin size. As the measurements
become more independent, the correlation between them decrease
and hence the error increases. When the measurements are no
longer dependent, the error remains constant. 151

(A.18)Autocorrelation time as a function of MC steps. 151

(C.1)The kinematic coverage of the training and test data used to
train the models and produce results presented in this paper.
We emphasise that the split of datasets was largely chosen on
practical grounds, not because of a deep reason to split the data
chronologically. The kinematics of the two sets of data with this
particular split overlaps but there are also kinematic regions which
the test dataset probes, for which there was no training data. . . . 162

xix

List of Tables

(2.1) Parameters for training an RBM on the 1-dimensional Ising model
with six spins. The model has six visible nodes (fixed by the
number of spins in the training examples) and six hidden nodes.
The training dataset consisted of 100000 spin configurations, split
into batches of size 200. There are a total of 64 possibles states,
making it possible for the partition function to be measured exactly.
We start the training with α = 0.01 and gradually fine-tune it to
smaller values as the training progresses. In this cases keeping k = 1
throughout the training is sufficient for learning the distribution of
the data accurately. 27

(2.2) 2D Ising model parameters for data generation. Using the Swendsen-
Wang (SW) algorithm, the autocorrelation drops below 1 therefore
no binning was required. Ntherm denotes the number of MC
iterations used for thermalisation, while Nmeasure denotes the
measurement taken after thermalisation, which are saved to be
used as training examples for the RBM. 30

(2.3) Parameters for training the RBMs. The number of visible and
hidden nodes for each case is presented. The dataset for each model
comprised of 100000 training examples, split into minibatches of
size 200. T indicates the temperatures of the given systems, with
intervals ∆T = 0.1. For each training phase we record the learning
rate (LR), α and number of contrastive divergence steps, kCD. As
advised in Ref. [11], whenever the increase in the log-likelihood
plateaus and then starts to decrease, we reduce the value of α and
increase kCD. The number of epochs in each phase depends on the
size and temperature of each system. Our tests indicate that a
higher value of k, i.e. k = 10, needs to be used to train the machine
on the larger configuration (162 spins), which is then increased to
k = 20 for the last phase of the training. 32

xx

(2.4) Gibbs and Metropolis sampling parameters, for MC simulations
on an already trained RBM. The measurements are made on
configurations generated after the initial thermalisation step Ntherm.
The binning factor indicates the number of successive measurement
binned to ensure the remaining are indeed independent. 34

(3.1) φ4 couplings and correlation length measurements for the main
part of our study. The inverse temperature β was tuned such that
ξ ≈ L/4 for each lattice size. 74

(3.2) Based on the power-law fit from Figure 3.4, Neff

|Φ| = (2τint)
−1 is the

ratio between the effective sample size (that controls the statistical
error on observables) and the total length of the Markov chain. . . 80

(4.1) The bias-variance ratio, Rbv, for unseen data, summarised in
Tab. C.1. The uncertainty is estimated by performing a bootstrap
sample across fits and replicas and calculating the standard
deviation. We see that overall Rbv is consistent with 1, within
uncertainties. This gives a good indication that, at least for the
unseen data used in this study, the uncertainties are faithful. . . 134

(4.2) Comparing the measured value of ξ1σ and the estimated value
from Rbv. The two values are consistent, which suggests the
approximation that the ratio of uncertainties is approximately
the same across all data is not completely invalidated. Not only are
the measured value and estimated value from Rbv self consistent,
but they are also consistent with 0.68, which further supports the
argument that the model uncertainties are faithful. 135

(B.1)Measurements of the real time taken to train our models to reach
an acceptance rate of 70% for the systems studied in Reference [1].
L is the lattice length, H is the number of hidden nodes in the
neural networks, Naffine is the number of affine layers, Nsegments is
the number of segments used in the single spline layer, Nbatch is
the number of states in a batch, Nepoch is the number of training
iterations. Since we were aiming for speed of training rather than
reaching the highest possible acceptance rates, we increased the
initial learning rate η0 with respect to our main study, although we
do not recommend doing this in general. The models were trained
on a desktop PC with an Intel i7-7700K quad-core CPU and 16GB
RAM. 156

xxi

(C.1)Observables included in the test data. We wish to stress that
the observable central values themselves are not used, however
the experimental uncertainties are used in the definition of the
closure estimators, and the corresponding predictions from either
the underlying law or the closure fits. 161

(C.2)Hyperparameters for neural networks used in this study. The
parameter choices, and how these choices were made will be
discussed in the full NNPDF4.0 paper. The table here is simply to
add context to the results below. There are 763 trainable parameters.163

xxii

Introduction

Machine learning (ML) has become a ubiquitous term over the last decade in both

industry and science. The typical machine learning task involves making some

kind of statistical inference of some model parameters from observed data. In

many areas of physics this kind of approach easily out-dates the zeitgeist of ML

or artificial intelligence (AI), but there are still physics communities which are,

rightfully, sceptical of this current trend of integrating machine learning techniques

into well established tool-chains.

The field of ML has emerged from the field of AI. For most people the term AI

probably is associated with ideas and themes which come from science fiction -

sentient beings which share many traits with humans. In fact, the conception of

certain tools which are used today in AI/ML, such as the artificial neural networks,

were motivated by nature [12], however many applications of AI which we interact

with on a day to day basis are far less ambitious in scope than creating a new

form of life. The distinction between AI and ML is that whilst AI describes the

concept of designing systems which can make choices like humans, ML is a subset

of techniques which allow parts of those systems to learn from data without being

explicitly programmed with a set of rules.

Defined as such, the distinction between fitting ML model parameters from data

and physicists fitting physical constants from experimental observations is not

entirely clear. A broader definition of ML is probably better understood by

outlining the major paradigms: supervised learning, unsupervised learning and

reinforced learning. The next chapter will focus on defining these and any other

concepts which will be used later on - with more emphasis on supervised and

unsupervised learning which are the techniques used in the work this thesis is

based upon.

ML techniques have become more accessible than ever before, especially with

1

the availability of many python libraries which combine the ease of high level

programming with back-ends which can leverage the latest state-of-the-art high

performance computing hardware such as Graphical Processing Units (GPUs) and

more recently Tensor Processing Units (TPUs). The allure of being able to rapidly

prototype a model which can be trained quickly with hardware acceleration and

contains many parameters so can potentially model very complicated relationships

between input features and output responses is clearly a feature of ML which has

contributed to its popularity in industrial settings over the last few years, but it’s

clear in physics we must take a bit more care.

In theoretical physics in particular, it’s perhaps not as clear how ML can be used.

ML tools are often used as black boxes which, once the parameters of the model

have been optimised using the available data, provide no insight into the actual

problem. In theoretical physics, we are often interested in understanding how to

solve the problem and we are less inspired by a brute force method which appears

to give a reasonable answer.

In Chapter One of this thesis we shall provide some fundamental terms and

concepts used in ML which will be necessary in order to progress to the work

presented in subsequent chapters. Chapter Two is concerned with Restricted

Boltzmann machines (RBMs), a class of generative models used in unsupervised

learning, and how we can use our pre-existing knowledge of the Ising model to

explore how RBMs work as well as deriving an expression for determining physical

couplings of the modelled system directly from the model parameters. Chapter

Three will focus on another class of generative models known as normalizing flows.

This chapter will instead focus on whether these models can be used as part of a

MC tool-chain to generate lattice field theory configurations, and in particular

whether using these models is feasible and efficient enough to justify using a ML

model over a more traditional sampling technique. Chapter Four will then shift

focus over to the paradigm of supervised learning, where we will set out a Bayesian

framework for solving inverse problems and derive some statistical estimators

which investigate the faithfulness of uncertainties. The relationship between the

posterior distribution in the space of models, from a Bayesian perspective, and

the output of performing a typical fit to data using machine learning tools will

be discussed. The combination of this formal framework and estimators are used

to understand and validate the methodology which will be used to produce the

NNPDF4.0 parton distribution functions (PDFs) and the result of evaluating the

derived estimators in this context shall be investigated. Finally will we discuss

2

briefly how the generation of lattice configurations and the Bayesian inverse

problems are conceptually similar problems to solve, despite being classified as

unsupervised and supervised learning respectively.

3

Chapter 1

Fundamentals of Machine Learning

In this chapter we will review some fundamentals of machine learning which will

lay the foundations for future Chapters. There are several reviews of the field of

ML which are specifically aimed at physicists [13, 14]. This chapter will serve as

a general overview, introducing terms which are common to ML literature and

used in subsequent chapters.

Machine learning is usually split into three major paradigms: supervised learning,

unsupervised learning and reinforcement learning. We will restrict ourselves to

the former two paradigms, which the work presented in the later chapters fall

under.

1.1 Supervised learning

In supervised learning we have Ndata input data, Xµ ∈ Rp, where µ = 1, . . . , Ndata

and a set of corresponding measured responses yµ ∈ Rd. The data D is then given

by the full set of input-output pairs

D = {(X1, y1), (X2, y2), . . . , (XNdata
, yNdata

)} . (1.1)

The next ingredient is a model, which is a function which acts upon the input

data and has some parameters θ, which we denote as G(Xµ; θ). The training or

learning task is then to find the set of parameters such that the model output is a

good approximation of the output data. In practical terms this involves defining

4

a loss or cost function, L, and then solving

θ∗ = arg min
θ

Ndata∑
µ

L (G(Xµ; θ), yµ) , (1.2)

typically using a numerical routine. The form of the loss function depends on

the specific task, and in the later chapters the loss which is minimised will be

discussed in detail. For now consider a concrete example of a loss function, the

quadratic loss which appears in least squares methods

L (G(Xµ; θ), yµ) = (G(Xµ; θ)− yµ)2 (1.3)

which clearly measures the euclidean distance between the model prediction and

the measured value. The data which is used during the training is called the

training data, it’s very common in ML literature to split the available data into

training and test data. The sum which appears in Eq. 1.2 then just runs over the

training data. The test data is often reserved for assessing the model performance,

specifically on data which was not included in the fit. The motivation behind this

is to test the ability of the trained model to generalise to new data, since typical

usage of models trained in this way is to make predictions about data for which

the output data, y is unknown.

For complicated models, finding the optimal parameters can be highly non-trivial,

because the loss function might be non-convex in the model parameters. Recently,

the most popular approaches often involve choosing a model and loss function such

that the loss is differentiable with respect to the model parameters. The model

parameters can then be updated using a gradient-based algorithm. Consider the

simplest gradient descent (GD) algorithm

vt = ∇θ

Ndata∑
µ

L (G(Xµ; θ), yµ)
∣∣∣
θ=θt

θt+1 = θt − αvt ,
(1.4)

where vt is the gradient of the sum of the loss evaluated on the training data,

with parameters at a timestep or epoch t and α is the learning rate. For a small

enough learning rate we can guarantee that GD will converge to a local minimum

of the loss function. As mentioned, the loss function might be non-convex however

and so the parameters obtained from GD will depend on the initialisation of the

parameters. Furthermore, if the learning rate is too low then GD will take a long

5

time to converge, but if it is too high then the algorithm may never converge, and

instead keep “missing” the local minimum of the loss function. The latter point

is an example of a hyperparameter choice, a parameter which must be chosen in

advance of the training and dictates the procedure by which the model parameters

are found. The former is a bigger issue, and is one of the reasons the simple GD

algorithm is not used. Other issues include the fact that gradients are expensive

to compute for large datasets and that GD can get stuck on saddle points of the

loss function. Addressing these issues leads to the algorithm which is the basis for

many popular minimisation algorithms: Stochastic Gradient Descent (SGD).

SGD overcomes some of the shortcomings of GD by splitting the total training

dataset into batches or minibatches, small subsets which can be much more

manageable from a computational perspective. In some ML literature, batch

might refer to the full dataset and minibatch may refer to one of these subsets,

however throughout this thesis the terms will be used interchangeably unless

stated otherwise. The stochasticity of SGD is introduced by randomly splitting

the dataset into minibatches, it’s also common to randomly shuffle the way the

minibatches are split each epoch, which now refers to the step within which all

training data is presented to the model. The parameter update is otherwise

identical to GD, except now the data is split into Nbatch batches Bk and the

gradient of the loss is given by

vt = ∇θ

∑
µ∈Bk

L (G(Xµ; θ), yµ)
∣∣∣
θ=θt

, (1.5)

the only difference between Eq. 1.5 and the gradient defined in Eq. 1.2 is the set

of data over which the gradient is evaluated. In this scheme, the parameters get

updated Nbatch times every epoch. Whilst SGD already offers some improvements

the simple GD algorithm, there are further variants of this algorithm which aim

to improve the efficiency. One such variation involves adding in a momentum

term [15], the gradient term is replaced by

vt = γvt−1 +∇θE(θt) , (1.6)

where we introduced the momentum term 0 ≤ γ ≤ 1 and the shorthand notation

of ∇θE(θt) = ∇θ

∑
µ∈Bk L (G(Xµ; θ), yµ)

∣∣∣
θ=θt

where the gradient of the loss is

implicitly evaluated over a minibatch. The role of the momentum term is to

introduce a running average of the most recent previous gradients, with more

historic gradients gaining a diminishing weight. The idea of momentum is to

6

increase the rate of change of parameters in directions with small but persistent

gradients and to suppress oscillations in directions where the gradients are

constantly changing. Empirical studies have shown the importance of a carefully

chosen momentum term [16].

Further variants of SGD exist which also take into account the second moment of

the gradient such as Adadelta, Adam and RMSprop. For example, the update

rule of RMSprop is given by

vt = ∇θE(θt)

st = βst−1 + (1− β)vt
2

θt+1 = θt − α vt√
st − ε

,

(1.7)

where β is yet another hyperparameter, which controls the characteristic time of

the second moment in a similar manner to the momentum γ, and ε is simply a

regularisation term to avoid dividing by zero. The idea of this algorithm is to

allow for larger learning rates in flat directions, whilst keeping the updates under

control for parameters whose updates are consistently large.

It’s not always clear which algorithm will produce the best results and the choice

of minimisation algorithm is clearly linked to the specific landscape of the loss

function for the data the model is being trained on, as well as the choices of other

hyperparameters. An unsatisfactory feature of ML literature is that it can be

difficult in differentiating between the effects of implementation details versus

larger methodological changes when looking at the differences in results. Use of

gradient based algorithms has been enabled by popular machine learning libraries

such TensorFlow [17] and Pytorch [18] which automatically track operations

performed between the input data and the loss and accumulate gradients along

the way.

Note that gradient based algorithms are not the only available option, for example

one can used genetic algorithms which are inspired by natural selection. These

algorithms generate mutations of the current parameters and then choose the next

parameters by picking the mutation which minimises the loss. These algorithms

typically still have a choice of several hyperparameters such as learning rate,

number of mutations and number of mutants. Whilst genetic algorithms forego

the expensive gradient estimation, they require evaluating the loss for each mutant

set of parameters which can still be rather expensive. As with all choices related

7

to hyperparameters, whether or not to use a gradient-based algorithm or a genetic

algorithm is completely problem specific. From a practical standpoint there

appears to be less attention on genetic algorithms, which means there is a smaller

number of well maintained open source projects which can be incorporated into

your own work.

1.2 Neural networks

In many ML applications, the model will involve some kind of neural network.

Fig. 1.1 is an example of a small fully connected network, with a single hidden

layer.

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ⁶ Output Layer ∈ ℝ²

w1 w2

Figure 1.1 Representing a fully connected neural network as a graph. The nodes
represent inputs and outputs of each layer and are represented by
vectors each element corresponding to the value of a node, x. The
edges represent the weights of the network. Typically the weights of
each layer are represented as an Nin ×Nout matrix, wl, where l is
the layer index. The biases for each node are not explicitly shown
in the figure and can be represented by a vector, bl. Alternatively
the biases can included by adding an additional node to the previous
layer, whose value is always 1, then the biases are implicitly part of
the weight matrix. With the former notation, the output of a layer
is given by gl(w

T
l x+ bl), where g is the activation function which is

often non-linear.

The fully connected neural network, like that shown in Fig. 1.1, involves successively

8

applying a linear transformation followed by an activation function on the input. A

single linear transformation followed the non-linear activation function associated

with layer l is given by

xl = gl(bl + wTl xl−1) (1.8)

where xl−1 is the input into the lth layer, wl and bl are the corresponding weight

matrix and bias vector respectively and gl is the activation function. The full

transformation of the fully connected neural network is then given by

gL(bl + wTLgL−1(. . . g2(b2 + wT2 g1(b1 + wT1 X)))) . (1.9)

The inner layers of the neural network which are not directly interacted with are

referred to as the hidden layers, and the input and output layers may be referred

to as visible layers, this language is used heavily in Chapter Two when we look

at the Restricted Boltzmann Machine. The architecture of the neural network

which includes: the depth of the network; the activation function for each layer;

and the shape of each hidden layer are all hyperparameters. In many applications

the activation function of the final layer is restricted, for example if the output of

the network is supposed to represent a probability in binary classification task

then the final activation function will likely be the sigmoid function

gL =
1

1 + e−x
, (1.10)

which guarantees that the final output is properly bounded, gL(x) ∈ [0, 1]. There

are many other choices for activation functions but typically they are characterised

by the first derivative being defined for all possible values of the input, so that

they can be used alongside gradient based algorithms.

There are other kinds of neural networks, for example convolutional neural networks

which, as the name suggests, take the convolution of the input layer with filters

rather than each layer being fully connected by weights to the next. Convolutional

neural networks enforce a translational invariance in the transformation applied

to the input and require fewer parameters than fully connected networks. It is

clear that models with fewer parameters require less compute time to be trained

for the same number of epochs using the same number of training examples,

and in problems such as image processing or pattern recognition there are

arguments for imposing translational invariance. The shared weight architecture

which convolutional neural networks are based on was first proposed for pattern

recognition in images [19].

9

1.3 Hyperparameter tuning

In many of the previous sections, the term hyperparameter has appeared many

times. Choosing hyperparameters must be done in advance of training a model, a

hyperparameter is any parameter upon which the training process depends and is

not restricted to the optimisation algorithm but also includes many aspects of the

model architecture as well. There are no general rules for choosing the correct

hyperparameters. In the work presented in later chapters, the process of choosing

hyperparameters has often fallen to trial and error. Each time a model is trained,

we measure some statistical estimators which we use to try and diagnose why the

model training has plateaued. There are more sophisticated processes for tuning

the hyperparameters, aptly called hyperparameter scans the basic principle is to

choose a metric in advance and then algorithmically train models with different

hyperparameters in an outer loop. The hyperparameters of the model which

performs best on the chosen metric are then used. Brute force methods such as

grid searches or random searches can be used, here the cost of an expert who tunes

the parameters using some domain knowledge is traded for the computational

cost of training many models under the assumption that the computational cost

is cheaper and possibly faster. There are more sophisticated algorithms which

attempt to perform a bayesian optimisation of the hyperparameters, such as Tree

of Parzen Estimators (TPE) [20]. The basic idea is to start with some prior

distributions for each hyperparameter and then as models are trained, the priors

are updated with density being added to regions of hyperparameter space whose

trained models performed well. These algorithms are described by the authors as

bayesian, since they update the prior with information from previous trials, but

it’s worth pointing out that the method of updating the prior, at least in TPE, is

just a prescription. Having said that, in the empirical results presented in [20],

the algorithm does appear to outperform random search and either outperform or

match human performance.

Regardless of whether the hyperparameter scan is performed manually or

algorithmically, an important choice is the metric which is used to discriminate

between models. It might be tempting to use the training loss as the metric

for tuning the hyperparameters, but in many cases this can lead to a set of

hyperparameters which over-train, a term which generally descibes when a

statistical model fits statistical fluctuations in the training set rather than the

underlying mapping from input to output. Over-training is typically characterised

10

by poor generalisation to unseen data. One method to circumvent this issue is to

reserve a subset of the data during the hyperparameter scan, and evaluate the

performance metric on this unseen data. In this way models are preferred which

generalise best to data not included in the training. Note that this still doesn’t

help if there is an unknown systematic error present in the entire set of training

data.

Once the model and various hyperparameters have been chosen and the parameters

have been optimised using the available training data, the performance of the

model is often judged using some kind of error function. Similarly to the loss, the

error function heavily depends on the particular problem. In Chapter Four, the

concept of the error function will be revisited in the context of inverse problems.

For now one can consider reserving some of the available data as a test set and

the error function could be the loss function evaluated on the test data set. This

would be an example of some kind of generalisation error.

1.4 Unsupervised learning

In contrast to supervised learning, in unsupervised learning the data is just

available as a set of input features X, there are no predefined labels or output

responses and the task is to try and learn some kind of pattern directly from

the input data. A popular example of unsupervised learning is clustering [21–23],

which is similar to classification except the data has no predefined label and

instead the data is grouped according to some kind of similarity metric. Clustering

has been applied extensively in data mining [24], but also in fields such as genetics

[25] and astronomy [26]. Clustering techniques are clearly useful in any branch of

science which concerns itself with ordering objects into synthetic groups.

Another class of models associated with unsupervised learning are generative

models. These models aim to approximate some target distribution from which

the training data is assumed to be sampled from. In Fig. 1.2, an example of both

some training data which was used to train a generative model and a randomised

selection of model generated data are shown for demonstrative purposes, the

images were taken directly from [8].

In Chapter Two we will specifically look at energy based models, which have

a clear analogy to models in statistical mechanics, with the specific goal of

11

Figure 1.2 Samples from the models presented in [8] for two typical datasets
used in the ML community. Each image is a sample from a trained
generative model, in the rightmost column, the nearest training
example of the neighboring sample is shown. The model which
generated the right sample was trained on the MNIST dataset [9], an
open source dataset which contains (binary) black and white images
of handwritten digits. The model which produced the left sample was
trained on the Toronto face dataset [10], grey scale images of human
faces.

learning more about the model by studying the well known Ising model. Some

generative models have an explicit and tractable expression for the model likelihood

[27–29], by tractable we mean that the computation of the likelihood does not

scale exponentially with the system size. As a result, these models can be

trained using maximum likelihood. An interesting phenomenon which is rising

in popularity in certain areas of physics [1, 30, 31] is to combine these kinds of

models with traditional MC routines [32]. The work in Chapter Three will focus

on one of these studies, which presents a proof of principle method for proposing

lattice configurations for the Metropolis Hastings algorithm as opposed to a more

traditional proposal generation technique such as local updates. Our work expands

the set of models used in the original work and also begins a more systematic

study of how the technique scales computationally with the system size.

It’s not necessary to have an explicit expression for the model distribution however,

for example Generative Adversarial Networks [8] (GANs) use two models: the

generator and the discriminator, these are typically neural networks. The generator

produces states which aim to be approximately distributed according to the

distribution of the training data. The discriminator takes a state as input and tries

to classify it as being genuine, taken from the training sample, or fake, generated

from the model. The training process is iterative, keeping one model fixed and

updating the parameters of the other and vice versa. GANs are notoriously

difficult to train [33], but have achieved great success at generating sharp and

12

realistic looking images, see for example [34]. GANs are already being studied in

physics, such as modelling particles in calorimeters [35, 36].

Something which isn’t always entirely clear is what benefit generative models

can provide. Since the models often require many training examples from the

target distribution, the total amount of work required to train the model can

prevent them from being efficient samplers in lieu of traditional MC techniques.

Not least because the traditional MC techniques will likely still be required to

produce a sizeable training sample. Furthermore, fully understanding all of the

intricacies of sampling from a generative model is difficult at best, and in the

worst case the model is used as a black box and therefore adds a layer of obscurity

to the sampling process. A large amount of the work presented in this thesis is

understanding exactly how the ML models are working. In Chapter Two the

Restricted Boltzmann Machine requires a large number of states in order to be

trained to a reasonable standard, however because of the model parametrization

it’s possible to learn about the physics of the system from the model using the

expressions derived as part of that work. In Chapter Three we look at a model

which falls into the class of auto-regressive models. These ostensibly seem like

very attractive prospective models for areas of physics where there is a closed form

expression for the distribution we wish to sample from, but in practice sampling

from these distributions is highly non-trivial. Since these models don’t require

any pre-existing data in order to be trained to approximate a known distribution,

they can potentially be used in scenarios where traditional algorithms struggle to

sample the target distribution, for example systems with critical slowing down

[37].

Regardless of the specific task, a difficulty which often arises with unsupervised

learning is assessing the model performance. For generative models, one can show

that the model distribution can reproduce the same moments or observables as the

target distribution but this doesn’t give a complete picture for how well the target

distribution is reproduced. It also has the requirement that the true observable

value can either be obtained analytically or from another sampling technique with

high enough precision to make the comparison. There are potentially methods to

assess model performance which bypass this, such as passing the states produced

by the model through Metropolis-Hastings algorithm [38, 39] and measuring the

acceptance, this approach was taken in [40] and will also be used to compare

models in Chapter Three.

13

1.5 Bootstrap sampling estimators

In the later parts of this thesis there is abundant usage of bootstrap sampling

in order to quantify the uncertainty on statistical estimators or observables. In

many of these cases, we will often compare the same observable produced using

different methods or models and in order to understand if the quantities agree in

a statistical sense, we want to make some estimation of the precision to which

they are determined. When there is a non-trivial dependence of the observable in

question on the ensemble from which it was estimated, bootstrap sampling can

be used to estimate the uncertainty [41, 42].

Here we will outline the concept of the bootstrap sample, which will serve as a

reference for future chapters which rely on it. Consider a quantity O which is

determined from a random sample x = x1, x2, . . . , xN

O = s(x) , (1.11)

where s is some function. A bootstrap sample of x is defined as

xb = xb1, x
b
2, . . . , x

b
N , (1.12)

where we have introduced a bootstrap sample index b. Note that xb is not actually

the dataset x, but instead a resampled version of x where the sample xb1, x
b
2, . . . , x

b
N

is sampled uniformly from x1, x2, . . . , xN with replacement, E.g. you might have

xb1 = x4, xb2 = xN , xb3 = x4, xb3 = x1 etc. Then, you can calculate the quantity of

interest

Ob = s(xb) , (1.13)

where the index on the quantity indicates it was estimated from bootstrap sample

b. Now you can estimate the standard deviation on Ob by repeatedly resampling

x and taking the standard deviation of O across bootstrap samples

std(O) =

√√√√ 1

Nb − 1

Nb∑
b=1

(Ob − Ō) (1.14)

where Ō is the mean across bootstrap samples of Ob. The beauty of using

bootstrap sampling to estimate the uncertainty is that it requires no theoretical

understanding of how the uncertainty propagates from x to O. Furthermore, for

many quantities the bootstrap mean and standard deviation can be computed

14

quickly.

15

Chapter 2

Restricted Boltzmann Machine

2.1 Introduction

A structured probabilistic model is a formalism used in machine learning, in

particular deep learning, to describe the joint probability distribution of a set

of random variables of interest and their interaction, via mathematical graphs.

These models are often referred to as graphical models and consist of a set of

vertices, connected by a set of edges. Over the years, various graphical models,

together with their training and inference algorithms, have been developed by

the machine learning community [43]. Undirected models are a popular subset of

graphical models, often referred to as Markov Random Fields (MRFs), for which

there is no directionality to the edges of the graph connecting the nodes [44]. A

class of undirected models, with probability distribution of the form

p(v) =
e−E(v)

Z
, (2.1)

are referred to as energy-based models (EBMs), or Boltzmann machines (BMs) if

the models contains latent (hidden) variables [45–47]. In the above equation, E(v)

is the positive energy function and Z denotes the partition function. In this work,

we focus on Restricted Boltzmann Machines (RBMs), a subset of BMs where

the variables within the visible and hidden nodes are taken to be independent of

each other [48]. RBMs are amongst the most common building blocks of deep

probabilistic models. Our aim here is two-fold: the first is to be able to describe

criteria that guarantee the machine is being adequately trained, as well as testing

16

its limitations; the second is to derive predictions from the RBM that cannot be

directly obtained from the data.

The explicit form of the RBMs, together with their properties and training

algorithms, are presented in Sec. 2.2. The RBM is trained for the 1- and 2-

dimensional Ising models with volumes L = 6, L2 = 8× 8 and L2 = 16× 16, at

various values of temperature. The Ising model and its properties are a paradigm

in statistical physics literature, making it a suitable system on which to examine

the training procedure and limitations of the RBMs [49–52]. Moreover, it is

possible to generate a large number of Ising configurations using simple Monte

Carlo simulations, avoiding the problem of small training sets.

We dedicate Sec. 2.3 and Sec. 2.4 to the details of our training procedure and

the extraction of observables from the states generated by the trained RBM,

such as magnetisation, energy, susceptibility and heat capacity. In particular, in

Sec. 2.4, we recommend a prescription to ensure the machine is being trained

correctly, by monitoring certain quantities during training. These quantities

include measurements of the log-likelihood and the loss function, as well as the

first and second moments of the distribution generated by the RBM. Following

our training procedure, these observables are then shown to agree well with the

expected results, obtained directly from the training data. Finally, we present a

method for extracting the couplings between the spins of the Ising system, based

on an observation in Ref. [53]. Using this method, RBMs not only give us a model

for describing the distribution of the data, but also provide us with the predictive

power of estimating the relative strength of the couplings between the visible

nodes. Notice that due to the indirect all-to-all connections between visible nodes

of an RBM, there are no pair-wise coupling assumptions in measuring the strength

of connection between the nodes.

2.2 Training the RBM & making predictions

2.2.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a type of undirected Markov Random

Field (MRF) with a two layer architecture. The detailed derivation of some of the

main features of the RBMs is clearly presented in Ref. [11], and we follow their

17

notation. An RBM consists of m visible nodes vj, j ∈ {1, · · · ,m}, collectively

denoted by v and representing the observed input data, and n hidden nodes hi,

i ∈ {1, · · · , n}, collectively denoted by h. In this work, we will focus on RBMs

with binary variables, i.e. vj, hi ∈ {0, 1}. The energy of the joint state {v,h} of

the machine is as follows:

E(v,h; θ) = −
n∑
i=1

m∑
j=1

hiwijvj −
m∑
j=1

bjvj −
n∑
i=1

cihi , (2.2)

and we collectively call θ = {w,b, c} the model parameters. The matrix w

represents the undirected interaction between the visible and the hidden layers;

with a slight abuse of language, in what follows a non-vanishing interaction

between nodes will often be called a connection. The vectors b, c are the biases

of the visible and hidden layers respectively. Nodes on the same layer are not

connected (making the machine restricted), leaving the interaction between them

to be mediated by the connections to the other layer.

The RBM is used to encode the joint conditional probability distribution of a

state {v,h}, given a set of parameters θ:

P (v,h|θ) =
e−E(v,h;θ)

Z(θ)
, (2.3)

where the partition function Z(θ) normalizes the probability distribution and

contains the sums over all possible states,

Z(θ) =
∑
v,h

e−E(v,h;θ) . (2.4)

The probability distribution of the variables in the visible layer is obtained by

marginalising over the binary hidden variables hi (see e.g. [11])

p(v|θ) =
∑
h

P (v,h|θ) =
1

Z(θ)

∑
h

e−E(v,h;θ)

=
1

Z(θ)

m∏
j=1

(
ebjvj

) n∏
i=1

(
1 + eci+

∑m
j=1 wijvj

)
. (2.5)

The conditional probability of v, given h and θ, and the one of h, given v

and θ, will be needed for training the RBM, and for generating configurations.

Because the nodes of a given layer of an RBM are not connected these conditional

18

probabilities factorise

p(h|v, θ) =
n∏
i=1

p(hi|v, θ) and p(v|h, θ) =
m∏
j=1

p(vj|h, θ) , (2.6)

and can be readily computed:

p(hi = 1|v; θ) = σ

(
m∑
j=1

wijvj + ci

)
, (2.7)

and

p(vj = 1|h, θ) = σ

(
n∑
i=1

wijhi + bj

)
, (2.8)

where σ(x) = 1/(1 + e−x) is the logistic function which, as was mentioned in

Chapter 1, is often used as an activation function for neural network layers

where the output has a probabilistic interpretation. Interestingly here, the sigmoid

emerges naturally from marginalising over the visible and hidden layer respectfully.

In order to take advantage of a SGD based algorithm, the training dataset is

partitioned into minibatches, i.e. each minibatch B contains a subset of the training

data, B = {v1, ...,vl}. The RBM is trained by maximising the log-likelihood

function on a given batch B with respect to the parameters θ = {wij, bj, ci}

logL(θ|B) = log
∏
v∈B

p(v|θ) =
∑
v∈B

log p(v|θ) . (2.9)

Given an input vector v,

∂ logL(θ|v)

∂θ
=
∂ log p(v|θ)

∂θ

= −
∑
h

p(h|v; θ)
∂E(v,h; θ)

∂θ
+
∑
v′,h

P (v′,h|θ)∂E(v′,h; θ)

∂θ
. (2.10)

More explicitly, the gradient with respect to the weights wij takes the form:

∂ logL(θ|v)

∂wij
= p(hi = 1|v; θ)vj −

∑
v′

p(v′|θ)p(hi = 1|v′; θ)v′j (2.11)

= p(hi = 1|v; θ)vj − Emodel

[
p(hi = 1|v′; θ)v′j

]
, (2.12)

19

denoting average over the probability distribution of the model, p(v′|θ), as

Emodel [F (v′)] =
∑
v′

p(v′|θ)F (v′) . (2.13)

We can then average the gradients over a given batch, so that

1

|B|
∑
v∈B

∂ log p(v|θ)
∂wij

= Edata [p(hi = 1|v; θ)vj]− Emodel

[
p(hi = 1|v′; θ)v′j

]
,

(2.14)

where we have introduced the average over the dataset,

Edata [F (v)] =
1

|B|
∑
v∈B

F (v) . (2.15)

Similarly, for the bias parameters,

1

|B|
∑
v∈B

∂ log p(v|θ)
∂bj

=
1

|B|
∑
v∈B

vj −
∑
v′

p(v′|θ)v′ (2.16)

= Edata [vj]− Emodel

[
v′j
]
, (2.17)

1

|B|
∑
v∈B

∂ log p(v; θ)

∂ci
=

1

|B|
∑
v∈B

p(hi = 1|v; θ)−
∑
v′

p(v′)p(hi = 1|v′; θ) (2.18)

= Edata [p(hi = 1|v; θ)]− Emodel [p(hi = 1|v′; θ)] . (2.19)

As shown above, the second terms in Eqs. 2.14, 2.16 and 2.18, i.e. terms that

involve a model average Emodel[.], contain sums over all possible states of the

RBM; they are independent of the choice of the batch, and are computationally

challenging. In practice, an approximation to the gradients is necessary, here we

use the Contrastive Divergence (CD) algorithm [54]. The algorithm starts by

choosing a training vector as the initial state of the visible units. Then a new

state of the hidden units is generated using Eq. 2.7. This is done by setting a

hidden unit hi to be equal to 1 if the probability in Eq. 2.7 is greater than a

random number uniformly distributed between 0 and 1; otherwise hi is set to

zero. Once the hidden units are chosen, a state of visible units, v(1), is sampled

according to the probability distribution Eq. 2.8, in an analogous procedure to

sampling the hidden layer from the visible. These steps can be iterated several

times, the number of iterations is controlled by a parameter, which we denote

by k in what follows. Finally, the gradient is computed using Eq. 2.14, where

v′ = v(k). We refer to this procedure of generating a state from the model as the

20

CD loop [55], and refer to k as the number of CD steps. Having split the training

dataset into minibatches, and calculated an expression for the gradient of the

likelihood with respect to the parameters we have the necessary ingredients to

optimise the parameters using any form of stochastic gradient descent. In this

work the parameters θ are updated using the basic SGD algorithm, outlined in

Chapter 1, by just taking a step of size α, the learning rate, in the direction of

the gradient.

A cycle over all training batches, an epoch, results in a number of parameter

updates equal to the number of batches. It is important for the purposes of our

study to be able to quantify the quality of the training procedure. Therefore, at

each epoch during the training procedure, we monitor several indicators:

1. The maximisation of the average log-likelihood. The average is computed first

within each batch and then averaged over all batches. The computation of

the log-likelihood requires the intractable partition function to be estimated.

This estimate has been done using the annealed importance sampling

procedure, discussed in detail in Sec. 2.2.2.

2. For a given state v, F (v; θ) is defined as

F (v; θ) = log
∑
h

e−E(v,h;θ) . (2.20)

This quantity is averaged first across the states in each batch and then across

all the batches, and it is expected to reach a constant once the machine is

trained. To see this more clearly, notice that we can write the log-likelihood

in Eq. 2.9 as: ∑
v∈B

log p(v|θ) =
∑
v∈B

F (v; θ)− log(Z) . (2.21)

Since the log-likelihood is a quantity we are trying to maximise, once the

machine is trained, it converges to a constant. Similarly for the estimation

of the partition function log(Z). Therefore, during the training procedure,

we can monitor how F (v; θ) is also progressing to a constant.

3. The loss function is defined as the average over the batches of the quantity

21

F
(
v(0); θ

)
− F

(
v(k); θ

)
,

Loss =
1

Nbatch

∑
batches b

1

|B(b)|
∑
v∈B(b)

(
F
(
v(0); θ

)
− F

(
v(k); θ

))
(2.22)

where v(0) is the input data from the training set, v(k) is the state

reconstructed by the machine using k steps in the CD loop, and Nbatch

is the total number of batches.

4. The reconstruction error ε, is defined as

ε =
1

Nbatch

∑
batches b

1

|B(b)|
∑
v∈B(b)

|v(0) − v(1)|2 (2.23)

where v(0) is as stated above and v(1) is the state reconstructed by the

machine using a single step of Gibbs sampling.

