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Abstract

The focus of this thesis is the accurate determination of parton distribution functions
(PDFs), with a particular emphasis on modern machine learning tools used within
the NNPDF approach. We first present NNPDF4.0, currently the most recent and
most precise set of PDFs based on a global dataset. We then provide suggestions for
improvements to the machine learning tools used for the NNPDF4.0 determination,
both in terms of parametrization and model selection. We discuss different sources of
PDF uncertainty. First, we elucidate the nontrivial aspects of averaging over the space
of PDF determinations by explicitly calculating the data-driven correlation between
different sets of PDFs. Then, we lay out certain fundamental properties of the sampling
as performed within NNPDF methodology through explicit examples, and discuss how
one may gain insight into the results of a neural network fit despite it being a black
box model. Finally, we show how the flexibility of the NNPDF methodology allows for
it to be applied to problems other than PDF determination, in particular we present
a determination of neutrino inelastic structure functions.
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Introduction

The successful operation of the Large Hadron Collider (LHC) at CERN enables us
to test the fundamental laws of nature at a high precision across a large kinematic
range. In July 2012 this led to the detection of the final missing piece in the Standard
Model, the Higgs boson, by both the ATLAS [1] and CMS [2] experiments. Despite
the great successes of the Standard Model, there are strong theoretical arguments
pointing towards beyond the Standard Model (BSM) physics. Currently one of the
main focuses of the particle physics community is the determination of properties of
the Standard Model to a high enough precision such that deviations from experimental
measurements become evident. In particular, the precision of theoretical predictions
has to keep up with that of the corresponding experimental measurements.

Experiments in particle physics at the LHC aim to probe the fundamental building
blocks of nature through high energy proton collisions. As such, the interpretation
of their results requires a precise understanding of the constituent particles – the so-
called partons – of the proton. Collisions probing these partons happen at high energy
scales where the dynamics of the partons can be described within the theoretical
framework of perturbative quantum chromodynamics (QCD). However, a description
of the low energy, long range interactions needed for a complete understanding of the
initial state of the proton cannot be obtained from perturbative QCD. This makes its
accurate determination challenging.

The theoretical predictions corresponding to the experimental data rely on collinear
factorization arguments, allowing for the separation of the short distance, perturbative,
contributions from the large distance, non-perturbative, contributions. In the
framework of collinear factorization a longitudinal cross-section σ can be written as

σ = σ̂ ⊗ f,

where σ̂ is a partonic cross-section describing the short distance dynamics which is
convoluted with a PDF f encoding the partonic structure of the proton. While PDFs
cannot be calculated from first principles in the framework of perturbative QCD,
they may be extracted from experimental data, and since the PDFs are a universal
quantity, they can then be used for the calculation of predictions for other experimental
observables. This is why PDFs are a fundamental ingredient to test the faithfulness
of the Standard Model.

Because of its important role in theoretical predictions of the Standard Model, a
precise determination of the PDFs is the subject of ongoing research with various
groups regularly releasing sets of PDFs. One such group is the NNPDF collaboration
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which uses a methodology that differs from the standard approach in a number of
important ways, leading to a PDF determination with a reduced parametrization bias.

It is now generally accepted that the frontiers of high-energy collider physics require
percent-level accuracy from both experiment and theory. To achieve this it is critical
for the PDF uncertainties to decrease, while ensuring all factors that impact their
determination are well understood and the final PDF uncertainty is accurate. This
thesis focuses on the determination of a new set of PDFs, NNPDF4.0, and in particular
the methodology used in its determination. It aims to provide a better understanding
of the impact of various sources of PDF uncertainties in the NNPDF determinations,
and proposes several improvements to the methodology along the way.

Outline of the thesis

Chapter 1: Parton distribution functions
We provide an introduction on parton distribution functions mainly based on
Refs. [3–5]. It reviews the theoretical formalism of QCD and in particular
how parton distribution functions emerge in the calculation of deep inelastic
structure functions and Drell-Yan cross-sections. We also discuss theoretical
aspects relevant for the determination of PDFs, in particular the evolution of
PDFs with respect to their energy scale and further theoretical constraints.

Chapter 2: NNPDF4.0: towards PDFs with percent-level accuracy
We present NNPDF4.0 [6], the latest set of PDFs released by the NNPDF
collaboration. We focus on the methodological framework underpinning the
determination, and in particular the use of a gradient descent based optimization
algorithm and an automated selection of the model hyperparameters resulting
in a significantly improved efficiency of the fitting algorithm. We then discuss
the experimental dataset and some of the important features of the NNPDF4.0
PDF set. Finally, we present the open-source NNPDF code [7] and list the main
packages with their corresponding functionalities included in the code.

Chapter 3: Advanced machine learning tools
We highlight certain aspects of the NNPDF4.0 methodology and propose
how they may be improved upon for a potential future release of NNPDF
PDFs. First, we propose an alternative data-based scaling of the momentum
fraction x first presented in Ref. [8]. This scaling facilitates the removal
of a preprocessing prefactor present in the NNPDF parametrization of the
PDFs, thereby significantly simplifying the methodology without a loss of
efficiency. Then we propose an extension to the hyperoptimization framework
used to determine the model hyperparameters in NNPDF4.0. The proposed
methodology relies on the automated construction of representative subsets of
data to improve test of the methodology’s generalizability, as well as a statistical
measure for the detection of overfitting.

Chapter 4: Methodological uncertainties in PDFs
We discuss different sources of PDF uncertainties with a particular focus on
methodological uncertainties. In the first part of the chapter we study correlation
between different sets of PDFs and examine the extent to which the correlation
between them is due to the underlying data. We then discuss how this knowledge
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can be used to assess the efficiency of methodologies used for PDF determination.
We also show that the use of data-driven correlations for the combination of
different PDF sets can lead to inconsistent results. In the second part of
this chapter we clarify certain fundamental aspects of the statistical framework
underpinning the sampling as performed within the NNPDF methodology.

Chapter 5: The neural network approach for neutrino structure functions
We demonstrate how the NNPDF methodology can be applied to problems
closely related to, but fundamentally different from, PDF determination. In
particular, we present a determination of neutrino inelastic structure functions
for a wide range of scattering energies.

Much of the work in this thesis has been done in collaboration with colleagues from
the NNPDF collaboration. Where results are presented, I tried to emphasize the parts
where I believe that I have made a significant contribution. Unless otherwise stated
in the caption I have generated the figures for this thesis or they have appeared in
previous publications co-authored by me.

3





Chapter 1

QCD and parton distribution functions

This chapter introduces parton distribution functions, a fundamental component of
QCD, factorizing the non-perturbative long range dynamics corresponding to the
hadronic states. When convoluted with the perturbative, partonic cross-sections they
allow for the calculation of predictions of LHC processes.

We start by providing a brief overview of some of the fundamental properties of
QCD, the gauge theory of the strong interaction. We then explore how PDFs arise in
the framework of perturbative QCD, and in particular we discuss collinear factorization
theorems in QCD using the case of the deep inelastic scattering (DIS) of a lepton off
a hadronic target as a basic example. We will finally review some properties of PDFs
exploited in their determination from experimental data.

1.1 Basics of quantum chromodynamics
The observation of a symmetry corresponding to the special unitary group of degree
3, SU(3), in the spectrum of mesons and baryons lead to the idea of quarks whose
interactions are described by quantum chromodynamics, a gauge quantum field theory
based on the non-Abelian gauge group SU(3) [9–11]. The classical Lagrangian of
QCD is fully determined from the requirement to satisfy the SU(3) symmetries and
renormalizibility, it reads1

L =
nf∑
i=1

ψ̄a
i (iγµDµ −mi)ab ψ

b
i − 1

4F
AµνFA

µν . (1.1)

This term describes the interactions of the massless spin-1 gluons, as well as the spin- 1
2

quark fields ψa
i of mass mi, where the label i runs over all nf flavors. The index a is the

color index for the fundamental triplet representation ψa
i , while A is the color index in

the adjoint representation corresponding to the eight color degrees of freedom of the

1The Lagrangian of Eq. (1.1) can be extended with another gauge invariant term proportional to
ϵµνγρF AµνF A

γρ. This can be written as a total derivative leaving the Euler-Lagrange equations
unchanged. In reality there are some additional subtleties to this argument [12], but for the
discussion in this chapter the term will be ignored.
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Chapter 1 QCD and parton distribution functions

gluon field AA
µ . The index µ is the Lorentz index running over the four dimensions of

spacetime. The gamma matrices γµ satisfy the anti-commutation relation

{γµ, γν} = 2gµν , (1.2)

with gµν the Minkowski metric. The covariant derivative is defined as

Dµ = ∂µ + igs(AA
µ t

A). (1.3)

where gs is the gauge coupling representing the strength of the interaction between
colored states, it is a free parameter of the theory. tA are the generators of the group
in the fundamental representation satisfying the commutation relations[

tA, tB
]

= ifABCtC , (1.4)

where fABC are the structure constants of the SU(3) group. A representation for the
generators tA is given by

tA = 1
2λ

A, (1.5)

with λA corresponding to the eight 3×3 Hermitian traceless Gell-Mann matrices, with
the normalization of the generators conventionally chosen as

Tr
(
tAtB

)
= TRδ

AB , TR = 1
2 . (1.6)

Finally, FA
µν is the field strength tensor and can be defined in terms of the gluon fields

and the structure constant as

FA
µν = ∂µAA

ν − ∂νAA
µ − gsf

ABCAB
µ AC

ν . (1.7)

It is worth pointing out that the final term in Eq. (1.7) corresponds to the gluon self-
interaction. An equivalent term is not present for the virtual photon fields in quantum
electrodynamics (QED) as it is a feature of non-Abelian gauge theories. In QCD this
leads to the important property of asymptotic freedom to be discussed below.

From the Lagrangian of Eq. (1.1), it is now possible to calculate observables such as
cross-sections or decay rates in terms of expansions in the strong coupling constant αs,
which is defined in terms of the QCD gauge coupling from Eq. (1.7) as αs = g2

s/4π.
However, radiative quantum corrections introduce divergences beyond leading order
in the calculation of a physical observable. These divergences are treated by a
renormalization procedure to remove ultraviolet (UV) divergences, which requires
that the coupling must be redefined to absorb the dependence on the renormalization
scale. This dependence of the running coupling αs(µ2) on the scale µ2 at which the
subtraction of the ultraviolet poles is performed is given by the renormalization group
equation:

dαs(µ2)
d logµ2 = β

(
αs

(
µ2)) , (1.8)
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1.1 Basics of quantum chromodynamics

Figure 1.1: An overview of measurements of αs as a function of the energy scale Q.
The perturbative order of the QCD calculation used in the extraction is indicated in
the parentheses. The figure is taken from Ref. [16]

where the β function can be calculated as a series in αs(µ2)

β
(
αs

(
µ2)) = −α2

s

(
µ2) (β0 + β1αs

(
µ2)+ O

(
α2

s

))
, (1.9)

with
β0 = 33 − 2nf

12π , β1 = 153 − 19nf

2π (33 − 2nf ) . (1.10)

While, for illustrative purposes, the β function is only explicitly shown up to NLO, it
is known up to five loops [13].