In summary, if the training procedure is correct, the log-likelihood should be an

increasing function of the training steps, approaching a plateau where it stabilises

at a fixed value. The quantity F (v; θ) is expected to reach a constant value as

described above. The loss function and the reconstruction error are expected to

decrease along the training, as the machine is required to reduce the difference

between the generated v’s and those used for training.

2.2.2 Annealed importance sampling

As discussed in the previous section, training the RBM corresponds to maximising

the log-likelihood on the input training set, with respect to parameters of the

model. This in turns requires the partition function for the model to be computed,

which is intractable in most cases; the computation scales exponentially with

the number of visible and hidden units in the machine. However, there are

methods to estimate the partition function. A simple method is to use a proposal

distribution p0(v) = 1
Z0
p∗0(v) whose partition function is tractable and can be

measured exactly. The asterisk here indicates that the probability is unnormalized,

with its corresponding partition function being the normalization factor. Suppose

we wish to estimate an intractable partition function Z1 for p1(v) = p∗1(v)/Z1.

22

We can write

Z1 =

∫
p∗1(v)dv = Z0

∫
p0(v)

p∗1(v)

p∗0(v)
dv , (2.24)

and measure its estimator

Ẑ1 =
Z0

M

M∑
m=1

p∗1(v(m))

p∗0(v(m))
, (2.25)

where the sample {v(1), . . . ,v(M)} is drawn according to p0(v). One can readily

observe that if the two distributions p0 and p1 have large overlap, states that are

drawn with a high probability from p0, also have a high probability in p1, and the

sum is close to the original integral. In contrast, if the overlap is poor, the drawn

states make negligible contribution to the sum, making it a biased estimator for

Ẑ1. The issue can be further quantified by computing the variance of Ẑ1:

Var[Ẑ1] =
Z2

0

M2
Var

[
M∑
m=1

p∗1(v(m))

p∗0(v(m))

]
=

Z2
0

M2

M∑
m=1

Var

[
p∗1(v(m))

p∗0(v(m))

]
=
Z2

0

M
Var

[
p∗1(v)

p∗0(v)

]
,

(2.26)

where in the second equality, it is assumed that the samples are drawn

independently. Expanding the variance of the ratio, we obtain

Var

[
p∗1(v)

p∗0(v)

]
=

∫
p0(v)

[
p∗1(v)

p∗0(v)
− Z1

Z0

]2

dv =
Z2

1

Z2
0

∫
p0(v)

[
p1(v)

p0(v)
− 1

]2

dv .

(2.27)

Hence, the estimate for the variance of Ẑ1 becomes

V̂ar[Ẑ1] =
Ẑ2

1

M2

M∑
m=1

[
p1(v(m))

p0(v(m))
− 1

]2

. (2.28)

If the two distributions p0 and p1 are not close to each other, in the Monte Carlo

simulation, there will be many samples drawn from p0 with a high probability

which have a corresponding low probability with respect to p1, leading to a large

contribution to the sum in Eq. 2.28. In fact, it has been discussed in Refs. [56, 57]

that the above variance can become large and even infinite, leading to very poor

estimates.

In most cases, as it is with the RBM, p1 is a multimodal distribution over a high

23

dimensional space. As a result, it is difficult to propose a simple distribution p0

with a tractable partition function that gives a good estimate for the original Z1.

In such situations a method known as annealed importance sampling is adopted

[57–60]. This method tries to bridge the original distribution p1 and the simple

distribution p0, by introducing intermediate closer distribution pβ0 , pβ1 , · · · , pβn
such that 0 = β0 < β1 < · · · < βn−1 < βn = 1. We therefore try to estimate Z1/Z0

via:

Z1

Z0

=
Zβ1

Z0

Zβ2

Zβ1

· · · Zβn−2

Zβn−1

Z1

Zβn−1

=
n−1∏
j=0

Zβj+1

Zβj
, (2.29)

where
Zβj+1

Zβj
can be estimated using the simple importance sampling Eq. 2.25

described above. These estimates are reliable as the corresponding distributions are

close. The intermediate distribution can be chosen such that they are proportional

to the geometric average of p1 and p0, i.e. ,

pβ ∝ p∗1(v)βp∗0(v)1−β . (2.30)

To see why this is a sensible choice, notice that

p∗1(v)βp∗0(v)1−β = e−βE1(v)e−(1−β)E0(v) = e−E0(v)e−β[E1(v)−E0(v)] . (2.31)

In other words, when β is very small, pβ is also very close to the simple distribution

p0. Increasing β gradually, until it is close to one, will have pβ being close to p1,

as required. Here, we make the choice E0 = 0, i.e. , we sample from a uniform

starting distribution p∗0(v) for βj=0 = 0. This implies that, for j = 1, 2, · · · , n,

p∗βj(v) ∝ e−βjE1(v) , (2.32)

where e−E1(v) is the numerator term in Eq. 2.5. In the first step v is sampled

from a uniform distribution and p∗β1
is computed according to Eq. 2.32, for a

value of β close to zero. A set of configurations v is sampled according to that

probability using Gibbs sampling, after having taken into account the presence of

β in Eqs. 2.7 and 2.8, where it enters as a multiplicative factor in the argument of

the logistic functions. The number of constrastive divergence steps, as described

in the previous section, used to generate the next set of configurations from the

previous is taken to be kCD = 1. We chose to increase β by 0.0001 in each step

and continue until βn = 1 is reached. The number of states, M , used to estimate
Zβj+1

Zβj
was chosen to be 100. As a practical consideration, we are interesting in

24

calculating the log-likelihood and so we calculate the logarithm of the ratio of the

partition functions, leading to a sum of logarithms of the bridging ratios. This

has the added advantage of avoiding numerical overflow which would occur when

taking the ratio of the partition functions.

2.2.3 1D and 2D Ising model simulations

We train the RBM on Ising spin configurations in 1D and 2D, distributed according

to the Boltzmann weight:

P (s|J) =
e−HJ (s)

ZIsing

=
e−J/(kBT)

∑
〈i,j〉 sisj

ZIsing

, (2.33)

where 〈i, j〉 indicates that the sum is over nearest neighbour spins, T is the

temperature of the system and kB is the Boltzmann constant. The partition

function is the sum over all possible configurations of the system,

Z(J) =
∑
s

e−HJ (s)· (2.34)

Each Ising spin can take a binary value −1 or 1, and the external field is set

to zero. The 2D Ising configurations were generated using Magneto [61], a fast

parallel C++ code available online. Magneto uses the Swendsen-Wang Monte

Carlo algorithm [62] to generate the configurations minimising the autocorrelation.

For simplicity we set the combination J/kB = 1, and the temperature becomes

the defining feature in differentiating the behaviour of various Ising systems in

a given number of dimensions. Note that spins ±1 are converted to 0, 1 before

setting them as input to the RBM.

The expectation value for an Ising observable at a given temperature,

〈O〉 |T =
∑
s

p(s|T)O(s) , (2.35)

is estimated by the average of the measured observable over a finite set of

independent configurations:

ˆ〈O〉|T =
1

N

N∑
n=1

O (s(n), T) , (2.36)

25

where N is the total number of sampled states and s(N) ∼ p(s|T). The observables

under considerations are the average magnetisation, susceptibility, energy and

heat capacity:

〈m〉 =
1

L2

〈∣∣∣∣∣
L2∑
i=1

si

∣∣∣∣∣
〉
,

〈χ〉 =
L2

T

〈〈
m2
〉
− 〈m〉2

〉
,

〈E〉 = − 1

L2

〈∑
〈i,j〉

sisj

〉
,

〈cv〉 =
L2

T 2

〈〈
E2
〉
− 〈E〉2

〉
.

(2.37)

Once the training process is completed we generate configurations according

to the probability encoded by the RBM. We then compare the results with

the corresponding values from Magneto. The methods for generating new

configurations from the RBM distribution, as well as measurements of observables

in the case of the 2-dimensional Ising model are given in detail in Sec. 2.4.

2.3 Validation in one dimension

To validate our code, we trained a machine on a set consisting of 1-dimensional

Ising states with 6 sites, sampled from a distribution with J = T = 1, similar

to Ref. [50]. The training was divided into three steps of 2000, 1000 and 1000

epochs respectively, with a decreasing learning rate at each step, as summarised

in Table 2.1. In this case the analytical form of the probability distribution is

relatively easy to compute so it was used to validate our implementation of both

the training code and the annealing algorithm, similar to Ref. [50].

The results for this test are shown in Fig. 2.1. For a 1D chain with 6 sites, there

are 64 different possible states. The x-axis of the plot on the top plot of Fig. 2.1

indexes these states, with their corresponding probabilities on the y-axis. The

true probability of these states, measured exactly, has been plotted with a black

dashed line. The prediction for the underlying distribution improves as the number

of training epochs increases, with the colour blue corresponding to the learned

distribution at 20 epochs and the colour red indicating the learned distribution

at epoch 4000, which is very close to the true distribution. The bottom plot of

26

Training phase Epochs LR α kCD

1 2000 0.01 1
2 1000 0.001 1
3 1000 0.0001 1

Table 2.1 Parameters for training an RBM on the 1-dimensional Ising model
with six spins. The model has six visible nodes (fixed by the number
of spins in the training examples) and six hidden nodes. The training
dataset consisted of 100000 spin configurations, split into batches of
size 200. There are a total of 64 possibles states, making it possible for
the partition function to be measured exactly. We start the training
with α = 0.01 and gradually fine-tune it to smaller values as the
training progresses. In this cases keeping k = 1 throughout the training
is sufficient for learning the distribution of the data accurately.

Fig. 2.1 shows, in blue, how the true log-likelihood increases vs epochs, while the

annealing algorithm prediction, plotted in orange, is able to reproduce the exact

log-likelihood with approximately 10% error, keeping the same overall functional

form. We will assume that this is the typical order of magnitude for accuracy

of the log-likelihood resulting from the annealing algorithm; and will use the

log-likelihood computed with the annealing procedure as our measure for the

effectiveness of a training procedure, particularly for more complicated systems

where measurement of the true partition function is intractable. Notice that

the annealing underestimates Z, thus resulting in an upper bound for the true

log-likelihood [57].

At the end of the training we expect

e−H(v)

ZIsing
=
e−H

RBM
λ (v)

Z , (2.38)

which, for every v, implies

H(v)−HRBM
λ (v) = logZ − logZIsing = constant. (2.39)

We can reformulate this statement in the following way: minimising the KL

divergence only requires the difference between the Ising probability distribution

27

0 10 20 30 40 50 60
ising configurations

10 5

10 4

10 3

10 2

10 1

Learned distribution vs target

target distribution

0 500 1000 1500 2000 2500 3000 3500 40004.25

4.00

3.75

3.50

3.25

3.00

2.75

2.50

Log-likelihood vs epochs

LL true
LL from annealing

Figure 2.1 The top plot shows the RBM distributions obtained at different
number of training epochs, from 20 (blue) to 4000 (red) compared to
the target distribution (dotted black line). The bottom plot presents is
a comparison between the exact log-likelihood (blue) and that obtained
from the annealing algorithm (orange). The uncertainty for the
estimated log-likelihood is smaller than 10%.

and that of the RBM to go to zero

DKL

[
qIsing(v)||pθ(v)

]
=
∑
v

(
qIsing(v) log (qIsing(v))− qIsing(v) log (pθ(v))

)
=
∑
v

qIsing(v)

[
(logZ − logZIsing)− (H(v)−HRBM

λ (v))

]
,

(2.40)

which in turn implies that the expectation value of the Hamiltonians over the

probability distribution of the Ising model may differ by a constant, which is

28

cancelled in the equation above. Note that the statement should also be true

term-by-term once the machine has learned, i.e. for any state {v}. This is observed

numerically, where

H(v)−HRBM(v) = logZ − logZIsing , ∀v (2.41)

up to numerical errors, for all the 64 possible states.

In order to verify if this is indeed the case in the training the machine, in Fig. 2.2,

we plot the average 〈H−HRBM〉v of the 64 energy differences in Eq. 2.41, together

with their corresponding standard deviation σ(H −HRBM)v, as a function of the

training epochs. Notice that both the average and the standard deviation converge

to constant values, −10.56 and 0.55 respectively, showing how the differences of

Eq. 2.41 indeed converge to a common constant value of −10.56 up to a numerical

error of 0.55. We have also checked that these numerical values are consistent

with logZ − logZIsing, which is plotted, in orange, together with 〈H −HRBM〉v
in Fig. 2.2: the former lies within 1 sigma from the latter, showing how the KL

divergence in Eq. 2.40 indeed decreases towards zero along the training.

0 500 1000 1500 2000 2500 3000 3500 4000
epochs

−10

−8

−6

−4

−2

〈H −HRBM〉v
〈H −HRBM〉v
logZ − logZIsing

Figure 2.2 We plot 〈H−HRBM〉v (blue) and logZ−logZIsing (orange) per epoch.
The vertical lines indicate standard deviation of 〈H −HRBM〉v.

2.4 RBM for the 2D Ising model

We now consider training sets consisting of spin configurations of 2-dimensional

Ising systems at various temperatures. The configurations are generated using

29

Magneto, setting J/kB = 1, with temperatures above, at and below the critical

temperature, starting from T = 1.8 to T = 3.0 in steps of ∆T = 0.1. The training

of each RBM on these configurations has been studied independently, with the aim

of obtaining the set of parameters which provide the correct value of observables

at each temperature, as compared with Magneto values. The observables for

each trained RBM have been computed as described in Sec. 2.2.3, for different

checkpoints along the training, and plotted as a function of the number of epochs.

This allows us to monitor the training procedure, and to assess the number of

epochs required to converge to the underlying distribution of the training data.

This procedure has been performed for the case of an 82 lattice, as well as a 162

lattice. We highlight the increasing difficulties in training when the volume is

increased.

2.4.1 Ising simulation and RBM training parameters

The simulation parameters for generating Ising spins using Magneto [61] and

training the RBM are presented in Tables 2.2 and 2.3 respectively. In the

following we present detailed results for three systems of 82 spin configurations,

at temperatures T = 1.8, T = 2.2 and T = 3.0 respectively. The procedure for

training a system of 162 spins is reported in App. A.2.

L2 Ntherm Nmeasure Binning algorithm T Steps ∆T

82 50000 100000 1 SW 1.8-3.0 & 2.27 0.1
162 50000 100000 1 SW 1.8-3.0 & 2.27 0.1

Table 2.2 2D Ising model parameters for data generation. Using the Swendsen-
Wang (SW) algorithm, the autocorrelation drops below 1 therefore no
binning was required. Ntherm denotes the number of MC iterations
used for thermalisation, while Nmeasure denotes the measurement taken
after thermalisation, which are saved to be used as training examples
for the RBM.

In order to train the RBMs we used 105 Ising configurations split into minibatches

with size 200. Although the training procedure is specific to each dataset and

RBM architecture, we give a general prescription for the case where the number

of hidden and visible nodes are chosen to be the same. Most our trainings were

performed in three steps:

1. We start the training with a large learning rate α, the value of which has

30

to be tested for. The idea for such a choice is to speed up the process of

maximising the log-likelihood at the beginning. The number of CD steps

kCD, at this stage, is set to 1. The first training phase was ran until the

log-likelihood plateaus. In some cases if the first training phase is ran for long

enough, the log-likelihood starts to decrease, an example of this behaviour is

reported in the Appendix in the case of T = 1.8. This behaviour is observed

elsewhere in the literature, e.g. see Ref. [11].

2. In order to prevent the decrease in the log-likelihood, we decrease the

variance in the estimate of the gradient of the log-likelihood, namely we

increase the CD parameter to a larger value. Again, the value is chosen

according to whether or not it results in an increase in the log-likelihood.

At this stage, we also decrease the learning rate α, in order to fine-tune the

training as we approach the maximum of the log-likelihood.

3. A single fine-tuning such as the one described above may not be enough to

fully train the machine. In that case, we iterate step 2 with a higher value of

kCD and lower value of α. This has been done for all our trained machines.

4. At each of the above steps, we monitor the moments of the learned

distribution and compare the values to the expected ones, obtained directly

from the training set. This allows us to monitor if and how the training is

progressing.

Therefore, the training of each machine in our case is characterised by three

different phases with specific number of epochs, learning rates, and values of k, as

well as comparing the moments extracted from the machine with the expected

values obtained from the training data. Our choices for the hyperparameters are

summarised in Table 2.3.

The four quantities used to monitor training, i.e. the log-likelihood, free energy,

loss function and reconstruction error are reported as functions of the training

epoch in Fig. 2.3, for three different temperatures. They all have the expected

behaviour, as described in Sec. 2.2.1. We stop the training process when there is

no further increase in the log-likelihood and, after fine-tuning with a higher value

of k and smaller α, the first and second moments of distributions generated by

machines at different epochs are statistically equivalent. We can conclude that the

training algorithm, so far, has been successful. In the next section we assess how

well the machine is able to predict the observables, as compared to the measured

Magneto values.

31

Visible Hidden T ∆T Training Phase Epochs LR α kCD

82 82 1.8-2.1 0.1 1 3000 0.1 1
2 1000 0.01 5
3 1000 0.001 10

82 82 2.2-3.0 0.1 1 2000 0.01 1
2 1000 0.001 5
3 1000 0.0001 5

162 162 1.8 // 1 8000 0.01 10
2 2000 0.01 20

Table 2.3 Parameters for training the RBMs. The number of visible and hidden
nodes for each case is presented. The dataset for each model comprised
of 100000 training examples, split into minibatches of size 200. T
indicates the temperatures of the given systems, with intervals ∆T =
0.1. For each training phase we record the learning rate (LR), α and
number of contrastive divergence steps, kCD. As advised in Ref. [11],
whenever the increase in the log-likelihood plateaus and then starts
to decrease, we reduce the value of α and increase kCD. The number
of epochs in each phase depends on the size and temperature of each
system. Our tests indicate that a higher value of k, i.e. k = 10, needs
to be used to train the machine on the larger configuration (162 spins),
which is then increased to k = 20 for the last phase of the training.

2.4.2 Gibbs sampling

As anticipated in Sec. 2.2.3, for each trained machine we have computed the

average magnetisation, susceptibility, energy and heat capacity, together with

their corresponding uncertainties. The results have been compared to the values

obtained from the training set, in order to examine if our machines are able to

reproduce the first and second moments of the target distribution. In order to

sample the states from the RBM distribution, required to implement Eq. (2.36),

we have used Gibbs Sampling, Ref. [11]. Block Gibbs sampling is a particular

Markov Chain Monte Carlo method (MCMC). The general idea behind any MCMC

method is that of setting up a Markov Chain that converges to the distribution

we want to sample from, in this case Eq. (2.3), and then running the chain long

enough to reach its stationary point. In the case of Gibbs sampling, this translates

into building the chain

v(0) → h(0) → v(1) → h(1) → v(2) · · · ,

32

0 500 1000 1500 2000 2500 3000 3500 4000
0.0

0.5

1.0

1.5

2.0

2.5 T=1.8
T=2.2
T=3.0

Loss vs number of epochs

0 500 1000 1500 2000 2500 3000 3500 4000

0.05

0.10

0.15

0.20

0.25

0.30

0.35 T=1.8
T=2.2
T=3.0

Reconstruction error vs number of epochs

0 500 1000 1500 2000 2500 3000 3500 4000
50

100

150

200

250

300

T=1.8
T=2.2
T=3.0

Free energy vs number of epochs

0 500 1000 1500 2000 2500 3000 3500 4000

60

50

40

30

20

10

T=1.8
T=2.2
T=3.0

Log-likelihood vs number of epochs

Figure 2.3 From left to right, loss function and reconstruction error in the first
line, free energy and log-likelihood in the second one. The results are
presented for three different T = 1.8, T = 2.2 and T = 3.0.

where h(l) and v(l+1) are sampled from the conditional probabilities given in Eq. 2.7

and Eq. 2.8 respectively. It can be shown that this chain converges to P (v,h; θ),

which implies that at a certain point in the chain, the states h(l) and v(l) will be

sampled according to the joint probability distribution encoded in the RBM. The

word block here, refers to the fact that we can simultaneously update all variables

hi given v(l), and vice versa, as the RBM is a restricted network which means

that the variables within each layer are independent of each other. Note that the

Contrastive Divergence algorithm, used to obtain estimates of the log-likelihood

gradient as described in Sec.2.2, is Gibbs sampling run with kCD Gibbs steps, to

get v(k) from v(0) through v(0) → h(0) → . . .→ v(k). One of the main advantages

of Gibbs sampling over other MCMC methods (see the next section on Metropolis

sampling for an example) is that it converges relatively fast. This allowed us to

measure and plot the observables at many epochs along the training, together

with their corresponding uncertainties, as an indication of progress in learning

in Fig. 2.4. The details concerning the Gibbs sampling parameters are reported

in Table (2.4). After a thermalisation step of 2× 104 configurations, we measure

magnetisation and energy on every 100th configuration, allowing the Markov chain

to run for 2× 106 configurations.

33

Algorithm Ntherm Nmeasure Binning

Gibbs 20000 2× 106 100
Metropolis 50000 1× 106 50

Table 2.4 Gibbs and Metropolis sampling parameters, for MC simulations on an
already trained RBM. The measurements are made on configurations
generated after the initial thermalisation step Ntherm. The binning
factor indicates the number of successive measurement binned to ensure
the remaining are indeed independent.

0 500 1000 1500 2000 2500 3000 3500 4000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T=1.8
T=2.2
T=3.0

Magnetisation vs number of epochs

0 500 1000 1500 2000 2500 3000 3500 4000

1.8

1.6

1.4

1.2

1.0

0.8

T=1.8
T=2.2
T=3.0

Energy vs number of epochs

0 500 1000 1500 2000 2500 3000 3500 4000

0.2

0.4

0.6

0.8

1.0

T=1.8
T=2.2
T=3.0

Susceptibility vs number of epochs

0 500 1000 1500 2000 2500 3000 3500 4000
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

T=1.8
T=2.2
T=3.0

Heat capacity vs number of epochs

Figure 2.4 From left to right, magnetization and energy in the first line,
susceptibility and heat capacity in the second one. The results are
presented for three different T=1.8, T=2.2 and T=3.0, as function
of the training epoch.

2.4.3 Metropolis sampling

In order to have an independent measurement of the observables, we implemented

the Metropolis algorithm. The algorithm takes, as input, the parameters of a

trained RBM, θ = {w,b, c}. Starting from a random configuration, a new spin

configuration is proposed by randomly flipping a spin using the transformation

vi = 1 − vi. Letting u to be a random number between zero and one from the

uniform distribution, if,

min

(
1,
pRBM(vnew)

pRBM(vold)

)
> u , (2.42)

we accept the proposed configuration. Otherwise we reject the new configuration

and return to the original one. At each Monte Carlo sweep, this process is

34

repeated for all spin variables. Since we take the ratio between the new and the

old probabilities, the partition functions cancel and so it does not need to be

estimated. The procedure is repeated until the thermalisation is reached. These

can be checked by checking that the Monte Carlo history of an observable e.g.

magnetisation, follows a normal distribution. We chose to discard the first 5× 105

configurations for the thermalisation step. See e.g. Fig. A.15 in the Appendix.

Note that the generated configurations in the 0, 1 basis are mapped to those of

the Ising model in the −1, 1 according to vising = 2vRBM − 1.

In order to take independent measurements of the observables, successive number

of measurements of |m| and E were binned. To determine the bin size, the error

on e.g. |m| vs bin size was plotted in Fig. A.17. To confirm independence, the

autocorrelation time defined as:

A(T) =
1

Nmeas − t

[
Nmeas−t∑
i=1

m(i)m(i+t) − (m(i))2

]
/
(

(m(i))2 − (m(i))2
)
, (2.43)

where N is the total number of Monte Carlo steps, was also computed. The

autocorrelation time vs MC steps is plotted in Fig. A.18. Based on these two plots,

choosing bin size equal to 50, seems sufficient for independent measurements to

be obtained. We present the parameters of the Metropolis sampling in Table. 2.4.

The magnetisation 〈|m|〉, energy 〈E〉, susceptibility χ and heat capacity CV , are

then measured. The error on these quantities have been computed using the

statistical bootstrap procedure.

We also tried to extract the third and fourth moments, however, the corresponding

uncertainties turned out to be of the same order as the moments themselves.

2.4.4 Observable predictions at all temperatures

In the following we report on the results of Ising observable measurements,

as extracted from a trained RBM, for 13 different values of temperature. In

Fig. 2.5 the values for the magnetisation and susceptibility are shown, obtained

independently from Gibbs and Metropolis sampling. The expected values from

magneto are also plotted. In Fig. 2.6, the analagous plots are shown for energy

and heat capacity.

We can observe resulting curves reproduce the expected values for magnetisation,

energy, susceptibility and heat capacity.

35

1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.4

0.5

0.6

0.7

0.8

0.9

Magnetisation vs temperature
RBM, Gibbs sampling
RBM, Metropolis sampling
magneto prediction

1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Susceptibility vs temperature

RBM, Gibbs sampling
RBM, Metropolis sampling
magneto prediction

Figure 2.5 Magnetisation and susceptibility vs temperature. Observables are
estimated on samples from performing Gibbs and Metropolis sampling
on the trained RBMs. The model values are compared to the expected
values from Magneto.

However in these plots it is not possible to discern between the results obtained by

different sampling methods and expected magneto values. To indicate more clearly

the precision with which the RBM is able to reproduce the moments, we plot the

observables normalized over their expected values, with their corresponding error

bars, for magnetisation and susceptibility in Fig. 2.7, and energy and heat capacity

in Fig. 2.8. Notice that, as expected, the first moments i.e. magnetisation and

energy, agree better with the corresponding magneto results as compared to the

second moments. Moreover, the measurements using the two different sampling

methods always agree within 2σ. For the first moments, the values measured from

the RBM distribution are almost always compatible with the expected values

within 2σ, while in the case of the second moments some discrepancy is observed,

36

1.8 2.0 2.2 2.4 2.6 2.8 3.0

1.8

1.6

1.4

1.2

1.0

0.8 Energy vs temperature
RBM, Gibbs sampling
RBM, Metropolis sampling
magneto prediction

1.8 2.0 2.2 2.4 2.6 2.8 3.00.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Heat capacity vs temperature

RBM, Gibbs sampling
RBM, Metropolis sampling
magneto prediction

Figure 2.6 Energy and heat capacity vs temperature. Observables are estimated
on samples from performing Gibbs and Metropolis sampling on the
trained RBMs. The model values are compared to the expected values
from Magneto.

e.g. see susceptibility at T = 1.8.

37

1.8 2.0 2.2 2.4 2.6 2.8 3.00.980
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020 Normalized magnetisation vs temperature

Magneto
RBM, Gibbs sampling
RBM, Metropolis sampling

1.8 2.0 2.2 2.4 2.6 2.8 3.00.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15 Normalized susceptibility vs temperature
Magneto
RBM, Gibbs sampling
RBM, Metropolis sampling

Figure 2.7 Magnetisation and susceptibility, normalized by the expected magneto
value, vs temperature.

We conclude that the RBM is in general able to obtain precise values for the first

moments of the underlying distribution at all temperature studied, however, for

the second moments the agreement is not always as precise.

38

1.8 2.0 2.2 2.4 2.6 2.8 3.00.980
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020 Normalized energy vs temperature

Magneto
RBM, Gibbs sampling
RBM, Metropolis sampling

1.8 2.0 2.2 2.4 2.6 2.8 3.00.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100 Normalized heat capacity vs temperature

Magneto
RBM, Gibbs sampling
RBM, Metropolis sampling

Figure 2.8 Energy and heat capacity, normalized by the expected magneto value,
vs temperature.

2.5 Extracting couplings from the RBM

In the previous sections we described how to train an RBM for a 2D Ising model

and assess the quality of the training by comparing the derived first and second

moments, from the RBM, to the corresponding observables measured using the

target distribution. This is a strong check that the machine has trained correctly,

as first and second moments can always be measured from the training data

directly. So far though, we haven’t gained much from training the model and have

only reproduced known results.

The predictive power of the machine, however, is in capturing the interactions

between visible units, at every temperature. In this section we address how to

extract the couplings between the visible units from the trained RBM, in the

39

case of a binary system e.g. the Ising model. Starting from an observation made

in Chapter 16 of Ref. [53], we derive a closed form expression for the two-point

coupling between the visible units, as a function of the parameters of the trained

RBM, and compare the results with the two-points interactions expected from

the Ising model. We then generalise the computation to higher order interactions,

presenting a closed form expression for the tensor describing the n-point coupling

between visible units learned by the machine, as a function of the learned RBM

parameters.

In order to extract the coupling from the weight matrix of the trained RBM, wij,

we expand the generating function in powers of vj. Recall the free energy of the

visible units, defined in Eq. 2.20

F (v) = log
∑
h

eE(v,h`i,x)

=
∑
i

log
∑
hi

e−
∑
j bjvj−

∑
i cihi−

∑
i,j hiwijvj .

(2.44)

Since the first term in E(v,h`i,x) is independent of the hidden layer, it can be

brought outside the sum. This is the visible bias term. F (v) then becomes,

F (v) = −
∑
j

bjvj −
∑
i

log
∑
hi

ecihie
∑
j hiwijvj

= −
∑
j

bjvj −
∑
i

log
∑
hi

q(hi)e
thi ,

(2.45)

where we have defined t ≡∑j wijvj and q(hi) ≡ ecihi . This allows us to introduce

the cumulant generating function, similarly to Ref. [53]:

Ki(t) ≡ log
∑
hi

q(hi)e
thi =

∑
n

κ
(n)
i tn

n!
, (2.46)

where the nth cumulant κ
(n)
i = ∂nt Ki(t)|t=0. Expanding the generating function

40

as a power series in n gives,

F (v) = −
∑
j

bjvj −
∑
i

κ
(0)
i −

∑
i

κ
(1)
i t−

∑
i

κ
(2)
i t2

2!
− . . .

= −
∑
i

κ
(0)
i −

∑
j

(
bj +

∑
i

κ
(1)
i wij

)
vj +

− 1

2!

∑
j1,j2

(∑
i

κ
(2)
i wij1wij2

)
vj1vj2 − . . . ,

(2.47)

where in the final line we have used the definition of t to rewrite F (v) in terms

of n-point interactions between the visible units. When the RBM has learned

the physics of the Ising model, we would expect that F (v) = Hising(v) up to a

constant, as was discussed in Sec. 2.3. Since the two energies can differ by an

overall constant without affecting the physical observables, we are not interested

in −κ(0)
i . However, the two energies are equal across states and we would expect

that F (v) and Hising(v) to be equal, order-by-order in v. For the standard Ising

interactions, with no external field,

HIsing(ṽ) =
∑
j1,j2

Hj1j2 ṽj1 ṽj2 , (2.48)

where ṽ describes the spin states, with each spin taking the value +1 or −1. Hj1j2

is the appropriate Ising matrix with nearest neighbour interactions. In the Ising

model used for this study, the two point interaction term is −1/T where T is

the temperature of the model. Therefore, Hj1j2 is zero except for components

which correspond to nearest neighbour interactions, which are equal to 1
2T

. This

is shown pictorially in Fig. 2.9 for the case of an 8× 8 lattice. The x and y axes

represent spins on this two-dimensional lattice, ordered lexicographically. Notice

the structure of couplings due to periodic boundary conditions.

States in the {−1, 1} basis can be related to those in the {0, 1} basis by the simple

transformation ṽ = 2v − 1. This allows us to rewrite the Ising Hamiltonian in

the {0, 1} basis as:

Hising(v) = 4
∑
j1,j2

Hj1j2vj1vj2 − 4
∑
j1

(∑
j2

Hj1j2

)
vj1 +

(∑
j1,j2

Hj1j2

)
, (2.49)

where the symmetric form of Hj1j2 has allowed us to simplify the expression. The

2-point interaction in Eq. 2.49 and Eq. 2.47 can now be compared to extract the

41

T = 2.0

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 2.9 The matrix of interactions, Hj1j2, for an 8 × 8 Ising lattice with
periodic boundary conditions as used in the generation of the training
set (left) and the one learnt by the RBM at the end of the training
(right). In this example T=2.0. The spins are labelled from 0 to 64
and the nearest neighbour structure is evident.

coupling, 1
2T

, from the trained RBM.

There is however a subtlety which arises in the expansion of the cumulant

generating function. We can see that in {0, 1} basis:

vnj = vj , n ∈ Z+ · (2.50)

This implies that higher order terms in n also contribute to the Nv-point function,

where Nv is the number of distinct vertices. To make this statement more clear,

let us write Eq. 2.47 in a more general form,

F (v) = −κ(0)
i −

∑
j

(
bj +

∑
i

κ
(1)
i wij

)
vj+

−
∑
n>1

1

n!

∑
j1...jn

(∑
i

κ
(n)
i wij1 . . . wijn

)
vj1 . . . vjn .

(2.51)

In other words, n can be thought of as counting the powers of wij. For each n,

the contributions from the sum over the visible units,
∑

j1...jn
, can be grouped by

the number Nv of distinct units being multiplied, which allows us to extract the

Nv-point interactions. For example, using Eq. 2.50, we see that the numerical

contributions to the 2-point interactions are terms proportional to vkj1v
n−k
j2

= vj1vj2

where j1 6= j2. The number of combinations of powers of vj1 and vj2 for a given

n are simply the binomial coefficients. Therefore, 2-point contributions from all

42

orders in n can be written as:

∑
n>1

1

2(n!)

∑
0<k<n

∑
j1 6=j2

(∑
i

κ
(n)
i

(
n

k

)
wkij1w

n−k
ij2

)
vj1vj2 , (2.52)

where the factor of two has been included to account for the double counting

arising from the symmetry under the exchange of j1 and j2. Performing the sum

over k gives

1

2

∑
n>1

1

n!

∑
j1 6=j2

(∑
i

κ
(n)
i [(wij1 + wij2)n − (wij1)n − (wij2)n]

)
vj1vj2 . (2.53)

Comparing this result to the Ising 2-point interaction in Eq. 2.49, provided that

the RBM is properly trained, the Ising pair-wise coupling can be written as:

Hj1j2 =
1

8

∑
n>1

1

n!

∑
i

κ
(n)
i [(wij1 + wij2)n − (wij1)n − (wij2)n] . (2.54)

Since κ
(n)
i = ∂nt Ki(t)|t=0,

Hj1j2 =
1

8

∑
n

(
1

n!

∑
i

[(wij1 + wij2)n − (wij1)n − (wij2)n] ∂nt Ki(t)|t=0

)
+

1

8

∑
i

Ki(0)

=
1

8

∑
i

(
e(wij1+wij2)∂t − ewij1∂t − ewij2∂t + 1

)
Ki(t)|t=0 ,

(2.55)

where we evaluated the sum over n. Recognising the shift operator, ea∂xf(x) =

f(a+ x), we simplify the expression for the Ising pair-wise interaction

Hj1j2 =
1

8

∑
i

(
Ki(wij1 + wij2)−Ki(wij1)−Ki(wij2) +Ki(0)

)
, (2.56)

the closed form expression for Hj1j2 , including all order contributions in n.

Substituting Ki(t) = log (1 + eci+t), from Eq.(2.46)

Hj1j2 =
1

8

∑
i

log
(1 + eci+wij1+wij2)(1 + eci)

(1 + eci+wij1)(1 + eci+wij2)
. (2.57)

Using the trained RBMs, the coupling given by Eq. 2.56 was evaluated for

temperatures ranging from T = 1.8 to T = 3.0. The results, presented in Fig. 2.11,

have the same nearest neighbour structure as the Ising model used to train the

43

epoch = 10 epoch = 20 epoch = 50

epoch = 100 epoch = 250 epoch = 4000

0.00

0.05

0.10

0.15

0.20

Figure 2.10 Hj1j2 extracted from RBMs at different stages of the training (10,
20, 50, 100, 250 and 4000 epochs), for L2 = 8× 8, h2 = 8× 8 and
temperature T = 2.2. As the machine approaches the end of the
training, the expected structure of Fig.2.9 becomes more and more
evident.

machines, in Fig. 2.9 with generic temperature T . In Fig. 2.12, we have plotted

the corresponding histograms of the values Hj1j2 at various temperatures. The

expected bimodal structure of coupling matrices is observed, with most of the

entries, i.e. those associated with the non-nearest neighbour spins interactions,

being centred around zero, while the nearest neighbour interactions introduce a

distinct second peak, around the desired value of the coupling. By taking the

average and the standard deviation across the nearest neighbour diagonals we can

compare the couplings extracted from the RBM against the exact values from the

Ising model, as shown in Fig. 2.13. We see that the RBM predictions agrees with

the analytical results within statistics.

It is also interesting to look at the change in the couplings along the training:

this is shown in Fig. 2.10, where the 2-points interaction matrix for T = 2.2

is plotted at different stages of the training. The training algorithm starts

by initialising the RBM visible-hidden interaction terms Wij from a normal

distribution centred around zero. The bias terms are also initialised to zero. In the

early epochs, we observe no particular structure in the Hj1,j2 interaction matrix.

As learning progresses, more of the nearest neighbour structure appears, and

spurious interactions disappear. Towards the final phases of the training, only

the nearest neighbour structure remains, with the rest of the interactions being

almost zero.

44

T = 1.8 T = 1.9 T = 2.0 T = 2.1 T = 2.2

T = 2.3 T = 2.4 T = 2.5 T = 2.6 T = 2.7

T = 2.8 T = 2.9 T = 3.0

0.10
0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Figure 2.11 The interaction matrix Hj1j2 extracted from RBMs, with L2 = 8×8
and h2 = 8 × 8, trained at a temperature indicated above each
subplot. Again, the spins are labelled from 0 to 64 and show the
same structure as for the generic Ising training set in Fig. 2.9.

0.00 0.250.0

0.5 1e3
T = 1.8

0.00 0.250.0

0.5

1e3
T = 1.9

0.0 0.20.0

0.5

1e3
T = 2.0

0.0 0.20.0

0.5

1e3
T = 2.1

0.0 0.20

1 1e3
T = 2.2

0.0 0.20

1
1e3

T = 2.3

0.0 0.20

1
1e3

T = 2.4

0.0 0.20

1
1e3

T = 2.5

0.0 0.20

1

1e3
T = 2.6

0.0 0.20.0

0.5

1e3
T = 2.7

0.0 0.20

1

1e3
T = 2.8

0.0 0.20.0

0.5
1e3

T = 2.9

0.0 0.20.0

0.5
1e3

T = 3.0

Figure 2.12 Histograms of the entries of Hj1j2 extracted from RBMs trained at
a temperature indicated above each subplot. As it can be observed,
there are always two peaks: The smaller peak, represents the number
of nearest neighbour on the y-axis, with the value of the coupling
indicated on the x-axis; the larger peak represent all other sites that
are not nearest neighbours and are not expected to couple to each
other, hence it being centred around zero on the x-axis.

45

1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.9

1.0

1.1

1.2

Hj1j2
1

2T

Ising input
RBM

Figure 2.13 The predicted 2-point interaction coupling, for L2 = 8×8 at different
values of temperature, normalized by the corresponding true value
1/2T . The coupling is extracted from the nearest neighbour diagonals
observed in the interaction matrices, with its error bar computed
by taking the standard deviation of the diagonal components. The
predicted values agree with the expected ones within statistics.

1.8 2.0 2.2 2.4 2.6 2.8 3.0

1.00

1.05

1.10

1.15
Hj1
8
T

Ising input
RBM

Figure 2.14 The linear terms extracted by the trained machine, normalized by the
corresponding true value 8/T . All predicted values are compatible
with the true ones within 2σ. The largest discrepancies are observed
for the highest temperatures, where there is an indication that the
training hasn’t fully converged. As discussed in Table 2.3, the
training parameters were the same for all models with T ≥ 2.2 and
here we have an indication that the parameters should have been
further tuned for the highest temperature models.

46

Let us now return to Eq. 2.51 and collect terms linear in vj . The terms contributing

are those with j1 = j2 = . . . = jn, giving,

∑
j

Jjvj = −
∑
j

(
bj +

∑
i

κ
(1)
i wij

)
vj −

∑
n>1

1

n!

∑
j

(∑
i

κ
(n)
i (wij)

n

)
vj. (2.58)

The vector Jj can be read from the linear term in Eq. 2.49,

Jj = 4
∑
i

Hij =
8

T
, (2.59)

where we have used
∑

iHij = 2/T , for every component i in the Ising 2-point

interaction matrix Hij. The second term on the right hand side of the Eq. 2.58

can be treated in the same way as the 2-point interaction described above above,

∑
n>1

1

n!

∑
j

(∑
i

κ
(n)
i (wij)

n

)
vj =

∑
j

∑
i

[Ki (wij)−Ki (0)] vj−
∑
j

∑
i

κ
(1)
i wijvj .

(2.60)

It then follows that,

Jj = −
(
bj +

∑
i

Ki (wij)−
∑
i

Ki (0)

)
= −

(
bj +

∑
i

log

(
1 + eci+wij

1 + eci

))
.

(2.61)

This allows us to extract the value of an external magnetic field, if present, from

the parameters of the trained RBM. The original training set was generated

without any external magnetic fields, therefore, if working in the {−1, 1} basis,

we do not expect to observe any linear term from the trained machine. However,

since we trained the RBM in the {0, 1} bases, we expect that Jj = 8/T The linear

term, Jj extracted from the trained machine are plotted in Fig. 2.14, where the

error bar is obtained by computing the standard deviation of the entries Jj . Again,

we see how these values are compatible with the expected ones within 1σ for most

temperatures, and 2σ for higher temperatures. The linear term appears to be

systematically overestimated for higher temperatures, which is probably due to

the training parameters of the highest temperature models needing finer tuning.

If this is some kind of under-learning, then the systematic shift might be due to

the initialisation of the model parameters.

The 3- and 4-point interactions can also be calculated and plotted. This is mainly

used as a sanity check to confirm that the RBM has not incorrectly learned

unexpected additional interactions. For the 3 point-interactions, we want to

47

include all combinations which leave three distinct indices, similar to Eq. 2.52 we

get,

∑
n>2

1

6(n!)

∑
0<l<(n−k)

∑
0<k<(n−1)

∑
j1 6=j2 6=j3

(
∑
i

κ
(n)
i

(
n

k

)(
n− k
l

)
wkij1w

l
ij2
wn−k−lij3

)
vj1vj2vj3 .

(2.62)

Summing over k and l gives

∞∑
n>2

1

6(n!)

∑
j1 6=j2 6=j3

(∑
i

κ
(n)
i

[
(wij1 + wij2 + wij3)n+

− (wij1 + wij2)n − (wij1 + wij3)n − (wij2 + wij3)n

+ (wij1)n + (wij2)n + (wij3)n
])
vj1vj2vj3 .

(2.63)

If we account for terms corresponding to n = 0, 1, 2 then the sum over n can be

evaluated as before, giving

1

6

∑
j1 6=j2 6=j3

∑
i

(
Ki(wij1 + wij2 + wij3)+

−Ki(wij1 + wij2)−Ki(wij1 + wij3)−Ki(wij2 + wij3)+

+Ki(wij1) +Ki(wij2) +Ki(wij3) +Ki(0)
)
vj1vj2vj3 ·

(2.64)

We can then write the interaction tensor explicitly as

1

6

∑
i

log
(1 + eci+wij1+wij2+wij3)(1 + eci+wij1)(1 + eci+wij2)(1 + eci+wij3)(1 + eci)

(1 + eci+wij1+wij2+)(1 + eci+wij1+wij3)(1 + eci+wij2+wij3)
.

(2.65)

One can observed the pattern emerging from (2.57) and (2.65) and write down a

general form for the N -point interaction tensor

1

N !

N∑
l=0

(−1)l
∑

α1<...<αN−l

Ki(wi,jα1
+ . . .+ wi,jαN−l) (2.66)

where {αi} = [1..N] and the inner sum represents the
(
N
N−l

)
combinations of

choosing N − l unique indices from {αi}. Using Eq. 2.66, histograms for the

tensors for the elements of the 3- and 4-point interaction can then be plotted for

the trained RBMs, to check if any spurious higher order interactions were learned.

48

It is expected that the histograms have a single peak at zero. These histograms

are presented in Fig. A.13 and Fig. A.14 of App. A.5, respectively.

2.6 Conclusions

We have trained several RBMs on 1- and 2-dimensional Ising models at various

values of temperature. The training procedure in each case has been discussed in

detail. We have used five different criteria to test whether the learning process has

been successful. The first four are measurements of the loss function, reconstruction

error, free energy and log-likelihood throughout the training procedure. The

measurement of the latter, which is the quantity that is being maximised in the

algorithm, involves the estimation of the partition function of the model, which is

computed using annealed importance sampling. The fifth and last criterion, is

the measurements of the first and second moments of the distribution, as given

by the RBM, and comparing them to those obtained directly from the training

set. These five criteria are essential to the RBM being trained correctly. Hence,

we have provided a generic prescription in training an RBM on a binary model,

from our experience.

Moreover, we have used the RBM to predict the interaction couplings between the

Ising spins by re-summing the cumulant generating function. The re-summations

can be performed for any model with binary {0, 1} states. The ability to extract

the couplings exactly can be useful in studying the relation between the RBM

and the renormalization group (RG), as first noted by Ref. [49]. In this paper, we

have also demonstrated the difficulty in training an RBM with smaller number

of hidden nodes as compared to the visible. The numerical verification of RG is

therefore left for future work. Another application of predicting the couplings

is for the case where the interactions between the visible nodes of the RBM are

unknown. In general, interactions between the visible units are more complicated

than simple pair-wise interactions and as such cannot be extracted directly from

the data with conventional methods. The RBM has no such assumption, as there

are indirect all-to-all connections between the visible nodes, via the hidden layer.

As the machine learns from the data, some of these connections turn-off while

others increase in strength. This makes the RBMs a powerful tool for predicting

complex connections between the visible nodes and their relative strength.

49

Chapter 3

Normalizing flows

3.1 Introduction

Following on from the previous section, where we saw that a generative model

could learn an approximation of the distribution which generates a set of training

examples. The interesting feature of the trained RBM was it could be used to make

a prediction for the couplings between visible units, which would be particularly

useful in systems where the underlying Hamiltonian was unknown.

In this work we change tack and instead wonder if the generative model can be

used as an efficient sampler, either replacing or augmenting a traditional MCMC

method. It’s clear that in order to realise this, we will require some different

techniques because, as we saw in Chapter 2, the RBM required a large amount of

pre-existing training examples which have to be sampled before the model can

be trained. This kind of approach doesn’t appear to offer any upside, since if we

can already produce a sample large enough to train the model then it’s unclear

what the benefit of training the model will be. In sec. 3.3.1 we will show how a

certain class of models, normalizing flows, can bypass this issue in the case that

the target distribution has a known Boltzmann weight.

We can generalise the estimation of observables for the Ising model to other lattice

field theories by rephrasing Eq. 2.36 as

〈O〉 =
1

Z

∫
Dφ e−S(φ)O(φ) , (3.1)

50

where

Dφ =
∏
x∈Λ

dφx , (3.2)

the Euclidean path integrals have been discretised onto a space-time lattice

Λ. O(φ) is a generic observable defined for the field configuration φ, and the

(Euclidean) action S(φ) encodes all of the dynamics and interactions of the fields.

In practical terms, these integrals are evaluated as expectation values over a

sample, as with the Ising model,

Ō =
1

|Φ|
∑
φ∈Φ

O(φ) , (3.3)

where the representative sample Φ is comprised of field configurations drawn from

a statistical ensemble with Boltzmann factor e−S(φ). The error on this estimator

scales as 1/
√
Neff, where the effective sample size Neff reaches a maximum value

of |Φ|, the number of configurations in the sample, in the absence of correlations

between configurations.

As mentioned in Sec. 2.4.3, sampling from high-dimensional distributions can

be achieved with Markov Chain Monte Carlo (MCMC) methods, such as the

Metropolis algorithm. However, the configurations in the resulting sequence are

indeed correlated, and the effective sample size is diminished by a factor of twice

the integrated autocorrelation time,

τint,O =
1

2
+
∞∑
t=1

A(t) , (3.4)

where we have integrated over the autocorrelation time, which was defined for the

magnetisation in Eq. 2.43. Here we generalise the definition of the autocorrelation

time

A(t) =
ΓO(t)

ΓO(0)
, (3.5)

defined for each observable in terms of its autocorrelation function ΓO(t) =

〈O(φ(n+t))O(φ(n))〉 − 〈O〉2, where t represents a number of steps separating pairs

of field configurations in a Markov chain, and n is arbitrary provided the process

has equilibrated to its stationary distribution [63]. Practically speaking, the

autocorrelation time is estimated over a finite sample, as in Eq. 2.43.

Under normal conditions this issue is manageable. Most MCMC algorithms,

however, suffer from an acute condition known as critical slowing down associated

51

with a quite catastrophic reduction in their sampling efficiency as the system under

study approaches a critical point [64]. Critical slowing down typically manifests

as a power-law scaling of the integrated autocorrelation time with the system’s

correlation length ξ,

τint,O ∝ ξzO , (3.6)

where ξ (in lattice units) diverges as we take the continuum limit of our lattice

field theory.

Algorithms based on local updates [38, 39, 65] have lower limit of zO = 1 owing

to the maximum speed of information propagation, but in the absence of very

careful tuning [66] they typically exhibit zO = 2 scaling, corresponding to diffusive

information transport. Furthermore, there is substantial evidence that the picture

is even worse when considering theories which possess non-trivial topology in the

continuum limit [67–71], including QCD itself [72, 73]. As the continuum limit is

approached, the rapid increase in free energy barriers between topological sectors

can result in zO > 2 for topological observables, and potentially even exponential

scaling [74].

Collective update algorithms should, in principle, fare much better, because they

are not restricted to local (e.g. random-walk or Hamiltonian) dynamics. Indeed,

in Chapter 2 we already made use of the Swendsen-Wang (SW) algorithm [62] to

produce the training data, which is based on collective updates. Whilst algorithms

based on collective updates have been devised for certain systems [75–78], there is

no general-purpose collective update algorithm, and critical slowing down remains

an unsolved problem in the majority of cases, including lattice QCD.

This motivates augmenting the pre-exisitng MCMC techniques with tools from

ML. Techniques which are either based on the models discussed in Chapter 2 or

similar but are comprised of more hidden layers, deep generative models (DGMs)

[79, 80], seem like comprising candidates for this task. As we have seen, once

trained, the DGMs can be directly sampled from in order to generate configurations

for physical models. Already, a number of prototypical hybrid algorithms have

been proposed in which DGMs either guide or replace traditional MCMC update

procedures [1, 81–95].

Normalizing flows [96–98] are a class of DGM which model the distribution

of interest by learning an invertible map from a set of latent variables whose

distribution is much easier to sample from. Typically, the map is built out of a

sequence of relatively simple element-wise transformations [99, 100]. The capacity

52

to model complex, correlated probability distributions arises due to the fact that

the parameters of these transformations are generated by neural networks that

take the variables themselves as inputs. Put another way, the process of training

such a model is an encoding of the correlations between the degrees of freedom in

the path integral into the weights and biases of these neural networks.

Normalizing flows remind us of Lüscher’s trivializing map [101], in which the

theory is mapped onto one where the field variables decouple, through an invertible

field transformation whose Jacobian negates the weighting effect of the action.

Lüscher provided a power-series expression for the generators of a class of flows

which trivialize lattice gauge theories, although only the first two terms in this

series are tractable in practice, and additional finite-step errors are accumulated

through numerical integration of the flow. Unfortunately, the degree to which

the result of this procedure approximates a trivializing map proved insufficient

to improve the scaling of integrated autocorrelation times [102]. However, there

has recently been a renewed interest in the potential to construct approximately

trivializing maps with additional leverage provided by modern machine learning

techniques.

In Secs. 3.2 and 3.3 we outline a procedure in which a normalizing flow

generates statistically independent field configurations that act as proposals for

the Metropolis-Hastings algorithm. From a theoretical perspective, this approach

has the potential to become more efficient than traditional sampling, since the

statistical efficiency of the sampling algorithm is decoupled from the correlation

length of the system. The caveat is that, somehow, the costs associated with

the highly non-trivial task of sampling from the path integral of an interacting

field theory are transferred to the training of the model. Therefore, to answer

the question of whether a generative sampling algorithm can be expected to

outperform traditional methods is a matter of understanding how these training

costs scale as the continuum limit is approached.

We compare our results to a seminal paper which first demonstrated that the

procedure just described is a viable approach to sampling in lattice field theory [1].

In their proof of principle study, which focused on two-dimensional scalar φ4 theory

on small lattices (up to 142 sites), the normalizing flow was a sequence of element-

wise affine transformations parameterised by neural networks. Here, we continue

the same thread, with the aim of establishing how well this approach scales to

larger lattices (up to 202 sites). Finding that the recipe used in Ref. [1] yields

fairly inefficient representations of trivializing maps for the particular theory of

53

interest, we make a number of adjustments; most importantly, we introduce a more

expressive transformation based on a spline, and replace the deep neural networks

by networks with a single hidden layer that is rather narrow. These changes

facilitate a large reduction in the computational cost required to train models

of equivalent quality. Finally, we quantify the scaling of our models towards the

continuum limit using hardware-independent metrics — the Metropolis-Hastings

acceptance rate, the number of trainable parameters in the models, and the total

number of field configurations generated during the training phase.

3.2 Sampling in lattice field theory

The problem we are trying to solve can be phrased as follows: we would like to

generate samples Φ = (φ(1), φ(2), . . . , φ(|Φ|)) of the discrete random field {φx | x ∈
Λ} ≡ φ ∈ M|Λ|, where |Λ| is the number of sites on the lattice and M|Λ| is a

direct product called the field space, that are representative of the lattice field

theory we seek to study. By ‘representative’ we mean that the probability of

a particular configuration appearing in the sample is to be proportional to its

Boltzmann weight,

p(φ) ≡ e−S(φ)

Z . (3.7)

We will refer to p(φ) as the target density.

3.2.1 Markov Chain Monte Carlo

MCMC sampling methods work by generating a sequence of independent

transitions φ(n) → φ(n+1) which construct a Markov chain (φ(n))Nn=1. Thus, implicit

in any MCMC method is a transition kernel W (φ→ φ′), which is required to have

a stationary distribution that is equal to the distribution from which we wish to

sample, implying ∫
Dφ p(φ)W (φ→ φ′) = p(φ′) . (3.8)

If W (φ→ φ′) is also ergodic, then the stationary distribution is unique and the

Markov chain is guaranteed to converge to p(φ) [103]. However, this does not

imply that any finite section of the chain is representative of p(φ), since the process

of generating configurations via a transition kernel introduces autocorrelations.

In practice, this results in statistical errors that scale as (2τint,ON)−1/2 rather

54

than N−1/2, leading to a trade-off between algorithmic efficiency — the amount

of effort taken to generate a transition — and statistical efficiency — how many

transitions are required to produce a statistically independent configuration.

The approach of the Metropolis-Hastings algorithm [38, 39] is to generate

configurations φ′ via a distribution q(φ′ | φ) which is easy to sample from, and

accept or reject these proposals based on an acceptance probability A(φ → φ′)

such that W (φ→ φ′) = q(φ′ | φ)A(φ→ φ′) and detailed balance is satisfied. The

standard choice is the ‘Metropolis test’,

A(φ→ φ′) = min

(
1,
q(φ | φ′)
q(φ′ | φ)

p(φ′)

p(φ)

)
, (3.9)

which is a more general version of the Metropolis test in Sec. 2.4.3, in which

q(φ′ | φ) was uniform. Importantly, Eq. 3.9 does not require the calculation of

normalizing factors. A rejection of the proposal corresponds to a duplication of the

current state in the chain. Thus, the Markov chain can be seen as a reweighting

of the set of proposals in which the configurations pick up integer weights. The

proposal distribution q(φ′ | φ) can be anything which guarantees ergodicity of

W (φ→ φ′), and it is sufficient for it to have non-zero density everywhere onM|Λ|

[104].

The Metropolis-Hastings (MH) is demonstrated by the following snippet of Python

pseudo-code. generator yields proposals drawn from q(φ′ | φ), and acceptance

is a function which evaluates (3.9).

Metropolis-Hastings Algorithm (Python)

chain = []

current = initial = next(generator) # initialise

for n in range(N):

proposal = next(generator)

prob = acceptance(current, proposal)

r = rand() # random uniform number [0, 1]

if r < prob:

chain.append(proposal)

current = proposal

else:

chain.append(current)

55

The MH algorithm is completely agnostic towards the process through which

proposals are generated provided any ‘selection bias’ is properly accounted for by

the factor q(φ | φ′)/q(φ′ | φ). This makes it very appealing as a kernel around

which to construct collective updates algorithms.

The complexity of this approach is introduced due to the rapidly increasing sparsity

of p(φ) as the number of degrees of freedom is increased when we move towards

the continuum, which puts extremely stringent constraints on how proposals may

be generated if we are to sample the path integral in an acceptable amount of

time. The two main approaches to this problem are

• Local updates : Generate proposals that are close to the current configuration

by updating individual lattice sites. Changes in p(φ) can be made arbitrarily

small by tuning the step size so as to yield a desired acceptance rate.

• Hybrid Monte Carlo: Generate proposals by numerically integrating a

fictitious Hamiltonian system, and by doing so update all of the lattice sites.

In this case it is the number of integration steps that must be balanced

against the acceptance rate.

Both of these methods become less efficient when we take the continuum limit, as

we are forced to trade down on step size to keep the acceptance rate reasonably

high, meaning each statistically independent configuration requires more effort

to produce. This is what is meant by critical slowing down, and the decline in

statistical efficiency is quantified by the dynamical critical exponent in Eq. (3.6).

3.2.2 A generative approach to global updates

Given what we have already seen about generative models in Chapter 2, it seems

feasible that a generative model could take on the role of the generator in the MH

algorithm.

For reasons which will shortly become clear, we will focus the following discussion

on parametric DGMs with an explicit probability density, p̃θ(φ), where the

subscript θ collectively labels the model’s parameters. The intention is to construct

a model and identify a set of parameters such that the approximation p̃θ(φ) ≈ p(φ)

is a ‘good’ one.

56

The notion of a ‘good approximation’ is made quantitative through the Kullbach-

Leibler divergence [105],

DKL(p || p̃θ) =

∫
Dφ p(φ) log

p(φ)

p̃θ(φ)
. (3.10)

In the present work, the loss function will be (a variant of) the Kullbach-Leibler

divergence, and the goal of training will be to find the set of parameters θ∗ which

satisfy

θ∗ = arg min
θ

DKL(p || p̃θ). (3.11)

As discussed in Sec. 3.2.1, problems will arise if we are unable to fit the target

distribution well enough, i.e. p̃θ(φ) = p(φ), which would imply that the samples

generated by the DGM are not truly representative of the field theory, with

discrepancies between p̃θ(φ) and p(φ) manifesting as biases in expectation values.

Yet it is possible to exactly correct for these biases through reweighting or a

Metropolis step, provided we have access to p̃θ(φ). Hence, as well as restricting

ourselves to models with an explicit density function, we will also demand that

p̃θ(φ) is tractable, by which we mean it is given exactly by a closed-from expression

computable in polynomial time (to be scalable) and whose repeated evaluation

(for us, 105 −−109 times during training) does not constitute an unacceptably

large overhead.

Consider a variant of the MH algorithm in which generator is a DGM equipped

with an explicit and tractable density that is capable of generating independent

configurations with probability

q(φ′ | φ) = p̃θ(φ
′) . (3.12)

If the model were a perfect approximation such that p̃θ(φ) = p(φ) for all φ, then

A(φ→ φ′) = 1 identically and 100% of proposals would be accepted. In a more

realistic situation where there are discrepancies, the inefficiency of generating

proposals with a probability proportional to p̃θ(φ) rather than p(φ) manifests itself

through the multiplicities in the Markov chain due to rejections, which are in turn

measurable as autocorrelations. However, if proposals are drawn independently,

then rejections are the only source of autocorrelation. As explained in Reference

57

[1], the autocorrelation at separation t is given, for all observables, by

Γ(t)

Γ(0)
= Pr(t consecutive rejections)

= Eφ∼p̃θ
[
(Eφ′∼p̃θ [1− A(φ→ φ′)])

t
]
. (3.13)

This is an extremely appealing feature that is not present in traditional algorithms,

where random-walk dynamics combined with free energy barriers can lead to the

decoupling of autocorrelation times for different observables [69].

Since Equation (3.13) is strictly larger than the average rejection rate 1 −
Eφ,φ′∼p̃θ [A(φ→ φ′)] raised to the t-th power, a lower bound on the integrated

autocorrelation time can be given in closed form by a geometric series,

τint ≥
1

Eφ,φ′∼p̃θ
[
A(φ→ φ′)

] − 1

2
. (3.14)

This expression is not particularly useful per se, but we will be interested in how

close to this lower bound the actual integrated autocorrelation falls.

Although this is not the approach we will take, reweighting can instead be done

at the level of computing ensemble averages [90], through a change of measure

in (3.1) to Dφ p̃θ(φ)w(φ), where the reweighting factor w(φ) ≡ p(φ)/p̃θ(φ) is the

same factor used in the MH acceptance test. The mean estimator (3.3) then reads

Ō =

∑
φ∈Φ w(φ)O(φ)∑

φ∈Φw(φ)
. (3.15)

Of course, while this approach makes use of all of the generated configurations,

there is still a price to be paid for drawing samples from p̃θ(φ) rather than p(φ);

the weights ensure that the number of configurations yielding non-negligible

contributions to the sum drops rapidly as the approximation p̃θ(φ) ≈ p(φ)

degrades. As remarked on in Reference [91], this a posteriori reweighting approach

is appealing if O(φ) is cheap to compute relative to the cost of generating

configurations from the model.

58

3.3 Normalizing flows

As the bases of this work, we define a normalizing flow as a bijective mapping

fθ :M|Λ| →M|Λ|

z 7→ φ = fθ(z)

between latent random variables, z ∼ r(z), and field configurations, φ = fθ(z) ∼
p̃θ(φ). We should note, however, that field configurations generated by the flow

model are proposals for the MH algorithm, and will not be used directly in

the estimation of observables. Normalizing flows are traditionally constructed

by combining multiple, relatively simple transformations gi through function

composition: fθ ≡ gI ◦ gI−1 ◦ . . . ◦ g2 ◦ g1.

We will immediately restrict ourselves to the special case ofM = R, which applies

to scalar φ4 theory. There has been discussion of flows on non-Euclidean manifolds

[106, 107], but this is beyond the scope of this work. The density associated with

the candidate field configurations is given by a change of variables, involving the

Jacobian determinant,

p̃θ
(
fθ(z)

)
= r(z)

∣∣∣∣ det
∂fθ(z)

∂z

∣∣∣∣−1

. (3.16)

We will draw latent variables from an uncorrelated Gaussian distribution,

r(z) =
∏
x∈Λ

1√
2πσ2

e−z
2
x/(2σ

2) , (3.17)

which one may interpret, in the spirit of Refs. [101, 102], as a trivial limit of φ4

theory.

In principle one could put more effort into generating latent variables that reduce

the workload for the flow, provided that the distribution of the latent variables is

known up to an overall normalization. However, with building a fast and efficient

sampler in mind, we will avoid over-engineering the latent variable for now. Also

it’s key that samples from the latent distribution are i.i.d, in order to guarantee

that the candidate field proposals are also independent, which is easy to achieve

with a sample latent variable distribution.

59

Although the bijective construction is not the most flexible a priori, normalizing

flows have several advantages over other DGMs. Crucially, it is straightforward

in principle to ensure that the density is tractable, by choosing a map whose

Jacobian determinant det ∂fθ(z)/∂z is tractable. It is this feature that provides

us with a means of guaranteeing convergence to the correct target density through

the Metropolis test. Additional benefits relate to the training, which is discussed

in the next subsection. Finally, as an added bonus, the intermediate states of the

flow correspond to valid probability densities in their own right, from which we

can draw samples. In this sense, there may be scope to interpret the distributions

of the intermediate variables, work which would be along a similar line to the

extraction of the couplings in Chapter 2 or relating DGMs to RG transformations

[108–112]. We leave this as the focus of future work on normalizing flows.

3.3.1 Training a flow model

Since normalizing flows are differentiable by construction, they can be trained

using standard gradient-based optimisation algorithms. The algorithm used in

this work is a variant of SGD, which incorporates momentum, called ADAM [113].

The conventional approach to training is to expose the model to a set of data

drawn from the distribution of interest, p(φ), via a separate process and tune

the parameters of the model in order to optimise some loss function. If we were

to take the conventional approach here, the set training configurations would

be divided into minibatches, passed through the layers of the flow model in the

reverse direction, and the resulting variables f−1
θ (φ) used to estimate the following

loss function:

D̂KL(p || p̃θ) = Eφ∼p(φ)

[
− log r

(
f−1
θ (φ)

)
− log

∣∣∣∣ det
∂f−1

θ (φ)

∂φ

∣∣∣∣]+ irrelevant terms ,

(3.18)

where the expectation value Eφ∼p(φ) is computed by taking the average over the

batch. Eq. 3.18 is an estimator for the Kullbach-Leibler (KL) divergence defined

in Eq. 3.10, up to an unknown self-information term, Eφ∼p(φ) log p(φ), that does

not depend on the model’s parameters and is therefore irrelevant for the purposes

of optimisation. Note that minimising the KL divergence in Eq. 3.18 is equivalent

to maximising the likelihood as was done with the RBM once the irrelevant terms

which do not depend on the model are discarded.

For our purposes this strategy is clearly not satisfactory since the problem has gone

60

full circle; the ability to train models would then be tied to the ability to generate

a large representative sample of configurations to act as training data, which is

exactly what we are prevented from doing by critical slowing down. Thankfully,

an alternative path presents itself in the typical scenario where we are interested

in sampling from a theory for which S(φ) is completely specified. In this training

paradigm, one takes the reverse of Eq. 3.10, noting that the KL divergence is not

symmetric

DKL(p̃θ || p) =

∫
Dφ p̃θ(φ) log

p̃θ(φ)

p(φ)
. (3.19)

This allows us to define an loss function that can be minimised using estimates

based on configurations generated exclusively by the model:

D̂KL(p̃θ || p) = Ez∼r(z)
[
S
(
fθ(z)

)
− log

∣∣∣∣ det
∂fθ(z)

∂z

∣∣∣∣]+ irrelevant terms . (3.20)

In Eq. 3.20, the irrelevant terms that do not depend on the model’s parameters are

the latent density Ez∼r(z) log r(z) and the normalizing factor in the path integral,

logZ.

There is a stark contrast between training the normalizing flow model with this

reversed KL and a more traditional approach, such as the one taken in Chapter 2

where we minimised D̂KL(p || p̃θ). The difference goes further than exchanging

an independent training set for configurations drawn from the model. Some key

differences which must be kept in mind are summarised below:

• Training inputs are generated from the model.

• There is no overfitting of the training input but there may be some

underfitting and slow convergence. In particular model may get stuck

with p̃θ(φ) ≈ 0 even if p(φ)� 0.

• Seeing as there is no dataset, a minibatch or batch of data is simply a set of

states which is used for a single update of the model parameters. We tend

to avoid using the term epochs or training iterations and instead quantify

training length by the total number of states generated during the training.

We have actually sidestepped several of the major difficulties normally faced

during training. In particular, since each batch of training inputs is stochastically

generated on-demand, and never recycled, ‘over-fitting’ of training data is not

an issue. The problem that we are most likely to encounter is one of insufficient

61

flexibility to resolve all of the features in the target density, leading to a model

which under-fits the target.

Something which should be re-emphasised is the independence of configurations

generated from the model. Since the latent variables are generated completely

independently from one another, the candidate field configurations are also i.i.d.

This, again, contrasts samples generated from the RBM which were produced using

Gibbs sampling which induced some correlation between successive configurations.

This is an attractive feature of any generative model which uses a latent variable

in this manner such as normalizing flows, variational auto-encoders and GANs.

3.3.2 Building flexible models

When considering potential transformations for the layers gi, there are two

potentially conflicting requirements that will need to be met with a compromise.

Firstly, the flow will need to be highly flexible in order to start with uncorrelated

Gaussian variables and distil the complex features of a system near to criticality,

which will include non-trivial correlations on multiple scales. On the other hand,

the Jacobian determinant in Eq. 3.16 must be tractable since we are still required

to evaluate p̃θ(φ) in order to perform the reweighting that guarantees convergence

to the true target. Furthermore, the speed at which models can be trained and

sampled from will depend on the efficiency with which the Jacobian determinant

can be computed. Clearly this constraint is at odds with the goal of using invertible

transformations to map simple distributions to complex ones. It is very challenging

to define sufficiently expressive transformations without rendering the Jacobian

term intractable.

The key development that facilitated normalizing flows to become competitive

with more flexible DGMs at performing benchmark tasks (such as image synthesis)

was a particular type of highly flexible element-wise transformation, now known as

a coupling layer [99, 100, 114]. The coupling layer construction involves splitting

the inputs into two groups. For φ4 theory with a single degree of freedom at each

lattice site, this equates to partitioning the lattice into ΛA and ΛP , which we

refer to as the ‘active’ and ‘passive’ partitions, respectively. Defining v1 ≡ z and

vI+1 ≡ φ, where I is the number of coupling layers, the transformation of the

62

coupling layer on each partition is defined by

gi :

vPi 7→ vPi

vAi 7→ Ci
(
vAi ; Ni(v

P
i)
) , (3.21)

with vPi , v
A
i ∈ R|ΛA| being a set of variables built out of elements {vi,x |x ∈ ΛA}.

The function Ci transforms the active partition and depends on a set of parameters

Ni(v
P
i) that are themselves functions of the passive partition. In the examples

that we will consider here, these parameters are the output of fully-connected

feed-forward neural networks.

Throughout this Chapter, neural network outputs, exclusively, will be denoted by

bold letters, and it will be left to the presence or absence of indices (e.g. i for the

layer index, x for the lattice sites) to specify the cardinality of sets.

In block notation, the Jacobian for a coupling layer is

∂gi
∂vi

=

 I 0

∂Ci
∂vPi

∂Ci
∂vAi

 . (3.22)

Since this matrix is triangular, the determinant is simply the product of terms on

the diagonal

det
∂gi
∂vi

=
∏
x∈ΛA

∂Ci,x
∂vi,x

. (3.23)

By alternating the active A and passive P partitions after each coupling layer, and

composing the flow model of at least three layers, we ensure that every lattice site

is updated using information from every other one. Thus, the coupling layers allow

us to model correlated target densities using uncorrelated latent variables, crucially

without additional expense in the computation of the Jacobian determinant.

Since detAB = detA detB, a sequence of I coupling layers induce the following

Jacobian determinant,

log

∣∣∣∣ det
∂fθ
∂z

∣∣∣∣ =
I∑
i=1

log

∣∣∣∣ det
∂gi
∂vi

∣∣∣∣ . (3.24)

As a practical consideration when writing the code for a normalizing flow, these

terms should be accumulated alongside the transformation of the field variables so

that only a single pass through all the coupling layers yields both the transformed

63

Figure 3.1 Graphical representation of the first coupling block under the
checkerboard partitioning scheme. The latent Gaussian variables,
v1 ≡ z, are split into two partitions (the red and black nodes). The
i-th coupling layer transforms the active partition Ci : vAi 7→ vPi+1

using information from the passive partition, vPi , via the neural
network(s) Ni(v

P
i). I denotes the identity transformation. Note that

there is no need to concatenate the active and passive partitions until
after the final coupling layer.

variables and the Jacobian determinant in Eq. 3.24 for each configuration being

generated. This avoids unnecessary duplication of work during the training.

The choice of partitioning is not expected to make a huge difference on the success

of the model since, as previously mentioned, with more than 3 coupling layers

correlations can occur between any of the output field variables. we will implement

a checkerboard partitioning featuring in Fig. 3.1, which ensures that each lattice

site is directly influenced by its closest neighbours. This partitioning was adopted

in [1], and seems sensible considering the interactions in our theory. We will often

refer to a pair of coupling layers, which together transform every degree of freedom

once, as a coupling block. From hereon, we will drop the A and P superscripts and

assume we are always talking about transforming a set of variables vi belonging

to the active partition. Furthermore, we will denote the neural networks without

an explicit dependence on the passive partition.

3.3.3 Affine and additive transformations

Affine coupling layers were introduced by [100] as part of the Real NVP architecture.

The element-wise transformation multiplies and shifts each degree of freedom, and

is commonly written in vector form,

Caff
i (vi ; si, ti) = (vi − ti)� e−si , (3.25)

64

where si and ti are modelled by neural networks with |ΛA| outputs, and � is the

element-wise product. An interesting feature of this transformation is that it can

be inverted without the need to invert the neural networks.

Using Eqs. 3.23 and 3.24, a single affine coupling layer contributes

log

∣∣∣∣ det
∂gaff

i

∂vi

∣∣∣∣ = −
∑
x∈ΛA

si,x (3.26)

to the logarithm of the Jacobian determinant. The precursor to Real NVP uses

volume-preserving additive coupling layers [99], such that Eq. 3.25 reduces to the

shift by ti only,

Cadd
i (vi ; ti) = vi − ti . (3.27)

In our implementation of these coupling layers, we standardise the inputs to the

neural networks such that they have unit variance, and do not apply activation

functions to the output layer of these neural networks. We also append a global

rescaling transformation after all of the coupling layers have acted, which can

have a learnable scale parameter.

As an inexpensive yet remarkably expressive flow architecture, Real NVP has

achieved widespread success and is frequently taken as a benchmark model to

which new flow models are compared. However, more sophisticated flows using

more flexible transformations have since achieved superior results on a number of

standard datasets — see e.g. Refs. [114–122]. This motivates us to explore one of

the prominent alternatives.

3.3.4 Rational quadratic splines

Splines are functions defined piecewise by polynomials. Coupling layers using

spline-based transformations were introduced in [118] and further developed in

[120, 121]. We will focus on the most flexible member of the family, based on a

continuously differentiable interpolant presented in [123], in which the polynomials

are rational quadratics [121].

A rational quadratic spline (RQS) transformation Crqs
i,x is defined for a single degree

of freedom byK rational quadratics, referred to as the segments of the spline. These

segments are joined end-to-end at a set of knots
{(
vki,x, C

rqs
i,x (vki,x)

)
| k = 0, . . . , K

}
such that the result is a strictly monotonic, C1-differentiable function on the

65

Figure 3.2 An example 8-segment rational quadratic spline transforming the
degree of freedom at lattice site x. wk

i,x and hki,x are the widths and

heights of the rectangle containing the k-th polynomial segment. dki,x
is the derivative at the k-th knot.

interval [−a, a], which will be chosen in order to contain essentially all of the

probability mass.