The solution to the renormalization group equation Eq. (1.8) at leading log in the
expansion of the inverse powers of log

(
µ2) can be written as

αs

(
µ2) =

αs

(
µ2

0
)

1 + β0αs (µ2
0) log µ2

µ2
0

, (1.11)

where µ2
0 is an arbitrary initial scale. This highlights an important property of

QCD. Namely, since β0 is positive for nf < 17, the value of the running coupling
αs(µ2) decreases logarithmically to 0 as the energy scale of the process increases.
This property is called asymptotic freedom, and makes QCD an asymptotically free
theory [14,15].

Perturbative QCD thus tells us how the coupling constant depends on the scale,
but it does not provide us with its value. This has to be obtained experimentally.
Commonly the value of the coupling constant is quoted at the mass of the Z boson,
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Chapter 1 QCD and parton distribution functions

thus αs(M2
Z). Using Eq. (1.11), the value of the coupling constant at any other scale

can then be obtained. Fig. 1.1 shows an overview of different measurements of the
strong coupling αs(µ2) for a range of scales.

In Eq. (1.11) the fixed coupling still depends on the arbitrary scale µ0. In some
cases we may wish to remove this dependence, which is commonly done by replacing
it with a dimensionful parameter Λ roughly corresponding to the point at which the
theory becomes strongly coupled. It is defined as

log µ
2

Λ2 = −
∫ ∞

αs(µ2)

dx

β(x) , (1.12)

and allows us to write Eq. (1.11) as

αs(µ2) = 1
β0 log µ2

Λ2

(1.13)

Its value is around 200 MeV, though its precise definition depends on the choice of
renormalization scheme. Along with the RGE equations describing the running of the
coupling, Λ allows us to replace the dependence on the dimensionless parameter gs,
which – as we have just seen – is not a constant.

Asymptotic freedom is the fundamental property of QCD that allows us to perform
calculations perturbatively in the limit µ ≫ Λ, since there we have that αs(µ2) ≪ 1
and the dynamics of the quarks can be approximated by that of free particles. However,
the same scaling relation tells us that for low energies the theory is strongly coupled
and thus perturbation theory cannot be applied reliably in this regime.

1.2 Collinear factorization and the parton model
A description of the low energy bound state of the hadrons is required to make
predictions for collisions involving hadrons. However, as we have just seen, at low
energies the running coupling becomes large and thus perturbative QCD is not
accurate in this regime. Here we will discuss the collinear factorization theorems
that allow for the factorization of the short distance effects that can be computed
perturbatively, and the long distance effects that have to be extracted from data. We
will consider as an example the process of deep inelastic scattering. In particular we
will see how PDFs arise in this framework.

1.2.1 Kinematics of deep inelastic scattering
Deep inelastic scattering is the process of colliding a lepton with a hadronic target,
destroying the target in the process (compared to elastic or slightly inelastic scattering,
where the target is not destroyed). This is a very clean way of testing QCD
since it allows us to probe the hadron (commonly a proton) with a structureless
probe (commonly an electron). Historically, DIS experiments have played a vital
role in obtaining a deeper understanding of perturbative QCD, and currently these
measurements still play an important role in the determination of PDFs. Important

8



1.2 Collinear factorization and the parton model

P

k

q

k′

H

l

}X

l

Figure 1.2: Schematic representation of the deep inelastic scattering of a charged
lepton l off a hadronic target H.

of such measurements are those performed at SLAC [17], BCDMS [18], and HERA
(H1 [19] and ZEUS [20]).

Fig. 1.2 shows a schematic representation of a DIS process where a charged lepton
l with momentum k probes a hadron H with momentum P thereby breaking it apart
into a hadronic final state X:

l(k) +H(P ) → l(k′) +X. (1.14)

Let us here consider the case of a proton probed by an electron, which involves
neutral current (NC) scattering through a virtual photon. We will consider only the
contribution associated to the photon exchange, which is a valid assumption for energy
scales well below MZ . To describe this process we need to parametrize the interaction
of the photon with the proton. As such, a sensible choice for the parametrization of
the cross-section would be to describe it in terms of the momentum of the proton P
and the momentum of the photon q = k − k′. The center of mass energy is denoted
by

s = (P + k)2, (1.15)

while the invariant mass of the final state X is given by

W 2 = (P + q)2. (1.16)

Then, we define the standard DIS kinematic variables:

Q2 = −q2, (1.17)

x = Q2

2P · q
, (1.18)

y = (P · q)/(P · k) = Q2

xs
. (1.19)

9



Chapter 1 QCD and parton distribution functions

In the kinematic domain where the scales Q2 and W 2 are both much greater than the
mass of the proton, the mass of the electron and the quarks can be neglected. Here
y is the relative energy loss, and can alternatively be written as y = 1 − E′/E, with
E energy of the incoming electron and E′ the energy of the outgoing electron. The
variable x, known as the Bjorken x scaling variable, can take values between 0 and 1,
where x = 1 corresponds to elastic scattering. The deep inelastic scaling region then
corresponds to Q2 ≫ Λ2 for fixed x and sufficiently small x. As will be discussed in
more detail below, the Bjorken x is of fundamental importance in the understanding
of DIS processes in QCD.

The idea of this parametrization is that by measuring the kinematics of the outgoing
electron, the structure of the proton can be obtained in terms of the characteristics of
the probe such as x, Q2 and y.

The leading order matrix element corresponding to the DIS process of Fig. 1.2 can
be written in Feynman gauge as

M = ie2ū (k′) γµu(k)
(
i
gµν

Q2

)
⟨X |Jν |H⟩ , (1.20)

where spin labels have been omitted. Here |H⟩ represents the state of the incoming
hadron, |X⟩ represents the hadronic final state, and Jµ is the electromagnetic current.
It is worth noting that the hadronic states cannot be computed in perturbation theory
as a result of the large value of the coupling constant discussed in Sect. 1.1 above.

If we want to describe the cross-section of a DIS process, a natural starting point is
thus to separate the both the phase-space factor and the Feynman amplitude into a
leptonic and a hadronic part as

dΦ = d3k′

(2π)32E′ dΦX = ME

8π2 ydydxdΦX , (1.21)

1
4
∑
spin

|M|2 = e4

Q4L
µνhXµν , (1.22)

with a leptonic tensor Lµν , and the hadronic part of the amplitude denoted by hXµν .
The leptonic tensor can be calculated explicitly in QED and reads

Lµν = 1
4
∑
spin

ū (k′) γµu(k)ū(k)γνu (k′) ,

= 1
4 tr

[
/kγµ/k

′
γν
]
,

= kµk′ν + k′µkν − gµνk · k′.

(1.23)

The hadronic part of phase space and the amplitude can be combined into a hadronic
tensor

Wµν =
∑
X

∫
dΦhXµν . (1.24)

10



1.2 Collinear factorization and the parton model

Then, by requiring Lorentz symmetry and gauge invariance we find that a general
formulation of the hadronic tensor can be written as

Wµν(P, q) = −
(
gµν + qµqν

q2

)
F1
(
x,Q2)

+
(
Pµ − qµP · q

q2

)(
P ν − qν P · q

q2

)
1

P · q
F2
(
x,Q2) , (1.25)

where the functions F1 and F2 are called structure functions. More general structures
including a third structure function F3 can be found if we allow for parity violating
interaction mediated by a W or Z boson as will be discussed in Chapter 5.

The cross-sections corresponding to the DIS process can be calculated using

σ =
∑
X

1
4ME

∫
dΦ1

4
∑
spin

|M|2, (1.26)

where combining the expressions collected above gives

dσ

dxdQ2 = 2πα2

Q4

[[
1 + (1 − y)2]FT

(
x,Q2)+ 2(1 − y)

x
FL

(
x,Q2)] , (1.27)

with α = e2/(4π) the fine structure constant quantifying the strength of the
electromagnetic interaction, and the transverse structure function FT and the
longitudinal structure functions FL defined as

FL = F2 − 2xF1, (1.28)
FT = 2F1. (1.29)

Note that the distinction between F1 and F2 (or FL and FT ) can be made based on
the y dependence of the prefactor.

Thus far the only assumptions that we have made about the Wµν tensor is that it
satisfies both gauge and Lorentz invariance. Let us now also assume that the proton is
formed as a bound state of constituent particles. If we then consider the DIS process
in a reference frame where the hadron moves very fast and the energy of the process is
large, it will be Lorentz contracted in the direction of the collision and the lifetime of
particles inside the hadron increases. What this means in practice for a DIS process, is
that upon probing the hadron with an external lepton, the interaction can be though
of as the interaction between a lepton and a single, pointlike, particle while the other
particles inside the hadron do not interfere. Interactions happening in the final state,
however, for similar reasons occur on large timescale therefore not interfering with the
hard scattering process either.

This is the basic intuition leading to Feynman’s parton model [21], which assumes
that the proton is formed as a bound state of constituent spin- 1

2 objects called partons.
It suggests that short distance physics describing the electron-parton interactions can

11



Chapter 1 QCD and parton distribution functions

be separated from long distance physics describing the hadron. Using the parton
model, the DIS cross-section can then be written as

d2σ

dxdQ2 =
∫ 1

0

dξ

ξ

∑
i

fi(ξ)
d2σ̂

dx̂dQ2

(
x

ξ
,Q2

)
, (1.30)

where fi(ξ) represents the probability of finding a parton of flavor i inside the hadron
carrying a momentum fraction ξ of the total momentum of the proton (and thus the
parton carries momentum ξP ), and d2σ̂/(dx̂dQ2) is the cross-section for the scattering
of the electron with a parton. Such a factorized expression is accurate up to corrections
that are suppressed by powers of Λ2/Q2 corresponding to so-called higher twist terms.

We now have the tools needed to discuss scale dependence in the parton model.
To this end, let consider the leading order cross-section of the scattering of a lepton
off a parton, e−q → e−q. Using the DIS variables we can express the cross-section
differential in Q2 and x as

d2σ̂

dQ2dx
= 4πα2

Q4
1
2
[
1 + (1 − y)2] δ(x− ξ), (1.31)

implying that the Bjorken variable x is equal to the momentum fraction ξ at leading
order. From Eq. (1.31) we can read the expressions for the partonic structure functions

F̂2 = 2xF̂1 = xe2δ(x− ξ). (1.32)

Finally, if we compare the cross-section as described in terms of structure function in
Eq. (1.27) to the cross-section as described in the parton model of Eq. (1.30) with
Eq. (1.31), we find

F2(x) = 2xF1 = x
∑

i=q,q̄

∫ 1

0
dξfi(ξ)e2

qδ(x− ξ) = x
∑

i=q,q̄

e2
qfi(x). (1.33)

Eq. (1.33) shows how DIS experiments can probe the structure of the proton in terms
of its quark and gluon constituents. It further explicitly shows that the structure
functions in the limit of large Q2 only depend on x and not on Q2. This is known
as Bjorken scaling [22] and establishes that DIS must be described in terms of the
scattering process of the parton with a photon. It also shows that FL = F2 −2xF1 = 0
holds at leading order. This equation is known as the Callan-Gross relation [23], and
is a consequence of the fact that for a longitudinally polarized photon scattering off a
spin- 1

2 particle the cross-section vanishes [24].
It is also worth highlighting that here the quark q and antiquark q̄ are

indistinguishable, hence to independently determine the corresponding PDFs, charged
current (CC) processes are required.

1.2.2 Deep inelastic scattering in QCD
Early DIS experiments showed good agreement with the parton model, thereby
providing strong support for QCD as a theory for the strong interaction, and
Feynman’s partons were soon associated with the quarks in the model based on the

12



1.2 Collinear factorization and the parton model

Figure 1.3: Measurement of the F2(x,Q2) structure function from various different
experiments. To the F2 values for each x a scale term c(x) = 0.6(i − 0.4) has been
added, where i is the bin number in x starting at i = 1 for x = 0.13. The figure is
taken from Ref. [25]

SU(3) gauge symmetry by Gell-Mann in 1964 [10]. However, in our discussion so far
we have neglected higher order QCD corrections. Such corrections would correspond
to logarithms of the scale of the process Q2, and thus introduce a dependence
on Q2 ignored by the large Q2 assumption leading to the observation of Bjorken
scaling. Indeed, measurements of the F2 structure function such as those by the H1
Collaboration [25] shown in Fig. 1.3 reveal a violation of the Bjorken scaling of the
structure function. We will now extend the parton model to include the first order of
QCD corrections.

We have seen how the idea of the parton model without QCD corrections allowed
us to obtain the result of Eq. (1.33). The inclusion of higher order QCD corrections is
then obtained through a generalization of this result to all orders in QCD motivated
by the factorization theorem [4]. We can then write any structure function F in a

13



Chapter 1 QCD and parton distribution functions

Figure 1.4: Feynman diagrams describing QCD corrections to the qqγ∗ vertex. The
first three Feynman diagrams correspond to αs corrections to the LO process, while
the final (right-most) diagram corresponds to photon-gluon fusion.

factorized form where the partonic structure functions, also called Wilson coefficients,
Ci(x,Q2) are weighted by the PDFs as

F
(
x,Q2) =

∑
i=q,q̄,g

∫ 1

x

dξ

ξ
Ci

(
x

ξ
,Q2

)
fi(ξ),

=
∑

i=q,q̄,g

Ci

(
x

ξ
,Q2

)
⊗ fi(ξ),

(1.34)

where ⊗ denotes the Mellin convolution product defined as

f(x) ⊗ g(x) ≡
∫ 1

x

dy

y
f

(
x

y

)
g(y). (1.35)

The Wilson coefficients encode information about the high energy process and can
be calculated as a perturbative series in αs.

Let us now explicitly consider QCD correction by again studying the case of the
qqγ∗ vertex. The leading order diagram is the same as in the parton model, while at
NLO we find both virtual corrections of the self-energy diagram and real corrections
corresponding to the gluon emission from the incoming or outgoing fermion line. We
also find a diagram corresponding to photon-gluon fusion. The corresponding Feynman
diagrams are shown in Fig. 1.4 and contain both infrared (IR) and UV divergences.

The infrared divergences cancel between the real and virtual corrections, since the
Standard Model is perturbatively infrared finite [26, 27]. Nevertheless, a regulator
is introduced to accommodate intermediate steps of the calculation which is later
removed. The infrared divergences originate from the treatment of partons as massless
particles, as such one may regulate these divergences by introducing a small mass for
the partons. In practice, dimensional regularization is generally preferred (in particular
for calculations beyond NLO), but for illustrative purposes we will introduce quark
masses mq and the gluon mass mg.

Accounting for the contribution to the LO vertex corresponding to the Feynman
diagrams of Fig. 1.4 gives

F̂ q
2 = e2

qx

[
δ(1 − x) + αS

4π

[
Pqq(x) log Q

2

m2
g

+ Cq
2(x)

]]
, (1.36)
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1.2 Collinear factorization and the parton model

where the δ(1−x) term corresponds to the LO vertex while the O(αs) term corresponds
to the first three diagrams in Fig. 1.4. The final diagram of Fig. 1.4 then gives

F̂ g
2 =

∑
q

e2
qx
αS

4π

[
Pqg(x) log Q

2

m2
q

+ Cg
2 (x)

]
. (1.37)

The Pij in Eq. (1.36) and Eq. (1.37) represent the Altarelli-Parisi splitting functions
describing the probability that a parton j splits into a parton i and another parton
carrying a momentum fraction x of the incoming parton j. The splitting functions are
universal and can be calculated perturbatively in QCD. Currently they are known up
to NNLO [28,29], with parts of the splitting functions known at N3LO [30–32].

The presence of large logarithms of Q2/m2 in Eq. (1.36) and Eq. (1.37) indicate that
not all UV and soft divergences have canceled. Namely, a collinear divergence remains
in the case where an emitted gluon is collinear to the incoming quark. These large
logarithms now contain all the residual long-range physics left after resumming the real
and virtual corrections. While these infrared divergences appear at the parton level,
a physical observable should not be sensitive to infrared divergences. The physical
observable can be obtained using Eq. (1.34) to give

F q
2
(
x,Q2) =x

∑
i=q,q̄

e2
q

×
[
fi,0(x) + αS

2π

∫ 1

x

dξ

ξ
fi,0(ξ)

[
Pqq

(
x

ξ

)
log Q

2

m2
g

+ Cq
2

(
x

ξ

)]]
,

(1.38)

where fq,0 are the bare PDFs. We may also define renormalized PDFs

fq (x, µF ) ≡ fq,0(x) + αS

2π

∫ 1

x

dξ

ξ
fq,0(ξ)Pqq

(
x

ξ

)
log µ

2
F

m2
q

+ zqq, (1.39)

where we have introduced a factorization scale µF defining the threshold between long
and short distance physics, and the dependence on the IR cutoff has been absorbed into
the definition of fq,0 (x, µF ). This is possible because the divergences are universal and
thus so are the renormalized PDFs. The finite term zqq depends on the factorization
choice and is a calculable quantity.

Finally, this allows us to write the structure function as a factorized expression:

F q
2
(
x,Q2) =x

∑
i=q,q̄

e2
q

∫ 1

x

dξ

ξ
fi

(
ξ, µ2

F

)
×
[
δ

(
1 − x

ξ

)
+ αS (µR)

2π

[
Pqq

(
x

ξ

)
log Q

2

µ2
F

+ Cq
2

(
x

ξ

)
− zqq

]]
.

(1.40)

This is an important expression for understanding DIS in QCD, and some point
are worth stressing here. In particular, all long distance effects are encoded in the
PDFs fi

(
ξ, µ2

F

)
which depend on a factorization scale µF in such a way as to exactly

cancel the dependence at all orders in perturbation theory. Since the final result is
given as an expansion in αs, it does depend on the choice of the renormalization scale
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Chapter 1 QCD and parton distribution functions

p1

p2

Z/γ∗

proton

proton

l−

l+

x2p2

x1p1

Figure 1.5: A diagrammatic representation of a neutral current Drell-Yan process in a
proton-proton collision.

µR. The short distance effects are encoded in the factorization scale dependent wilson
coefficients and can be calculated perturbatively.

1.2.3 Hadron-hadron collisions
So far we have only considered the factorization for DIS processes where we have only
a single hadron in the initial state, however the formalism may be extended [33–35] to
processes with two hadrons in the initial state. This allows us to study processes at
proton-proton colliders such as the LHC. Arguably the most relevant process in proton-
proton collisions is the neutral current Drell-Yan (DY) process shown in Fig. 1.5, in
which a quark from one proton and an antiquark from the other proton annihilate,
creating a Z boson or virtual photon which finally decays into a lepton pair l+l−.

The collinear factorization theorem for a process involving two incoming hadrons
reads2

σX(s,MX) =
∑
a,b

∫ 1

0
dx1dx2fa

(
x1, µ

2
F

)
fb

(
x2, µ

2
F

)
× σ̂ab→X

(
x1, x2, αS

(
µ2

R

)
,
Q2

µ2
F

,
Q2

µ2
R

)
,

(1.41)

Here σ̂ab→X is the partonic cross-section for the production of a hadronic final state
X, and it encodes the short-distance behavior for incoming quarks or gluons of flavors
a and b that can be calculated as an expansion in αs.

Eq. (1.40) and Eq. (1.41) tell us how to connect calculations of hard scattering
cross-sections in perturbative QCD with two partons in the initial state to observables
resulting from collisions with hadrons. Since PDFs encode the initial state of hadrons
and are by definition non-perturbative, they cannot be calculated using perturbation
theory. Instead they have to be extracted through the analysis of experimental collider

2It should be noted that the factorization theorem has not been formally proven for all processes
considered at the LHC, but even in those cases factorization is generally treated in the same way.
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1.3 Scale dependence of PDFs

data. This is only possible because PDFs are universal objects, and thus the PDFs
appearing in Eq. (1.40) are the same as those appearing in Eq. (1.41).

1.3 Scale dependence of PDFs

The observables calculated using the factorized expressions correspond to measurable
quantities, and must therefore be independent of the factorization scale µF introduced
in a renormalization procedure as a way of treating initial state divergences. This
observation leads to the renormalization group equation for the structure functions

µ2
F

dF2
(
x,Q2)

dµ2
F

= 0, (1.42)

while the renormalization group equation for the quark distributions reads

µ2
F

d

dµ2
F

fq

(
x, µ2

F

)
=
αs

(
µ2

F

)
2π

∫ 1

x

dξ

ξ
Pqq

(
x

ξ
, αs

(
µ2

F

))
fq

(
ξ, µ2

F

)
, (1.43)

which are again expressed in terms of the Altarelli-Parisi splitting functions.

These expressions are known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equations [36–38] and describe how the PDFs evolve with respect to the
factorization scale. The DGLAP equations allow us to define PDFs at a given scale
Q0 and evolve them up to the scale Q of a hard process. This is why processes at
different energy scales can all be used to constrain the PDF that is parametrized at
an initial scale Q0

Due to the flavor symmetries present in QCD in the limit where quark masses are
neglected, it is possible to define a basis of flavor states that are preserved under
evolution with the matrix Pij . One such basis can be constructed by dividing the
system of equations into two subsystems known as the singlet and non-singlet sectors.
Given a system with thirteen partons with nf = 6 consisting of six quarks fi =
{u, d, s, c, t, b}, their anti-quarks, as well as the gluon, we define

f±
i ≡ fi ± f̄i. (1.44)

Here we make the distinction between valence f− commonly denoted by3

Vi ≡ f−
i , (1.45)

3Another common notational convention that will appear in this thesis to denote a valence quark is
by writing a subscript V , e.g. the valence up quark is written as uV = u − ū.
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Chapter 1 QCD and parton distribution functions

and the triplet states

T3 ≡ u+ − d+,

T8 ≡ u+ + d+ − 2s+,

T15 ≡ u+ + d+ + s+ − 3c+,

T24 ≡ u+ + d+ + s+ + c+ − 4b+,

T35 ≡ u+ + d+ + s+ + c+ + b+ − 5t+.