Given a reference point, the parametrization provided by [123] requires 3K + 1

strictly positive parameters to uniquely specify this function: the side lengths

(wk
i,x,h

k
i,x) of the K rectangles which have adjacent knots on their opposing corners,

i.e. their widths and heights, and the derivatives dki,x at the K+1 knots. Note that

our choice of labelling, featuring in Fig. 3.2, means that the endpoints of the k-th

segment are the (k − 1)-th and k-th knots. This gives us a set of |ΛA| × (3K + 1)

parameters for the coupling layer,

Ni =
{
wk
i,x,h

k
i,x,d

k
i,x, ,d

0
i,x | k = 1, . . . , K; x ∈ ΛA

}
. (3.28)

For later convenience, define the slopes of the straight lines connecting adjacent

knots as
Crqs
i (vki)− Crqs

i (vk−1
i)

vki − vk−1
i

=
hki
wk
i

≡ ski ≥ 0 , (3.29)

66

and re-express the variables being transformed as

vi − v`−1
i

w`
i

≡ αi ∈ [0, 1]|Λ
A| , (3.30)

which defines the fractional positions of these variables within the specific segment

in which they are located, whose index we label by k = `. Note that each degree

of freedom vi,x must first be sorted into the appropriate segment (i.e. the value of

` determined) using e.g. bisection search, which is not too expensive since the

knots are already sorted into ascending order.

Using the 0th knot at
(
v0
i,x, C

rqs
i,x (v0

i,x)
)

= (−a,−a) as the reference point, the RQS

transformation and its gradient can then be written, for each degree of freedom,

using Eqs. 3.31 and 3.32.

Crqs
i,x (vi,x ; Ni,x) = −a+

`−1∑
k=1

hki,x+
h`i,x
[
s`i,xα

2
i,x + d`−1

i,x αi,x(1− αi,x)
]

s`i,x + (d`−1
i,x + d`i,x − 2s`i,x)αi,x(1− αi,x)

, (3.31)

1

w`
i,x

dCrqs
i,x

dαi,x
=

(s`i,x)
2
[
d`i,xα

2
i,x + 2s`i,xαi,x(1− αi,x) + d`−1

i,x (1− αi,x)2
][

s`i,x + (d`−1
i,x + d`i,x − 2s`i,x)αi,x(1− αi,x)

]2 . (3.32)

Taking the logarithm of Eq. 3.32 and summing over all x in the active partition

yields the contribution to the logarithm of the Jacobian determinant from one

RQS coupling layer.

The advantage of using this parametrization should now be clear; all that is

required to guarantee that the transformation is strictly monotonic (and therefore

invertible) is that every parameter in Ni is strictly positive. It is also particularly

simple to enforce the desired normalization:

K∑
k=1

wk
i,x =

K∑
k=1

hki,x = 2a . (3.33)

The function defined by Eq. 3.31 is an interpolant for the set of knots, so the

problem of representing complicated transformations reduces to one of generating

a sufficient number of knots with sufficient accuracy.

After fixing d0
i = dKi = {1}|ΛA|, we let a single neural network generate the

remaining |ΛA| × (3K − 1) parameters in the RQS layer, using the |ΛP | field

variables in the passive partition as inputs. We take the unconstrained outputs of

67

the neural net — denoted below with a hat — and split them into widths, heights,

and derivatives. Positivity of the hki,x and wk
i,x, as well as the correct normalization,

is enforced by passing the unconstrained widths and heights through a softmax

activation function

hki,x =
eĥ

k
i,x∑K

k′=1 e
ĥk
′
i,x

× 2a , (3.34)

which is essentially the generalisation of the logistic function to multiple variables.

The derivatives are instead passed through a softplus activation function

dki,x = log(1 + ed̂
k
i,x) , (3.35)

which guarantees their positivity.

To ensure that the variables which enter the spline transformation fall within

the interval [−a, a], we generally chose a = 5 and standardised the inputs before

the first RQS layer by dividing them by the standard deviation, taken over both

the batch and the lattice sites. To catch the edge cases of input variables falling

outside of this interval, we extended the definition of the transformation to be the

identity outside of [−a, a], while fixing the derivatives at the external knot points

to be unity to ensure that the transformation remains everywhere differentiable.

Neural networks We emphasise that the parameters for coupling layers are the

outputs of neural networks acting on the passive partition, for example

Nx(v
P) =

H∑
j=1

w2
xj σ
(∑
x′∈ΛP

w1
jx′v

P
x′ + b1

j

)
+ b2

x , (3.36)

which represents feed-forward neural networks with a single hidden layer containing

H elements and a non-linear activation function σ [124]. Where, as usual, w is a

matrix containing the network weights, and b is a vector of biases.

3.3.5 Enforcing sign-reversal equivariance

φ4 theory possesses a Z2 symmetry corresponding to invariance of the action under

a global sign-reversal of the field, implying

p(−φ) = p(φ) . (3.37)

68

Since the latent variable already possesses z 7→ −z, we can attempt to constrain

fθ in order to preserve this symmetry by construction.

Maps which preserve a symmetry are those which commute with the group action,

and are sometimes referred to as being equivariant (with respect to the symmetry).

It is not difficult to show that in this case the equivariant maps are odd functions,

and that equivariance of fθ requires the coupling layers gi(vi) to be equivariant,

meaning that the transformations satisfy

Ci
(
− vAi ; Ni(−vPi)

)
= −Ci

(
vAi ; Ni(v

P
i)
)
. (3.38)

In this work, Ni(v
P) are fully-connected feed-forward networks as defined by

Eq. 3.36, which are odd functions if we drop the biases and use odd activation

functions (e.g. tanh) [90]. If we make these choices for the neural networks in the

affine coupling layers, si and ti, then Eq. 3.38 is trivially satisfied by implementing

one additional step, that is to take the absolute value of the output of the si

network.

Enforcing equivariance in the RQS transformations is less straightforward because

the terms in Eq. 3.31 cannot all be simultaneously odd. We implemented a rather

crude workaround that involves splitting the batch of latent variables according to

sgn
∑

x∈Λ zx (i.e. the initial ‘magnetisation’ of each configuration), and treating

the two groups slightly differently within the transformation. We transform states

with sgn
∑

x∈Λ zx > 0, using the RQS transformation in Eq. 3.31. But for

states with sgn
∑

x∈Λ zx < 0, we reverse the transformation taking Crqs
i 7→ −Crqs

i .

This is achieved by reversing the order of the network outputs hi, wi and di.

This approach is not entirely satisfactory, not least because ∂CRQS
i /∂vi varies

discontinuously as
∑

x∈Λ zx changes sign, which may introduce instability into the

training. More importantly, this has broken the diffeomorphism property of the

normalizing flows and so it could have the severe impact of breaking ergodicity.

It is worth bearing in mind that enforcing symmetries is not absolutely necessary;

the Metropolis-Hastings algorithm is guaranteed to converge to the correct target,

and therefore reproduce all of its symmetries, as long as the transition kernel is

ergodic. We remind the reader that a sufficient condition is p̃θ(φ) > 0 ∀φ ∈ R|Λ|

[104] (so that every configuration has a finite probability of being generated),

and that this is guaranteed (for a sensible choice of r(z)) since fθ is a bijection.

Nevertheless, a guiding principle of optimisation is that it is generally more

efficient to enforce known constraints by construction, and benefits of doing so for

69

normalizing flows have been reported in Refs. [89, 91, 125].

3.4 Related work

The first demonstration of a normalizing flow forming the basis of a sampling

algorithm for lattice field theory was provided in [1] for two-dimensional φ4 theory,

using the Real NVP architecture described in Sec. 3.3.3. In this study we validate

our results by directly comparing the observables obtained from our models, to

the results quoted in that study. Still with φ4 as the target theory, in [90] they

used an even more bare-bones flow where the coupling layers simply shift the field

variables, in such a way that the symmetry under φ→ −φ is preserved. We pivot

in the opposite direction with respect to Ref. [90] by using coupling layers that

are more flexible than those in Real NVP.

More recent progress has been on the side of developing the necessary machinery

to apply these ideas to lattice gauge theories; specifically, those that are invariant

under local U(N) or SU(N) transformations. In Ref. [107], they explored several

possible approaches to using normalizing flows in cases where the field variables

are defined on an n-sphere or n-torus. A procedure for constructing normalizing

flows that are equivariant under gauge transformations was initially developed

in [89] for the U(1) case and then extended to SU(2) and SU(3) in [91]. By

definition, a gauge-equivariant flow is one that commutes with the action of the

gauge group, which implies that gauge invariance is preserved by the flow. Hence,

representative samples of gauge fields can be generated using latent variables

drawn from the uniform (Haar) measure for the gauge group, and passing them

through a gauge-equivariant flow. A code-based introduction to these methods

was very recently provided [92].

Another recent and highly relevant study showed that, in certain cases at least, it

is possible to use a normalizing flow to sample from a theory possessing a ‘sign

problem’, which is to say the action is complex and exp(−S) cannot be interpreted

as a measure of probability [93].

Several alternative ideas that involve training parametric models to perform

collective updates predate the use of normalizing flows. For example, in the ‘self-

learning Monte Carlo’ method [126] the parametric model describes an effective

action for a spin system with n-th nearest neighbour interactions whose couplings

70

have been inferred from pre-generated training data, which can then be used to

generate Wolff cluster updates [75]. Some studies have taken RBMs, discussed

in Chapter 2, and embedded them in traditional MCMC algorithms [83, 84].

Although as we already mentioned, training the RBM has so far relied on training

from pre-generated configurations and sampling from the RBM introduces its own

autocorrelation.

Whilst Generative Adversarial Networks (GANs) can be more flexible than

normalizing flows, since p̃θ(φ) is defined implicitly and cannot be directly computed,

they require a lot of additional machinery on top of the GAN itself to ensure

that the distribution being sampled from is close to the correct one [85, 87], or

otherwise quantify the discrepancy [88].

While there have been substantial advances in the use of machine learning to

extract physical information for lattice field theories, the generation of samples

from some approximation of the true path integral has generally come as an add-on

when the tool being used is a DGM. In contrast, the key strength of normalizing

flows is the explicit and tractable density p̃θ(φ) which makes exact sampling much

easier than some of the aforementioned tools, using reweighting or the Metropolis

test.

3.5 Experimental setup

3.5.1 Field theory and observables

For the main part of our study we used the following action,

S(φ) =
∑
x∈Λ

[
− β

2∑
µ=1

φx+eµφx + φ2
x + λ(φ2

x − 1)2

]
, (3.39)

which describes a discretised analogue of two-dimensional scalar φ4 theory with

dimensionless couplings β and λ, defined on a periodic lattice Λ, and using eµ

to denote a unit lattice vector in the µ-th dimension. Experiments with the

non-interacting theory used the ‘standard’ action described in Appendix B.1,

which is given by Equation (B.6) with g0 = 0. We focus on isotropic lattices with

62 ≤ |Λ| ≤ 202 sites.

A nice feature of the parametrization given above is that the limit λ→∞, φ2 → 1

71

is very clearly identified as the Ising model at temperature T ≡ β−1. Indeed,

in the continuum limit φ4 theory belongs to the Ising universality class, with

spontaneous breaking of the φ 7→ −φ symmetry occurring along a critical line(
λ, Tc(λ)

)
in the space of couplings. Near the phase transition, the dependence

of observables on the couplings is typically written in terms of t = T−Tc(λ)
Tc(λ)

. For

example, the magnetic susceptibility diverges as χ ∼ t−γ, and the correlation

length diverges with a different critical exponent, ξ ∼ t−ν . Eliminating t, we see

that χ ∼ ξγ/ν .

In a finite volume observables depend on both the couplings and the system size

in a non-trivial manner, and their behaviour in the critical region is described by

finite-size scaling. For example, the susceptibility in a volume of linear extent L

can be written in the following manner,

χ = ξγ/νgχ(L/ξ) (3.40)

in which finite-volume effects have been bundled into a dimensionless scaling

function gχ(L/ξ), which we notice must tend towards a constant value in the

thermodynamical limit, and approach (L/ξ)γ/ν for L� ξ so as to act as a cutoff.

We now need to specify how we actually measure observables on the lattice. The

basic building block is the two point correlation function,

G(y) =
1

|Λ|
∑
x∈Λ

〈(
φx+y − 〈φ〉

)(
φx − 〈φ〉

)〉
, (3.41)

and its Fourier transform,

G̃(q) =
∑
y∈Λ

eiq·yG(y) . (3.42)

We have used the translation invariance of (3.39) to take a volume-average in

(3.41) for the simple reason that it improves the statistics.

The susceptibility is identified with G̃(0), but in the classical spin setting it is

often expressed in terms of the magnetisation M(φ) =
∑

x∈Λ φx,

G̃(0) ≡ χ =
1

|Λ|
〈(
M − 〈M〉

)2
〉
, (3.43)

Estimators for these observables are easily obtained by exchanging 〈.〉 for a

72

sample mean, and uncertainties estimated using the bootstrap method [127, 128].

However, without explicitly breaking the Z2 symmetry one will always measure

〈φ〉 = |Λ|−1〈M〉 = 0, so if one is interested in the phase transition one can

compute separate sample averages for configurations with positive and negative

magnetisation, to properly account for the fact that the field variable distribution

is bimodal.

The correlation length requires a little more work to measure. It is the longest

mode in the spectrum of
∑L−1

x1=0G(x1, x2), the correlation between one-dimensional

‘slices’. For sufficiently large separations, x2, this takes the form of a pure

exponential (a cosh due to lattice periodicity),

L−1∑
x1=0

G(x1, x2) ≡ Ĝ(x2) ∝ cosh

(
x2 − L/2

ξ

)
, (3.44)

from which the correlation length can be extracted through a fit or by computing

ξ−1(x2) = arcosh

(
Ĝ(x2 + 1) + Ĝ(x2 − 1)

2Ĝ(x2)

)
. (3.45)

In general, this can be challenging due to low signal/noise ratio at large separations,

but with L ≤ 20 we also suffer from having very few data points to fit. To slightly

improve the situation, we average over the two dimensions when computing (3.45).

Another option exploits the fact that the lattice propagator takes the form

G̃(q) ∝
(∑

µ 4 sin2(qµ/2) + ξ−2
)−1

in the low-momentum limit, which lets us write

[129]

ξ2 =
1

2

2∑
µ=1

1

4 sin2(π/L)

(
G̃(0)

Re G̃(q̂µ)
− 1

)
. (3.46)

Here, q̂1 = (2π/L, 0) and q̂2 = (0, 2π/L) are the smallest possible non-zero

momenta, and we have used G̃(q) + G̃(−q) = 2 Re G̃(q).

Our intention will be to tune the couplings so as to obtain systems with correlation

length ξ = L/4, meaning that as we increase the lattice size we are studying

essentially the same theory with an increasingly fine resolution. The reason for

this is two-fold: firstly this proportionality was used in [1] so if we wish to compare

results we should compare like with like. From the physical perspective we only

see the effect of the number of degrees of freedom on algorithmic efficiency, as

we keep the physical size in units of the correlation length constant. The choice

proportionality constant (four) is a reasonable trade-off between the rate at which

73

L λ β ξ (fit) ξ from Eq. 3.45 ξ from Eq. 3.46

6 0.5 0.537 1.57(2) 1.525(3) 1.501(3)
8 0.5 0.576 2.05(5) 2.005(2) 1.990(2)
10 0.5 0.601 2.53(2) 2.529(2) 2.524(3)
12 0.5 0.616 3.10(8) 3.013(3) 3.010(5)
14 0.5 0.626 3.40(4) 3.471(5) 3.487(8)
16 0.5 0.634 4.03(9) 3.940(3) 3.970(4)
18 0.5 0.641 4.56(5) 4.502(6) 4.555(9)
20 0.5 0.645 5.1(2) 4.903(9) 4.96(1)

Table 3.1 φ4 couplings and correlation length measurements for the main part
of our study. The inverse temperature β was tuned such that ξ ≈ L/4
for each lattice size.

criticality is approached as we increase L, and the size of finite-volume effects

contained within scaling functions. Fixing λ = 0.5 and allowing β to vary, we

obtained three separate predictions for the value of ξ showing that these values of β

correspond to ξ = L/4 on the symmetric side of the phase transition. These values

are provided in Table 3.1. The difference between the different determinations of

ξ stem from the different assumptions that go into the estimations. The largest

discrepancies in the table, once the error is taken into account, occur for smaller

lattices which makes sense since we would expect there to be more finite size effects

and the low momentum approximation is less valid, since the lowest momentum

is inversely proportional to the lattice size.

3.5.2 Model details

When investigating the scaling of training costs (Section 3.6.4), we used normalizing

flows that are a specific hybrid of affine coupling layers and rational quadratic

splines, with the parameters of the transformations generated by fully-connected

feed-forward neural networks containing a single hidden layer of size H = |Λ|. In

Sec. 3.6.3 we report on the observations that led us to converge on this particular

design.

The metric we use to measure the quality of trained models is the average rate at

which configurations generated by the model are accepted when used as proposals

for a Metropolis-Hastings simulation. In Sec. 3.6.1 we verify that this acceptance

rate entirely governs the integrated autocorrelation times of the resulting Markov

chains, as claimed in Sec. 3.2.2, Eq. (3.13).

74

In Secs. 2.3 and 2.4, we outlined a manual schedule for tuning the learning rate

in order to train the RBM. Whilst there is clearly major differences between the

two training procedures, there are at least qualitative arguments for reducing the

learning rate as the training progresses in order to fine tune the model parameters.

We used the ADAM optimisation algorithm [113] to update the parameters of

our models. Instead of manually updating the learning rate, we instead anneal it

using a cosine schedule,

ηt =
η0

2

[
1 + cos

(
t

T
π

)]
, (3.47)

where T is the total number of training iterations. Note that this learning schedule

requires that we specify T before training begins and that there is no additional

stopping criteria (such as the loss function plateauing). We use the ADAMW

variant [130] of the optimiser along with warm restarts [131]. Warm restarts

amount to restarting the training, resetting t = 0 in Eq. 3.47 which allows us to

continue training if we are not happy with the outcome after T iterations. After

some experimentation with faster initial learning rates, which typically resulted

in lower acceptances if the number of training iterations was large, we generally

opted for η0 = 0.001.

The batch size, i.e. the number of configurations used to estimate the objective

function at each training iteration, varied from 250 to 32000 configurations. In

the vast majority of cases the difference between the batch size and the number

of training iterations was a factor of one, two or four. Note that these batch sizes

are much larger than those conventionally used in stochastic optimisation. In fact,

it is quite typical to intentionally aim for a highly stochastic trajectory through

the space of parameters, by using a very small number of training inputs (as low

as 2 in Reference [132]) for each update of the model’s parameters. This may

seem surprising, particularly since the graphical processing units (GPUs) on which

these models are run are entirely optimised for highly parallel computations, so

a small batch size is an under-utilisation of these capabilities. The motivations

behind this choice are that the stochasticity reduces the tendency of the model to

over-fit the training inputs or otherwise get stuck in local optima [132, 133], and

instead are more likely to find the global minimum [134]. However, we have no

reason to prefer small batch sizes a priori; as explained in Sec. 3.3.1, the problem

of over-fitting training inputs does not apply to us, and we expect the issue of

local optima to be alleviated, to some extent, thanks to stochasticity inherited

from the random number generator that produces our training inputs. In our

75

case, the only limitation to the batch size is hardware: at some point we are

physically unable to increase the size of the batch without significantly adding to

the computational time required to process the batch.

Unless stated otherwise, one can assume the following for all models presented in

the remainder of this paper:

• The φ4 couplings are given by Table 3.1.

• The flow comprises a number of affine coupling blocks followed by a single

rational quadratic spline coupling block.

• Z2 equivariance is enforced in the affine and additive coupling layers, as

described in Section 3.3.5.

• The splines have 8 segments and do not have Z2 equivariance enforced.

• Neural networks have a single hidden layer containing exactly |Λ| (i.e. L2)

elements, as defined in Equation (3.36) with H = |Λ|.

• We do not apply an activation function to the output layer of the s and t

networks in the affine (or additive) layers.

• Metropolis-Hastings simulations ran for 105 steps.

• In figures, data points and error bars are an average and range taken over

three identical models with different random initialisations.

A significant amount of effort was made to release our code, ANVIL [135], for

public use. The code uses the PyTorch library [136] for constructing and training

models, and Reportengine [137], a declarative framework for performing scientific

analysis. Models are specified by human readable runcards which allows for rapid

experimentation with different flow architectures and hyperparameters.

3.5.3 Summary of the procedure

A training iteration consists of the following steps:

1. Sample from Eq. (3.17) to generate a batch of N latent configurations,

(z(1), z(2), . . . , z(N)) where z(n) ∼ r(z). Each configuration z(n) comprising

|Λ| uncorrelated Gaussian variables.

76

2. Pass these variables through the layers of the model, calculating the

logarithm of the Jacobian determinant, log |det ∂gi/∂vi|, for each layer gi as

it transforms one of the two partitions. This results in N candidate field

configurations and N Jacobian determinants log |det ∂fθ/∂z| corresponding

to the full transformation φ = fθ(z).

3. Compute the action, Eq. (3.39), for the batch of candidate field configura-

tions.

4. Average the action and Jacobian over the batch, to provide an estimate of

the reverse Kullbach-Leibler divergence, Eq. (3.20). We rely on PyTorch’s

‘autograd’ machinery [136] in order to propagate the gradients of loss

with respect to the neural network parameters using the backpropagation

algorithm [138].

5. Update the parameters of the model by a small increment in the direction

of steepest gradient using the ADAM or ADAMW optimisation algorithm.

Once we have a trained model, we move onto the sampling. We generate a large

sample of candidate configurations from the model, along with their Jacobian

terms, and immediately calculate the quantity logw(φ) = − log p̃θ(φ)− S(φ) for

each candidate configuration. We are now fully equipped to run a Metropolis-

Hastings simulation as described in Sec. 3.2. For the Metropolis test we simply

exponentiate logw(φ′)− logw(φ) to obtain the acceptance probability A(φ→ φ′),

see Eq. (3.9) with q(φ | φ′) = p̃θ(φ) and p(φ) ∝ exp(−S(φ))).

3.6 Results

3.6.1 Proof of principle

As an initial test, we fixed λ = 0.5 and trained the affine-spline models whilst

varying the inverse temperature β in order to cross the phase transition. Fig. 3.3

shows that high acceptance rates are possible in both the symmetric and the

broken phase of φ4 when using a unimodal Gaussian prior. As was expected,

the model becomes increasingly challenging to train as the phase transition is

approached. Note that Fig. 3.3 does not highlight that the training is probably

easier for short correlation lengths, in part because the fully-connected neural

77

networks will contain a high level of redundancy since many degrees are effectively

decoupled.

Figure 3.3 Metropolis-Hastings acceptance rates for a set of models trained at
different values of the inverse temperature, β, crossing the critical
temperature (β ≈ 0.67 for largest lattice). The inset figures show the
magnetisation and susceptibility over the same range of β. Models
consisted of a block of affine layers followed by a spline block. The
affine layers had Z2 equivariance enforced as described in Sec. 3.3.5,
but this was only true of the spline layers in the low-temperature
phase (see Fig. 3.11 for explanation). Emphasis was placed on like-
for-like comparison (rather than maximising the acceptance rate);
for each lattice size, models were identical and were trained in an
identical fashion for a fixed number of iterations.

Something which made this kind of scan, across parameter β, more efficient was

using a single model that is initially trained at a high temperature. Then, by

adjusting the temperature over a sequence of training phases, the training doesn’t

start from scratch. Instead, a model trained at temperature β0 can be re-trained

at temperature β0 + δβ with less effort. Note the similarity between this approach

and the annealing which was used in Sec. 2.2.2 to estimate the partition function

of the RBM, the key difference being that here we are training a new model

starting from a pre-existing one trained on a similar theory.

78

3.6.2 Acceptance rates and autocorrelation times

Figure 3.4 Relationship between Metropolis-Hastings acceptance fraction and
integrated autocorrelation time. Both the gradient and the intercept
were left unconstrained in the least-squares fit. The theoretical lower
bound from Equation (3.14) is also plotted in green, for comparison.

In order to test the claim in Sec. 3.2.2, that when the proposal distribution q(φ′ | φ)

in the Metropolis test is not conditioned on the current state (in other words all

candidate fields are independent) the autocorrelation is entirely dependent on the

acceptance rate of the proposals Eq. 3.13, we perform some empirical tests. Since

this has nothing to do with the specifics of the flow model, the system size or

the values of the couplings, we simply combined results from a large number of

previously trained models (539) to verify this property.

Fig. 3.4 shows a tight relationship between the integrated autocorrelation time

τint and the acceptance, which supports this claim. The geometric lower bound

on the integrated autocorrelation time from Eq. (3.14) is also plotted, but we find

that the relationship between acceptance rate and integrated autocorrelation time

79

is fit rather well by a power law,

τint ≈
1

2
Eφ,φ′∼p̃θ

[
A(φ→ φ′)

]−2.48(1)
. (3.48)

Table 3.2 contains no new information, but rephrases this power-law relation

in terms of the acceptance rate required for the effective sample size to be a

particular fraction of the Markov chain length. However, for reasons concerning

the measurement of τint, discussed shortly, we advise against extrapolating to

lower acceptances and larger autocorrelation times.

Neff

|Φ| 1 0.5 0.2 0.1 0.01 0.001

Eφ,φ′∼p̃θ
[
A(φ→ φ′)

]
1 0.76 0.52 0.40 0.16 0.06

Table 3.2 Based on the power-law fit from Figure 3.4,
Neff

|Φ| = (2τint)
−1 is the

ratio between the effective sample size (that controls the statistical
error on observables) and the total length of the Markov chain.

In Fig. 3.4, the autocorrelation time was calculated from autocorrelations in the

magnetisation, using a combination of the integrated autocorrelation time from

Eq. 3.4 and an estimator of the autocorrelation time. Similarly to Eq. 2.43, we

estimate the autocorrelation function as

Γ̂O(t) =

[
1

N − t
N−t∑
i=1

O(φ(n+t))O(φ(n))− Ō2

]
, (3.49)

setting the observable O to be the magnetisation. Then we estimate the integrated

autocorrelation time as

τ̂int,O(W) =
1

2
+

W∑
t=1

Γ̂(t)

Γ̂(0)
, (3.50)

where W is a finite window which the infinite sum in Eq. 3.4 is truncated to.

We demonstrate the dependence of the integrated autocorrelation time of the

magnetisation on the window size in Fig. 3.5 and give details of the exact procedure

for choosing the optimal window size in App. B.2. We note that although the

optimal window size is chosen to minimise the bias and statistical error on the

estimate of τ̂int,O(W), the estimate is fairly stable for all of the plotted window

sizes greater than 6.

We compare the integrated autocorrelation time of the magnetisation to the

observable-independent estimator defined in Eq. 3.13 in the left hand plot of

80

0 2 4 6 8 10 12 14 16
W

0.5

0.6

0.7

0.8

0.9

1.0

1.1

in
t,M

(W
)

Integrated autocorrelation of magnetization

sample interval: 1

int, M(Wopt)
Optimal window size
Truncated

Figure 3.5 The dependence of the estimate of the integrated autocorrelation time
of the magnetisation on the finite window used to estimate it W . For
small window sizes the estimate is biased, for larger window sizes
the estimate has statistical fluctuations. In practice we choose an
optimal window size, using a procedure which is detailed in App. B.2,
however we see from the plot that the estimates for plotted window
sizes greater than about 6 are fairly consistent with each other.

Fig. 3.6. There is generally good agreement between the two. Where there

is discrepancy between the two, it is systematic: the rejection-based estimator

returns a larger integrated autocorrelation time than that calculated using the

magnetisation.

In order to understand this phenomenon, we show in the right hand plot of Fig. 3.6

that the discrepancy between τint,M and τint, chain is directly related to the presence

of long periods in the Metropolis-Hastings simulation in which every proposed

configuration is rejected. These events can be shown to arise in the tails of the

distribution depicted in Fig. 3.7 and are clearly a problem when estimating the

autocorrelation time.

The rejection-based estimator is highly sensitive to these long runs of rejections

81

Figure 3.6 Left: Comparison of alternative estimates of the integrated
autocorrelation time. On the x-axis, τint,M is calculated in the
traditional way, by measuring the autocorrelation function of the
magnetisation (see Appendix B.2). On the y-axis, the estimator is
based on the Metropolis-Hastings rejection rate, using equations (3.4)
and (3.13). Right: Discrepancy between the alternative estimates
of the integrated autocorrelation time shown on the left, with x-
coordinates corresponding to the length of the longest consecutive run
of rejections occurring in the sampling phase.

and hence picks up a large systematic error. Conversely, the traditional estimator

is relatively insensitive to a small number of uncharacteristically long periods of

consecutive rejections, which may result in an underestimate of the true integrated

autocorrelation time.

In Fig. 3.7 we see the distribution describing the length of runs of consecutive

rejections become less long-tailed as the acceptance rate increases. Although this

trend is somewhat obvious in a qualitative sense, the circumstances by which

these long-tailed distributions arise are an interesting facet of the scheme used to

train these models.

82

Figure 3.7 Empirical distributions describing the length of periods of consecutive
rejections in MH sampling involving models with different average
acceptance rates. Each empirical distribution combines accept/reject
statistics from models with various combinations of layers, trained
against different target theories (in terms of lattice size and couplings).
The scale on the x-axis is logarithmic other than between zero and
one, zero consecutive rejections refers to two successive candidates
being accepted.

3.6.3 Finding efficient representations

An important factor in the scaling of the training costs is the number of trainable

parameters, |θ|. The game is to build an expressive enough flow with the smallest

amount of redundancy. We want to find the most efficient representations of

trivialising maps, where |θ| grows slowly as we increase the number of degrees of

freedom in the target density.

In the case of the free theory, there was no advantage to using affine and rational

quadratic spline transformations over the much simpler additive transformations.

However, now that we turn our attention to interaction theories we can examine

the role of the different transformations, at least empirically.

As previously alluded to, we are able to sample from the intermediate layers, which

define probability densities in their own right, an example is given in Fig. 3.8

where we show histograms of the field variables and the two point correlation

function from Eq. 3.41 on configurations outputted by intermediate layers of

the flow model. To be a bit more precise, for a flow model defined with several

83

coupling layers

f ≡ gI ◦ gI−1 ◦ . . . ◦ g2 ◦ g1 , (3.51)

we can generate a set of latent configurations z ∼ r(z) and then examine the

partially transformed configurations, i.e. the configurations after the first coupling

layer g1(z), the second coupling layer g2(g1(z)) etc. This gives us insight into the

role played by each individual layer.

Figure 3.8 Samples of field configurations drawn from each step in the process
of generating a representative sample of φ4 configurations with
{L, β, λ} = {10, 0.601, 0.5}, using a flow model consisting of two
affine coupling blocks, followed by a spline. The process starts with
uncorrelated latent variables, z ≡ v1, and we then sample from the
model after each coupling block (layers i = 3, 5, 7), and finally take
the output of the Metropolis-Hastings phase (keeping one in every
2τint configurations). The top row contains histograms of the field
variables and the bottom is the two point correlation function from
Eq. 3.41. The emerging correlations are emphasised by the linear
and logarithmic scaling of the colour map (a symmetric log scaling
with a linear threshold of 0.1).

In the regime where the distribution of the field variables is bimodal, with states

having either net positive or net negative magnetisation, we find that the separation

of the unimodal latent variable into the bimodal field variable typically happens in

the last coupling block when the coupling layers are all affine. It appears as if the

flow first of all switches on the correlations between variables and then shifts bulks

of the two modes to ±〈|φ|〉. Conversely, when we introduced a RQS coupling block

into the flow, it always took on the role of transforming the unimodal distribution

to a bimodal distribution, regardless of its position in the flow. This behaviour

can be observed in Fig. 3.8, although here the RQS block is positioned at the end

84

of the flow.

Despite the RQS layer always taking on the same role in the transformation we

show in Fig. 3.9, at least with the combinations we tested, that the flow generally

performs best when the RQS is the final layer.

Figure 3.9 Comparison of flow models with different arrangements of affine
(Aff) and rational quadratic spline (RQS) coupling blocks. E.g. the
blue model contains a single RQS block, i.e. two RQS coupling layers,
whereas the orange model passes the latent variables through an RQS
block, then two affine blocks. All neural networks contained a single
hidden layer of size H = |Λ|. All models were trained for 16000
iterations with a batch size of 16000.

Our understanding is that the additional flexibility of the RQS might help it

perform the unimodal-bimodal split better than the affine layers, but the affine

layers earlier in the flow help to build in the correct correlations between field

variables.

This is further supported by comparing pure affine flows to affine-spline flows with

approximately the same number of trainable parameters in Fig. 3.10. Here we took

a seven-block affine flow and substituted six blocks of affine coupling layers for a

single RQS block. Note, however, that this trick cannot be repeated. In Fig. 3.9

85

we show that adding a second spline block fails to improve the acceptance rate any

more than adding another affine block. It appears that, with the unimodal-bimodal

transformation taken care of in the final layer, the remainder of the trivializing

map can be modelled more efficiently using the simpler transformations.

Figure 3.10 Comparison between three groups of flow models using different
coupling layers. One RQS block contains approximately the same
number of parameters as six affine blocks. ‘Equivar’ refers to the
Z2-equivariant affine layers described in Sec. 3.3.5. The green data
points correspond to flows in which the affine layers were similar to
those used in [1]. Models were trained in an identical fashion, for
16000 iterations with a batch size of 16000.

It’s clear in Fig. 3.10 that enforcing Z2-equivariance in the affine layers as described

in Sec. 3.3.5 leads to higher acceptances which also scales slightly better with the

lattice size. In Fig. 3.11, we see that the acceptance is only improved in the broken

phase when Z2-equivariance is enforced (crudely, as per the prescription at the

end of Sec. 3.3.5). Considering the potential risks with the crude implementation

of enforcing Z2-equivariance in the RQS layers (potentially breaking ergodicity),

we don’t find a compelling reason for enforcing that symmetry in the RQS layers.

There are diminishing returns when adding more affine layers to the flow. The

86

Figure 3.11 Changes in the Metropolis-Hastings acceptance rate (denoted by
Ā) of spline-based models, due to enforcing Z2-equivariance in the
spline layers, as described in Section 3.3.5.

gains are most marked for larger lattices, but we see in Fig. 3.12 that just five

affine coupling pairs is enough to reach maximum acceptance. Likewise, we found

that adding more segments to the RQS had diminishing returns and that eight

segments resulted in sufficiently flexibly RQS layers, without slowing down the

training too much.

During numerous experiments, we found that using deep neural networks in the

coupling layers was no better than shallow networks with just a single hidden

layer. Some of the results of this experimentation is shown in Fig. 3.13, along

with some experimentation with increasing the size of the hidden layer in the

shallow networks. We found that the benefits of increasing the width of neural

networks quickly diminished once the hidden layer contained more than H = |Λ|
elements (i.e. twice the size of the input layer, which is the passive partition

only). Since a doubling of the neural network widths in spline layers increases the

number of parameters by a factor of approximately 3K|Λ|, incurring a considerable

increase in training costs, it was almost never a better investment of resources

than increasing the batch size or number of training iterations.

87

Figure 3.12 Improvements in the Metropolis-Hastings acceptance rate due to
adding more affine coupling blocks, before a rational quadratic spline
block performs the final transformation.

A stark feature of Fig. 3.13 demonstrates a key conclusion of this work. The

acceptance rate of the models is strongly dependent on the cost of the training

(the total number of states generated during the training |Φtrain|) and is relatively

oblivious to adding trainable parameters to the model.

3.6.4 Scaling of training costs

Neglecting algorithmic or hardware-related factors that contribute to scalability,

the cost of training a model up to a given value in some performance metric (e.g.

acceptance rate) can be measured in terms of the number of training iterations

and the batch size. A single number which contains all of this information is

the total number of configurations that the model has been exposed to during

training, |Φtrain|. This has the added advantage of being comparable to algorithms

which suffer from critical slowing down, where the integrated autocorrelation time

is proportional to the total number of configurations that must be generated to

achieve a target error on expectation values. We provide some training times,

88

Figure 3.13 Comparison of Metropolis-Hastings acceptance rates for flow models
with a different number of trainable parameters, |θ|, within their
neural networks. The colour axis, |Φtrain|, denotes the total number
of configurations used in the optimisation (the batch size multiplied
by the number of training iterations). The dotted lines connect
models whose neural networks had a single hidden layer, of varying
width, whereas following the dashed lines equates to increasing
the number of hidden layers without changing the widths. Models
comprised one affine block followed by one RQS block and were
trained for 32000 training iterations with a range of batch sizes.

measured in seconds in Appendix B.3, but stress the hardware-dependence of

these numbers.

In Fig. 3.14 we plot the mean and standard deviation of the acceptance for models

with the same training cost, |Φtrain|. The model parameters for each lattice size are

given in Table 3.1. In order to vary |Φtrain|, we incremented both the minibatch

size, between 250-32000, and the number of training iterations, between 500-64000

but not necessarily together. Single points in Fig. 3.14 are made up of a mixture of

different batch sizes and training iterations. We find the small errorbars reassuring,

indicating that the variable of importance is indeed |Φtrain|. The acceptance rate

does not appear to plateau even for the smallest lattice, which indicates that the

89

acceptance is not limited by the model saturating, but rather by the amount of

training.

Figure 3.14 Dependence of the average acceptance rate on the total number
of configurations to which it has been exposed during the training
phase, i.e. the product of the batch size and the number of training
iterations. Error bars are standard deviations over a number of
different models trained using different batch sizes and training
lengths, as well as a variable number of affine layers.

We make a first attempt to quantify the scaling of |Φtrain| in a way that can be

contrasted with critical slowing down. In order to get a set of points which could

be fit using a power law, we trained a series of models whilst varying the size of

the lattices and the total number of states sampled from the model during the

training |Φtrain|. We then grouped models by the integrated autocorrelation time

estimated from the magnetisation in bins of width ∆τint,M = 0.25. For each group

(and lattice size, where available) we choose the model with the lowest integrated

autocorrelation time and then fit the exponent of |Φtrain| vs. lattice size for models

of approximately constant integrated autocorrelation time. In Fig. 3.15 we show

the results of these fits, and note that despite the drastically reduced training

time compared to the original study [1], the amount of effort required to train

these models is growing at an astonishing rate. While it is true that |Φtrain| is a

90

one-off overhead cost, unlike the number of configurations required in a traditional

sampling simulation, scaling that goes with the 9th power of the correlation length

makes it impossible to avoid the conclusion that this prescription remains far

away indeed from a solution to critical slowing down.

Figure 3.15 Scaling of the training cost, measured by the total number of
configurations used for optimisation, for models to reach a certain
target sampling efficiency. Models were sorted into ‘bins’ by
the integrated autocorrelation time measured during the sampling
phase, and data points represent the best model from each bin.
The values in the legend can in some sense be compared to the
critical exponent zO which determines the critical slowing down in
traditional simulations.

91

3.7 Discussion

Machine learning has, generally, followed a trend towards increasingly deep

architectures, in spite of the fact that many of these architectures, including

the fully-connected feed-forward neural networks defined used in this work, require

only a single hidden layer to act as universal approximators. One motivation for

preferring deep architectures is that they are less inclined to over-fit data [139] a

potentially surprising feature which is explored further in [140, 141]. However, as

already discussed Sec. 3.3.1, over-fitting is not a problem we will face since each

training iteration exposes the model to a set of previously-unseen training inputs.

There are also arguments that deep networks can represent highly non-linear

functions more efficiently than shallow networks. Regardless, our experimentation

appears to show that increasing the depth of the neural networks doesn’t offer

any benefit.

It is possible that this result is not merely a peculiar outcome of building the map

out of coupling layers, whose structure is quite unusual; we draw attention to

Ref. [86], in which the conclusion was that a single-layered restricted Boltzmann

machine provides a more efficient representation of an Ising system near criticality

than any of its deep generalisations.

Furthermore, given a fixed number of trainable parameters, we found that a

shallow flow with a more flexible spline layer dramatically outperformed a deeper

flow using affine layers, for the interacting theory at least.

Conventional training, via optimising Eq. 3.18 using a fixed training set, penalises

the model for under-estimating the density at any point at which there is a

training input. This tends to result in models that are smoothed approximations

of p(φ), spanning the space of training inputs. If we were to use such a model

as the basis of our sampling algorithm, we might expect to see a steady flux of

configurations originating from regions of configuration space of low density in

p(φ), which would typically be rejected by the Metropolis test. The situation

for our models is quite different. Instead, the characteristic behaviour, which is

known as zero-forcing, is for the optimisation to quickly purge the prior density

from any region of configuration space in which p(φ) is very small, resulting in

models that fit the modes of the target well but underestimate the low-density

tails [142]. If we return the metropolis test in Eq. 3.9, we see that there is a factor

in the acceptance probability associated with the model distribution divided by

92

the target distribution evaluated on the current state p̃θ(φ)/p(φ). The point is

that if a state gets accepted where the model distribution underestimates the

target distribution, then this factor will suppress the probability of transitioning

away. This explains the observed behaviour in the MH sampling step, where

acceptance rate was typically high but featured rare periods of many consecutive

rejections.

Fig. 3.16 shows how the training can be split into two phases. In the first phase

the modes of the distribution are fitted rapidly, essentially by zero-forcing. In

the second phase, the convergence is much slower, the process of expanding the

modes to fit the tails is much more gradual. Recall that as the acceptance goes up

during this second phase of the training, the distribution of consecutive rejections

becomes less long-tailed, as demonstrated by Fig 3.7.

Figure 3.16 Examples of typical training profiles for hybrid affine-spline flow
models being trained against interacting theories with correlation
length ξ ≈ L/4. The objective function (right-axis) has been shifted
for the purpose of fitting both profiles on one figure. The learning
rate is being annealed down from η0 to zero according to Equation
(3.47).

Something which we observed when training models in the broken phase was an

93

alarming feature of zero-forcing combined with a too high initial learning rate.

In Fig. 3.17 we show an example of such a model, which has essentially broken

Z2 symmetry by being trained too aggressively. Since the model rarely produces

training samples in the tail of the distribution, where there should be a second

mode, it’s very difficult to recover a model which has fallen into this type of regime.

The bottom plots show that this can be avoided by increasing the batch size

and/or reducing the learning rate, in which case the initial phase of the training

is kept under control.

Figure 3.17 Histograms of field variables taken from three samples of 105

configurations, generated by three different models. The colour
labels the sign of the magnetisation. The φ4 parameters are
{L, β, λ} = {6, 0.8, 0.5}. The models had two blocks of affine layers
for which Z2-equivariance was not enforced. In the top sub-figure,
the large learning rate and small batch size result in the breaking
of the Z2 symmetry during optimisation. This is easily avoided by
using more sensible learning rates and batch sizes. However, note
that the acceptance rate for the top model is larger.

Note that the model in the top plot has a higher acceptance rate than both of

the other models, despite it being incorrect. This might seem counter-intuitive

but if the sampling was run for long enough, eventually a configuration from the

collapsed mode would be generated, at which point the Markov chain would freeze

94

due to the enormously suppressed probability of transitioning away.

This should at least serve as a warning, to not just look at the MH acceptance as

a performance indicator, but also check that the sample produced by the model

doesn’t violate any of the known symmetries of the system. For example, it’s

fairly clear from top plot of Fig. 3.17 that the Z2 symmetry has been broken,

simply by looking at histograms of the field variables.

The key conclusion of our results is that the quality of trained models is limited by

how extensively they have been optimised. For the φ4 couplings given in Table 3.1

and our hybrid affine-spline models, Fig. 3.15 shows that these training costs scale

in proportion to the number of degrees of freedom in the target density raised to

a fairly high power — in the region of 7–10.

Larger lattice size unavoidably increases the number of trainable parameters, since

we fixed the neural networks to have a hidden layer of size H = |Λ|, the size of

models grows as |θ| ∝ |Λ|2 = L4. The results of Fig. 3.15 then state that, given

a fixed target acceptance rate, the number of configurations |Φtrain| needed to

train models scales with at least the square of the number of parameters requiring

optimisation. The numbers here are less important than the fact that the poor

scaling is not simply due to the increased number of parameters.

The point is that after the initial zero-forcing phase of the training, the probability

of generating a configuration which produces a gradient, ∇θD̂KL(p̃θ || p), in a

region where the model distribution underestimates the target distribution is very

small. During later stages in the training, once the model has learnt the modes

of the target distribution, we are then reliant on sampling from the tail of the

model distribution specifically in the sub-manifold of the target distribution where

p̃θ(φ)� pθ(φ). This is especially challenging for target distributions with singular

covariance matrices [142]. For demonstrative purposes in Fig. 3.18 we show a

schematic in two dimensions with a sample from a fictional model distribution

at some point during the training and a sample from the corresponding target

distribution (for which the two dimensions are clearly highly correlated). The

model samples more frequently in regions where p̃θ(φ) � pθ(φ) which has the

zero-forcing effect of pushing the model distribution towards sampling the mode

of the target more heavily. Conversely, the model rarely samples along the highly

correlated direction of the target distribution, we believe that the process of

learning this correlated direction is what takes an exponential amount of effort in

the later stages of the training.

95

Target sample
Model sample

Figure 3.18 Example of samples drawn from model during the training vs. a
sample from a target distribution which has high correlations in the
covariance matrix. The majority of samples from the model are in
regions where p̃θ(φ) � pθ(φ), and so have the zero-forcing effect.
The direction for which the target distribution is highly correlated is
rarely sampled by the model and so learning the tails of the target
distribution in this direction has high training costs.

3.8 Conclusions

We have verified the key results of Reference [1]: firstly, that there exist

approximately trivializing maps in two-dimensional lattice φ4 theory that are

accessible in practice to normalizing flow models with tractable Jacobian

determinant; and secondly, that using such models as generators of proposals for a

Metropolis-Hastings simulation represents a complete transfer of the computational

96

costs normally associated with critical slowing down to the costs of training the flow

model. As it often the case in Machine Learning, the efficiency of the procedure

depends on the tuning of hyperparameters, which we have investigated in this

work. We have shown that fairly modest modifications of the original prescription

— inserting a more expressive transformation at the final layer of the flow and

drastically reducing the size of the neural networks — lead to much more efficient

representations of approximately trivializing maps for this system. The extent of

the associated reduction in training costs is such that the systems studied here

and in [1] are accessible with the sorts of computing resources typically found on

personal computers.

However, our main finding is that the rate at which training costs scales as we

move towards the continuum limit is extremely large, increasing far more quickly

than the size of the models. Our work demonstrates a rather urgent need to

understand and mitigate inefficiencies in the training algorithm itself when the

target of optimisation is a lattice field theory in the critical regime, and this must

be done in parallel with efforts towards building more sophisticated flow models.

97

Chapter 4

Bayesian Approach to inverse

problems

4.1 Introduction

Inverse problems fall under the paradigm of supervised learning and are the typical

example of inference where a model is sought starting from a finite-dimensional

set of experimental observations. These problems are notoriously difficult, and

often require trying to guess a continuous function, i.e. an element of an infinite

dimensional space, from a finite amount of data. As emphasised by Hadamard

a long time ago, it is easy to end up in a situation where we deal with ill-posed

problems, in the sense that the solution may not exist, may not be unique, or

may be unstable under small variations of the input data. The determination

of parton distributions from experimental data, or the reconstruction of spectral

densities from lattice QCD simulations, are just two examples where these problems

arise in particle physics. In all these cases, finding a robust solution becomes

very challenging, if not impossible, making these questions all the more urgent,

especially at a time when precision studies are the ultimate challenge in order to

highlight divergences from the Standard Model.

A Bayesian approach provides an apter tool for addressing inverse problems.

Starting from a prior distribution for the model, which encodes our theoretical

knowledge or prejudice, basic statistical tools allow us to determine the posterior

distribution of the solution, after taking into account a set of experimental

98

observations. The prior and posterior probabilities encode our knowledge about

the model before and after incorporating the experimental results. There are

multiple advantages to this formulation: the inverse problem is well defined, the

prior distribution ensures that all the assumptions are explicit, and it allows to

regulate the likelihood distribution.

Note also that probability measures can be defined in infinite-dimensional spaces,

In cases where we are looking to determine a continuous function, the Bayesian

approach allows, at least in principle, to address the problem directly in terms of

the posterior probability measure of the model function. It is often convenient for

practical reasons to define a parametrization of the model function in terms of

a finite, albeit large, number of parameters and reduce the problem to a finite

dimensional one. The price to pay for this simplification is the introduction of

some bias, which needs to be understood and possibly quantified. An expressive

parametrization clearly helps in this case. The Bayesian approach is also well

suited to include potentially inconsistent data in a systematic way, but we will

only briefly touch upon this.

A Bayesian approach to inverse problems has been actively developed by

mathematicians for a long time, and this development has accelerated quickly in

the last decade. In this Chapter we aim at summarising the existing framework

and adapting it in the context of analysing the fits of parton distribution functions

obtained by the NNPDF collaboration. We will review the formalism in Sec. 4.2,

trying to define the notation that will be used in the rest of the Chapter. We

will report some examples already known, for illustrative purposes. We then try

to connect the Bayesian approach with the NNPDF fits based on a Monte Carlo

methodology, where the distribution of the PDFs is encoded in a set of fits to

artificially generated data, called replicas. We can anticipate here that, under

the hypotheses that the data are Gaussian and the model is linear, the NNPDF

procedure would characterise completely the posterior probability density. When

the model is non-linear two modifications need to be taken into account. First of

all the analytical calculation that we present in Sec. 4.2.1 is no longer possible,

and one needs to rely on the fact that a linearization of the model yields an

accurate prediction. Whilst we believe that the linear models can provide a good

approximation, the systematic errors introduced by this approximation are not

easy to quantify. There is also a more subtle effect that needs to be taken into

account. When working with linear models, the minimization procedure is know

to have a unique minimum, which can be computed exactly. Non-linear models

99

can be plagued by multiple minima, and more importantly by inefficiencies of the

algorithm in finding them. While it is important to be aware of the limitations

of the analytical calculation, it is also very useful to have an explicit result as a

template to guide the analysis of our numerical investigations.

In the NNPDF fitting framework, the posterior probability of the parton

distribution functions, is encoded in an ensemble of fits to replicas of the data,

where the data replicas have been generated in order to induce the fluctuations

described by the experimental central values and uncertainties. This bootstrap

procedure propagates the data fluctuations in the space of fitted PDFs. A

successful fit should yield robust confidence intervals for observables, in particular

for those that are more relevant for phenomenology.

The idea of closure tests is to test this procedure in a fit to artificial data that

have been generated from a known set of input PDFs. In this case the underlying

law is known and we can check how the posterior distribution compares to the

underlying law. This is the basis of a closure test, which has already been used

to test to validity of previous iterations of the NNPDF methodology. Here we

aim to refine some of the pre-existing closure test estimators and with the help

of fast fitting methodology perform a more extensive study of how faithful our

uncertainties are. For this purpose we introduce new estimators that allow us

to quantify the quality of our fits. These estimators are defined in the space of

data, and we can use the Bayesian formalism in order to compute analytically

their probability distributions.

We emphasise the stark contrast between an approach to inverse problems which

aims at sampling from the posterior distribution in model space, and a more

classical regression exercise. The link between the two methods will be explored,

but when the goal shifts from finding the single best fit to data to a distribution in

model space then our interpretation of various statistical estimators also changes.

Furthermore, once we think about distributions in model space, we start to move

closer towards the generative models discussed in the previous Chapters, rather

than the typical tools which fall under the paradigm of supervised learning. In

the final Chapter of this Thesis, the connection between the work in this Chapter

and Chapter 3 will be explored in a bit more detail, which could motivate future

work which aimed to apply the normalizing flows to inverse Bayesian problems.

100

4.2 Inverse Problems

The problem of determining PDFs from a set of experimental data falls under the

general category of inverse problems, i.e. the problem of finding the input to a

given model knowing a set of observations, which are often finite and noisy. In this

Section we are going to review the Bayesian formulation of inverse problems. It is

impossible to do justice to this vast subject here. Instead we try to emphasise the

aspects that are relevant for quantifying uncertainties on PDF determinations.

4.2.1 Statement of the problem

The space of inputs is denoted by X, while R denotes the space of responses. The

model is specified by a forward map

G : X → R

u 7→ r = G(u) , (4.1)

which associates a response r ∈ R to the input u ∈ X, where we assume that

X and R are Banach spaces. 1 As an example we can think of u as being a

Parton Distribution Function, i.e. a function defined on the interval [0, 1], and r

a DIS structure function, which is related to the PDF by a factorization formula

involving perturbative coefficient functions [143]:

r(x,Q2) =

∫ 1

x

dz

z
C(z,Q2)u(x/z,Q2) . (4.2)

Note that in this example the forward map maps one real function into another

real function. Experiments will not have access to the full function r but only to

a subset of Ndata observations. In order to have a formal mathematical expression

that takes into account the fact that we have a finite number of measurements,

we introduce an observation operator

O : R→ Y

r 7→ y , (4.3)

1Banach spaces are complete normed vector spaces. We do not need to get into a more
detailed discussion here, but it is important to note that working in Banach spaces allows us to
generalise the results to infinite-dimensional spaces of functions.

101

where y ∈ Y is a vector in a finite-dimensional space Y of experimental results, e.g.

the value of the structure function for some values of the kinematic variables x and

Q2. In general we will assume that y ∈ RNdata , i.e. we have a finite number Ndata

of real experimental values. The quantity of interest is the composed operator

G : X → RNdata

G = O ◦G , (4.4)

which maps the input u to the set of data. Taking into account the fact that

experimental data are subject to noise, we can write

y = G(u) + η , (4.5)

where η is a random variable defined over RNdata with probability density ρ(η).

We will refer to η as the observational noise. In this setting, the inverse problem

becomes finding u given y.

In solving this problem we are going to adopt a Bayesian point of view, which

can be summarised as follows: our prior knowledge about u is encoded in a prior

probability measure µ0
M , where the suffix M indicates that the measure is defined

in the space of models, and the suffix 0 refers to the fact that this is a prior

distribution. We use Bayes’ theorem to compute the posterior probability measure

of u given the data y, which we denote as µGM . When possible, we denote the

probability densities associated to µ0
M and µGM , by π0

M and πGM respectively. Then,

using Eq. (4.5), we can write the data likelihood, i.e. the probability density of y

given u,

π(y|u) = ρ(y − G(u)) , (4.6)

and Bayes’ theorem yields

πGM(u) = π(u|y) ∝ ρ(y − G(u))π0
M(u) . (4.7)

Example Even though the concepts that we have introduced so far should sound

familiar, it is worthwhile to spend a few paragraphs to clarify some ideas and

present an explicit example, where all the probability densities are carefully defined.

This is best exemplified by considering the case where both the observational noise

and the model prior are Gaussian. We assume that we are given a set of central

102

values y0 ∈ RNdata and their covariance matrix CD. Then the prior probability

density of the observable y is

π0
D(y|y0, CD) ∝ exp

(
−1

2
|y − y0|2CD

)
, (4.8)

where, similarly to the convention used above, the suffix D emphasises the fact that

this is a probability density in data space, and the notation explicitly reminds us

that this is the probability density given the central values y0 (and the covariance

matrix). Similarly we can choose a Gaussian distribution for the prior distribution

of the input model, characterized by a central value u0 and a covariance CM :

π0
M(u|u0, CM) ∝ exp

(
−1

2
|u− u0|2CM

)
. (4.9)

Following the convention above, we use a suffix M here to remind the reader that

we are looking at a probability density in the space of models. Note that in the

expressions above we used the norms in X and RNdata respectively, and introduced

the short-hand notation

|a|2M =
∣∣M−1/2a

∣∣2 , (4.10)

where a denotes a generic element of X, R or RNdata . For the case where a ∈ RNdata ,

we use the Euclidean norm and

|a|2M =
∑
i,j

aiMijaj , (4.11)

where the indices i, j run from 1 to Ndata. Up to this point data and models are

completely independent, and the joint distribution is simply the product of π0
D

and π0
M .

The forward map induces a correlation between the input model and the

observables, so we introduce a probability density θ that describes these correlations

due to the physical theory,

θ(y, u|G) = δ (y − G(u)) , (4.12)

where the Dirac delta corresponds to the case where there are no theoretical

uncertainties. Theoretical uncertainties can be introduced by broadening the

distribution of y away from the exact prediction of the forward map, e.g. using a

103

Gaussian with covariance CT ,

θ(y, u|G) = exp

(
−1

2
|y − G(u)|2CT

)
. (4.13)

Note however that there are no rigorous arguments favouring the fact that

theoretical errors are normally distributed. Taking the correlation θ(y, u|G) into

account, the joint distribution of y and u is

πG(y, u|y0, CD, u0, CM) ∝ π0
D(y|y0, CD)π0

M(u|u0, CM)θ(y, u|G) . (4.14)

We can now marginalize with respect to y, neglecting theory errors,

πGM(u|y0, CD, u0, CM) ∝
∫
dy π0

D(y|y0, CD)π0
M(u|u0, CM)θ(y, u|G) (4.15)

∝ π0
M(u|u0, CM)

∫
dy π0

D(y|y0, CD)δ (y − G(u)) (4.16)

∝ π0
M(u|u0, CM)π0

D(G(u)|y0, CD) . (4.17)

We see that we have recovered Eq. 4.7. The log-likelihood in the Gaussian case is

simply the χ2 of the data, y0, to the theory prediction, G(u):

− log π0
D(G(u)|y0) =

1

2
|G(u)− y0|2CD . (4.18)

In the notation of Eq. 4.7

π0
D(G(u)|y0) = ρ (G(u)− y0) , (4.19)

where in this case

ρ(η) ∝ exp

(
−1

2
|η|2CD

)
. (4.20)

The probability density πGM(u|y0, CD, u0, CM) was called πGM(u) in Eq. 4.7, where

the suffix G is a short-hand to denote the posterior probability in model space,

taking into account all the conditional variables. Hence, for the Gaussian case,

the result from Bayes’ theorem reduces to

πGM(u) ∝ exp

[
−1

2
|y0 − G(u)|2CD −

1

2
|u− u0|2CM

]
(4.21)

= exp [−S(u)] . (4.22)

104

Note that in the argument of the likelihood function we have the central values

of the data points y0. Eq. (4.21) is the Bayesian answer to the inverse problem,

our knowledge of the model u is encoded in the probability measure µGM , which

is fully specified by the density πGM . There are several ways to characterise a

probability distribution. The NNPDF approach is focused on the determination

of the Maximum A Posteriori (MAP) estimator, i.e. the element u∗ ∈ X that

maximises πGM(u):

u∗ = arg min
u∈X

(
−1

2
|y0 − G(u)|2CD −

1

2
|u− u0|2CM

)
. (4.23)

For every instance of the data y0, the MAP estimator is computed by minimising

a regulated χ2, we will refer to this procedure as the classical fit of experimental

data to a model. Note that in the Bayesian approach, the regulator appears

naturally after having specified carefully all the assumptions that enter in the

prior. In this specific example the regulator arises from the Gaussian prior for

the model input u, which is normally distributed around a solution u0. The MAP

estimator provides the explicit connection between the Bayesian approach and

the classical fit.

4.2.2 Comparison with classical fitting

There are a number of results that make the connection between the two approaches

more quantitative, and therefore more transparent. We are going to summarise

these results here without proofs, referring the reader to the mathematical

literature for the missing details. Working in the finite-dimensional case, we

assume

u ∈ RNmodel ,

y ∈ RNdata ,

and we are going to consider in detail two examples from Ref. [144], which illustrate

the role of the priors in the Bayesian setting. It is particularly useful to distinguish

the case of an underdetermined system from the case of an overdetermined one.

Underdetermined system The first case that we are going to analyse is the

case of a linear system that is underdetermined by the data. The linear model is

105

completely specified by a vector of coefficients g ∈ RNmodel ,

G(u) =
(
gTu

)
. (4.24)

Assuming that we have only one datapoint, i.e. Ndata = 1,

y = (gTu) + η , (4.25)

where η ∼ N (0, γ2) is one Gaussian number, whose probability density is centred

at 0 and has variance γ2. For simplicity we are going to assume that the prior on

u is also a multi-dimensional Gaussian, centred at 0 with covariance matrix CM .

In this case the posterior distribution can be written as

πGM(u) ∝ exp

[
− 1

2γ2

∣∣y − (gTu)
∣∣2 − 1

2
|u|2CM

]
, (4.26)

which is still a Gaussian distribution for u. The mean and covariance are

respectively

m =
(CMg)y

γ2 + (gTCMg)
, (4.27)

Σ = CM −
(CMg)(CMg)T

γ2 + (gTCMg)
. (4.28)

Because the argument of the exponential is a quadratic form, the mean of the

distribution coincides with the MAP estimator. It is instructive to look at these

quantities in the limit of infinitely precise data, i.e. in the limit γ → 0:

m? = lim
γ→0

m =
(CMg)y

(gTCMg)
, (4.29)

Σ? = lim
γ→0

Σ = CM −
(CMg)(CMg)T

(gTCMg)
. (4.30)

These values satisfy

(gTm?) = y , (4.31)

(Σ?g) = 0 , (4.32)

which shows that the mean of the distribution is such that the data point is exactly

reproduced by the model, and that the uncertainty in the direction defined by g

vanishes. It should be noted that the uncertainty in directions perpendicular to g

does not vanish and is determined by a combination of the prior and the model,

106

viz. CM and g in our example. This is a particular example of a more general

feature: for underdetermined systems the information from the prior still shapes

the probability distribution of the solution even in the small noise limit.

Overdetermined system We are now going to consider an example of an

overdetermined system and discuss again the case of small observational noise.

We consider Ndata ≥ 2 and n = 1, with a linear forward map such that

y = gu+ η , (4.33)

where η is an Ndata-dimensional Gaussian variable with a diagonal covariance γ2I,

where I denotes the identity matrix. For simplicity we are going to assume a

Gaussian prior with unit variance for u, which yields for the posterior distribution:

πGM(u) ∝ exp

(
− 1

2γ2

∣∣y − g(u+ βu3)
∣∣2 − 1

2
u2

)
. (4.34)

If β = 0 the posterior is Gaussian and we can easily compute its mean and

variance:

m =
(gTy)

γ2 + |g|2 , (4.35)

σ2 =
γ2

γ2 + |g|2 . (4.36)

In this case, in the limit of vanishing observational noise, we obtain

m? =
(gTy)

|g|2 , (4.37)

σ2
? = 0 . (4.38)

The mean is given by the weighted average of the datapoints, which is also the

solution of the χ2 minimization

m? = arg min
u∈R
|y − gu|2 . (4.39)

Note that in this case the variance σ? vanishes independently of the prior. In the

limit of small noise, the distribution tends to a Dirac delta around the value of

the MAP estimator.

107

4.2.3 Linear Problems

Linear problems in finite-dimensional spaces are characterized by a simple forward

law,

y = Gu , (4.40)

where G is a matrix. In this framework one can readily derive analytical solutions

that are useful to understand the main features of the Bayesian approach.

Assuming that the priors are Gaussian again, the cost function S(u) is a quadratic

function of u,

S(u) = (Gu− y0)T C−1
D (Gu− y0) + (u− u0)T C−1

M (u− u0) (4.41)

= (u− ũ) C̃−1
M (u− ũ) + const , (4.42)

where

C̃−1
M =

(
GTC−1

D G + C−1
M

)
, (4.43)

ũ = C̃M
(
GTC−1

D y0 + C−1
M u0

)
. (4.44)

The case where we have no prior information on the model is recovered by taking

the limit C−1
M → 0, which yields

C̃−1
M =

(
GTC−1

D G
)
, (4.45)

ũ = C̃M
(
GTC−1

D y0

)
. (4.46)

The action of C−1
D on the vector of observed data y0 is best visualised using a

spectral decomposition

C−1
D =

∑
n

1

σ2
n

Pn , (4.47)

where Pn denotes the projector on the n-th eigenvector of CD, and σ2
n is the

corresponding eigenvalue. The action of C−1
D is to perform a weighted average of

the components of y0 in the directions of the eigenvectors of CD.

An explicit expression for the posterior distribution of data can be obtained from

108

the joint distribution by marginalising over the model input u:

πGD(y|y0, CD, u0, CM) =

∫
du πG(y, u|y0, CD, u0, CM) (4.48)

∝ exp

(
−1

2
(y − ỹ)T C̃−1

D (y − ỹ)

)
, (4.49)

where

ỹ = Gũ , (4.50)

C̃D = GC̃MGT . (4.51)

Posterior distribution of unseen data In real-life cases we are also interested

in the posterior distribution of a set of data that have not been included in the

fit. In the Bayesian framework that we have developed this can be modeled by

having two sets of data y and y′, for which we have a prior distribution

π0
D (y, y′|y0, CD, y

′
0, C

′
D) = π0

D (y′|y′0, C ′D) π0
D (y|y0, CD) (4.52)

∝ exp

[
−1

2
(y′ − y′0)

T
(C ′D)−1 (y′ − y′0)

]
exp

[
−1

2
(y − y0)T (CD)−1 (y − y0)

]
.

(4.53)

Following the derivation above, we can write the joint distribution for the data

and the model

πG(y, y′, u) ∝ π0
D(y, y′|y0, CD, y

′
0, C

′
D)π0

M(u)δ (y − Gu) δ (y′ − G ′u) . (4.54)

Note that because both sets of data are derived from the same model u, the joint

distribution above introduces a correlation between the data sets.

We can now marginalise with respect to the dataset y,

π(y′, u) ∝ exp

[
−1

2
(y′ − y′0)

T
(C ′D)−1 (y′ − y′0)

]
exp

[
−1

2
(u− ũ)T (C̃M)−1 (u− ũ)

]
× δ (y′ − G ′u) .

(4.55)

where C̃M and ũ are given respectively in Eqs. 4.43 and 4.44. By marginalising

again, this time with respect to the model, we derive the posterior distribution of

109

the unseen data,

πyD(y′) ∝ exp

[
1

2
(y′ − ỹ′)T (C̃ ′D)−1 (y′ − ỹ′)

]
, (4.56)

where

C̃ ′D = G ′C̃ ′MG ′T (4.57)

ỹ′ = G ′ũ′ , (4.58)

and

C̃ ′−1
M = G ′TC ′−1

D G ′ + C̃−1
M (4.59)

ũ′ = C̃ ′M

(
G ′TC ′−1

D y′0 + C̃−1
M ũ
)

(4.60)

C̃−1
M = GTC−1

D G + C−1
M (4.61)

ũ = C̃M
(
GTC−1

D y0 + C−1
M u0

)
. (4.62)

A comment on non-linear models The linear models that we have discussed so

far may look over-simplified at first sight. In practice, it turns out that non-linear

models can often be linearised around the central value of the prior distribution,

G(u) = G(u0) +G (u− u0) + . . . , (4.63)

where

Gi
α =

∂Gi
∂uα

∣∣∣∣
u0

, (4.64)

and we have neglected higher-order terms in the expansion of G(u).

If these terms are not negligible, another option is to find the MAP estimator, and

then expand the the forward map around it, which yields equations very similar

to the previous ones, with u0 replaced by u∗. If the posterior distribution of u is

sufficiently peaked around the MAP estimator, then the linear approximation can

be sufficiently accurate.

4.2.4 The infinite-dimensional case

In the finite-dimensional case, where the probability measures are specified by

their densities with respect to the Lebesgue measure, Eq. (4.7) can be rephrased

110

by saying that ρ is the Radon-Nikodym derivative of the probability measure µG

with respect to µ0, viz.

dµG

dµ0
(u) ∝ ρ(y − G(u)) . (4.65)

Using the fact that the density ρ is a positive function, we can rewrite

ρ(y − G(u)) = exp (−Φ(u; y)) , (4.66)

and therefore

dµG

dµ0
(u) ∝ exp (−Φ(u; y)) . (4.67)

In finite-dimensional spaces, the three equations above are just definitions that do

not add much content. Their interest resides in the fact that the last expression,

Eq. (4.67), can be properly defined when X is infinite-dimensional, allowing a

rigorous extension of the Bayesian formulation of inverse problems to the case of

infinite-dimensional spaces.

Summarising the details of probability measure in infinite-dimensional spaces, is

beyond the scope of this work. Adopting instead a heuristic approach, we can say

that a function f is a random function if f(x) is a random variable for all values

of x. Since the values of the function at different values of x can be correlated, a

random function is fully characterised by specifying the joint probability densities

π (f1, . . . , fn;x1, . . . xn) , (4.68)

where fi = f(xi), for all values of n, and all values of x1, . . . , xn. These finite-

dimensional densities allow the definition of a probability measure.

For a Gaussian random function, these densities only depend on a mean value

m(x) and a covariance C(x, x′). The probability densities for the variables fi, for

any value of n is

π (f1, . . . , fn;x1, . . . , xn) ∝ exp

[
−1

2

∑
ij

(fi −mi)C
−1(xi, xj) (fj −mj)

]
.

(4.69)

111

The covariance C is such that

C(x, x′) =

∫
df df ′ (f −m(x)) (f ′ −m(x′))π (f, f ′;x, x′) , (4.70)

which shows that the two-point probability density determines all the other

distributions.

4.3 NNPDF Monte Carlo approach to inverse

problems

In this section we discuss the NNPDF approach to inverse problems, trying

to make contact explicitly with the formalism laid out in Sec. 4.2. In the

Bayesian formulation, Eq. (4.21) gives a quantitative description of how the

information contained in the experimental data propagates into our knowledge of

the space of models. In practice, it should be possible to sample directly from

the posterior distribution. However, sampling from the posterior distribution is

not straightforward and we defer investigation of this issue to further, dedicated

studies. Here we focus instead on the standard NNPDF fitting procedure and

investigate its relation with the Bayesian result. The NNPDF approach generates

an ensemble of fit results, which are supposed to describe the posterior probability

distribution for the model (i.e. in the space of PDFs) given the experimental

data. In the case of a linear map, we show here that this is exactly the case: the

NNPDF replicas are distributed exactly according to the posterior density that

was obtained in the previous section.

4.3.1 Fitting replicas

The approach for generating a sample in model space employed by NNPDF can

broadly be described as fitting model replicas to pseudo-data replicas. As discussed

in Eq. (4.5) the experimental values are subject to observational noise. If we

assume this observational noise to be multigaussian then the experimental central

values, y0, are given explicitly by

y0 = f + η, (4.71)

112

Figure 4.1 Histogram showing the distribution of 104 replicas generated around
an experimental value y0 with unit variance. The central value
y0, which is represented by the solid dot at the centre of the replica
distribution, is drawn from a Gaussian distribution with unit variance
centred at the true value f , which is assumed to be the origin in this
plot.

where f is the vector of true observable values, and the observational noise is drawn

from a Gaussian centered on zero such as in Eq. 4.20, i.e. η ∼ N (0, CD) where CD

is the experimental covariance matrix. In Eq. (4.71), each basis vector corresponds

to a separate data point, and the vector of shifts η permits correlations between

data points according to the covariance matrix provided by the experiments.

Given the data, the NNPDF approach is to compute a MAP estimator similar

to that discussed in the previous section, i.e. finding the model that minimises

the χ2 to the data. The key difference between the NNPDF approach and the

classical MAP estimator is that instead of fitting the observational data given

by Eq. 4.71, an ensemble of model replicas are fitted each to an independently

sampled instance of pseudo-data, which is generated by augmenting y0 with some

noise, ε(k),

µ(k) = y0 + ε(k) = f + η + ε(k), (4.72)

where k is the replica index and each instance of the noise, ε, is drawn independently

from the same Gaussian from which the observational noise is drawn from, i.e.

ε ∼ N (0, CD). A simple one-dimensional example is shown in Fig. 4.1. Note that,

if we were to repeat this construction multiple times, the true value f would be

within a 1σ interval centred at y0 with a 68% probability.

The parameters for each model replica maximise the likelihood evaluated on the

corresponding pseudo-data. We can think of this approach as a special case of

MAP estimation, as described in Eq. (4.23), where there is no model prior that

regulates the likelihood. Another way of viewing this is to take C−1
M → 0 in

Eq. (4.23), as was done to obtain the result in Eq. 4.45. Either way, there is no

113

prior information about the model. The parametrization of the model is fixed, so

the model space is the finite space of parameters u ∈ RNmodel . In RNmodel , we find

the parameters which minimise the χ2 between the predictions from the model

and the corresponding pseudo-data µ(k)

u(k)
∗ = arg min

u(k)
χ2(k)

= arg min
u(k)

∑
ij

(
G(u(k))− µ(k)

)T
C−1
D

(
G(u(k))− µ(k)

)
,

(4.73)

where, as usual, minimising the χ2 is equivalent to maximising the likelihood, L,

since χ2 ≡ − logL.

As a final note: since we do not include the model prior, overall normalizations

can be omitted in Eq. 4.73. It is clear however that if we were including a model

prior in our MAP, it is important that the relative normalizations between the

likelihood function and the model prior are self-consistent.

4.3.2 Fluctuations of fitted values

It is not immediately obvious that our MC methodology, maximising the likelihood

on an ensemble of pseudo-data replicas, should guarantee that the model replicas

are indeed sampled from the posterior distribution of parameters given data as

described e.g. in Eq. 4.21. In order to investigate this issue, we will again consider

a model, whose predictions are linear in the model parameters, where the posterior

distribution of model parameters can be written explicitly. A practical example,

which can elucidate the following arguments would be a polynomial model. Then

u is a vector of Nmodel polynomial coefficients and G is the Vandermonde matrix

G =

1 x1 . . . xNmodel−1

1

1 x2 . . . xNmodel−1
2

...
...

...
...

1 xNdata
. . . xNmodel−1

Ndata

 . (4.74)

In this case the forward map yields

yi =

Nmodel−1∑
j=0

ujx
j
i , (4.75)

114

where i = 1, . . . , Ndata. The arguments here are not restricted to polynomials,

however, and apply to any model whose forward map can be expressed as Eq. (4.40),

for example a linear shallow approximation of neural networks [145]. In order to

get an exact analytical solution for the linear model, we additionally require G
to have linearly independent rows, and therefore GCDGT is invertible. With no

prior information on the model, the posterior distribution of model parameters is

a Gaussian with mean and covariance given by Eqs. 4.45 and 4.46.

If instead we deploy the NNPDF Monte Carlo method to fitting model replicas,

then in the case under study arg minu(k) χ2(k)
is found analytically by imposing

thatthe derivative of χ2(k)
with respect to the model parameters is zero, i.e.

u(k)
∗ = (GTC−1

D G)−1
(
GTC−1

D y0 + GTC−1
D ε(k)

)
. (4.76)

Eq. 4.76 shows that u∗ is a linear combination of the Gaussian variables ε, and

therefore is also a Gaussian variable. Its probability density is then completely

specified by the average and covariance of u∗, which can be calculated explicitly,

given that the probability density for ε is known:

E{u∗} [u∗] = ũ = (GTC−1
D G)−1GTC−1

D y0 (4.77)

cov(u∗) = C̃M = (GTC−1
D G)−1 . (4.78)

We see explicitly here that, under the assumptions specified above, u∗ ∼ N (ũ, C̃M).