(1.46)

The valence and triplet states comprise the non-singlet sector and evolve according to

µ2
F

d

dµ2
F

fNS (x, µ2
F

)
=
αs

(
µ2

F

)
2π

∫ 1

x

dξ

ξ
P (ξ, αS) fNS

(
x

ξ
, µ2

F

)
, (1.47)

where valence states evolve with P− and the triplet states with P+. At leading order
the splitting functions read

P
(0)
− (x) = P

(0)
+ (x) = CF

2π

(
1 + x2

1 − x

)
+
. (1.48)

For the singlet sector we define the singlet distribution

Σ ≡
nf∑
i=1

f+
i , (1.49)

which couples to the gluon PDF, and the evolution equations of the corresponding
system read

µ2
F

d

dµ2
F

(
Σ
(
x, µ2

F

)
g
(
x, µ2

F

) ) =
αs

(
µ2

F

)
2π

∫ 1

x

dξ

ξ

(
Pqq Pqg

Pgq Pgg

)(
Σ
(
ξ, µ2

F

)
g
(
ξ, µ2

F

) ) . (1.50)

The convolution of Eq. (1.34) can be written in a more convenient way that will
allow us to find an analytic solution for the DGLAP equation by performing a Mellin
transform defined as

f(N) ≡
∫ 1

0
dxxN−1f(x). (1.51)

Namely, by performing a Mellin transform of a convolution it can be written as a
simple product:∫ 1

0
dxxN−1

[∫ 1

x

dy

y
f(y)g

(
x

y

)]
=
∫ 1

0
dxxN−1

∫ 1

0
dy

∫ 1

0
dzδ(x− zy)f(y)g(z)

=
∫ 1

0
dy

∫ 1

0
dz(zy)N−1f(y)g(z)

= f(N)g(N).
(1.52)
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1.4 Treatment of heavy quarks

Using Eq. (1.34), and noting that from the parton model we have F2 ∝
∑

i fi⊗F̂2, we
find that the Mellin transform of the renormalization group equation for the structure
functions reads

dfq (N,µF )
d logµF

F̂2

(
N,

µF

Q

)
+ fq

(
N,µ2

F

) dF̂2

(
N, µF

Q

)
d logµF

= 0, (1.53)

where we can separate the PDF and structure function coefficient terms as

d log F̂2

(
N, Q

µF

)
d log(Q/µF ) = d log fq (N,µf )

d logµF
= −γqq(N). (1.54)

Here γij(N) denote the anomalous dimensions, which are the Mellin transforms of the
corresponding splitting functions Pij .

The solution of the evolution equation in Mellin space Eq. (1.54) can then be written
as

fq(N,Q) = fq (N,Q0) e−γqq(N) log
(

µF
Q0

)
. (1.55)

These evolution equations can be used to evolve the PDFs from an initial scale Q0 to
a general scale Q.

The full DGLAP equations in Mellin space then become

d

dµ2
F

fNS
i

(
N,Q2) = αs(µ2

F )
2π γNS

qq

(
N,αs(µ2

F )
)
fNS

i

(
N,Q2)

d

dµ2

(
Σ
(
N,Q2)

g
(
N,Q2) ) = αs(µ2

F )
2π

(
γqq 2nfγqg

γgq γgg

)(
Σ
(
N,Q2)

g
(
N,Q2) ) (1.56)

In practice the DGLAP equations are solved using iterative numerical procedures.
For this purpose several codes have been developed that either solve the evolution
equations directly in momentum space such as HOPPET [39], QCDNUM [40] and
APFEL [41], or in Mellin space such as PEGASUS [29] or EKO [42]. The Mellin space
approach has also been used by the internal NNPDF evolution code FastKernel
discussed in Refs. [43–45].

An example of the result of PDF evolution is shown in Fig. 1.6 where we show PDFs
evolved from the initial scale Q2

0 = 1.65 GeV to Q = 3.2 GeV (left) and Q = 100 GeV
(right). PDF evolution is fundamental to the extraction of PDFs from data, namely it
allows us to parametrize the PDFs at an initial scale and evolve to the experimental
scale in order make predictions that can be compared to measurements.

1.4 Treatment of heavy quarks
This section is based on the discussion in Ref. [5].

Quarks are conventionally divided into light quarks with a mass well below Λ, and
heavy quarks with a mass greater than Λ. Following this definition, the up, down and
strange quark are considered light quarks, and for these quarks the approximation
leads to accurate results. For the other quarks the argument becomes more subtle, in
particular the approximation is no longer accurate when treating processes with a hard
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Figure 1.6: The NNPDF4.0 PDFs [6] evolved from the initial scale Q2
0 = 1.65 GeV to

Q = 3.2 GeV (left) and Q = 100 GeV (right).

scale Q that is close to a quarks mass. In those cases a mass independent scheme can
no longer be applied reliably and contributions coming from mass dependent terms
should be accounted for, in particular when the evolution crosses a scale equal to a
quark mass. Because of this, variable flavor number (VFN) schemes are used to obtain
an accurate treatment of datasets with a large range in the hard scale.

When considering VFN schemes generally a distinction is made between three
kinematic regions:

• Q ≪ mh: The mass of the heavy quark is much larger than the hard scale of
the process. In this case the heavy quarks can be decoupled [46–48] and treated
as a purely final state particle. The scheme accurate in this region is the fixed
flavor number (FFN) scheme.

• Q ∼ mh: The mass of the heavy quark is of the same order as the hard scale of the
process, and should be treated as a large parameter. Heavy quark contributions
contribute to the Wilson coefficients or in renormalizations such as in the case
where the heavy quark is decoupled.

• Q ≫ mh: The mass of the heavy quark is much smaller than the energy scale of
the process. In this region the heavy quark is neglected in the Wilson coefficients
and instead a heavy quark PDF is introduced. The scheme accurate in this region
is the so called zero mass variable flavor number (ZM-VFN) scheme.

To ensure both the decoupling at low scales as provided by the FFN scheme and
resummation of logs of Q2/m2

h at high scales as provided by the ZM-VFN scheme, so-
called general mass variable flavor number (GM-VFN) schemes have been constructed
to interpolate between the FFN and ZM-VFN schemes.

Fixed flavor number scheme

Let us first consider the region where the mass of the heavy quark is roughly equal
to the hard scale (the threshold region) or larger than the hard scale of the process,
Q ≲ mh. In this region only the light quarks are treated as partons while the heavy
quarks are treated as a purely final state particle. Under these assumptions we only

20



1.4 Treatment of heavy quarks

need to consider the light quarks and the gluon in the theory. Setting the factorization
and normalization scales equal to a scale µ allows us to write the calculation of the
structure function of Eq. (1.34) as

F
(
nl, Q

2,m2
h

)
=

nl∑
i=1

Ci

(
nl,

Q2

m2
h

,
µ2

m2
h

,
Q2

µ2

)
⊗ fi

(
nl, µ

2) , (1.57)

where the index i runs over the nl light quarks, and x dependence has been omitted.
We can then separate the structure function into a part corresponding to contributions
that only involve light quarks FL and a part corresponding to the contributions that
involve heavy quarks FH as

F (nl, Q,mh) = FL (nl, Q) + FH (nl, Q,mh) . (1.58)

FH first contributes at O(αs) through the production of a quark anti-quark pair from
the splitting of a gluon.

Zero mass variable flavor number scheme

Although the FFN scheme is accurate in the region where Q ≲ mh, this scheme does
not resum logs of Q2/m2

h that become large in the region much larger than the heavy
quark mass. This can be resolved by using the ZM-VFN scheme in which the heavy
quark is treated as a parton at scales above the heavy quark mass, allowing for the
resummation of the logs of Q2/m2

h through DGLAP evolution. This scheme differs
from the FFN scheme only through the additional parton, and thus the equation for
the structure function analogue to Eq. (1.57) can be written as

F
(
nl + 1, x,Q2) =

nl+1∑
i=1

Ci

(
nl + 1, Q

2

µ2

)
⊗ fi

(
nl + 1, µ2) . (1.59)

In this scheme, the heavy quark PDFs are set to zero at scales below the quark mass,
and evolved using DGLAP on the same footing as the light partons above the quark
mass. This resolves the problem at large scales of the unresummed logs of Q2/m2

h.
However, since it assumes the heavy quarks to be massless, the mass contributions to
the coefficient functions Ci are not accounted for. As a result, the accuracy of the
ZM-VFN scheme decreases in regions where mh/Q becomes large.

General mass variable flavor number scheme

Thus far we have introduced the FFN scheme suffering from unresummed logs of
Q2/m2

h spoiling the accuracy of the scheme outside the region Q ≲ mh, and the
ZM-VFN scheme suffering from missing correction in powers of mh/Q that spoil the
accuracy of the scheme outside the region Q ≫ mh. Let us now discuss the GM-
VFN schemes that interpolate between the FFN scheme and the ZM-VFN scheme to
provide a single scheme which reduces the impact of missing corrections when heavy
quark masses are involved.

A requirement of a GM-VFN scheme is that the FFN scheme and the ZM-VFN
scheme match at very large scales, Q ≫ mh, where the heavy quark mass dependence
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Chapter 1 QCD and parton distribution functions

of Eq. (1.58) in the FFN scheme can be neglected. As such, PDFs in the two schemes
are related through a perturbative transformation in the matching point at threshold
µ = mh. Specifically, the nl flavors up to the matching point are related to the nl + 1
flavors above the matching point through a nl × (nl + 1) transformation matrix A

fi

(
nl + 1, µ2) =

nl∑
j=1

Aij

(
nl,

µ2

m2
h

)
⊗ fj

(
nl, µ

2) , (1.60)

where Aij are known up to NNLO [49, 50]. To ensure continuity across the matching
point any VFN scheme needs to satisfy the condition

FGM (m2
h

)
=

nl∑
i=1

CGM
i

(
nl,m

2
h

)
⊗ fi (nl)

=
nl+1∑
i=1

CGM
i

(
nl + 1,m2

h

)
⊗ fi (nl + 1)

=
nl+1∑
i=1

nl∑
j=1

CGM
i

(
nl + 1,m2

h

)
⊗Aij

(
nl,m

2
h

)
⊗ fj (nl) ,

(1.61)

where to obtain the last line we used Eq. (1.60).
From this matching condition follows a minimal description of a GM-VFN

scheme [51]:

CGM
j

(
nl,m

2
h

)
=

nl+1∑
i

CGM
i

(
nl + 1,m2

h

)
⊗Aij

(
nl,m

2
h

)
. (1.62)

Here it should be noted that the definition of the GM-VFN is not unique. Specifically,
the matrix Aij transforms a nl + 1 dimensional vector into a nl dimensional vector
there is a single degree of freedom that allows for terms proportional to powers of
mh/Q to be included in either of the Wilson coefficients in Eq. (1.62).

This freedom allows one to make a scheme choice, which has led to the introduction
of a number of GM-VFN schemes. Some of these include:

• The ACOT scheme [52] provided the first GM-VFNS. It ensures Eq. (1.62) is
satisfied by including the mass dependence in the Wilson coefficients. It has since
been superseded by the simplified-ACOT, or S-ACOT, scheme [53, 54] which
uses the freedom in the definition of the transition matrix Aij to allow for a
simpler calculation of observables. This is build on the realization that heavy
quarks Wilson coefficients can be computed in the massless limit since massive
contributions to the Wilson coefficients do vanish in the limit Q ≪ mh and
therefore do not spoil the interpolation.