In other words, when the model predictions are linear in the model parameters,

the NNPDF MC method is shown to produce a sample of models from the

posterior distribution of model parameters given the data. When we fit PDFs,

parametrized as deep fully connected neural networks, to data which includes

hadronic observables, it is clear that the forward map is non-linear, and therefore

this proof does not strictly apply. As previously discussed at the end of Sec. 4.2.3,

even for non-linear models we can make a linear approximation of the forward

map provided that we are expanding around the MAP estimator. This means

the NNPDF MC methodology should reproduce the posterior distribution of the

model given the data, at least close ũ, the central value of the fitted replicas.

Furthermore, by fluctuating the data and fitting the replicas, the fluctuations in

data space are propagated to model space non-linearly. So even for non-linear

problems, the NNPDF MC methodology will produce a sample of models which are

at least approximately distributed according to the posterior model distribution.

It remains to be shown, however, that further away from the MAP estimator the

115

approximation holds despite the non-linear dependence of the model replicas on

the data uncertainties.

4.3.3 Closure test

The concept of the closure test, which was first introduced in Ref. [2], is to

construct artificial data by using a known pre-existing function to generate the

true observable values, f . One way of achieving this is by choosing w such

that f = G(w). Then the experimental central values are artificially generated

according to Eq. 4.71, where the observational noise is pseudo-randomly generated

from the assumed distribution.

In [2], f is referred to as level 0 (L0) data and y0 is referred to as level 1 (L1) data.

Finally, if we use the NNPDF MC method to fit artificially generated closure data,

the pseudo-data replicas that are fitted by the model replicas are referred to as

level 2 (L2) data.

In a closure test, the assumed prior of the data is fully consistent with the particular

instance of observed central values, y0, by construction. In the original closure

test in NNDPF3.0 there was also no modelisation uncertainty, the true observable

values were assumed to be obtained by applying the forward map G to a vector

in model space w. It is worth noting that the assumption of zero modelisation

uncertainties is quite strong and likely unjustified in many areas of physics. In the

context of fitting parton distribution functions there are potentially missing higher

order uncertainties (MHOUs) from using fixed order perturbative calculations as

part of the forward map. MHOUs have been included in parton distribution fits

[146] and in the future these should be included in the closure test, however this is

beyond the scope of the study presented here, since MHOUs are still not included

in the NNPDF methodology by default. In the results presented in the rest of this

paper we do include nuclear and deuteron uncertainties, as presented in [147, 148],

since they are to be included in NNPDF fits by default. Extensive details for

including theoretical uncertainties, modelled as theoretical covariance matrices

can be found in those references. For the purpose of this study the modelisation

uncertainty is absorbed into the prior of the data, since

y0 = G(u) + η + δ (4.79)

where δ ∼ N (0, Ctheory). As long as the modelisation uncertainty is independent

116

of the data uncertainty, we can absorb δ into η by modifying the data prior:

η ∼ N (0, C + Ctheory). In doing that, we must also update the likelihood of the

data given the model to use the total covariance (C +Ctheory). From now onwards

we will omit Ctheory because it is implicit that we always sample and fit data

using the total covariance matrix which includes any modelisation uncertainty we

currently take into account as part of our methodology.

Mapping the closure test procedure to the quantities used in the Bayesian treatment

presented in the previous section will allow us to derive a number of analytical

results in Sect. 4.4.4.

4.4 Data space estimators

In order to perform a quantitative analysis of the results obtained in the closure

tests, we discuss several estimators, which are computed from the outcome of

the closure test fits. These results depend on the pseudo-data that have been

generated and therefore are stochastic variables which can fluctuate. The values

of the estimators on a single replica will not tell anything about the quality of our

fits: we need to understand their probability distributions in order to validate our

fitting procedure. We begin this section by defining estimators in data space, i.e.

estimators that are computed from the model predictions for a set of experimental

data points. Having defined the estimators, we define criteria to characterise

faithful uncertainties. We conclude this section with a discussion of the predictions

that can be obtained for these estimators in the case of a linear model, where

analytical calculations can be performed. As we already discussed, the analytical

results cannot be applied directly to the NNPDF fits, but they are useful examples

that illustrate the expected behaviour of these quantities.

4.4.1 Deriving the data space estimators

For a given model u
(k)
∗ , obtained from fitting the k-th replica, we start by defining

the model error as the χ2 between the model predictions and some data central

values y0
′, normalized by the number of data points

1

Ndata

(
G ′
(
u(k)
∗
)
− y0

′)T CD ′−1 (G ′ (u(k)
∗
)
− y0

′) , (4.80)

117

and we purposely denoted the data which the model error is evaluated on as y0
′,

as opposed to the data which is used to determine the model parameters y0. Note

that in Eq. 4.80, y′0 is a stochastic variable, but also u
(k)
∗ is a stochastic variable,

with its pattern of fluctuations, since the fitted model depends on the data µ(k)

that enter the fit. We define the model error Eout on the set of data y0
′ by taking

the average over the models,

Eout =
1

Ndata

E{u∗}

[(
G ′
(
u(k)
∗
)
− y0

′)T CD ′−1 (G ′ (u(k)
∗
)
− y0

′)] , (4.81)

where we defined the expectation value over the ensemble of model replicas as

E{u∗} [x] ≡ 1

Nreplicas

Nreplicas∑
k=1

x(k) . (4.82)

We could of course set y0
′ = y0 and evaluate the model performance on the fitted

data however, as is common in machine learning literature, we intend to use a

separate set of test data. Ideally we would choose y0
′ such that y0

′ and y0 are

statistically independent, as in Eq. 4.52. This is achieved by choosing the split

such that the experimental covariance matrix is block diagonal:

Ctotal
D =

[
CD 0

0 CD
′

]
. (4.83)

It is useful to perform a decomposition of Eq. 4.81, following usual manipulations

of the likelihood function associated with least-squares regression in [13]. Least-

squares regression is a special case of minimum likelihood estimation, where the

uncertainty on each data point is equal in magnitude and uncorrelated. Here we

review the decomposition in the more general framework of data whose uncertainty

is multigaussian. Starting with Eq. 4.81 (evaluated on the ideal test data), we

can complete the square

Eout =
1

Ndata

E{u∗}

[(
G ′
(
u(k)
∗
)
− f ′

)T
CD
′−1 (G ′ (u(k)

∗
)
− f ′

)]
+

+ E{u∗}

[
(f ′ − y0

′)
T
CD
′−1

(f ′ − y0
′)
]

+

+ 2E{u∗}

[(
G ′
(
u(k)
∗
)
− f ′

)T
CD
′−1

(f ′ − y0
′)
]
.

(4.84)

The second term is the shift associated with evaluating the model error on noisey

test data and the final term is a cross term which we will deal with later. For now

118

we focus on decomposing the first term further,

E{u∗}

[(
G ′
(
u(k)
∗
)
− f ′

)T
CD
′−1 (G ′ (u(k)

∗
)
− f ′

)]
=

= E{u∗}

[(
G ′
(
u(k)
∗
)
− E{u∗}

[
G ′
(
u(k)
∗
)])T

CD
′−1 (G ′ (u(k)

∗
)
− E{u∗}

[
G ′
(
u(k)
∗
)])]

+

+
(
E{u∗}

[
G ′
(
u(k)
∗
)]
− f ′

)T
CD
′−1 (

E{u∗}
[
G ′
(
u(k)
∗
)]
− f ′

)
,

(4.85)

where we have used the fact that the second term is constant across replicas and

the cross term that arises in this decomposition is zero when the expectation value

across replicas is taken. The first term in this expression we call the variance and

the second term is the bias.

As previously mentioned Eout should be considered a stochastic estimator, in

theory we could take the expectation value across training data y0 and test data

y0
′, the latter of which cancels the cross term in Eq. 4.84. The final result of that

would be

Ey0,y0
′ [Eout] = Ey0 [bias] + Ey0 [variance] + Ey0

′ [noise] . (4.86)

We are not interested in the observational noise term, since it is independent of the

model and in the limit of infinite test data Ey0
′ [noise]→ 1. The two estimators of

interest are independent of the test data, and therefore we only need to take the

expectation value over the training data.

Multiple closure fits In practical terms, taking the expectation value across

the training data can be achieved by running multiple closure fits, each with a

different observational noise vector η, and taking the average i.e.

Ey0 [x] =
1

Nfits

Nfits∑
j=1

x. (4.87)

Clearly this is resource intensive, and requires us to perform many fits. In

NNPDF3.0 [2], single replica proxy fits were used to perform a study of the

uncertainties. Here we have expanded the data-space estimators used in the

closure fits and also will be using multiple full replica fits to calculate various

expectation values - made possible by our next generation fitting code [7].

119

4.4.2 Geometric Interpretation

It is possible to interpret the relevant data space estimators geometrically, by

considering a coordinate system where each basis vector corresponds to an

eigenvector of the experimental covariance matrix normalized by the square

root of the corresponding eigenvalue. An example of this is given in Fig. 4.2,

where for simplicity we have considered a system with just two data points, i.e. a

two-dimensional data space, with a diagonal covariance.

1/σ1

1/σ2

y0
Eε[g]

Figure 4.2 Example of geometric interpretation of closure test estimators. The
origin is the true observable values for each data point. The level one
data (or experimental central values) are shifted away from this by η.
In this example the covariance matrix is diagonal, so the eigenvectors
correspond to the two data points, the square root of the eigenvalues
are simply the standard deviation of those points. This is without
loss of generality because any multivariate distribution can be rotated
into a basis which diagonalises the covariance matrix. The 1-sigma
observational noise confidence interval is a unit circle centered on
the origin. Some closure estimators can be understood as l2-norms
of the vectors connecting points, i.e the bias is the l2-norm of the
vector from the origin to the central value of the predictions.

The origin of the coordinate system is the true value of the observable. The

observational noise in these coordinates corresponds to a unit circle centred in the

origin as shown in Fig. 4.2. If the experimental covariance is faithful, there is a

68% probability that the experimental value y0 is within this unit circle. Fig. 4.2

shows one possible instance of y0. Repeating the entire fit procedure multiple

120

times requires generating new sets of experimental data y0. The average over

y0 mentioned above, is precisely the average over multiple fits, restarting the

procedure each time from a new instance of y0.

For a given y0 the replicas are generated as a set of points Gaussianly distributed

around it and therefore, in the limit of a large number of replicas, 68% of them

will fall within a unit circle centred in y0. This is the dashed circle in the figure.

Clearly there is also a 68% probability that the true value (i.e. the origin in

our plot) is inside this second circle. The model predictions, one for each replica,

are then a set of points, whose mean is Eε[g]. The mean squared radius of those

points is what we call the variance. The bias is the l2-norm of the vector between

the origin and the mean of the model predictions.

A faithful representation of the errors requires that the true value, i.e. the origin

of the coordinate system in our figure, has 68% probability of being within 1σ

from the central value of the fit, which is given by Eε[g]. Looking at the figure

again, the probability for the origin to be inside the shaded circle must be 68%.

We will discuss faithful errors in more detail in the next subsection.

4.4.3 Faithful uncertainties in data space

The two closure estimators of interest, bias and variance, can be used to understand

faithful uncertainties in a practical sense. If we return to Eq. 4.86 we can examine

both estimators in a bit more detail.

Variance The variance in the above decomposition refers to the variance of the

model predictions in units of the covariance

variance =
1

Ndata

E{u∗}

[
(
G ′
(
u(k)
∗
)
− E{u∗}

[
G ′
(
u(k)
∗
)])T

CD
′−1 (G ′ (u(k)

∗
)
− E{u∗}

[
G ′
(
u(k)
∗
)])]

,

(4.88)

which can be interpreted as the model uncertainty in the space of the test data.

It is instructive to rephrase Eq. 4.88 as

variance =
1

Ndata

Tr
[
C ′

(replica)
CD
′−1
]
, (4.89)

121

where

C ′
(replica)

= E{u∗}

[(
G ′
(
u(k)
∗
)
− E{u∗}

[
G ′
(
u(k)
∗
)]) (
G ′
(
u(k)
∗
)
− E{u∗}

[
G ′
(
u(k)
∗
)])T]
(4.90)

is the covariance matrix of the predictions from the model replicas. Note that we

can rotate to a basis where CD
′ is diagonal,(
CD
′−1
)
ij

=
1

(σ′i)
2 δij , (4.91)

then we can rewrite Eq. 4.89 as

variance =
1

Ndata

∑
i

C ′
(replica)
ii

(σ′i)
2 . (4.92)

The numerator in the right-hand side of the equation above is the variance of the

theoretical prediction obtained from the fitted replicas, while the denominator

is the experimental variance, the average is now taken over eigenvectors of the

experimental covariance matrix.

Bias Similarly, the bias is defined as the difference between the expectation value

of the model predictions and the true observable values in units of the covariance,

i.e.

bias =
1

Ndata

(
E{u∗}

[
G ′
(
u(k)
∗
)]
− f ′

)T
CD
′−1 (

E{u∗}
[
G ′
(
u(k)
∗
)]
− f ′

)
. (4.93)

The smaller the bias, the closer the central value of the predictions is to the

underlying law. In Eq. 4.86, the expectation value is taken across the prior

distribution of the training data, which yields

Ey0 [bias] =
1

Ndata

Tr
[
C ′

(central)
CD
′−1
]
, (4.94)

where we have introduced C ′(central) as the covariance of the expectation value of

the model predictions,

C ′
(central)

= Ey0

[(
E{u∗}

[
G ′
(
u(k)
∗
)]
− f ′

) (
E{u∗}

[
G ′
(
u(k)
∗
)]
− f ′

)T]
. (4.95)

The point is that the bias on the test data is a stochastic variable which depends

on the central value of the training data through u
(k)
∗ . The matrix C ′(central)

122

describes the fluctuations of the central value of the model prediction around the

true observable values as we scan different realisations of the training data.

It is important to stress the difference between variance and bias. In the case of

the variance, we are looking at the fluctuations of the replicas around their central

value for fixed y0. This is related the ensemble of model replicas we provide as

the end product of a fit and can be calculated when we have one instance of y0,

provided by the experiments. In the case of the bias we consider the fluctuations

of the central value over replicas around the true theoretical prediction as the

values of y0 fluctuate around f . This latter procedure is only possible in a closure

test, where the underlying true observable is known. The bias as defined here

yields an estimate of the fluctuations of the MAP estimator if we could do multiple

independent experiments.

Bias-variance ratio Finally, the bias-variance ratio is defined as

Rbv ≡
√

Ey0 [bias]

Ey0 [variance]
, (4.96)

where we have taken the square root, since bias and variance are both mean squared

quantities. The value of Rbv yields a measurement of how much uncertainties are

over or under estimated. If the uncertainties are completely faithful, then Rbv = 1.

We note that the relationship does not work both ways and Rbv = 1 does not

necessarily guarantee that the uncertainty is faithful. We also note that Rbv is

not completely general: it is not a measure defined in model space and depends

on the choice of test data. Therefore it only gives local information on the model

uncertainties. If the distribution of the expectation value of model predictions

is gaussian centered on the true observable values, with covariance C ′(central) and

the distribution of the model replicas is also gaussian, with covariance C ′(replica)

then model uncertainties are faithful if

C ′
(central)

C ′
(replica)−1

= 1. (4.97)

The difficulty with calculating Eq. 4.97 comes from the fact that C ′(replica) is likely

to have large correlations which would lead it to be singular or ill-conditioned. As

a result, any error estimating C ′(replica) from finite number of replicas could lead to

unstable results. Rbv overcomes this instability by taking the ratio of the average

across test data of these matrices, in units of the experimental covariance matrix.

123

There may still be large relative errors for smaller eigenvalues of C ′(replica), but

these should not lead to instabilities in Rbv unless they correspond to directions

with very low experimental uncertainty. As an extra precaution, we shall estimate

an uncertainty on Rbv by performing a bootstrap sample on fits and replicas.

Quantile statistics When the closure test was first presented in [2], there was

an estimator introduced in the space of PDFs which also aimed to estimate

faithfulness of PDF uncertainties using the combined assumption of Gaussian

PDF uncertainties and quantile statistics, called ξ1σ. Here we can define an

analogous expression in the space of data,

ξ
(data)
nσ′ =

1

Ndata

Ndata∑
i

1

Nfits

Nfits∑
l

I
[−nσ′(l)i ,nσ′

(l)
i]

(
E{u∗} [G ′i](l) − f ′i

)
, (4.98)

where σ′
(l)
i =

√
C ′

(replica)
ii is the standard deviation of the theory predictions

estimated from the replicas of fit l and I[a,b](x) is the indicator function, which is

one when a ≤ x ≤ b and zero otherwise. In other words, ξ
(data)
nσ′ is counting how

often the difference between the prediction from the MAP estimator and the true

observable value is within the nσ-confidence interval of the replicas, assuming

they’re Gaussian. Since C ′(replica) is primarily driven by the replica fluctuations,

we assume that it is roughly constant across fits, or independent upon the specific

instance of observational noise. This allows us to write ξ
(data)
nσ′ for a specific data

point in the limit of infinite fits, each to a different instance of the data as

ξ
(data)
nσ′i

=

∫ ∞
−∞

I[−nσ′i,nσ′i]

(
E{u∗} [G ′i](l) − f ′i

)
ρ(η) d(η) , (4.99)

where E{u∗} [Gi](l) has implicit conditional dependence on η. If the distribution of

E{u∗} [G ′i](l) − f ′i is Gaussian, centered on zero, we can defined σ̂′i =

√
C ′

(central)
ii .

In which case

ξ
(data)
nσ′i

= erf

(
nσ′i

σ̂′i
√

2

)
, (4.100)

which is simply the standard result of integrating a gaussian over some finite

symmetric interval.

The analogy between Rbv and ξ
(data)
nσ′ is clear, the ratios of uncertainties are both

attempts to quantify Eq. 4.97 whilst keeping effects due to using finite statistics

under control. Whilst withRbv we take the average over test data before taking the

124

ratio, ξ
(data)
nσ′ instead takes the ratio of the diagonal elements - ignoring correlations.

Since the predictions from the model will be compared with experimental central

values, taking into account experimental error, we find it more natural to calculate

ξ
(data)
nσ′ in the basis which diagonalises the experimental covariance of the test data

as in Eq. 4.91. If we assume that in this new basis, that both
C′

(replica)
ii

(σ′i)
2 and

C′
(central)
ii

(σ′i)
2

are approximately constant for all eigenvectors of the experimental covariance

matrix, then we recover the approximation

ξ
(data)
nσ′ ∼ erf

(
nRbv√

2

)
. (4.101)

Whilst it is clear that Eq. 4.101 is reliant on a fair few assumptions which may not

hold, we will use the comparison of ξ
(data)
nσ′ with Rbv to consider how valid these

assumptions may be.

4.4.4 Closure estimators - Linear problems

Once again we return to the linear model framework set out in Sec. 4.3.2. We can

perform an analytical closure test in this framework, and check our understanding

of the closure estimators. Consider the true observable values for the test data is

given by

f ′ = G ′w (4.102)

where w ∈ X, which means the number of (non-zero) parameters in the underlying

law is less than or equal to the number of parameters in the model, Nlaw ≤ Nmodel.

Using the previous results from Sec. 4.3.2, we can write down the difference

between the true observables and the predictions from the MAP estimator (or the

expectation of the model predictions across model replicas - in the linear model

these are the same)

E{u∗}
[
G ′
(
u(k)
∗
)]
− f ′ = G ′(ũ− w)

= G ′C̃MGTCD η ,
(4.103)

where we recall that G is the forward map to the training observables and y0

are the corresponding training central values. Calculating the covariance across

training data of E{u∗}

[
G ′
(
u

(k)
∗

)]
− f ′ gives

C ′
(central)

= G ′C̃MG ′T , (4.104)

125

so the full expression for Ey0 [bias] is given by

Ey0 [bias] =
1

Ndata

Tr
[
G ′C̃MG ′TCD ′−1

]
. (4.105)

We note that if the test data is identical the data the model was fitted on,

we recover an intuitive result Ey0 [bias] = Nmodel

Ndata
. Consider the example of the

polynomial, the maximum value which Nmodel can take whilst G still has linearly

independent rows is Ndata and in this case the Ey0 [bias] takes its maximum value

of 1. The central predictions from the model exactly pass through each data point.

We can perform a similar exercise on the model replica predictions. The difference

between the predictions from model replica (k) and the expectation value of the

model predictions is

G ′
(
u(k)
∗
)
− E{u∗}

[
G ′
(
u(k)
∗
)]

= G ′(u(k)
∗ − ũ)

= G ′C̃MGTCD ε .
(4.106)

Since ε and η follow the same distribution, it is clear that

C ′
(replica)

= C ′
(central)

, (4.107)

which, as a result means that

variance = Ey0 [bias]. (4.108)

We recall that when the map is linear, the NNPDF MC methodology generates

replicas which are sampled from the posterior distribution of the model given the

data. We have shown here that provided the underlying law belongs to the model

space, the posterior distribution of the model predictions satisfy the requirement

that Rbv = 1.

We note that due to the invariance of the trace under cyclic permutations, we can

rearrange Eq. 4.105 as

Ey0 [bias] =
1

Ndata

Tr
[
C̃MG ′TCD ′−1G ′

]
, (4.109)

where the term G ′TCD ′−1G ′ can be understood as the covariance matrix of the

posterior distribution in model space given the test data, with zero prior knowledge

126

of the model viz.

Ey0 [bias] =
1

Ndata

Tr
[
C̃M C̃

′−1
M

]
, (4.110)

where we emphasise that the covariance matrices C̃M are C̃ ′M from completely

independent Bayesian inferences with no prior information on the model

parameters, unlike in Eq. 4.59 where a sequential marginalisation causes C̃ ′M
to depend on C̃M .

Alternatively, if we perform a sequential marginalisation of the data, and use the

result in Eq. 4.59, but then take CD
′−1 → 0, i.e. there is no information on the

observables in the test set, then

C̃−1
M = GTC−1

D G , (4.111)

or the total posterior model distribution, is identical to the posterior model

distribution given just the training data - as you would expect. Now we can

express bias (or variance) as

Ey0 [bias] =
1

Ndata

Tr
[
C̃ ′DCD

′−1
]
, (4.112)

where C̃ ′D is the covariance of the posterior distribution of y′ with no prior

information on that data. This might seem peculiar because in determining C̃ ′D
we took the limit CD

′−1 → 0, because we had no prior information on the unseen

data, however in Eq. 4.112 we require CD
′−1

to be finite. We rationalise Eq. 4.112

as a comparison between the posterior distribution in the space of data of some

unseen observables to an independently determined prior from performing the

relevant experiment which measures the same observables. Comparing moments

of these two distributions is what you would expect when the new experimental

data is published.

Underparametrized model Note that if we were to choose the number of model

parameters such that Nlaw > Nmodel, then the variance would be unaffected, since

the underlying law parameters cancel. However, the bias would now contain an

extra term from the extra parameters in the underlying law, schematically:

(E{u∗}
[
G ′
(
u(k)
∗
)]
− f ′)i =

∑
1≤j≤Nmodel

G ′ij(ũ− w)j −
∑

Nmodel<j≤Nlaw

G ′ijwj, (4.113)

127

which would mean that Rbv 6= 1. This demonstrates that requiring Rbv =

1 demands that the model space is suitably flexible, if the underlying law is

parametrized then this can be summarised as requiring w ∈ X. Note that in the

underparametrized regime the model replicas are still drawn from the posterior

distribution, however because w /∈ X we’ve somehow invalidated the assumptions

that go into the relation between model predictions and the data-space prior.

Although Rbv was largely chosen on practical grounds, we see that it is still a

stringent test that our assumptions are correct and that the distribution our model

replicas are drawn from is meaningful, this is what we mean when we say faithful

uncertainties.

An unfortunate trade-off when using Rbv is it can’t be used as a diagnostic tool,

and is instead used simply for validation. For example, if Rbv > 1, then we can’t

know whether there was a problem with the fitting methodology used to generate

the model replicas or a deeper issue such as an inflexible model.

4.5 Experimental setup

Here we discuss the experimental setup used to produce the results. The results

here act mainly as a proof of principle of the data space estimators presented in

this Chapter in a realistic inverse problem setting.

The estimators were used as part of a suite of methodological validation tools,

see also the “future tests” [149], used to understand the PDF uncertainties of

the NNPDF4.0 set of PDFs [6], and provide evidence that they are faithful. For

the purpose of understanding how the results here were produced, we will briefly

describe the key features of the NNPDF4.0 methodology, but refer the reader to

NNPDF4.0 for a full discussion on how these methodological choices were made,

and the impact on performing PDF fits to experimental data. The main point of

these experimental results is that we can use the data space estimators in a setting

with a highly non-linear forward map. We aim to show that even in this setting the

NNPDF MC approach to inverse problems whereby we fit fluctuated data replicas

is successful in producing a representative sample from the posterior distribution

of the model. We therefore demonstrate both the usefulness of the estimators

themselves as well as the the NNPDF MC approach to inverse problems.

128

4.5.1 Neural network parton distribution functions

Using neural networks to fit PDFs has been discussed many times in previous

NNPDF publications, see for example [2, 150]. A new feature of NNPDF4.0 [6] is

that, for the default fit, a single neural network parametrizes all 8 of the fitted

PDF flavours at the initial scale Q0. The PDF for a single flavour j, at the initial

scale Q0 = 1.65GeV as a function of the momentum fraction x is given by

fj(x,Q0) = NN(x, lnx|u)j ∗ x1−αj ∗ (1− x)βj , (4.114)

where α and β are the pre-processing exponents, which control the PDF behaviour

as x → 0 and x → 1 respectively and NN(x, lnx|u)j is the jth output of the

neural network, which takes x and lnx as input. The pre-processing exponents

ensure that the PDFs remain integrable even if there is no data to constrain the

parameters at low and high x. As discussed in Sec. 4.3.1, an ensemble of models

is fitted, each one is an MAP estimator of the corresponding pseudo-data it is

fitted on. Unlike in the case of the linear model, the parameters of the neural

network cannot be found analytically and instead an optimization algorithm is

used to try and find the parameters which maximise the likelihood. In principle,

the pre-processing exponents can also be varied during the fit analogously to the

neural network parameters, such as in [151], or they can be randomly selected

from a predetermined range as is done in previous NNPDF releases, for example

[150]. There are clearly many choices with respect to hyperparameters, the full

discussion of how these choices have been made is beyond the scope of this

Chapter, however they were chosen as a result of performing a hyperparameter

scan. The hyperparameter scan involves running multiple fits with different

values for the hyperparameter and selecting the “best” set of parameters based

on some criterion. Here the best parameters were chosen based on the goodness

of fit (χ2) to some held out data. For extensive details on the selection process

of the hyperparameters, see the full NNPDF4.0 release [6]. A summary of the

hyperparameters used to produce results presented in this paper are provided in

Tab. C.2.

Finally, the parton distributions themselves are not compared directly with

data. Instead the observables quantities are obtained by performing convolutions

between partonic cross sections and the PDFs, as discussed in Eq. 4.2. This is a

direct consequence of factorization theorem [152], which states that observables

from hadronic interactions can be factorized such that the PDFs are universal

129

functions which contain divergences from the emission of soft and collinear gluons,

and partonic cross sections are calculable from perturbative QCD. For DIS-like

observables, where the proton is probed by scattering leptons off a stationary

hadronic target, the observables can be formulated as a convolution with a single

PDF such as in Eq. 4.2.

We note in that equation that both the observable and the PDF are functions

of the momentum fraction x ∈ [0, 1] and the energy scale Q. However, in

Eq. 4.114 the PDFs themselves are only parametrized at a single scale, which in

the PDF fitting jargon is called the fitting, initial or parametrization scale Q0.

When the soft and collinear divergences are absorbed into the PDF, it induces a

dependence on an artificial factorization scale, referred to as µF . However, since

the physical observables are independent of this artificial scale, we are left with a

set of renormalization group equations, known as the DGLAP equations [153–155].

These are differential equations, which can be solved numerically to “evolve” PDFs

from one scale to another. It is convenient to re-express the DGLAP equation in

a basis of PDF flavours which maximally diagonalises them, which is achieved

by parametrizing the PDFs in the so-called evolution basis, whose eight flavours,

{g,Σ, V, V3, V8, T3, T8, c} are defined as

• g

• Σ ≡∑qi∈{u,d,s} qi + q̄i

• V ≡∑qi∈{u,d,s} qi − q̄i

• V3 ≡ u− ū− (d− d̄)

• V8 ≡ u− ū+ d− d̄− 2(s− s̄)

• T3 ≡ u+ ū− (d+ d̄)

• T8 ≡ u+ ū+ d+ d̄− 2(s+ s̄)

• c

where {u, d, s, c} correspond to up, down, strange and charm quark PDFs, g is

the gluon PDF and a bar is used to indicate the anti-quark PDF.

In practice the convolution between the partonic cross section and the PDFs can

be discretized and the evolution of the PDF from the initial scale Q0 up to the

130

energy scale of the observable Q, from solving the DGLAP equations, can be

pre-calculated. The evolution and partonic cross section are then contained in

an object, which is a core component of the NNPDF fitting methodology, known

as a FastKernel table [156, 157], for each data point. A detailed discussion of

FastKernel (FK) tables is given in [158]. A tensor product between the PDF at

an initial scale Q0, on a grid of points in x and the FK tables results in

• Evolution of the PDFs from the initial scale Q0 up to the energy scale of

the process.

• Linear combinations of the evolved PDFs depending on the sub-processes

for the given observable.

• Convolution between the partonic cross section and the relevant linear

combinations of evolved PDFs.

In practice the observables considered in these experiments define highly non-trivial

forward maps, for DIS-like observables:

G (u)i =
Nx∑
α

Nflav∑
l

Aαli fl(xα, Q0|u) , (4.115)

where Aαli is the FK table for DIS observable i, and the sums perform convolutions

over Nx points on a grid in x and Nflav PDF flavours. Recall that the model

parameters are implictly contained in the parton distribution function, detailed

by Eq. 4.114. Even in the case of DIS, where the observable is linear in the PDF

function, the PDF itself is parametrized as a fully connected neural network and

so the full forward map is non-linear in the model parameters. It is conceivable

that with the appropriate parametrization of PDF and DIS only observables,

the linear model framework in section 4.3.2 could be realised, in which case the

posterior distribution in PDF space could be calculated analytically. Investigation

into this is deferred for future study.

Similarly process which involve the interaction between two protons, which is

clearly relevant for LHC observables, take the form

G (u)i =
Nx∑
β

Nflav∑
l

Aαβlmi fl(xα, Q0)fm(xβ, Q0|u) , (4.116)

where now the FK table for observable i is a 4-dimensional tensor Aαβlmi , and

131

10 5 10 4 10 3 10 2 10 1 100

x

0.0

0.5

1.0

1.5

2.0

2.5

xg
(x

)

g at 1.65 GeV

Closure input PDF
Full replica ensemble (68% c.l.)

Figure 4.3 The green line is the input underlying law for the gluon PDF, which
is sampled from the ensemble from a fit to data. The 68% confidence
interval is plotted for those replicas as the orange band.

there are sums over x and flavour combinations for both PDFs.

4.5.2 Closure test setup

As input to the closure test, a single replica was drawn randomly from a previous

NNPDF fit to experimental data. We refer to this as the underlying law and the

corresponding predictions the true observable values. An example of the gluon

input is provided in Fig. 4.3. In principle any function could be used as underlying

law, however it makes sense to use a realistic input. To make things explicit, the

true observables values which are used as input to the closure fit are then given

by

f = G (w) (4.117)

where w ∈ {u∗}, i.e the underlying law parameters are drawn from a pre-existing

set of model parameters from performing a fit.

The observables used in the fits are a subset of the full NNPDF4.0 dataset. For

convenience, we chose to fit the PDFs on a variant of the NNPDF3.1 dataset used

in [159], which is described in detail in a study of the determination of the strange

PDF [160]. The datasets used in the calculation of statistical estimators are the

new datasets are included in NNPDF4.0. For a full summary of observables used

in the test data and a visual representation of the kinematic region of both the

132

training and testing data, see App. C.2.

The choice of data for both fitting and testing is considered unimportant, one

could consider splitting the data into training and test in a way which considered

kinematic coverage rather than this naive chronological splitting. Alternatively,

since the data is generated from the theory predictions produced by the input

underlying law, one could even produce completely artificial data using a different

set of FK tables. From a practical standpoint, using the NNPDF3.1 dataset and

validating on the newly included datasets in 4.0 allowed us to validate the PDF

uncertainties on data outside of the kinematic coverage of data included in the

fit. Furthermore, the data estimators only give us local information on the PDF

uncertainties and it seems logical to split the data in this way since the results

seem more applicable to the reality of how the PDFs end up being used.

We then generate 30 different sets of experimental central values (or L1 data), as

discussed in Sec. 4.3.3, for the fitted 3.1-like dataset. Each set of experimental

central values was then fitted following NNPDF4.0 methodology [6], producing 40

pseudo-data replicas.

4.6 Results

4.6.1 Bias-variance ratio

We calculated Rbv on the test data, shown in Tab. C.1. An uncertainty on Rbv by

performing a bootstrap sample [42], where we randomly sample from both fits and

replicas and re-calculate Rbv, the value and error presented in the table is then

the mean and standard deviation across bootstrap samples. We checked that the

distribution of the estimator across bootstrap samples is indeed Gaussian. We also

checked that increasing the number of fits and replicas reduced the bootstrap error

but the central values were the same within the estimated bootstrap uncertainties.

One can also compare qualitatively the distribution of bias across fits, to the

distribution of the difference between replica predictions and expectation values

of predictions (in units of the covariance) across different fits and replicas. The

square root ratio of the mean of these two distributions is precisely Rbv.

133

Rbv

Total 1.03± 0.05

Table 4.1 The bias-variance ratio, Rbv, for unseen data, summarised in Tab. C.1.
The uncertainty is estimated by performing a bootstrap sample across
fits and replicas and calculating the standard deviation. We see that
overall Rbv is consistent with 1, within uncertainties. This gives a
good indication that, at least for the unseen data used in this study,
the uncertainties are faithful.

Figure 4.4 The green histogram is the distribution of the total bias across fits,
the orange histogram is the distribution of the difference between the
replica and central predictions squared, in units of the covariance
across all fits and replicas. This gives a qualitative picture of the full
distribution, in Tab. 4.1 we compare the square root of the mean of
each distribution.

4.6.2 Comparison to quantile statistics

As discussed in Sec. 4.4.3, one can define an analogous estimator in data space,

based upon ξnσ, which was defined on a grid of points in x and Q2 in PDF space

in [2]. There is not a one-to-one correspondence between this and Rbv, but a loose

approximation using Eq. 4.100. In Tab. 4.2 we compare the estimated ξ1σ from

substituting Rbv into Eq. 4.100 and to the measured value.

Despite the assumptions entering each of the two estimators differing, we see good

agreement between the ξ1σ estimated from Rbv and that measured directly. We

find this result reassuring, since it indicates not only that the total uncertainty

134

ξ1σ erf(Rbv/
√

2)

Total 0.69± 0.02 0.67± 0.03

Table 4.2 Comparing the measured value of ξ1σ and the estimated value from
Rbv. The two values are consistent, which suggests the approximation
that the ratio of uncertainties is approximately the same across
all data is not completely invalidated. Not only are the measured
value and estimated value from Rbv self consistent, but they are also
consistent with 0.68, which further supports the argument that the
model uncertainties are faithful.

averaged across all data is faithful, but also that the uncertainty on each data point

seems faithful. If the results differed it would indicate some kind of imbalance,

where some components of the uncertainty are correctly represented by the replicas

but other directions are not.

135

4.7 Summary

We’ve presented a formal framework for inverse problems, from a Bayesian

perspective. In particular, the framework provides a more formal description

of what it means when we talk about propagating experimental uncertainties

into the space of models. Strictly speaking, there is no fitting required to obtain

the expression for the posterior distributions in the space of the data or the

model, instead these are obtained by marginalising the prior distribution. We

note that sampling from the posterior distribution of the model is, in general,

highly non-trivial but show that at least for linear problems the NNPDF MC

methodology can be shown to produce a sample of models which are distributed

according to the posterior model distribution. Furthermore, we provide evidence

that even for non-linear models this result at least holds as a good approximation

close to the MAP estimator.

We then use this formal framework to think about some of the estimators which we

use as part of the NNPDF closure test. In particular we derive bias and variance

from decomposing an out of sample error function, which is understood from a

classic fitting point of view. The estimators are then related back to the posterior

distributions in the Bayesian framework. We note that the estimators themselves

are not perfect and suffer from only testing the model uncertainties locally (in

regions where the test data probes). Furthermore, the estimators only give an

approximate overall picture, and cannot be used to diagnose where the problem

arises if we find evidence that the model uncertainties are not faithful.

Given the framework set out here, future work should be undertaken generalise

the closure estimators to model space. This would likely involve a combination of

the closure estimators presented here and the extension of the Bayesian framework

to infinite-dimensional spaces.

We give some preliminary closure results, as a proof of principle, the results

presented here used the full NNPDF4.0 fitting methodology [161] and the closure

fits were fitted and analysed using observables which will be used as part of

the full NNPDF4.0 dataset. The results serve as an example of how the data

space estimators can be practically included even in a rather complex setting.

Furthermore, since the NNPDF4.0 methodology passes the closure test according

to the estimators presented here, we provide evidence that the NNPDF MC

approach to inverse problems is a reasonable approach to sampling from the

136

posterior distribution of the model. In particular, for unseen data the current

NNPDF methodology appears to provide faithful uncertainties. The estimators

are not limited to this specific application, and the results presented demonstrate

how the data space estimators can be incorporated into any inverse problem.

In the closure test framework described in this study, the prior on the data

is fully consistent with the generation of the observable central values from

the true observables and uncertainties by construction, which is likely not the

case in real world fits. Something which should be investigated is guarantee

faithful uncertainties when this is no longer the case, for example one could

consider a closure test where the generated data was inconsistent with the prior.

Most observed inconsistency between the prior and the data central values is

likely due to missing theoretical uncertainties, but once all sources of theoretical

uncertainties have been accounted for there could still be tension in the data. The

advantage of viewing inverse problems from a Bayesian perspective is access to

methodologies which deal with inconsistent data (or unknown systematics) in a

Bayesian framework, for example in these cosmological studies [162, 163]. These

methods potentially offer a more formal approach to dealing with inconsistent

data, rather than ad hoc procedures.

In NNPDF fits, the inclusion of MHOUs in the likelihood was justified from a

Bayesian perspective [146], but here we have drawn a connection between the

model replicas and the posterior distribution in model space, which explains why

theoretical uncertainties must be included in both the sampling of the pseudodata

replicas and the likelihood. Therefore we emphasise that the framework set out

here is not only useful for understanding model uncertainties with the current

methodology, but also for motivating future methodological development from a

Bayesian perspective.

137

Chapter 5

Conclusion

This thesis has explored machine learning tools which can be used for sampling

various probability distributions which appear in physics.

In the Chapter 2 we trained an Restricted Boltzmann Machine in order to generate

binary spin configurations for the Ising model. Here we used our knowledge of the

physical model to help us understand the training procedure. In particular, we

could see how the estimation of physical observables from configurations generated

from the model evolved throughout the training. We can see the training converge

as the observables converge to the expected values. We used this to help inform

a recipe for training RBMs. We also used annealed importance sampling in

order to estimate the normalized likelihood of the training data. Similarly to the

observables, we can measure this whilst training the model in order to determine

whether the training has converged. We note that the estimation of the likelihood

is not restricted to physical systems, and therefore is a more general indication of

training convergence than estimating physical observables.

The key result of this work was deriving the physical coupling of the model

distribution from the model parameters. In particular we showed that in the case

of the RBM trained on states from the 2-D Ising model, the 2-point interaction

both reproduced the nearest neighbour interaction structure and the value of the

coupling. Being able to extract information from trained ML models is of interest

to a wide range of scientific communities. Whilst this result is limited to RBMs, it

provides a framework for training models to generate states for any binary system

and then extract any N-point interaction that the model learns from the data

directly from the model weights. This result gives us a closed form expression

138

which allows us to understand exactly what the model has learned and therefore,

at least for RBMs, is work in the direction of explaining what the ML model

is doing instead of treating it as a black box. Being able to derive results such

as this for a wider range of models is relevant for a wide range of fields. Since

performing this work, there has already been further effort to derive results which

are analogous to our N-point interactions derived for the RBM but are model

independent, an application is shown for simulated individual-level human DNA

and traits [164].

In the next Chapter we shifted to a different generative model, the normalizing

flow, and showed how we could reproduce the results in [1] with substantially less

computational cost. Whilst there were similarities with the techniques used in this

work and the work in Chapter 2, the aim of this work was to use the ML model

itself as an efficient tool for generating states according to a scalar lattice theory

with a φ4 interaction. Our contribution to this line of work was to introduce more

flexibile transformations to the flow and perform a more extensive study of the

impact of different hyperparameters on the trade-off between the ability of the

model to produce samples similar to the target distribution and the time taken to

train it. Despite a very large reduction to the amount of effort required to train

the normalizing flow compared to the original proof of principle study, we show

that the scaling of the training cost is exponential with the lattice size and so

whilst this model seems very promising as a supplementary tool for generating

lattice field theory configurations, there is clearly more work required in order to

understand exactly how the training scales and whether this poor scaling can be

overcome. Overcoming this poor scaling of the training should be the focus of

future work.

In the final Chapter we presented a formal Bayesian framework for Inverse problems.

Investigating this work involved a paradigm shift from the unsupervised learning

in the previous Chapters to the NNPDF MC methodology which relied on the

supervised learning technique of regression. In the era of precision physics, there

is an increased urgency in faithfully representing all uncertainties which includes

the uncertainties associate with determining models from finite noisy observations.

The Bayesian framework provides a formal description of how to propagate

uncertainties from the training data into the model. We show that, at least for

linear forward maps, the NNPDF MC methodology of fitting fluctuated data

produces a sample of models which are distributed according to the posterior

distribution of the model given the data. Further work should be undertaken

139

to show to what extent this holds for non-linear models. We presented some

data space estimators which have an interpretation in classical fitting as different

components of the generalisation error. The data estimators can also be used to

assess whether the distribution of replicas gives faithful uncertainties in the space

of data. Some proof-of-principle results were shown in the context of fitting Parton

Distribution Functions to demonstrate the usefulness of both the estimators and

the NNPDF MC methodology in generating replicas which appear to have faithful

uncertainties on unseen data. Future work should try and connect the closure test

estimators and the extension of the Bayesian formalism to the infinite dimensional

space of functions. This would potentially give the option of defining estimators

which could give a more global understanding of the model uncertainties, since

the data estimators are restricted to testing uncertainties in a local sense, where

the test data is able to probe.

As a final observation, in Chapter 3, the training involves minimising a reversed

Kullbach-Leibler divergence which meant that we were training a model to

approximate a known (unnormalized) distribution. Whilst the normalizing flow is

a tool which would normally fall under the paradigm of unsupervised learning, this

method of training starts to blur the line between the supervised and unsupervised

learning. To demonstrate this, consider the Bayesian formalism presented in

Chapter 4, where we have an explicit unnormalized expression for the posterior

distribution of the model parameters. In that work we focused on the NNPDF

MC approach which mixes ideas of bootstrapping and regression to approximately

sample from the posterior distribution of the model parameters. But when the

two approaches are laid out side by side, we can imagine using a flow model

to generate configurations of model parameters from the posterior distribution

in model space. The allure of this approach is that we would be able to use

the Metropolis algorithm in order to guarantee that the model replicas were

indeed sampled from the posterior distribution in model space. This might seem

like a rather ambitious goal but recall that with a linear forward map and a

Gaussian prior on the data, the posterior model distribution is a multi-variate

Gaussian. In this case the flow model has to learn a rotation, rescaling and shifting

transformation in order to transform the independent Gaussian latent variables to

the multi-variate Gaussian model parameters. We have already demonstrated that

the normalizing flows can handle these kinds of transformations, when training the

flow model on scalar free theory in Sec. 3.6.1. Showing explicitly that normalizing

flows could be used in this way would certainly be an interesting new approach

to solving inverse problems and could draw on the formal Bayesian framework

140

for inverse problems laid out in Chapter 4 and the description training flexible

normalizing flow models in Chapter 3.

Machine Learning continues to be a disruptive technology in many fields, and

we are sure to continue seeing it be used in the context of Physics. The work in

this thesis has allowed us to understand better what distribution an RBM has

learned, here we were able to use our understanding of physics to provide a result

which is useful for a range of fields which rely on distributions of binary data.

We then progressed a line of work which aims to use a similar class of models,

normalizing flows, as efficient tools for producing samples from distributions which

have a closed form, such as those in lattice field theories. This work massively

reduced the computational cost of training these models but also highlighted

that there is still a way to go before these kinds of techniques can replace more

traditional sampling techniques. In particular the exponential scaling of the

training costs must be overcome. Finally we looked at inverse problems from a

Bayesian perspective which allowed us to understand better how the NNPDF MC

methodology for producing a sample of model replicas relates to the posterior

model distribution which emerges as part of this formal framework. Being able

to relate statistical estimators used to validate the NNPDF methodology back

to this formal framework gives us confidence that our model uncertainties are

faithful, and allows us to understand what faithful model uncertainties means.

141

Appendix A

Appendix: RBM

A.1 The training procedure in more detail:

L2 = 8× 8

Here we report further details regarding the training of the RBM on the 8×8 Ising

model at T = 1.8. The specific parameters used for the training are presented

in Table 2.3. As mentioned before, the number of constrastive divergence steps

k was increased during the training, while the learning rate α was decreased,

splitting the training in three phases. The reason for the former prescription, is

exemplified in Fig. A.1, where the loss function and the log-likelihood between

epoch 3000 and 4000 are plotted for different values of k. While the loss function

is left unchanged with varying k, the log-likelihood displays a clear difference in

shape, i.e. it increases as k is increased, while keeping α fixed at 0.01. If, instead,

we choose to keep k fixed at k = 1, and decrease α from 0.01 to 0.001, we see no

improvement in the log-likelihood as observed on the left hand side of Fig. A.1.

Therefore, it is the increase in the value of k that leads to the increase in the

log-likelihood, visible in the curves corresponding to T = 1.8 of Fig. 2.3.

The reason for reducing the learning rate along the training is visible in Fig. A.2,

where we have taken observables for T = 1.8 from Fig. 2.4, magnified and

normalized by their expected value from Magneto. We therefore observe that

decreasing the learning rate implies a reduction of the fluctuations between

successive epochs, resulting in a fine tuning of our predictions. This is more

evident starting from epoch 3000, where the learning rate is decreased by factor 10.

142

3000 3200 3400 3600 3800 4000
18

17

16

15

14

13

k=1, alpha = 0.01
k=1, alpha = 0.001
k=5, alpha = 0.01

Log-likelihood vs number of epochs

3000 3200 3400 3600 3800 4000

0.04

0.02

0.00

0.02

0.04

k=1, alpha = 0.01
k=1, alpha = 0.001
k=5, alpha = 0.01

Loss vs number of epochs

Figure A.1 From left to right, log-likelihood and loss function between 3000 and
4000 epochs for three different values of k. While the former shows
different behaviors, keeping an increasing trend just for the highest
k value, the latter doesn’t change at all, always remaining near zero.

As shown in the plots, at the end of the training, the predictions from the RBMs

are compatible, within statistics, with the expected value from Magneto. Also,

when we approach the end of the training, all the machines shown in the plots are

statistically equivalent to each other, since their predictions are all compatible

within 2 sigma.

0 1000 2000 3000 4000 5000

0.990

0.995

1.000

1.005

1.010 Magnetisation
Energy

Magnetisation and energy vs number of epochs

0 1000 2000 3000 4000 5000
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2 Susceptibility

Heat capacity

Susceptibility and heat capacity vs number of epochs

Figure A.2 Observables for T = 1.8 normalized by their expected values as a
functions of the training epoch. Magnetization and energy are shown
on the left, susceptibility and heat capacity are on the right.

A.2 Training on a larger system: L2 = 16× 16

Here we report the results for a training the RBM on 16× 16 Ising configurations,

highlighting the main difficulties arising for larger systems. As done in the case

of the 8×8 systems, we first tune the value of k in order to have an increasing

log-likelihood. It turns out that the log-likelihood behaviour is sensitive to the

value of k and α much more than in the case of smaller 8×8 systems. This is

shown in Fig. A.3, where the log-likelihood as a function of the training epoch is

plotted for different values of k and α. On the left hand side we see that using

α = 0.1, the log-likelihood is not an increasing function of the epochs, even when

the value of k is increased. However, decreasing the value of α to 0.01 and using

143

k = 5 we manage to obtain an increasing behaviour which becomes even more

evident when using k = 10, as shown on the right hand side. The final setting used

0 500 1000 1500 2000 2500 3000

350

300

250

200

Log-likelihood vs number of epochs, alpha=0.1
k=1, alpha = 0.1
k=5, alpha = 0.1
k=10, alpha = 0.1

0 500 1000 1500 2000 2500 3000

350
325
300
275
250
225
200

Log-likelihood vs number of epochs, alpha=0.01
k=1, alpha = 0.01
k=5, alpha = 0.01
k=10, alpha = 0.01

Figure A.3 Log-likelihood for different values of k and α.

to train this machine are reported in Table 2.3. The estimators for the training

are presented in Fig. A.4 and the observables versus epochs plots in Fig. A.5:

all the estimators present the correct behaviour. The initial peak visible in the

log-likelihood at about 500 epochs, should not be considered as the point where

the machine has been best trained, but rather as an initial fluctuation of the

log-likelihood that later on dies out. This observation is also confirmed by the

loss function and the reconstruction error, which also present a peak around the

same number of epochs, implying that the training has not converged yet at this

point. The final increase in the log-likelihood at 8000 epochs, is where we started

using k = 20 instead of k = 10, as reported in Table 2.3.

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

1.5

2.0

2.5

3.0 T=1.8

Loss vs number of epochs

0 2000 4000 6000 8000 10000

0.030

0.035

0.040

0.045

0.050
T=1.8

Reconstruction error vs number of epochs

0 2000 4000 6000 8000 10000
500
600
700
800
900

1000
1100
1200
1300 T=1.8

Free energy vs number of epochs

0 2000 4000 6000 8000 10000

280

260

240

220

200
T=1.8

Log-likelihood vs number of epochs

Figure A.4 Here we observed the increase in the log-likelihood behaviour for
our chosen values of k and α, as given in Table 2.3. Both the loss
function and reconstruction error decrease as the training progresses.

From the plot of observables in Fig. A.5, it can be seen that magnetization and

heat capacity have almost converged to the expected value, and would only require

144

a fine tuning by reducing the value of α. The energy and susceptibility are further

from the expected values, therefore, longer training is required to obtain more

accurate values for these two quantities. Having said that, it appears that all

the moments are slowly approaching the expected values, and the fact that the

log-likelihood is still increasing with the number of epochs suggests that our

machine is indeed learning. We can conclude that for the case of the larger 16×16

system the convergence is much slower than the previous smaller 8× 8 systems.

We can convince ourselves that the machine is actually learning looking at the

0 2000 4000 6000 8000 10000

0.975
0.980
0.985
0.990
0.995
1.000
1.005

Magnetisation and energy vs number of epochs

Magnetisation
Energy

0 2000 4000 6000 8000 10000
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Susceptibility and heat capacity vs number of epochs

Susceptibility
Heat capacity

Figure A.5 Observables vs epochs for L2 = 16 × 16, h2 = 16 × 16 and batch
size 200. The value of each observable, computed from the RBM,
is normalized by its expected value, computed from the training set.
Magnetisation (blue) and energy (orange) are plotted on the right
hand side, susceptibility (blue) and head capacity (orange) are on
the left.

2-point interaction matrix for the machine at epoch 10000, plotted in Fig.(A.6).

Clearly the expected path for the interactions can already be seen in the matrix.

The coupling extracted from this matrix is 1/2T ∼ 0.258± 0.017, as compared

to the expected value of 0.277. This confirms that the machine agrees with the

correct theoretical result within 2 sigma. A more accurate result can be obtained

if the machine is trained for a longer period of time, as the log-likelihood is still

increasing.

A.3 Changing the batch size

We also examined the effect of changing the batch size for the L2 = 16 × 16

system, keeping the other hyperparameters the same as the successfully trained

machine above, i.e. , α = 0.01 and k = 10. As it can be observed from Fig. A.7,

the log-likelihood has a slower increase with batch size 500, as compared to batch

size 200.

The slower training in this case can also be observed by plotting the trajectories

145

T = 1.8

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.1 0.0 0.1 0.2 0.3
0

2000

4000

6000

8000

10000

Figure A.6 The 2-point interaction matrix, Hj1,j2 (left) and its corresponding
histogram (right) for the machine with L2 = 16× 16, h2 = 16× 16
and batch size 200. Again, we observed the larger peak centred
around zero, corresponding to non nearest neighbour interactions,
while there is a second peak representing the coupling with the nearest
neighbour spins.

0 2000 4000 6000 8000 10000
450

400

350

300

250

200

150
batch size = 500
batch size = 200

Log-likelihood vs number of epochs

Figure A.7 The dependence of log likelihood on batch size. The curves correspond
to L2 = 16× 16 lattice with batch size 500 (blue) and batch size 200
(yellow). The choice of a smaller batch size, results in a steeper rise
to the log-likelihood.

of the observables per epoch, in Fig. A.8, as compared to Fig. A.5. This is also

3000 4000 5000 6000 7000 8000 9000 10000
0.992

0.994

0.996

0.998

1.000

1.002

1.004
Magnetisation and energy vs number of epochs

Magnetisation
Energy

3000 4000 5000 6000 7000 8000 9000 10000

0.6

0.7

0.8

0.9

1.0

Susceptibility and heat capacity vs number of epochs

Susceptibility
Heat capacity

Figure A.8 Observables, normalized by their expected values, vs epochs for L2 =
16× 16, h2 = 16× 16 and batch size 500. We observe that it takes
the observables longer to converge to the correct values, as compared
to the case where a smaller batch size is used, e.g. , see Fig. A.5.

146

consistent with the two-point interaction matrix presented in Fig. A.9, which is

more noisy in this case as compared to Fig. A.6.

T = 1.8

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.1 0.0 0.1 0.2 0.3
0

2000

4000

6000

8000

10000

Figure A.9 The 2-point interaction matrix, Hj1,j2 (left) and its corresponding
histogram (right) for the machine with L2 = 16× 16, h2 = 16× 16
and batch size 500. There is a large peak centred around zero,
corresponding to non nearest neighbour interactions, however, a
second smaller peak can also be observed next to it. As already
discussed, the machine with a larger batch size, i.e. 500, has to be
trained for longer epochs as compared to the machine with batch size
200, in order to learn that non nearest neighbour interactions are
zero. Finally, the distinct peak on the right hand side of the plot
represents the expected coupling with the nearest neighbour spins,
compare with Fig.A.6

A.4 Changing the number of hidden nodes

We also attempted to train an RBM, for the L2 = 16× 16 Ising system, where

the number of hidden nodes were less than the visible nodes. More explicitly, we

chose h2 = 12 × 12. The log-likelihood is plotted in Fig. A.10. The first 4500

epochs were trained using α = 0.01 and k = 10, as these settings were successful

in training the h2 = 16× 16 case in Sec. A.2. However, from the experience gained

in Sec. A.3, the batch size was reduced to 50 in order to give an faster increasing

slope to the log-likelihood.

The observables, normalized by their expected values, are plotted in Fig. A.11.

We can see that the values are furthest from one as compared to the other cases

we have trained so far. This is consistent with the measurement of the coupling

matrix at a representative epoch towards the end of this training, as presented in

Fig. A.12. The nearest neighbour structure is present, however, further correlations

147

0 2000 4000 6000 8000 10000
280

260

240

220

200 T=1.8

Log-likelihood vs number of epochs

Figure A.10 Log-likelihood for an RBM with less hidden nodes than visible
nodes, L2 = 16× 16 and h2 = 12× 12. The first 4500 epochs were
trained using α = 0.01, k = 10 and batch size 50. According the
prescription, we then reduced the value of α and increased k, i.e.
, From 4500 to 8000, we set α = 0.001 and k = 20. From 8000
to 8700 epochs α and k were kept fixed at their previous value,
while the batch size was increase to 200, in order to reduce the
fluctuations in the estimate of the log-likelihood. In the last steps
we chose α = 0.0001 and k = 30, and α = 0.00001 and k = 40.

between the spins can also be observed, which are not expected. A third peak in

the histogram confirms the latter observation more clearly in Fig. A.12.

0 2000 4000 6000 8000 10000

0.985

0.990

0.995

1.000

1.005
Magnetisation and energy vs number of epochs

Magnetisation
Energy

0 2000 4000 6000 8000 10000
0.4

0.6

0.8

1.0

1.2

1.4

1.6
Susceptibility and heat capacity vs number of epochs

Susceptibility
Heat capacity

Figure A.11 Observables vs epochs for L2 = 16 × 16, h2 = 12 × 12. It can be
observed that the machine has to run for more epochs for it to learn
the observables and hence the correct structure.

According to Fig. A.10, the log-likelihood is still increasing, however, the run has

become computationally expensive at this stage with α = 0.0001 and k = 40.

Recall that in Fig. 2.10, it is observed that there are correlations which are further

than nearest neighbours predicted by the RBM, before the learning is complete.

Therefore we could expect that with more training, the RBM may eventually learn

the correct nearest neighbour structure, setting the rest of the correlations to zero.

Also notice that a L2 = 16× 16 with hidden nodes of the size h2 = 12× 12 has

O(3× 105) less parameters than the case with h2 = 16× 16. Hence, the difficulty

in training the machine is not perhaps too surprising. Having said that, further

works need to be done to gain a better understanding of the effect of reducing

148

T = 1.8

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
0

2000

4000

6000

8000

10000

Figure A.12 The two-point interaction matrix for the L2 = 16× 16 system (left)
and the corresponding histogram (right) with h2 = 12 × 12. The
first peak is centred around zero, corresponding the the non nearest
neighbour interactions. The second peak around 0.15 indicates
other non nearest correlations that the machine has to learned to
set to zero and are expected to vanish as it trains further. The
final peak on the right hand side, corresponds to the correct nearest
neighbour coupling.

hidden nodes on training an RBM.

A.5 3- and 4-point interaction histograms

We present the histograms of the 3- and 4-point couplings between the spins, in

Fig. A.13 and A.14 respectively. Generally, the single peak expected behaviour

is observed. However for some of the higher temperatures, a second mode seems

to appear in the histogram of the three-point interaction. More work needs to

be done to understand why these machines appear to be learning a higher order

interaction than we would not expect.

A.6 Metropolis history plots

The absolute magnetisation and energy histograms of Ising configurations, over

which the final measurements for the observables are made, are presented for two

different temperatures in Fig. A.15 and Fig. A.16. The histograms compare well

to their corresponding normal distribution, whose parameters are measured by

measuring the mean and the standard deviation from the data producing the

histogram. Running the Metropolis chain longer than 1×106 steps did not change

149

0.1 0.0 0.10

2
1e4

T = 1.8

0.1 0.0 0.10

2
1e4

T = 1.9

0.1 0.0 0.10

2

1e4
T = 2.0

0.1 0.0 0.10.0

2.5

1e4
T = 2.1

0.1 0.0 0.10.0

0.5 1e5
T = 2.2

0.1 0.0 0.10.0

2.5

1e4
T = 2.3

0.1 0.0 0.10.0

2.5

1e4
T = 2.4

0.1 0.0 0.10.0

2.5

1e4
T = 2.5

0.1 0.0 0.10.0

2.5

1e4
T = 2.6

0.1 0.0 0.10

2
1e4

T = 2.7

0.1 0.0 0.10

2

1e4
T = 2.8

0.1 0.0 0.10

2
1e4

T = 2.9

0.1 0.0 0.10

1

1e4
T = 3.0

Figure A.13 The histograms of the entries of the 3-point interaction tensor
extracted from RBMs trained at a temperature indicated above each
subplot.

0.05 0.00 0.050

2

1e6
T = 1.8

0.01 0.00 0.010.0

2.5

1e6
T = 1.9

0.01 0.00 0.010.0

2.5

1e6
T = 2.0

0.01 0.00 0.010.0

0.5

1e7
T = 2.1

0.01 0.00 0.010

1
1e7

T = 2.2

0.01 0.00 0.010

1
1e7

T = 2.3

0.01 0.00 0.010

1
1e7

T = 2.4

0.01 0.00 0.010

1
1e7

T = 2.5

0.01 0.00 0.010

1 1e7
T = 2.6

0.01 0.00 0.010.0

0.5
1e7

T = 2.7

0.01 0.00 0.010.0

0.5

1e7
T = 2.8

0.01 0.00 0.010.0

0.5

1e7
T = 2.9

0.01 0.00 0.010.0

2.5

1e6
T = 3.0

Figure A.14 The histograms of the entries of the 4-point interaction tensor
extracted from RBMs trained at a temperature indicated above each
subplot.

the from of the distributions.

Note that in order for the measurements to be independent of each other, we have

binned every 50 measurements of |m| and E on each configuration. To decide on

the bin size, we plotted the error on the measurement of magnetisation vs choice

of bin size. This is shown in Fig. A.17, while the autocorrelation time, defined in

Eq, 2.43, is plotted in Fig. A.18

150

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

5

10

15

20

25

30

Hisogram of m atT = 1.8

-1.9 -1.8 -1.7 -1.6 -1.5
0

2

4

6

8

10

Histogram of energy atT = 1.8

Figure A.15 Histogram of |m| (left) and energy (right) for the Metropolis
algorithm at T = 1.8. The blue line represent the normal
distribution with values of its mean and standard deviation obtained
from the data producing the histogram.

0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

Histogram of m atT = 3.

-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6
0

1

2

3

4

5
Histogram of energy atT = 3.

Figure A.16 Histogram of |m| (left) and energy (right) for the Metropolis
algorithm at T = 3.0. The blue line represent the normal
distribution with values of its mean and standard deviation obtained
from the data producing the histogram.

10 20 30 40 50 600.00007

0.00008

0.00009

0.00010

0.00011

0.00012

0.00013

0.00014
Error on |m| vs bin size

T=1.8

Figure A.17 Error on |m| plotted for choice of bin size. As the measurements
become more independent, the correlation between them decrease
and hence the error increases. When the measurements are no
longer dependent, the error remains constant.

0 25 50 75 100 125 150 175 2000.2

0.0

0.2

0.4

0.6

0.8

1.0

autocorrelation vs MC steps
T=1.8

Figure A.18 Autocorrelation time as a function of MC steps.

151

Appendix B

Appendix: Normflow

B.1 φ4 theory on the lattice

The standard φ4 action in two-dimensional Euclidean space is

S[ϕ] =

∫
d2x

[
1

2

(
∂µϕ(x)

)(
∂µϕ(x)

)
+

1

2
m2

0ϕ(x)2

+
1

4!
g0ϕ(x)4

]
, (B.1)

where m0 is the bare mass and g0 is the bare coupling for the quartic interaction

term.

We can define a discretised analogue of this theory on a periodic lattice Λ with

lattice spacing a and spatial extent Lµ = aNµ using the following steps:

1. Use the vanishing boundary term (due to periodicity) to replace the derivative

term with the Laplacian,

(
∂µϕ(x)

)(
∂µϕ(x)

)
→ −ϕ(x)∂2ϕ(x) . (B.2)

152

2. Adopt the following discretised version of the Laplacian:

∂2ϕx → δ2ϕx

=
1

a2

2∑
µ=1

(ϕx+aeµ + ϕx−aeµ − 2ϕx) , (B.3)

where eµ represents a unit vector in the µ-th dimension.

3. Replace the integral with a sum,∫
d2x→ a2

∑
x∈Λ

. (B.4)

4. For convenience, define dimensionless couplings m2
0 → m2

0a
2 and g0 → g0a

2.

This leads to the following lattice action:

S(ϕ) =
∑
x∈Λ

[
1

2
ϕx(−δ2 +m2

0)ϕx +
g0

4!
ϕ4
x

]
. (B.5)

Using (B.3) and the translational invariance of the action yields

S(ϕ) =
∑
x∈Λ

[
−

2∑
µ=1

ϕxϕx+eµ + (2 +
m2

0

2
)ϕ2

x +
g0

4!
ϕ4
x

]
. (B.6)

Equation (3.39) is related to (B.6) through

ϕ =
√
βφ, 2 +

m2
0

2
=

1− 2λ

β
,

g0

4!
=

λ

β2
. (B.7)

B.2 Estimation of integrated autocorrelation time

In practice, the integrated autocorrelation time defined by Equation (3.4) must

be estimated from a Markov chain of finite length N . However, the statistical

error on the autocovariance estimator,

Γ̂O(t) =
N

N − 1

[
1

N

N−t∑
n=1

O(φ(n+t))O(φ(n))− Ō2

]
, (B.8)

increases with t, so it is preferable to truncate the sum at some separation W < N .

153

We thus have the estimator

τ̂int,O(W) =
1

2
+

W∑
t=1

Γ̂(t)

Γ̂(0)
, (B.9)

and must attempt to find the value of W which minimises the sum of:

1. The bias due to truncating the sum,

εtrunc(W) ≡ bias
[
τ̂int,O(W)

]
= −

∞∑
t=W+1

Γ(t)

Γ(0)
≈ −τint,Oe

−W/τO , (B.10)

where we have assumed that W is sufficiently large that the autocorrelation

takes a pure exponential form, with τO being the characteristic relaxation

time of the slowest mode of O.

2. The statistical error approximated by the Madras-Sokal formula [63],

ε2
stat(W) ≡ var

[
τ̂int,O(W)

]
≈ 2(2W + 1)

N
τ 2

int,O , (B.11)

which uses the approximation τO � W � N .

We would therefore like to find the minimum of ∆(W) = |εtrunc(W)|+ |εstat(W)|.
To do so we follow the ‘automatic windowing’ procedure detailed in Reference

[165] (Sec. 3.3).

First, note that we can re-cast the integrated autocorrelation time in terms of the

equivalent pure exponential decay,

τ ∗int,O = −
[

log

(
2τint,O − 1

2τint,O + 1

)]−1

, (B.12)

which is equal to zero, rather than 1/2, for uncorrelated data, and so offers

improved precision in situations where decorrelation occurs very quickly.

We furthermore assume that it is valid to substitute the slowest mode τO for

λτ ∗int,O with λ being a small constant factor, to be tuned such that smallest value

of W for which

λ
∂∆̂(W)

∂W
= −e−W/(λτ̂∗int,O) +

λτ̂ ∗int,O√
WN

(B.13)

154

drops below zero occurs, generally, at a point at which τ̂int,O(W) levels off to a

plateau.

Since we generally encountered very small integrated autocorrelation times, the

approximation in Equation (B.10) is probably a poor one. By the same token,

however, statistical errors were minimal. Ultimately, a little tuning of λ by visual

inspection of τ̂int,O(W) for a small number of experiments was sufficient.

B.3 Comparison with literature results

Albergo et al. [1] used flows comprising solely affine coupling layers parametrized

by fully-connected networks to generate φ4 configurations on lattices ranging from

62 to 142 sites. They reported training times of 1-2 GPU-weeks in order to reach

an average acceptance rate of 70% in the Metropolis-Hastings phase.

Although theirs was a proof-of-principle study, we were nonetheless curious to

check how quickly our hybrid affine/spline models could be trained to reach a 70%

acceptance rate, using the same action and couplings provided in Reference [1]

(though our previous results for |Λ| = 62 − 142, λ = 1/2 and L/ξ = 4 correspond

to essentially the same systems). We trained these models on a desktop PC. The

real time taken to train models to reach at least 70% acceptance are given in

Table B.1.

Presumably, the main reason that the times reported in the original study are so

much larger than than what we find is the use of much larger neural networks;

for the 142 lattice they used networks with width 1024 and depth 6 whereas for

the same system our models used comparatively minuscule networks of width 196

and depth 2 (i.e. a single hidden layer). Still, given the near order-of-magnitude

increase in real train times for each lattice size increase, with this setup and a

target of 70% acceptance we would likely encounter times measured in weeks as

soon as L = 18 or 20. Despite the modest hardware, it is abundantly clear that

scaling this technique up to system sizes at which critical slowing down becomes

a serious problem will require significantly more than fine-tuning the current

approach.

155

L H Naffine Nsegments Nbatch Nepoch η0 time
6 36 2 8 300 350 0.02 9s
8 64 2 8 500 750 0.01 37s
10 100 3 8 1250 2000 0.005 5.0m
12 144 3 8 4000 5000 0.003 43m
14 196 3 8 7000 14000 0.001 4.5h

Table B.1 Measurements of the real time taken to train our models to reach an
acceptance rate of 70% for the systems studied in Reference [1]. L
is the lattice length, H is the number of hidden nodes in the neural
networks, Naffine is the number of affine layers, Nsegments is the number
of segments used in the single spline layer, Nbatch is the number of
states in a batch, Nepoch is the number of training iterations. Since
we were aiming for speed of training rather than reaching the highest
possible acceptance rates, we increased the initial learning rate η0 with
respect to our main study, although we do not recommend doing this
in general. The models were trained on a desktop PC with an Intel
i7-7700K quad-core CPU and 16GB RAM.

156

Appendix C

Appendix: Inverse Problems

C.1 Gaussian integrals

Theory errors can be included in this framework by allowing the distribution of

observables around the theory prediction to have a finite width, e.g. by replacing

the Dirac delta

δ(y − Gu) (C.1)

in Eq. 4.12 with a Gaussian

θ(y, u|G) ∝ exp

[
−1

2
(y − Gu)T C−1

T (y − Gu)

]
. (C.2)

For the purposes of this study, we do not want to provide a realistic estimate of

theory errors. Instead we will be assuming that the errors are uncorrelated and

identical for all data points

CT = σ21 , (C.3)

and we will be interested in the limit where σ2 → 0.

C.1.1 Integrating out the data

Marginalizing with respect to y in this case yields

πM(u|y0, u0,G) ∝ π0
M(u|u0)

∫
dy π0

D(y|y0)θ(y, u|G) . (C.4)

157

The argument of the exponential in the integrand is a quadratic form in y,

A = (y − y0)T C−1
D (y − y0) + (y − Gu)T C−1

T (y − Gu) . (C.5)

The integral can be easily evaluated by completing the square,

A = (y − ỹ)T C̃−1
D (y − ỹ) +RD . (C.6)

Comparing Eqs. C.5 and C.6 at order y2 and y, yields

C̃−1
D =

1

σ2

(
1 + σ2C−1

D

)
, (C.7)

ỹ =
(
1 + σ2C−1

D

)−1 (Gu+ σ2C−1
D y0

)
, (C.8)

and therefore

ỹT C̃−1
D ỹ =

1

σ2
(Gu)T

(
1 + σ2C−1

D

)−1
(Gu) + yT0 C

−1
D

(
1 + σ2C−1

D

)−1
(Gu) +

+ (Gu)T C−1
D

(
1 + σ2C−1

D

)−1
y0 + σ2yT0 C

−1
D

(
1 + σ2C−1

D

)−1
C−1
D y0 .

(C.9)

Note that the four terms in the equation above are ordered in increasing powers

of σ2 and ultimately we will be interested in the limit σ2 → 0, which reproduces

the Dirac delta in θ(y, u). Plugging Eq. C.9 in Eq. C.6 and again comparing to

Eq. C.5, we find

RD =
1

σ2
(Gu)T

[
1− 1

1 + σ2C−1
D

]
(Gu)− yT0 C−1

D (Gu)− (Gu)T C−1
D y0+

+ yT0 C
−1
D y0 +O(σ2) ,

(C.10)

Expanding for small values of σ2 the terms of order 1/σ2 cancel; keeping only

finite terms in the limit σ2 → 0 we finally obtain

RD = (Gu− y0)T C−1
D (Gu− y0) . (C.11)

This is exactly the result that we obtained earlier when

θ(y, u|G) = δ(y − Gu) . (C.12)

It should not come as a surprise since in the limit where σ2 → 0 the Gaussian

distribution that we chose to describe the fluctutations of the data around the

158

theory predictions reduces indeed to a Dirac delta. The posterior for the model is

exactly the one we computed in Sect. 4.2. We do not learn anything new from

this exercise, but it is a useful warm-up for the next example. The integral over y

can now be performed easily, since it is yet again a Gaussian integral.

C.1.2 Integrating out the model

Using the same approach as above, we now want to marginalise with respect to

the model in order to obtain the posterior distribution of the data:

πD(y|y0, u0,G) ∝ π0
D(y|y0)

∫
du π0

M(u|u0)θ(y, u|G) . (C.13)

We follow exactly the same procedure outlined above, starting from the argument

of the exponential

A = (u− u0)T C−1
M (u− u0) + (y − Gu)T C−1

T (y − Gu) , (C.14)

we complete the square and rewrite it in the form

A = (u− ũ)T C̃−1
M (u− ũ) +RM . (C.15)

It can be readily checked that in this case

C̃−1
M =

1

σ2

(
GTG + σ2C−1

D

)
, (C.16)

ũ =
(
GTG + σ2C−1

M

) (
GTy + σ2C−1

M u0

)
. (C.17)

In order to evaluate RM , we need

ũT C̃−1
M ũ =

1

σ2
yTG

(
GTG + σ2C−1

M

)−1 GTy + uT0C
−1
M

(
GTG + σ2C−1

M

)−1 GTy+

+ yTG
(
GTG + σ2C−1

M

)−1
C−1
M u0 +O(σ2) .

(C.18)

Noting that

(
GTG + σ2C−1

M

)−1
=

1

σ2
CM −

1

σ2
CMGT

(
G 1

σ2
CMGT + 1

)−1

G 1

σ2
CM , (C.19)

159

we have, in the limit where σ2 → 0

G
(
GTG + σ2C−1

M

)−1 GT = 1− σ2
(
GCMGT

)−1
+O(σ4) . (C.20)

Collecting all terms we find

RM = (y − Gu0)T
(
GCMGT

)−1
(y − Gu0) . (C.21)

Performing the Gaussian integral over u in Eq. C.13, we obtain the posterior

distribution of the data

πyD(y) ∝ exp

[
−1

2
(y − y0)T C−1

D (y − y0)− 1

2
(y − Gu0)T

(
GCMGT

)−1
(y − Gu0)

]
.

(C.22)

As in the case above, we note that this is a Gaussian distribution,

πyD(y) ∝ exp

[
−1

2
(y − ỹ)T C̃−1

D (y − ỹ)

]
, (C.23)

where the mean and the covariance are given in Eqs. 4.50 and 4.51. We can

rewrite those expressions as

ỹ = Gũ , (C.24)

C̃−1
D = C−1

D +
(
GCMGT

)−1
. (C.25)

In order to simplify the notation we introduce

ĈM =
(
GCMGT

)
, (C.26)

and then

C̃D = ĈM − ĈM
(
ĈM + CD

)−1

ĈM . (C.27)

160

C.2 Closure test setup details

C.2.1 Data

The full list of datasets included in the test set are shown in Tab. C.1. The central

values are not actually used in the closure test, however we use the experimental

uncertainties in the calculation of both Rbv and ξ
(data)
1σ′ . The corresponding

predictions generated from the underlying law are used as the true observable

values. Neither of the data-space closure estimators rely on the central values of

the test datasets.