• The TR scheme [55] instead uses the freedom of the definition of the massive
Wilson coefficient to constrain the threshold point by ensuring that derivatives
of structure functions are continuous. The TR scheme has later been extended
to NNLO in the so-called TR’ scheme [56].
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1.5 Constraints on PDFs

• The FONLL scheme [57, 58], which is the scheme used within the NNPDF
determinations, is based on the idea of summing the observables calculated in the
nl flavor scheme and (nl + 1) flavor scheme, and subtracts the double counting
terms.

1.5 Constraints on PDFs
Having now discussed how PDFs at a scale Q can be determined from a PDF at an
initial scale Q0 through the DGLAP evolution equations, and by exploiting one of the
various heavy mass schemes for the treatment of heavy quark distributions, let us now
turn to the determination of the x dependence of the PDFs at an initial scale f(x,Q0).

From the kinematics of the factorized expressions for processes with a single proton
in the initial state in Eq. (1.40) or with two protons in the initial state described in
Eq. (1.41), it is clear that experimental measurements of the DIS structure function or
cross-sections can provide constraints on the PDFs. Nevertheless, beyond constraining
the PDFs with data, there are some general statements that can be made about PDFs
that will aid us in their determination.

The analysis of DIS experimental data made it possible to obtain the first insights
of the structure of the proton. In particular, since the PDFs must yield the quantum
numbers that characterize the proton, that it consists of one valence down-quark∫ 1

0
dx
(
d
(
x,Q2)− d̄

(
x,Q2)) =

∫ 1

0
dxdv(x) = 1, (1.63)

and two valence up-quarks∫ 1

0
dx
(
u
(
x,Q2)− ū

(
x,Q2)) =

∫ 1

0
dxuv(x) = 2, (1.64)

carrying the proton charge and baryon number, and a so-called sea of light quark pairs
qq̄. These relations are known as the valence sum rules (VSR).

By definition, the sum of the longitudinal momenta of the constituent partons of a
hadron must be equal to the total longitudinal momentum of the hadron. This leads
to the following relation which is known as the momentum sum rule (MSR):

∑
i=q,q̄,g

∫ 1

0
dxxfi(x,Q2) = 1. (1.65)

A further requirement on the PDFs, suggested by the momentum sum rules, is that
they should vanish as x → 1:

fi(x = 1, Q) = 0, (1.66)

since no intrinsic partons can exist with x > 1. At the same time, the valence sum
rules require the corresponding distributions to be integrable on the entire range in x.

These three constraints can each aid in the determination of the PDFs and lead to
the universally applied parametrization choice of the valence-like, singlet and gluon
PDFs:

fi (x,Q0) = Aix
−αi(1 − x)βiPi(y(x)). (1.67)
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Chapter 1 QCD and parton distribution functions

Here the α and β exponents control the functional form outside the data region, while
N is an overall normalization. α and β thus need to be chosen such that the three
constraints can be satisfied, while the normalization is enforced via A. Finally, Pi(y(x))
is a parametrization choice that mainly determines the PDFs in the data region. This
part of the parametrization is an important subject of current research and much of
this thesis is dedicated to its determination.
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Chapter 2

NNPDF4.0: towards PDFs with
percent-level accuracy

In the previous chapter we have seen how, using collinear factorization theorems,
short distance physics corresponding to parton level events where the cross-section
can be calculated using perturbative QCD can be separated from the long distance
physics encoded in universal structures called parton distribution functions. We have
furthermore seen how a PDF at any scaleQ2 can be obtained from a PDF parametrized
at a scale Q2

0 through DGLAP evolution. In this chapter we will discuss how, in the
NNPDF4.0 PDF determination [6], the x dependence of the PDFs has been extracted
from experimental measurements.

NNPDF4.0 is, at the time of writing of this thesis, the latest set of PDFs released
by the NNPDF collaboration and supersedes the previously released NNPDF3.1 [59].
With respect to NNPDF3.1 it includes a wealth of new data from 44 different
(mostly LHC) datasets. The methodology has seen some significant improvements,
including a novel fitting algorithm based on stochastic gradient descent [60]. Further
improvements include a systematic implementation of positivity constraints [61] and
integrability of sum rules

Here we provide a summary of the NNPDF4.0 determination, with an emphasis
on the fitting methodology. We start by discussing the NNPDF4.0 methodology
in Sect. 2.1, in particular we discuss the propagation of data uncertainties, the
parametrization of PDFs using neural networks, their training, and the determination
of the model hyperparameters. In Sect. 2.2 we present the experimental data on
which the NNPDF4.0 determination is based, we emphasize the datasets that have not
been included in earlier releases and discuss the stability of PDFs upon the removal
or inclusion of individual datasets. Finally, in Sect. 2.3 we list some of the main
characteristics of NNPDF4.0.

2.1 Methodology
The determination of PDFs from discrete data is an example of a pattern recognition
problem where the aim of a PDF fitter is to provide an accurate representation of
an unknown underlying function. This while only the very limited information of
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Chapter 2 NNPDF4.0: towards PDFs with percent-level accuracy

their functional form discussed in Sect. 1.5 is known. Furthermore, the problem
of PDF determination has certain characteristic features that should be taken into
consideration when developing a fitting framework. First, in most standard pattern
recognition problems the output of the model is directly compared to data, instead for
PDFs one cannot associate a pair consisting of an input and an output of the model
with a single data point. Rather, as can be observed from Eq. (1.40) and Eq. (1.41),
each observable depends in a non-linear way on the multiple output PDF functions in
the full range of x. The second characteristic is that in order for PDFs to be useful
in calculating predictions of observables, it is necessary to provide a description of
the full PDF correlations. PDF uncertainties need to reflect the various sources of
uncertainty affecting the experimental data, and in practice PDF uncertainties are
often the dominant source of uncertainty when calculating predictions of observables
in scattering processes [62]. It is further interesting to note that, unlike most pattern
recognition problems, PDFs correspond to probability distributions of observables.
This is because the observables correspond to stochastic events as a result of the
quantum mechanical nature of the interactions.

In this section we will review the general strategy that NNPDF employs for PDF
fitting and the propagation of the data uncertainties to PDF uncertainties. Many
of the main principles that will be discussed here are not unique to the NNPDF4.0
release and have instead been used within the NNPDF framework for many years.
Nevertheless, the release of NNPDF4.0 introduces a number of major methodological
improvements with respect to NNPDF3.1. In this section we will mainly focus on
these improvements.

2.1.1 Monte Carlo method for error propagation

Various PDF fitting groups aiming to extract the proton PDFs from data employ
different techniques to achieve this goal. Of the most commonly used modern PDF sets,
MSHT20 [63], CT18 [64], and ABMP16 [65] have been determined using the so-called
Hessian method whereby the PDF are parametrized using a polynomial functional form
and the PDF uncertainties are represented by symmetric eigenvectors. The NNPDF
collaboration on the other hand parametrizes the PDFs using a neural network. This
replaces the functional form used within the Hessian method, thereby removing a
potential source of bias in the determination of the unknown PDFs from data. Then,
to make a faithful estimation of the data uncertainties NNPDF uses the concept of
artificial Monte Carlo pseudodata replicas for error propagation.

The result of a PDF determination using the NNPDF framework is a set of Nrep
Monte Carlo PDF replicas f (r) with r = 1, . . . , Nrep that provide an importance
sampling of the probability distribution of the PDFs. Each replica is equally probable,
so replicas are statistically uncorrelated, and estimators of functions of the PDFs are
given by simple averages over the replicas:

⟨X [f ]⟩ = 1
Nrep

N∑
r=1

X
[
f (r)

]
. (2.1)
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Figure 2.1: A distribution of 100 PDF replicas (left) and the corresponding 1σ interval
and 68% confidence level as computed using Eq. (2.1) and Eq. (2.2) with X the identity
operator (right). Both are shown for the gluon distribution at 1.65 GeV.

The contribution of the PDFs to the variance of such an estimator is then

Var [X [f ]] = 1
Nrep

Nrep∑
r=1

(
X
[
f (r)

]
− ⟨X [f ]⟩

)2
. (2.2)

In this way the uncertainty bands corresponding to any confidence level can be
computed from the posterior Monte Carlo distribution, where it can be checked that
indeed the 68% confidence interval and the 1σ uncertainty band are in agreement.
This is shown explicitly for the gluon PDF in Fig. 2.1 which were computed using
Eq. (2.1) and Eq. (2.2) with X the identity operator.

To understand why the PDF replicas are equally probable, it is necessary to
understand that they are obtained by performing Nrep fits to a corresponding set
of Nrep independent and identically distributed pseudodata replicas that provide
a faithful description of the statistical properties of the experimental dataset.
Specifically, the pseudodata replicas are generated in a standard way [44] by shifting
the original dataset with a multigaussian distribution given by the covariance matrices
corresponding to this dataset.

Producing pseudodata replicas thus provides a way of propagating the experimental
uncertainties to the PDFs. As will be discussed in detail in Sect. 4.1, the uncertainty
of the experimental data is not the only source of uncertainty present in the PDFs.
Other sources of uncertainty include theoretical uncertainties related to the missing
contributions of higher orders in the perturbative calculations, tensions between
datasets, and uncertainties as the result of an imperfect optimization strategy.

2.1.2 PDF parametrization
The core problem of PDF determination is the extraction of a continuous function from
a discrete set of data. This is in itself an ill-defined problem, though by constructing
a prior the problem becomes tractable. The PDFs as a function of x only have to be
parametrized at a single parametrization scale Q0 using Eq. (1.67), where the PDFs at
any other scale Q can be obtained by solving the DGLAP evolution equations discussed
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Chapter 2 NNPDF4.0: towards PDFs with percent-level accuracy

in Sect. 1.3. One thus needs to choose a parametrization with a level of complexity
that allows for a faithful description of the underlying data. A parametrization that is
not sufficiently complex will introduce a bias in the resulting PDFs. One place where
this problem is still apparent today is in the parametrization of PDFs using a fixed
functional from. Namely, within the Hessian approach mentioned before, uncertainties
on the fit parameters are determined by performing a least square fit to the data
where the PDFs are parametrized using different functional forms constructed from
a polynomials in x and

√
x, followed by a standard error propagation [66, 67]. The

uncertainties obtained in this naive way generally underestimate the uncertainties of
the corresponding predictions, therefore an inflation of the chi-squared distribution
(to be discussed in more detail below) corresponding to 1σ is introduced a posteriori
using a “tolerance” factor. An important reason for the underestimated uncertainties
observed before applying tolerance is that using a fixed functional form provides a
PDF parametrization that is too restrictive and thereby introduces a bias.

To address this shortcoming of PDF determination, the idea of employing a neural
network parametrization for to the problem of PDF fitting was suggested back in 2002
in Ref. [68]. In this work a neural network was first applied to the determination of
the DIS structure function F2. The relevant underlying principle leading to the idea
of applying neural networks to solve the problem of a biased functional form is that,
in the limit of an infinite number of parameters, neural networks can reproduce any
differentiable function as per the universal approximation theorem [69].

After this initial study, the NNPDF collaboration continued to further develop
the idea in Ref. [70], and expand it to the problem of fitting the non-singlet
quark distributions in Ref. [43]. Over time more PDF determinations based on the
NNPDF methodology were released, for each subsequent release gradually improving
the methodology and expanding the dataset. The main intermediate releases were
presented in Refs. [44, 45,59,71–73], before releasing NNPDF4.0 [6] in 2021.

The parametrization used in the NNPDF4.0 determination can be written as

xfi (x,Q0) = Aix
(1−αi)(1 − x)βiNNi(x), (2.3)

which is a specific variant of the parametrization in Eq. (1.67) in Sect. 1.5 where NNi(x)
represents a single neural network with a different output parametrizing each flavor
i. The neural network is supplemented with a prefactor Ai a polynomial prefactor
x(1−αi)(1 − x)βo to improve convergence and ensure the constraints as discussed in
Sect. 1.5 are satisfied.

Let us briefly review the neural network model used in the NNPDF4.0
determination. For an extensive review on the subject of neural networks and machine
learning, the reader is referred to references such as Ref. [74]. A neural network
provides a non-linear mapping from an input space (in this case x) to an output
space (in this case the space of PDFs). It does this by utilizing a directed graph
structure consisting of multiple layers where the nodes of the consecutive layers are
fully connected. A schematic representation of the graph – though without explicitly
denoting the direction of the edges – used for the NNPDF4.0 determination is shown
in Fig. 2.2. In this figure the blue circles correspond to the nodes of the graph, of
which each has an associated function called an activation function. Here the input to
each activation function corresponds to the set of all outputs of the previous layer as
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Figure 2.2: neural network parametrization of the PDFs used in NNPDF4.0

represented by the edges. As such, if we know the activation functions of each node,
we can evaluate the neural network explicitly and obtain a the function encoded by
the neural network.

To obtain this function for the NNPDF4.0 neural network shown in Fig. 2.2, we
note that the nodes of the input layer are set as x and log x. This is because PDFs
are believed to scale logarithmically at small x and linearly in the large x region [68].
The output of the i-th node in the l-th is then given by

ξ
(l)
i = g

∑
j

w
(l)
ij ξ

(l−1)
j + bl

i

 . (2.4)

where g(x) is the activation function, and the weights w(l)
ij and biases bl

i are the free
parameters of the neural network. Note that, as mentioned, the output of the node in
the l-th layer is obtained by taking a weighed sum of the outputs of the nodes in the
(l − 1)-th layer. Different choices can be made for the activation function, though it
needs to be nonlinear and monotonic. A neural network constructed with only linear
activation functions would reduce to a simple linear regression model. A common
choice for the activation function is the sigmoid function g(x) = 1

1+e−x . This function
has an two asymptotes: g(x) = 1 as x → ∞ and g(x) = 0 as x → −∞, as such it
can be thought of as a differentiable function that approximates a step function. The
idea of the activation function as a step function provides an intuitive illustration of
the connection with neurons in a biological brain, which, depending on the inputs to
a neuron either send a signal or not.

Finally, it should be noted that the parameters defining the model – commonly
referred to as the models’ hyperparameters – such as the number of layer and the
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Chapter 2 NNPDF4.0: towards PDFs with percent-level accuracy

number of nodes per layer, are determined through a semi-automated procedure to be
discussed in Sect. 2.1.4.

To prevent the polynomial prefactor of Eq. (2.3) from restricting the functional
form and therefore lead to underestimated uncertainties, the α and β exponents are
randomly sampled from a range that is determined in a self-consistent manner [71,75].
Specifically, upon making a change to the methodology or dataset, an initial fit is
performed for which the effective exponents are calculated for each distribution using

αeff,i(x) = log fi(x)
log 1/x , βeff,i(x) = log fi(x)

log(1 − x) . (2.5)

Then for a subsequent fit, the sampling distribution for the α and β exponents is taken
to be uniform on the interval determined by taking twice the 68% confidence interval
of the corresponding effective exponent. This process is iterated until the sampling
domain stabilizes.

The output nodes are parametrized in the evolution-basis defined to simplify
evolution, per the discussion in Sect. 1.3, as

Σ = u+ ū+ d+ d̄+ s+ s̄+ 2c,
V = (u− ū) + (d− d̄) + (s− s̄),
V3 = (u− ū) − (d− d̄),
V8 = (u− ū+ d− d̄) − 2(s− s̄),
T3 = (u+ ū) − (d+ d̄),
T8 = (u+ ū+ d+ d̄) − 2(s+ s̄),
T15 = (u+ ū+ d+ d̄+ s+ s̄) − 3(c+ c̄),
c+ = c+ c̄,

g = g.

(2.6)

Alternatively one may consider performing a PDF fit in the flavor basis, in which
the PDFs are parametrized as fi = u, ū, d, d̄, s, s̄, c, g. It has however been tested
explicitly that the resulting PDFs remain largely unchanged upon changes to the
choice of parametrization basis in section 8.4 of Ref. [6]. To perform this check two
sets of PDFs were generated, one corresponding to a fit using each basis, it was then
observed that the resulting PDFs agree within 1σ. One may then wonder whether, to
obtain a conservative estimate of the PDF uncertainty, one should combine the PDFs
determined from a fit in both bases. This can be checked by explicitly performing
a combination of the two PDF fits using the PDF4LHC15 prescription [76]. The
combination method used by the PDF4LHC working group is described in section 4.2
of Ref. [76], and consists of adding the replicas of multiple PDF sets into a single
PDF set whereby each replica is given equal weight. This is believed to be the most
reliable method of combining PDF sets [77], and will be discussed in more detail
in Sect. 4.1. The result of this combination is shown in Fig. 2.3 for the antidown
and gluon PDFs, where it is clear that the uncertainties remain unchanged upon
performing this conservative combination of the PDFs. The behavior of these two
PDFs is representative for the full basis of PDFs.
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Figure 2.3: The antidown and gluon PDFs from the published NNPDF4.0 baseline set
fit in the evolution basis compared to a PDF4LHC-like combination of the baseline fit
and a fit in flavor basis.

2.1.3 Fitting framework
After selecting the experimental datasets and defining a model, the free parameters,
w

(l)
ij and b

(l)
i , of the neural network discussed in Sect. 2.1.2, need to be optimized to

obtain a faithful description of PDFs.
A diagrammatic representation of the fitting framework used to train the neural

network is shown in Fig. 2.4. The framework takes three external inputs. First,
FK tables encoding the partonic cross-sections and evolution equations in a pre-
computed format, possibly extended with QCD or electroweak K-factors. Second, a
configuration of the hyperparameters determined through a hyperoptimization routine
to be discussed in Sect. 2.1.4 below. Finally, the experimental data along with
covariance matrices as stored in a common format. This is used to optimize a figure
of merit in a computational loop shown in more detail in Fig. 2.6. After the fit has
completed the APFEL [41] package is used to determine the PDFs at different Q2 scales.
Then, a post fit selection is applied to filter replicas of insufficient quality, before finally
storing the replicas that pass the post fit filter in the LHAPDF6 format [78].

Evaluating cross-sections and the modular code structure

Fig. 2.5 shows a schematic representation of the part of the NNPDF fitting code that
evaluates the cross-sections and by extension the loss functions. In Fig. 2.4 this is the
part enclosed in the blue box.
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Figure 2.4: Diagrammatic representation of the NNPDF fitting framework. The blue
box contains the minimization of the χ2 figure of merit, whose computation is
illustrated in Fig. 2.5.

It takes as input a matrix in x denoted by {x(k)
n }, where n denotes the experimental

dataset, and k labels the nodes in the corresponding x-grid. This matrix is passed
to the model presented in Eq. (2.3) consisting of the neural network along with
preprocessing and a normalization prefactor. The outputs of the neural network
correspond to PDFs fi(x(k)

n ) of flavor i at an input scale Q0. The output can be
presented in different linearly dependent bases, though for convenience the evolution
basis of Eq. (2.6) is commonly used. The outputs of the neural network are then
convoluted with FK tables encoding the theory calculations and the evolution from the
parametrization scale to the scale of the hard process. This convolution provides the
corresponding observable On. For hadronic observables the corresponding calculation
is

On = FKn
ijklfi(x(k)

n , Q0)fj(x(l)
n , Q0), (2.7)

while for DIS observables it reduces to

On = FKn
ikfi(x(k)

n , Q0). (2.8)

Finally, these predicted observables can be compared to the corresponding
experimental values. The distance between the two is expressed using the chi-squared
distribution of Eq. (2.9).

In the final step shown in Fig. 2.5, the observables are separated into a training
and validation set, resulting in corresponding training loss χ2

tr and validation loss χ2
vl.

This is part of the cross-validation technique used to regularize the fitting procedure
of which a detailed discussion follows below.

It should be noted that the fitting code – as presented in Ref. [60] – is designed
to have a modular structure. This means that each block in Fig. 2.5, as well as the
backend used to initialize and train the neural network, can be adjusted independently
of the others. An example of this where the default Tensorflow backend is replaced
by the evolutionary_keras package will be discussed below. Another example
can be found in Ref. [79]. Here the neural network parametrization is replaced
with a simulated quantum circuit implemented using the Qibo package [80], and
optimization is performed using the L-BFGS-B algorithm [81] as implemented in the
scipy package [82].
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Figure 2.5: Diagrammatic representation of the calculation of the χ2 in the NNPDF
fitting framework as a function of the values of {x(k)

n } for the different datasets. Each
block indicates an independent component.

The target loss function

Since it is assumed that the experimental uncertainties are Gaussian, a natural choice
for the target function is the chi-squared statistic defined as

χ2 =
Ndata∑
i,j=1

(Di − Pi) cov−1
ij (Dj − Pj) , (2.9)

where Di are the experimental values of datapoint i, Pi the corresponding prediction
of the NNPDF model, and covij denotes the covariance between the datapoints with
label i and j. The experimental covariance matrix reads

(covexp)ij =δijσ
(uncorr)
i σ

(uncorr)
j

+
(

Nmult∑
m=1

σ
(norm)
i,m σ

(norm)
j,m +

Ncorr∑
l=1

σ
(corr)
i,l σ

(corr)
j,l

)
DiDj ,

(2.10)

where σ(uncorr)
i are the uncorrelated uncertainties obtained by adding the uncorrelated

systematic uncertainties and statistical uncertainties in quadrature, m runs over the
Nnorm multiplicative normalization uncertainties, σ(norm)

i,m , and l runs over the Ncorr

other correlated systematic uncertainties, σ(corr)
i,l .

The agreement of a fit to the data is expressed in terms of the experimental χ2, which
is defined as Eq. (2.9) with the covariance matrix Eq. (2.10). This agrees with the usual
measure adopted by the community to assess the quality of a fit. However, to avoid
the so-called D’Agostini bias [83] that would ensue in the presence of multiplicative
uncertainties (such as the luminosity uncertainty) if the covariance matrix as published
by experimental collaboration were used for minimization, the t0 prescription [84] is
applied when performing a fit.
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In this prescription a so-called t0 χ2 is minimized which is defined by a corresponding
t0 covariance matrix that reads

(covt0)ij =δijσ
(uncorr)
i σ

(uncorr)
j +

Nnorm∑
m=1

σ
(norm)
i,m σ

(norm)
j,m P

(0)
i P

(0)
j

+
Ncorr∑
l=1

σ
(corr)
i,l σ

(corr)
j,l DiDj ,

(2.11)

where P (0)
i corresponds to the central value of a theoretical prediction computed before

the fit using as input PDFs the best fit of the previous iteration.
This procedure thus introduces the need for an iterative determination of the t0

covariance matrix, where the input PDF – sometimes called the t0 PDF – is iterated
until the covariance matrix stabilizes1. In practice it has been observed that usually
two or three iterations suffice to obtain stability.