Data set Ref.

DY E906 σdDY/σ
p
DY (SeaQuest) [166]

ATLAS W,Z 7 TeV (L = 4.6 fb−1) [167]
ATLAS DY 2D 8 TeV [168]
ATLAS high-mass DY 2D 8 TeV [169]
ATLAS σW,Z 13 TeV [170]
ATLAS W++jet 8 TeV [171]
ATLAS σtot

tt 13 TeV (L = 139 fb−1) [172]
ATLAS tt̄ lepton+jets 8 TeV [173]
ATLAS tt̄ dilepton 8 TeV [174]
ATLAS single-inclusive jets 8 TeV, R=0.6 [175]
ATLAS dijets 7 TeV, R=0.6 [176]
ATLAS direct photon production 13 TeV [177]
ATLAS single top Rt 7, 8, 13 TeV [178–180]

CMS dijets 7 TeV [181]
CMS 3D dijets 8 TeV [182]
CMS σtot

tt 5 TeV [183]
CMS tt̄ 2D dilepton 8 TeV [184]
CMS tt̄ lepton+jet 13 TeV [185]
CMS tt̄ dilepton 13 TeV [186]
CMS single top σt + σt̄ 7 TeV [187]
CMS single top Rt 8, 13 TeV [188, 189]

LHCb Z → µµ, ee 13 TeV [190]

Table C.1 Observables included in the test data. We wish to stress that
the observable central values themselves are not used, however
the experimental uncertainties are used in the definition of the
closure estimators, and the corresponding predictions from either
the underlying law or the closure fits.

161

10 4 10 3 10 2 10 1 100

x

101

102

103

104

105

106

107

Q2 (
Ge

V2)

Kinematic coverage
Test data
Fitted data

Figure C.1 The kinematic coverage of the training and test data used to train the
models and produce results presented in this paper. We emphasise
that the split of datasets was largely chosen on practical grounds,
not because of a deep reason to split the data chronologically. The
kinematics of the two sets of data with this particular split overlaps
but there are also kinematic regions which the test dataset probes,
for which there was no training data.

For completeness, in Fig. C.1 the kinematic coverage of the training datasets,

which as mentioned is the NNPDF3.1-like dataset used in [160], and the test

datasets shown in Tab. C.1 is plotted.

C.2.2 Models

A summary of the hyperparameters for the neural networks used during the closure

fits is given in table Tab. C.2. These hyperparameters were chosen as part of an

extensive hyperparameters scan, which will be explained in detail in NNPDF4.0,

for this study we simply provide the values of the hyperparameters as a point of

reference.

162

hyperparameter value

architecture 2-25-20-8
activation tanh-tanh-linear
minimiser NAdam

max training length 17000 epochs
pre-processing exponents not fitted

Table C.2 Hyperparameters for neural networks used in this study. The
parameter choices, and how these choices were made will be discussed
in the full NNPDF4.0 paper. The table here is simply to add context
to the results below. There are 763 trainable parameters.

163

C.3 Understanding NNPDF3.0 data estimators

In the closure test presented in NNPDF3.0 [2] there was a data-space estimator

which aimed to measure the level of over or under fitting, ∆χ2 . Here we discuss

how ∆χ2 can emerge from the bias-variance decomposition and then use the linear

model to try and understand it in the context of viewing the ensemble of model

replicas as a sample from the posterior distribution of the model given the data.

Despite the link between the estimators emerging from the decomposition of Eout

and the posterior distribution for data which is not used to inform the model

parameters, if we perform the same decomposition as in Sec. 4.4.1 but set y0
′ = y0

then we find that the cross term in the final line of Eq. 4.84 does not go to zero

when the expectation across data is taken because there is a dependence on y0 in

both the model predictions and the noisey data. As a result we have to modify

Eq. 4.86 to be

Ey0 [E in] = Ey0 [bias] + Ey0 [variance] + Ey0 [noise] + Ey0 [noise cross term] , (C.28)

where we refer now to the right hand side of Eq. C.28 as E in because it’s evaluated

on the data used to inform the model replicas.

Now if we examine the definition of ∆χ2 introduced in [2], defined as the difference

between the χ2 between the expectation value of the model predictions and the

level one data, and the χ2 between the underlying observable values and the

level one data. In [2] the denominator was also set to be the second term in the

numerator, however here we slightly re-define ∆χ2 to instead simply be normalized

by the number of data points:

∆χ2 =

1

Ndata

[(
E{u∗}

[
G
(
u(k)
∗
)]
− y0

)T
C−1
D

(
E{u∗}

[
G
(
u(k)
∗
)]
− y0

)
− (f − y0)T C−1

D (f − y0)
]

= bias + noise cross term ,

(C.29)

where in the second line we show how ∆χ2 itself can be decomposed to be equal

to two of the terms in Eq. C.28.

Constant values of ∆χ2 define elliptical contours in data space centered on the

level one data. ∆χ2 = 0, in particular, defines a contour which is centered on

164

the level one data and passes through the underlying law. When viewing ∆χ2

from a classical fitting perspective, if ∆χ2 < 0 then the expectation value of the

model predictions fit the level one data better than the underlying observables -

which indicates an overfitting of the shift, η. Similarly, ∆χ2 > 0 indicates some

underfitting of the level one data.

If we return to the linear model we can write the analytic value of ∆χ2 . Firstly,

since y0
′ = y0 we can simplify Eq. 4.105

Ey0 [bias] =
1

Ndata

Tr
[
GC̃MGTC−1

D

]
=

1

Ndata

Tr
[
C̃M C̃

−1
M

]
=
Nmodel

Ndata

,

(C.30)

because C̃M C̃
−1
M is an Nmodel × Nmodel identity matrix. Similarly we can write

down the cross term

Ey0 [noise cross term] =
−2

Ndata

Ey0

[
(GC̃MGTC−1

D η)TC−1
D η
]

=
−2

Ndata

Tr[GC̃MGTC−1
D]

= −2
Nmodel

Ndata

(C.31)

which leaves us with

Ey0 [∆χ2] = −Nmodel

Ndata

. (C.32)

The point is that the linear model has already been shown to be a sample from

posterior distribution of the model given the data. But from the classical fitting

point of view we would say this model has overfitted.

As such, we do not report any results with ∆χ2 here, because when Rbv = 1, it

doesn’t add much to the discussion. It may still be useful as a diagnostic tool

when Rbv 6= 1, which as discussed could be for a variety of reasons - including

fitting inefficiency. It also may be used as a performance indicator for deciding

between two fitting methodologies: if both fits are shown to have Rbv = 1, the

methodology with smaller magnitude of ∆χ2 could be preferential. The same

could be said for bias and variance however, bias in particular is clearly closely

related to ∆χ2 .

165

Bibliography

[1] M. S. Albergo, G. Kanwar, and P. E. Shanahan. Flow-based generative
models for Markov chain Monte Carlo in lattice field theory. Phys. Rev. D,
100:034515, August 2019.

[2] Richard D. Ball et al. Parton distributions for the LHC Run II. JHEP,
04:040, 2015.

[3] Guido Cossu, Luigi Del Debbio, Tommaso Giani, Ava Khamseh, and Michael
Wilson. Machine learning determination of dynamical parameters: The ising
model case. Physical Review B, 100(6), Aug 2019.

[4] Luigi Del Debbio, Joe Marsh Rossney, and Michael Wilson. Efficient
modelling of trivializing maps for lattice φ4 theory using normalizing flows:
A first look at scalability, 2021.

[5] Luigi Del Debbio, Tommaso Giani, and Michael Wilson. Bayesian Approach
to Inverse Problems: an Application to NNPDF Closure Testing. in
preparation.

[6] Richard D. Ball, Stefano Carrazza, Juan Cruz-Martinez, Luigi Del Debbio,
Stefano Forte, Tommaso Giani, Shayan Iranipour, Zahari Kassabov, Jose I.
Latorre, Emanuele R. Nocera, Rosalyn L. Pearson, Juan Rojo, Roy Stegeman,
Christopher Schwan, Maria Ubiali, Cameron Voisey, and Michael Wilson.
The path to proton structure at one-percent accuracy, 2021.

[7] Richard D. Ball, Stefano Carrazza, Juan Cruz-Martinez, Luigi Del Debbio,
Stefano Forte, Tommaso Giani, Shayan Iranipour, Zahari Kassabov, Jose I.
Latorre, Emanuele R. Nocera, Rosalyn L. Pearson, Juan Rojo, Roy Stegeman,
Christopher Schwan, Maria Ubiali, Cameron Voisey, and Michael Wilson.
An open-source machine learning framework for global analyses of parton
distributions, 2021.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

166

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[10] Joshua Susskind, Adam Anderson, and Geoffrey E Hinton. The toronto
face dataset. Technical report, Technical Report UTML TR 2010-001, U.
Toronto, 2010.

[11] Asja Fischer and Christian Igel. An introduction to restricted boltzmann
machines. CIARP, 2012.

[12] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[13] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint
Richardson, Charles K. Fisher, and David J. Schwab. A high-bias, low-
variance introduction to machine learning for physicists. Physics Reports,
810:1–124, 2019. A high-bias, low-variance introduction to Machine Learning
for physicists.

[14] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria
Schuld, Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine
learning and the physical sciences. Reviews of Modern Physics, 91(4), Dec
2019.

[15] Y. Nesterov. A method for solving the convex programming problem with
convergence rate o(1/k2). Proceedings of the USSR Academy of Sciences,
269:543–547, 1983.

[16] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pages 1139–1147, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR.

[17] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

167

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. CoRR, abs/1912.01703, 2019.

[19] Wei Zhang, Kazuyoshi Itoh, Jun Tanida, and Yoshiki Ichioka. Parallel
distributed processing model with local space-invariant interconnections and
its optical architecture. Appl. Opt., 29(32):4790–4797, Nov 1990.

[20] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

[21] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 28(1):100–108,
1979.

[22] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-
based clustering in spatial databases: The algorithm gdbscan and its
applications. Data mining and knowledge discovery, 2(2):169–194, 1998.

[23] Bjornar Larsen and Chinatsu Aone. Fast and effective text mining using
linear-time document clustering. In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’99, page 16–22, New York, NY, USA, 1999. Association for Computing
Machinery.

[24] Pavel Berkhin. A survey of clustering data mining techniques. In Grouping
multidimensional data, pages 25–71. Springer, 2006.

[25] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein.
Cluster analysis and display of genome-wide expression patterns. Proceedings
of the National Academy of Sciences, 95(25):14863–14868, 1998.

[26] Didier Fraix-Burnet, Marc Thuillard, and Asis K. Chattopadhyay.
Multivariate approaches to classification in extragalactic astronomy.
Frontiers in Astronomy and Space Sciences, 2:3, 2015.

[27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes,
2014.

[28] Hugo Larochelle and Iain Murray. The neural autoregressive distribution
estimator. In Geoffrey Gordon, David Dunson, and Miroslav Dud́ık,
editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 29–37, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

168

[29] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked
autoregressive flow for density estimation. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[30] Adam Moss. Accelerated bayesian inference using deep learning. Monthly
Notices of the Royal Astronomical Society, 496(1):328–338, May 2020.

[31] Akinori Tanaka and Akio Tomiya. Towards reduction of autocorrelation in
hmc by machine learning, 2017.

[32] Daniel Levy, Matthew D. Hoffman, and Jascha Sohl-Dickstein. Generalizing
hamiltonian monte carlo with neural networks, 2018.

[33] Martin Arjovsky and Léon Bottou. Towards principled methods for training
generative adversarial networks, 2017.

[34] Yuusuke Kataoka, Takashi Matsubara, and Kuniaki Uehara. Image
generation using generative adversarial networks and attention mechanism.
In 2016 IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS), pages 1–6, 2016.

[35] Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Accelerating
science with generative adversarial networks: An application to 3d particle
showers in multilayer calorimeters. Physical Review Letters, 120(4), Jan
2018.

[36] Aishik Ghosh. Deep generative models for fast shower simulation in ATLAS.
J. Phys. Conf. Ser., 1525(1):012077, 2020.

[37] Ulli Wolff. Critical slowing down. Nuclear Physics B - Proceedings
Supplements, 17:93–102, 1990.

[38] N Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines. J.
Chem. Phys., 21(6):1087–1092, March 1953.

[39] W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, April 1970.

[40] Li Huang and Lei Wang. Accelerated monte carlo simulations with restricted
boltzmann machines. Physical Review B, 95(3), Jan 2017.

[41] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals
of Statistics, 7(1):1 – 26, 1979.

[42] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap.
CRC press, 1994.

169

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[44] Ross Kindermann and Laurie Snell. Markov random fields and their
applications, volume 1. American Mathematical Society, 1980.

[45] Scott E. Fahlman, Geoffrey E. Hinton, and Terrence J. Sejnowski. Massively
parallel architectures for ai: NETL, Thistle, and Boltzmann Machines.
Proceedings of the Third AAAI Conference on Artificial Intelligence, pages
109–113, 1983.

[46] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning
algorithm for boltzmann machines. Cognitive Science, 9(1):147 – 169, 1985.

[47] Geoffrey E. Hinton, Terrence J. Sejnowski, and David H. Ackley. Boltzmann
Machines: Constraint Satisfaction Networks That Learn. Carnegie-Mellon
University, Department of Computer Science, 1984.

[48] David E. Rumelhart and James L. McClelland. Information Processing in
Dynamical Systems: Foundations of Harmony Theory, pages 194–281. MIT
Press, 1987.

[49] Pankaj Mehta and David J. Schwab. An exact mapping between the
variational renormalization group and deep learning. CoRR, abs/1410.3831,
2014.

[50] Giacomo Torlai and Roger G. Melko. Learning thermodynamics with
boltzmann machines. Phys. Rev. B, 94:165134, Oct 2016.

[51] Alan Morningstar and Roger G. Melko. Deep learning the ising model near
criticality. Journal of Machine Learning Research, 18:163:1–163:17, 2017.

[52] Satoshi Iso, Shotaro Shiba, and Sumito Yokoo. Scale-invariant feature
extraction of neural network and renormalization group flow. Phys. Rev. E,
97:053304, May 2018.

[53] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G. R. Day,
Clint Richardson, Charles K. Fisher, and David J. Schwab. A high-
bias, low-variance introduction to machine learning for physicists. CoRR,
abs/1803.08823, 2018.

[54] Geoffrey E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Comput., 14(8):1771–1800, August 2002.

[55] Geoffrey Hinton. A practical guide to training restricted boltzmann machines,
2010.

[56] David J. C. MacKay. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA, 2002.

170

http://www.deeplearningbook.org

[57] Ruslan Salakhutdinov. Learning and evaluating boltzmann machines.
Technical Report UTML TR 2008 - 002, 2008.

[58] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. Optimization by
simulated annealing. Science, 220 4598:671–80, 1983.

[59] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev.
Lett., 78:2690–2693, Apr 1997.

[60] Radford M. Neal. Annealed importance sampling. Statistics and Computing,
11(2):125–139, April 2001.

[61] Magneto: 2D Ising model in C++. https://github.com/s9w/magneto.
Accessed: Spring 2018.

[62] R. H. Swendsen and J. S. Wang. Nonuniversal critical dynamics in Monte
Carlo simulations. Phys. Rev. Lett., 58(2):86–88, January 1987.

[63] A. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and
New Algorithms, pages 131–192. Springer US, Boston, MA, 1997.

[64] U. Wolff. Critical slowing down. Nucl. Phys. B (Proc. Suppl.), 18:93–102,
1990.

[65] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte
Carlo. Phys. Lett. B, 195:216–222, September 1987.

[66] A. D. Kennedy and B. J. Pendleton. Acceptances and autocorrelations in
hybrid Monte Carlo. Nucl. Phys. B, 20:118–121, May 1991.

[67] M. Campostrini, P. Rossi, and E. Vicari. Monte Carlo simulation of CPN−1

models. Phys. Rev. D, 46(6):2647–2662, September 1992.

[68] L. Del Debbio, H. Panagopoulos, P. Rossi, and E. Vicari. Spectrum of
confining strings in SU(N) gauge theories. J. High Energy Phys., 2002(01),
January 2002.

[69] L. Del Debbio, G. M. Manca, and E. Vicari. Critical slowing down of
topological modes. Phys. Lett. B, 594:315–323, August 2004.

[70] J. Flynn, A. Jüttner, A. Lawson, and F. Sanfilippo. Precision study of
critical slowing down in lattice simulations of the CPN−1 model, April 2015.

[71] C. Bonati and M. D’Elia. Topological critical slowing down: variations on a
toy model. Phys. Rev. E, 98:013308, July 2018.

[72] B. Allés, G. Boyd, M. D’Elia, A. Di Giacomo, and E. Vicari. Hybrid Monte
Carlo and topological modes of full QCD. Phys. Lett. B, 389:107–111,
December 1996.

[73] S. Schaefer, R. Sommer, and F. Virotta. Critical slowing down and error
analysis in lattice QCD simulations. Nucl. Phys. B, 845:93–119, April 2011.

171

https://github.com/s9w/magneto

[74] E. Vicari. Monte carlo simulation of lattice CPN−1 models at large N . Phys.
Lett. B, 309:139–144, March 1993.

[75] U. Wolff. Collective Monte Carlo updating for spin systems. Phys. Rev.
Lett., 62(4):361–364, January 1989.

[76] D. Kusnezov and J. Sloan. Global demons in field theory. critical slowing
down in the XY model. Nucl. Phys. B, 409:635–662, July 1993.

[77] H. G. Evertz, G. Lana, and M. Marcu. Cluster algorithm for vertex models.
Phys. Rev. Lett., 70:875–879, February 1993.

[78] N. Prokof’ev, I. S. Tupitsyn, and B. V. Svistunov. Exact, complete, and
universal continuous-time worldline Monte Carlo approach to the statistics
of discrete quantum systems. J. Exp. Theor. Phys., 87(2), August 1998.

[79] J. Xu, Hui Li, and S. Zhou. An overview of deep generative models. IETE
Technical Review, 32:131–139, December 2014.

[80] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks. Deep generative
modelling: A comparative review of vaes, gans, normalizing flows, energy-
based and autoregressive models, March 2021.

[81] G. Torlai and R. G. Melko. Learning thermodynamics with Boltzmann
machines. Phys. Rev. B, 94:165134, October 2016.

[82] L. Wang. Can boltzmann machines discover cluster updates?, February
2017.

[83] L. Huang and L. Wang. Accelerated Monte Carlo simulations with restricted
Boltzmann machines. Phys. Rev. B, 95:035105, January 2017.

[84] A. Tanaka and A. Tomiya. Towards reduction of autocorrelation in HMC
by machine learning, December 2017.

[85] Z. Liu, S. P. Rodrigues, and W. Cai. Simulating the Ising model with a
deep convolutional generative adversarial network, October 2017.

[86] A. Morningstar and R. G. Melko. Deep learning the Ising model near
criticality, August 2017.

[87] J. M. Urban and J. M. Pawlowski. Reducing autocorrelation times in lattice
simulations with generative adversarial networks, November 2018.

[88] J. Singh, V. Arora, V. Gupta, and M. S. Scheurer. Generative models for
sampling and phase transition indication in spin systems, June 2020.

[89] G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C. Hackett,
S. Racanière, D. J. Rezende, and P. E. Shanahan. Equivariant flow-based
sampling for lattice gauge theory, March 2020.

172

[90] K. A. Nicoli, C. J. Anders, L. Funcke, T. Hartung, K. Jansen, P. Kessel,
S. Nakajima, and P. Stornati. On estimation of thermodynamic observables
in lattice field theories with deep generative models, July 2020.

[91] D. Boyda, G. Kanwar, Racanière, D. J. Rezende, M. S. Albergo, K. Cranmer,
D. C. Hackett, and P. E. Shanahan. Sampling using SU(N) gauge equivariant
flows, August 2020.

[92] M. S. Albergo, D. Bodya, D. C. Hackett, G. Kanwar, K. Cranmer,
S. Racanière, D. J. Rezende, and P. E. Shanahan. Introduction to normalizing
flows for lattice field theory, January 2021.

[93] S. Lawrence and Y. Yamauchi. Normalizing flows and the real-time sign
problem, January 2021.

[94] S. Foreman, X-Y. Jin, and J. C. Osborn. Deep learning Hamiltonian Monte
Carlo, May 2021.

[95] D. Wu, R. Rossi, and G. Carleo. Unbiased Monte Carlo cluster updates
with autoregressive neural networks, May 2021.

[96] E. G. Tabak and E. Vanden-Eijnden. Density estimation by dual ascent of
the log-likelihood. Communications in Mathematical Sciences, 8(1), March
2010.

[97] E. G. Tabak and C. V. Turner. A family of nonparametric density estimation
algorithms. Commun. Pure Appl. Math., 66:145–164, November 2012.

[98] D. J. Rezende and S. Mohamed. Variational inference with normalizing
flows, May 2015.

[99] L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear independent
components estimation, October 2014.

[100] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real
NVP, May 2016.

[101] M. Lüscher. Trivializing maps, the Wilson flow and the HMC algorithm.
Commun Math Phys, 293, November 2009.

[102] G. P. Engel and S. Schaefer. Testing trivializing maps in the Hybrid Monte
Carlo algorithm. Comput. Phys. Commun., 182:2107–2114, October 2011.

[103] K. L. Chung. Markov Chains with Stationary Transition Probabilities.
Springer-Verlag, 2 edition, 1967.

[104] L. Tierney. Markov chains for exploring posterior distributions. Ann. Statist.,
22:1701–1762, 1994.

[105] S. Kullbach and R. A. Leibler. On information and sufficiency. Ann. Math.
Statist., 22(1):79–86, 1951.

173

[106] M. C. Gemici, D. J. Rezende, and S. Mohamed. Normalizing flows on
Riemannian manifolds, November 2016.

[107] D. J. Rezende, G. Papamakarios, S. Racanière, M. S. Albergo, G. Kanwar,
P. E. Shanahan, and K. Cranmer. Normalizing flows on tori and spheres,
February 2020.

[108] P. Mehta and D. J. Schwab. An exact mapping between the variational
renormalization group and deep learning, October 2014.

[109] M. Koch-Janusz and Z. Ringel. Mutual information, neural networks and
the renormalization group. Nature, 14:578–582, March 2018.

[110] P. M. Lenggenhager, D. E. Gökmen, Z. Ringel, S. D. Huber, and M. Koch-
Janusz. Optimal renormalization group transformation from information
theory, September 2018.

[111] S. H. Li and L. Wang. Neural network renormalization group, February
2018.

[112] S. Efthymiou, M. J. S. Beach, and R. G. Melko. Super-resolving the Ising
model with convolutional neural networks. Phys. Rev. B, 99:075113, February
2019.

[113] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization,
December 2014.

[114] D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1
convolutions, July 2018.

[115] G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow
for density estimation, May 2017.

[116] C. W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural
autoregressive flows, April 2018.

[117] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud.
FFJORD: Free-form continuous dynamics for scalable reversible generative
models, October 2018.

[118] Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and
Jan Novák. Neural importance sampling, August 2018.

[119] E. Hoogeboom, R. van den Berg, and M. Welling. Emerging convolutions
for generative normalizing flows, January 2019.

[120] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Cubic spline flows,
June 2019.

[121] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline
flows, June 2019.

174

[122] C. Meng, Y. Song, J. Song, and S. Ermon. Gaussianization flows, March
2020.

[123] J. A. Gregory and R. Delbourgo. C2 rational quadratic spline interpolation
to monotonic data. IMA Journal of Numerical Analysis, 3:141–152, April
1983.

[124] K. Hornik. Approximation capabilitities of multilayer feedforward networks.
Neural Networks, 4:251–257, 1991.

[125] J. Köhler, L. Klein, and F. Noé. Equivariant flows: exact likelihood
generative learning for symmetric densities, June 2020.

[126] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu. Self-learning Monte Carlo method.
Phys. Rev. B, 95:041101, January 2017.

[127] B. Efron. Bootstrap methods: another look at the jackknife. Ann. Statist.,
7(1):1–26, 1979.

[128] B Efron and R. Tibshirani. Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy. Statistical
Science, 1(1):54–77, 1986.

[129] S. Caracciolo and A. Pelissetto. Corrections to finite-size scaling in the
lattice N -vector model for N =∞. Phys. Rev. D, 58:105007, October 1998.

[130] I. Loshchilov and F. Hutter. Decoupled weight decay regularization,
November 2017.

[131] I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm
restarts, August 2016.

[132] D. Masters and C. Luschi. Revisiting small batch training for deep networks,
April 2018.

[133] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points - online
stochastic gradient descent for tensor decomposition, March 2015.

[134] C. Zhang, Q. Liao, A. Rakhlin, B. Miranda, N. Golowich, and T. Poggio.
Theory of deep learning III : Generalization properties of SGD. In CBMM
Memo No. 067, July 2017.

[135] M. R. Wilson, J. Marsh Rossney, and L. Del Debbio. ANVIL (version 0.9),
May 2021. 10.5281/zenodo.4792249.

[136] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,

175

10.5281/zenodo.4792249

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[137] Z. Kassabov. Reportengine: A framework for declarative data analysis,
February 2019. 10.5281/zenodo.2571601.

[138] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323:533–536, October 1986.

[139] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009.

[140] Naftali Tishby and Noga Zaslavsky. Deep learning and the information
bottleneck principle, 2015.

[141] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural
networks via information, 2017.

[142] C-W. Huang, F. Ahman, K. Kumar, A. Lacoste, and A. Courville.
Probability distillation: A caveat and alternatives, September 2018.

[143] R. K. Ellis, W. J. Stirling, and B. R. Webber. QCD and Collider Physics.
Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology.
Cambridge University Press, 1996.

[144] A. M. Stuart. Inverse problems: A bayesian perspective. Acta Numerica,
19:451–559, 2010.

[145] Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-
dimensional dynamics of generalization error in neural networks. Neural
Networks, 132:428–446, 2020.

[146] Rabah Abdul Khalek et al. Parton Distributions with Theory Uncertainties:
General Formalism and First Phenomenological Studies. Eur. Phys. J. C,
79(11):931, 2019.

[147] Richard D. Ball, Emanuele R. Nocera, and Rosalyn L. Pearson. Nuclear
Uncertainties in the Determination of Proton PDFs. Eur. Phys. J. C,
79(3):282, 2019.

[148] Richard D. Ball, Emanuele R. Nocera, and Rosalyn L. Pearson. Deuteron
Uncertainties in the Determination of Proton PDFs. Eur. Phys. J. C,
81(1):37, 2021.

[149] J. Cruz-Martinez, S. Forte, and E.R. Nocera. Future tests of parton
distributions. Acta Physica Polonica B, 52(3):243, 2021.

[150] Richard D. Ball, Valerio Bertone, Stefano Carrazza, Luigi Del Debbio,
Stefano Forte, Patrick Groth-Merrild, Alberto Guffanti, Nathan P. Hartland,
Zahari Kassabov, José I. Latorre, and et al. Parton distributions from

176

10.5281/zenodo.2571601

high-precision collider data. The European Physical Journal C, 77(10), Oct
2017.

[151] Stefano Carrazza and Juan Cruz-Martinez. Towards a new generation of
parton densities with deep learning models. The European Physical Journal
C, 79(8), Aug 2019.

[152] John C. Collins, Davison E. Soper, and George Sterman. FACTORIZATION
OF HARD PROCESSES IN QCD, pages 1–91. WORLD SCIENTIFIC,
1989.

[153] G. Altarelli and G. Parisi. Asymptotic freedom in parton language. Nuclear
Physics B, 126(2):298–318, 1977.

[154] Yuri L. Dokshitzer. Calculation of the Structure Functions for Deep Inelastic
Scattering and e+ e- Annihilation by Perturbation Theory in Quantum
Chromodynamics. Sov. Phys. JETP, 46:641–653, 1977.

[155] V N Gribov and L N Lipatov. Deep inelastic ep-scattering in a perturbation
theory. Yadern. Fiz. 15: No. 4, 781-807(Apr 1972)., 1 1972.

[156] Richard D. Ball, Luigi Del Debbio, Stefano Forte, Alberto Guffanti,
José I. Latorre, Juan Rojo, and Maria Ubiali. A first unbiased global
nlo determination of parton distributions and their uncertainties. Nuclear
Physics B, 838(1-2):136–206, Oct 2010.

[157] Valerio Bertone, Stefano Carrazza, and Nathan P. Hartland. Apfelgrid: A
high performance tool for parton density determinations. Computer Physics
Communications, 212:205–209, Mar 2017.

[158] Nathan Hartland. Proton structure at the lhc, 2014.

[159] Richard D. Ball, Stefano Carrazza, Luigi Del Debbio, Stefano Forte,
Zahari Kassabov, Juan Rojo, Emma Slade, and Maria Ubiali. Precision
determination of the strong coupling constant within a global pdf analysis.
The European Physical Journal C, 78(5), May 2018.

[160] Ferran Faura, Shayan Iranipour, Emanuele R. Nocera, Juan Rojo, and Maria
Ubiali. The strangest proton? The European Physical Journal C, 80(12),
Dec 2020.

[161] Richard D. Ball et al. NNPDF4.0. In preparation, 2021.

[162] José Luis Bernal and John A. Peacock. Conservative cosmology: combining
data with allowance for unknown systematics. Journal of Cosmology and
Astroparticle Physics, 2018(07):002–002, Jul 2018.

[163] M. P. Hobson, S. L. Bridle, and O Lahav. Combining cosmological data
sets: hyperparameters and bayesian evidence. Monthly Notices of the Royal
Astronomical Society, 335(2):377–388, Sep 2002.

177

[164] Sjoerd Viktor Beentjes and Ava Khamseh. Higher-order interactions in
statistical physics and machine learning: A model-independent solution to
the inverse problem at equilibrium. Physical Review E, 102(5), Nov 2020.

[165] U. Wolff. Monte Carlo errors with less errors, June 2003.

[166] J. Dove, B. Kerns, R. E. McClellan, S. Miyasaka, D. H. Morton, K. Nagai,
S. Prasad, F. Sanftl, M. B. C. Scott, A. S. Tadepalli, and et al. The
asymmetry of antimatter in the proton. Nature, 590(7847):561–565, Feb
2021.

[167] Morad Aaboud et al. Precision measurement and interpretation of inclusive
W+ , W− and Z/γ∗ production cross sections with the ATLAS detector.
Eur. Phys. J., C77(6):367, 2017.

[168] M. Aaboud et al. Measurement of the Drell-Yan triple-differential cross
section in pp collisions at

√
s = 8 TeV. JHEP, 12:059, 2017.

[169] Georges Aad et al. Measurement of the double-differential high-mass Drell-
Yan cross section in pp collisions at

√
s = 8 TeV with the ATLAS detector.

JHEP, 08:009, 2016.

[170] Georges Aad et al. Measurement of W± and Z-boson production cross
sections in pp collisions at

√
s = 13 TeV with the ATLAS detector. Phys.

Lett., B759:601–621, 2016.

[171] Morad Aaboud et al. Measurement of differential cross sections and W+/W−

cross-section ratios forW boson production in association with jets at
√
s = 8

TeV with the ATLAS detector. JHEP, 05:077, 2018. [Erratum: JHEP 10,
048 (2020)].

[172] Georges Aad et al. Measurement of the tt̄ production cross-section in the
lepton+jets channel at

√
s = 13 TeV with the ATLAS experiment. Phys.

Lett. B, 810:135797, 2020.

[173] Georges Aad et al. Measurements of top-quark pair differential cross-sections
in the lepton+jets channel in pp collisions at

√
s = 8 TeV using the ATLAS

detector. Eur. Phys. J., C76(10):538, 2016.

[174] Morad Aaboud et al. Measurement of top quark pair differential cross-
sections in the dilepton channel in pp collisions at

√
s = 7 and 8 TeV with

ATLAS. Phys. Rev. D, 94(9):092003, 2016. [Addendum: Phys.Rev.D 101,
119901 (2020)].

[175] Morad Aaboud et al. Measurement of the inclusive jet cross-sections in
proton-proton collisions at

√
s = 8 TeV with the ATLAS detector. JHEP,

09:020, 2017.

[176] Georges Aad et al. Measurement of dijet cross sections in pp collisions at
7 TeV centre-of-mass energy using the ATLAS detector. JHEP, 1405:059,
2014.

178

[177] M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos,
S.H. Abidi, O.S. AbouZeid, N.L. Abraham, H. Abramowicz, and et al.
Measurement of the cross section for inclusive isolated-photon production
in pp collisions at s=13 tev using the atlas detector. Physics Letters B,
770:473–493, Jul 2017.

[178] Georges Aad et al. Comprehensive measurements of t-channel single top-
quark production cross sections at

√
s = 7 TeV with the ATLAS detector.

Phys. Rev. D, 90(11):112006, 2014.

[179] Morad Aaboud et al. Measurement of the inclusive cross-sections of single
top-quark and top-antiquark t-channel production in pp collisions at

√
s =

13 TeV with the ATLAS detector. JHEP, 04:086, 2017.

[180] Morad Aaboud et al. Fiducial, total and differential cross-section
measurements of t-channel single top-quark production in pp collisions
at 8 TeV using data collected by the ATLAS detector. Eur. Phys. J. C,
77(8):531, 2017.

[181] Serguei Chatrchyan et al. Measurements of differential jet cross sections in
proton-proton collisions at

√
s = 7 TeV with the CMS detector. Phys.Rev.,

D87:112002, 2013.

[182] Albert M Sirunyan et al. Measurement of the triple-differential dijet cross
section in proton-proton collisions at

√
s = 8 TeV and constraints on parton

distribution functions. Eur. Phys. J. C, 77(11):746, 2017.

[183] A. M. Sirunyan et al. Measurement of the inclusive tt cross section in pp
collisions at

√
s = 5.02 TeV using final states with at least one charged

lepton. JHEP, 03:115, 2018.

[184] Albert M Sirunyan et al. Measurement of double-differential cross sections
for top quark pair production in pp collisions at

√
s = 8 TeV and impact

on parton distribution functions. Eur. Phys. J., C77(7):459, 2017.

[185] Albert M Sirunyan et al. Measurement of differential cross sections for the
production of top quark pairs and of additional jets in lepton+jets events
from pp collisions at

√
s = 13 TeV. Phys. Rev., D97(11):112003, 2018.

[186] Albert M Sirunyan et al. Measurements of tt differential cross sections in
proton-proton collisions at

√
s = 13 TeV using events containing two leptons.

JHEP, 02:149, 2019.

[187] Serguei Chatrchyan et al. Measurement of the Single-Top-Quark t-Channel
Cross Section in pp Collisions at

√
s = 7 TeV. JHEP, 12:035, 2012.

[188] Vardan Khachatryan et al. Measurement of the t-channel single-top-quark
production cross section and of the | Vtb | CKM matrix element in pp
collisions at

√
s= 8 TeV. JHEP, 06:090, 2014.

179

[189] Albert M Sirunyan et al. Cross section measurement of t-channel single
top quark production in pp collisions at

√
s = 13 TeV. Phys. Lett. B,

772:752–776, 2017.

[190] Roel Aaij et al. Measurement of the forward Z boson production cross-section
in pp collisions at

√
s = 13 TeV. JHEP, 09:136, 2016.

180

	cover sheet.pdf
	michael_wilson_thesis_submission.pdf
	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Fundamentals of Machine Learning
	Supervised learning
	Neural networks
	Hyperparameter tuning
	Unsupervised learning
	Bootstrap sampling estimators

	Restricted Boltzmann Machine
	Introduction
	Training the RBM & making predictions
	Restricted Boltzmann Machines
	Annealed importance sampling
	1D and 2D Ising model simulations

	Validation in one dimension
	RBM for the 2D Ising model
	Ising simulation and RBM training parameters
	Gibbs sampling
	Metropolis sampling
	Observable predictions at all temperatures

	Extracting couplings from the RBM
	Conclusions

	Normalizing flows
	Introduction
	Sampling in lattice field theory
	Markov Chain Monte Carlo
	A generative approach to global updates

	Normalizing flows
	Training a flow model
	Building flexible models
	Affine and additive transformations
	Rational quadratic splines
	Enforcing sign-reversal equivariance

	Related work
	Experimental setup
	Field theory and observables
	Model details
	Summary of the procedure

	Results
	Proof of principle
	Acceptance rates and autocorrelation times
	Finding efficient representations
	Scaling of training costs

	Discussion
	Conclusions

	Bayesian Approach to inverse problems
	Introduction
	Inverse Problems
	Statement of the problem
	Comparison with classical fitting
	Linear Problems
	The infinite-dimensional case

	NNPDF Monte Carlo approach to inverse problems
	Fitting replicas
	Fluctuations of fitted values
	Closure test

	Data space estimators
	Deriving the data space estimators
	Geometric Interpretation
	Faithful uncertainties in data space
	Closure estimators - Linear problems

	Experimental setup
	Neural network parton distribution functions
	Closure test setup

	Results
	Bias-variance ratio
	Comparison to quantile statistics

	Summary

	Conclusion
	Appendix: RBM
	The training procedure in more detail: L2=8x8
	Training on a larger system: L2=16x16
	Changing the batch size
	Changing the number of hidden nodes
	3- and 4-point interaction histograms
	Metropolis history plots

	Appendix: Normflow
	phi-4 theory on the lattice
	Estimation of integrated autocorrelation time
	Comparison with literature results

	Appendix: Inverse Problems
	Gaussian integrals
	Integrating out the data
	Integrating out the model

	Closure test setup details
	Data
	Models

	Understanding NNPDF3.0 data estimators

	Bibliography