Early stopping and post-fit criteria

As discussed before, the commonly used Hessian method of PDF determination
applies regularization by relying on a functional form that aims to accommodate the
complexity of experimental data without being too flexible. A neural network, on the
other hand, removes the need to enforce a specific functional form, and instead the
flexibility of a neural network allows for the effective functional form to be determined
by the optimization algorithm during the fit. A (sufficiently large) neural network,
however, is able to optimize on the experimental data to such an extent that also
noise present in the data is learned by the methodology, as opposed to limiting the
extraction of information from the data to only genuine features of the data. This is a
phenomenon called overfitting, and a regularization procedure is required to prevent
overfitting from taking place.

In the NNPDF framework this regularization procedure mainly relies on an early
stopping algorithm based on cross-validation as represented by the flowchart shown
in Fig. 2.6. The purpose of the stopping algorithm is twofold: determining the best
instance of the neural network parameters encountered during training, and deciding
when to stop looking for a better instance and instead stop the training.

To identify the best instance of the neural network – this being the instance that
generalizes the best to unseen data – a cross-validation method is applied. With
cross-validation the full global NNPDF4.0 dataset is divided into a validation dataset
and a training dataset, where per experimental dataset a random fraction of 75% of
the datapoints is placed in the training set, and 25% is placed in the validation set.
Fig. 2.7 illustrates how this split into a training and a validation set is used to identify
the optimal instance of the neural network. Namely, during fitting the training set
is used to define a training error function χ2

tr which is the target of the optimizer,
and thus in principle can be reduced indefinitely as it vanishes asymptotically. This
corresponds to the blue curve shown. The validation set, on the other hand, is not
seen by the optimizer but nevertheless the corresponding error function χ2

val to this
1These iterations can be performed simultaneous with the iteration of the sampling range of the α

and β exponents discussed in Sect. 2.1.2.
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Figure 2.6: Flowchart describing the early stopping algorithm used in NNPDF4.0 to
determine the optimal stopping point of the fit based on the look-back cross-validation
method.

subset of the data is evaluated at each training epoch. Its value is represented by the
orange line. As can be seen, after reaching a minimum value for the χ2

val just before
6000 epochs, it increases again. This can be understood as a result of overlearning,
where the optimizer is fitting even the noise present int he training data but no longer
generalizes well to unseen data. The final result of the fitting procedure corresponds to
the instance at which χ2

val has the smallest value. In Fig. 2.7 the epoch corresponding
to the best instance of the neural network is highlighted by the vertical dashed line.

To recognize when a neural network has completed its training, a counter is started
when the validation loss χ2

val drops below a certain threshold value. From this point
the counter keeps track of the number of epochs that have passed and the training
ends if the validation loss has not improved for a given number of epochs. This
number is a hyperparameter. If this happens, the training is ended and the model
is reset to the instance with the best validation loss. If at no point during training
this threshold value for the validation loss is reached, the fit is not considered to be
in sufficient agreement with the data and is therefore discarded. Furthermore, for an
instance to be considered acceptable, it is checked wether certain positivity criteria [6]
are satisfied to ensure that the up, down and strange quark and antiquark PDFs, and
the gluon PDF are positive. These constraints follow from Ref. [61] in which it was
shown that for PDFs for the individual quark flavors and the gluon as defined in the
M̄S factorization scheme are non-negative. Finally, there is a hard threshold for the
number of epochs for which the model is allowed to be trained. If the model was still
improving by the time it reaches this threshold, the training will be ended nonetheless.

Once the training of the full set of replicas has completed, certain post-fit criteria
are checked and those replicas that do not satisfy all of the post-fit criteria are
discarded. As a result, any replica with an arc-length, or χ2 value as calculated
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Figure 2.7: Idealized profile of the training (dotted, blue) and validation (dashed,
orange) loss in a typical PDF fitting. For ilustration purposes the profiles have been
smoothed out and loss penalties applied to the training loss have been removed. The
optimization algorithm continues improving the training loss, however, by monitoring
the validation loss it is possible to stop the training at the optimal point before we
enter in the overfitting domain.

to the experimental data, that is more than 4σ away from the central value of their
distribution are discarded. The post-fit check also ensures that integrability of the
solutions is satisfied by checking that the inequality∑

k

∣∣∣x(k)
int fi

(
x

(k)
int , Q

2
)∣∣∣ < 1

2 , (2.12)

is fulfilled for fi = V, V3, V8, T3, T8, x(k)
int ∈

{
10−9, 10−8, 10−7} and the PDFs are

evaluated at Q2 = 5 GeV2. The cumulative effect of all post-fit criteria described
here is that roughly 1% of the replicas are discarded.

Impact of gradient descent based minimization

Since the methodological update between NNPDF3.1 and NNPDF4.0 includes a
complete re-writing of the fitting framework, many changes occurred simultaneously
making it challenging to assess the impact that each individual feature that was
changed has on the resulting PDFs. One of the main differences though, is the choice
of optimization algorithm. Where in NNPDF3.1 a nodel genetic algorithm (NGA) was
used to train the neural network, in NNPDF4.0 this has been replaced by stochastic
gradient descent (SGD) based algorithms. In particular, as backend to initialize the
model and perform the optimization for NNPDF4.0, the TensorFlow [85] package
provides the necessary tools. This also means that any of the optimization algorithms
implemented in TensorFlow – such as RMSprop [86], Adagrad [87], and Adam [88] –
can be used in the NNPDF framework. As will be discussed in Sect. 2.1.4, for the
NNPDF4.0 release the Adam optimizer has been used.
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Figure 2.8: Left: comparison of two PDFs generated using the NNPDF4.0 framework,
and fitted using the nodal genetic algorithm (orange) and Adadelta (green).
Right: comparison of a fits performed with the nodal genetic algorithm in the
NNPDF3.1 framework (orange) and the NNPDF4.0 framework (green).
All fits are performed to the DIS-only dataset as defined in Tab. 1 of Ref. [59].

To assess the impact of the change of optimization algorithm a library named
evolutionary_keras [89, 90] has been developed. It extends the Model class of the
Keras [91] interface to the TensorFlow library with genetic based algorithms and
allows for the easy implementation of further custom genetic algorithms. It does this
while retaining compatibility with Keras and can be used in the same way any of the
standard gradient descent based optimizers would.

Fig. 2.8 contains plots showing the impact of the gradient descent based algorithm
used in NNPDF4.0 compared to the nodal genetic algorithm used in NNPDF3.1.
In the left plot of Fig. 2.8 it can be observed that the gradient descent algorithm
Adadelta [92] results in much smoother and more Gaussian PDFs than the NGA. This
difference in smoothness is in fact the main qualitative difference observed between the
new NNPDF4.0 framework and the old NNPDF3.1 fitting framework. In Fig. 2.8 it can
clearly be seen that the increased smoothness obtained with the NNPDF4.0 framework
can – at least for the main part – be attributed to the change in optimization algorithm.

Another genetic optimization algorithm that has been used with the NNPDF
framework is the covariance matrix adaptation evolution strategy (CMA-ES) [93,94].
The CMA-ES has been applied to the determination of structure functions NNFF1.0
[95], and also tested within the NNPDF3.1 framework [96]. In Ref. [95] it was observed
that the CMA-ES obtained improved agreement with data, improved consistency, and
reduced complexity when compared with the NGA.

evolutionary_keras also provides support for the CMA-ES allowing us to check
whether fits with the CMA-ES will show similar features compared to its NGA
counterpart when it is applied within the NNPDF4.0 framework. Fig. 2.9 shows a
comparison between a fit performed using the CMA-ES and a fit performed using the
NGA, both within the NNPDF4.0 framework. In this plot a number of differences
between the NGA and CMA-ES algorithms can be observed. In particular the PDFs
produced using the CMA-ES is are smoother and have larger uncertainties in the
large-x region than of those found with the NGA. Furthermore, the number of outliers

37



Chapter 2 NNPDF4.0: towards PDFs with percent-level accuracy

10 5 10 4 10 3 10 2 10 1 100

x

0.35

0.40

0.45

0.50

0.55

0.60

xd
(x

)

d at 1.65 GeV
NNPDF4.0 CMA-ES (68% c.l.+1 )
NNPDF4.0 NGA (68% c.l.+1 )

Figure 2.9: Comparison of a fit performed with the nodal genetic algorithm (orange)
and the covariance matrix adaptation evolution strategy (green), both using the
NNPDF4.0 fitting framework

is reduced, indicating greater consistency, and the agreement with data as measured
in terms of the χ2 has improved.

While the results obtained with the CMA-ES share many features with those
obtained with SGD based algorithms, computational costs are much larger and thus
it should not be considered an alternative to the SGD based algorithms. This is
particularly relevant because the decreased computational cost of the SGD based
algorithms allow for the quick and convenient investigation of various setups. An
example of what this reduced computational costs makes possible, is the testing of
many different combinations of hyperparameters as will be discussed in Sect. 2.1.4.

2.1.4 Hyperoptimization
An important aspect of the NNPDF4.0 methodology involves the determination of the
model’s hyperparameters. Where in previous NNPDF releases these were determined
through a manual, and labour intensive, process of trial and error, for NNPDF4.0
this has largely been replaced by an algorithmic hyperoptimization procedure. In
short, the automatic hyperoptimization routine makes use of the improved efficiency
achieved with the TensorFlow framework. This enables us to test O

(
103) different

hyperparameter setups by performing fits with them and ranking the setups through
a k-folds cross-validation algorithm, to be discussed below.

The scan over hyperparameter setups is implemented using the hyperopt [97]
package which employs a Bayesian algorithm [98] to determine the best combination
of hyperparameters.

The output of such a scan is a ranking of the tested setups based on how well
they generalize to unseen data as quantified using a figure of merit, Eq. (2.13), to be
discussed below. An example of the output of such a scan of around 1500 setups is
shown in Fig. 2.10, where each dot corresponds to a different setup. It shows the loss
– which is the figure of merit Eq. (2.13) – for a subset of the model’s hyperparameters:
the number of hidden layers model, the distribution for the initialization of the
neural network parameters, the learning rate of the optimizer, and the optimization
algorithm. A lower loss corresponds to better model performance. It should be
noted that setups with a loss value above 2.5 do exist but correspond to such poor
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Figure 2.10: Graphical representation of the hyperoptimization loss function L
corresponding to a subset of the hyperparameters in a scan based on 1500
configurations. Note that here we only show the subset of parametrizations with
L < 2.5.

performance that they are not included in these figures. While these figures are not
used to make the ranking, as this is done purely based on the loss values, it can
provide us with some intuition about how different parameters impact the fit. For
example, if we look at the plot comparing the optimization algorithms in the right
bottom of the figure, it can be observed that the Nadam [99] (which extends the Adam
optimizer [88] by adding a Nesterov-accelerated adaptive moment [100]) is not only
able to obtain a lower loss than any of the other optimizers, but the width of the
violin plot also indicates it is able to achieve low losses more consistently than any
of the other optimizers. For similar reasons it can be observed that the choice of
distribution used for the initialization of the neural networks parameters – as shown
in the top right plot – does not seem to have a significant impact on the model
performance. It should however be stated that this figure gives a rather naive view of
the impact of different hyperparameters. In particular, where this figure shows each
hyperparameter in isolation, the performance of the model depends on the combination
of hyperparameters and correlations between them, therefore one should be careful
when drawing conclusions from the plots in Fig. 2.10.

Hyperparameter correlation

An important motivation for using the hyperopt package as opposed to manually
tuning the hyperparameters is that best value for a given hyperparameter depends on
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Figure 2.11: Comparison between the results for the antistrange (left) and charm
(right) PDFs in two fits, one with all hyperparameters optimized and another where
the clipnorm value is not optimized.

the settings of the other hyperparameters and cannot be determined independently.
To shows this explicitly we will consider the tuning of the clipnorm hyperparameter
as an example. The value of the clipnorm parameter indicates the maximum allowed
value for the L2-norm of a tensor corresponding to the gradient calculated during
optimization. If the L2-norm of the gradient tensor is less than, or equal to the
clipnorm value, nothing changes. If, on the other hand, the L2-norm of the gradient
tensor is greater than the clipnorm value, the tensor is normalized such that the
L2-norm is equal to the clipnorm value.

Clipping of the gradients is a regularization technique preventing large updates
to the neural network parameters as this can cause a numerical overflow leading to
instabilities in the training of a neural network. However, one should be careful when
setting the value of the clipnorm parameter, since a too large value can lead to
an insufficiently regularized fit and by extension to overfitting while a value that
is too small can prevent convergence. Fig. 2.11 shows a comparison between the
antistrange PDF in the large-x region fitted with two different hyperparameter setups
(left), and a corresponding comparison for the small-x charm PDF (right). During
the determination of one PDF (green), all hyperparameters shown in Table 2.2 are
optimized, while for the other PDF (orange), the value of the clipnorm parameter
is fixed to a large value before optimizing the other hyperparameters. While in both
cases the training and validation losses are similar, the resulting PDFs are different
and the setup with the fixed clipnorm value clearly leads to an overfitted result. This
example illustrates the importance of considering all possible hyperparameters when
defining the model.

Figure of merit and stability

A sensible choice for the figure of merit is vital for a reliable hyperoptimization routine.
Specifically, the figure of merit should quantify the quality of the fit. An obvious choice
might be to the validation loss as the figure of merit during hyperoptimization, that
is L = χ2

val. However, because of the stopping algorithm shown in Fig. 2.6, it is
already the target of the fitting algorithm itself. Using the validation loss as both a
target and a measure of quality is risky, since a target can be obtained in ways that
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do not necessarily mean that the outcome is of a high quality, this is also known as
“Goodhart’s law” [101]. In practice, what this means for us, is that if we were to use
validation loss as a measure of quality, the algorithm will select for setups that result
in overfitting.

Instead, the validation of a model is performed using k-folds cross-validation (see e.g.
chapter 7 of Ref. [102]) schematically represented in Fig. 2.12. The main idea of k-folds
cross-validation is to divide the dataset not only into training and validation subsets,
but to instead also define a separate test set. The fit will still be performed in the
usual manner using the training and validation sets along with the stopping algorithm,
but the figure of merit relevant for hyperparameter selection will be defined based on
the agreement of the fit to the test set. Since the test set has not been used during the
training of the neural network, this provides a way of testing how well the methodology
generalizes to unseen data.

The k-folds cross-validation algorithm does not use only a single test set, but instead
divides the full dataset into k subsets of data. These subsets are also called folds. Here
it is important that each subset is representative of the full dataset both in terms of
kinematic range and scattering processes. Because of this, subsets have to be carefully
selected, where the k = 4 folds used in the NNPDF4.0 determination are shown in
Table 2.1. For the NNPDF4.0 release this task has been performed manually, though
in Sect. 3.2.1 we propose a method to automate the construction of the folds. Then,
k − 1 of these folds are divided into training and validation datasets that are used
to do a fit, while leaving out a k-th fold that will be used as a test set. This is
repeated k times, resulting in k fits where for each fit a different fold is used as the
test set. Here a fit is a single replica fit to central values of the experimental data,
as opposed to the usual fits performed to artificial pseudodata. This is to save on
computational costs since the aim of hyperoptimization is to test a large (order 103)
number of hyperparameters, so testing each hyperparameter setup by performing fits
to many pseudodata replicas is not feasible.

As a proxy for the quality of the fit, the target function of the hyperoptimization
algorithm is defined as

L = 1
k

k∑
i=1

χ2
i , (2.13)

where χ2
i is the χ2 evaluated to the datasets in the i-th fold using the PDF obtained

with the i-th fit, where for the determination of the i-th PDF, the i-th fold was left
out. The optimal hyperparameter setup is the setup for which L is minimized.

Alternative definitions of the figure of merit may also be used, though if two figures
of merit are equally well motivated the result should be the same in both cases. For
example, instead of defining the loss as the average value of the χ2

i , one could consider
defining it as the worst χ2

i obtained with a given hyperparameter setup:

L = max
(
χ2

1, χ
2
2, χ

2
3, . . . , χ

2
k

)
. (2.14)

This has been checked explicitly, Fig. 2.13 shows a comparison between a setup found
by optimizing for the “average” as defined in Eq. (2.13) and a setup found by optimizing
for the lowest “max” loss as defined in Eq. (2.14). The specific hyperparameter setups
for both cases are shown in Table 2.2. It is clear from Fig. 2.13 that the results in
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Fold 1

CHORUS σν
CC HERA I+II σp

NC e+ (920 GeV) BCDMS F p
2

LHCb Z → ee 7 TeV ATLAS W, Z 7 TeV (L = 35 pb−1) CMS Z pT 8 TeV
E605 σp CMS DY 2D 7 TeV CMS 3D dijets 8 TeV
ATLAS single t 7 TeV (1/σdσ/dyt̄) ATLAS single t Rt 7 TeV CMS tt̄ ℓ+jets 8 TeV (1/σdσ/dytt̄)
CMS single t Rt 8 TeV

Fold 2

HERA I+II σp
CC e− HERA I+II σp

NC e+ (460 GeV) HERA I+II σb
NC

NMC σNC,p NuTeV σν̄
CC LHCb Z → ee 8 TeV

CMS W electron asymmetry 7 TeV ATLAS Z pT 8 TeV (pT , mℓℓ) D0 W muon asymmetry
E866 σp (NuSea) ATLAS isolated γ prod. 13 TeV ATLAS dijets 7 TeV, R=0.6
ATLAS single t 8 TeV (1/σdσ/dyt̄) CMS σtot

tt 7,8 TeV CMS single t σt + σt̄ 7 TeV

Fold 3

HERA I+II σp
CC e+ HERA I+II σp

NC e+ (575 GeV) NMC F d
2 /F p

2

NuTeV σν
CC LHCb W, Z → µ 7 TeV LHCb Z → ee 13 TeV

ATLAS σtot
tt 7,8 TeV ATLAS W ++jet 8 TeV ATLAS high-mass DY 7 TeV

CMS W muon asymmetry 7 TeV E866 σd/2σp (NuSea) CDF Z differential
ATLAS W, Z 7 TeV (L = 4.6 fb−1)
central ATLAS single t 8 TeV (1/σdσ/dyt) CMS σtot

tt 5 TeV

CMS tt̄ 2D 2ℓ 8 TeV
(1/σdσ/dytdmtt̄)

Fold 4

CHORUS σν̄
CC HERA I+II σp

NC e+ (820 GeV) LHCb W, Z → µ 8 TeV
ATLAS single t Rt 13 TeV LHCb Z → µµ 13 TeV ATLAS W −+jet 8 TeV
ATLAS low-mass DY 7 TeV ATLAS Z pT 8 TeV (pT , yZ) CMS W rapidity 8 TeV
D0 Z differential CMS dijets 7 TeV ATLAS single t 8 TeV (1/σdσ/dyt)
ATLAS W, Z 7 TeV (L = 4.6 fb−1)
forward CMS single t Rt 13 TeV

Table 2.1: The four folds in which the NNPDF4.0 dataset is divided for the k-folds
hyperoptimisation procedure represented in Fig. 2.12.

both cases are equivalent, even though the hyperparameters are completely different.
This shows the stability of the hyperoptimization routine.

It should be noted however, that the value of L for each individual hyperparameter
setup tested in this way is susceptible to non-negligible random fluctuations and hence
it is ill-advised to select the model with lowest L without a second thought. While the
hyperoptimization routine is useful in producing a ranking of good hyperparameter
configurations, the configuration ranked first is not necessarily the best. To confidently
identify the best setup among those with hyperparameter configurations that resulted
in a low loss L, the hyperoptimization routine is followed by a production of PDFs with
the default sample size of 100 replicas. As a final step of the hyperparameter selection,
these PDFs consisting of 100 replicas are closely studied to identify the preferred
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Figure 2.12: Diagrammatic representation of the k-fold algorithm used for the
hyperparameter optimization. Here the number of folds equals four, i.e. k = 4.

setup and discard those in which more subtle features of overfitting or underfitting
are recognized. Indeed, the procedure is still not fully automated and even though
the selection of hyperparameters has been greatly improved, human experience is still
needed in the final step.

An improvement to the hyperoptimization routine is proposed in Sect. 3.2, which
includes a quantitative measure for the detection of overfitting which will be introduced
in Sect. 3.2.2.

Baseline hyperparameters for NNPDF4.0

A k-folding hyperoptimization, as described above, has been performed to determine
the best values of the hyperparameters that have been used for the NNPDF4.0
determination. These are listed in Table 2.2. The hyperparameters include the
network architecture, the type of activation function, the Glorot-type [103] initializer,
the optimizer, the values of the learning rate and of clipnorm, the maximum number of
iterations and the stopping patience, and the initial values of the Lagrange multipliers
for the PDF positivity and integrability constraints (see Sect. 3.1 of Ref. [6] for a
discussion on the implementation of integrability and positivity constraints using
Lagrange multipliers). The ranges of the hyperparameters that are sampled by
the hyperoptimization algorithm are chosen empirically: we start out conservatively
with very wide ranges, and once we are confident that the optimal value of a given
hyperparameter falls within a sub-domain of this (conservative) range, we adjust the
sampled domain accordingly to limit the runtime and computational resources of the
hyperparameter scan.

In Table 2.2 we show both the optimal hyperparameters for our default
methodology, based on the hyperoptimization loss defined in Eq. (2.13), as well as the
hyperparameter values obtained with the different choice of loss function Eq. (2.14).
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Figure 2.13: Comparison between the gluon (left) and antidown (right) PDFs at Q =
1.65 GeV found by using methodologies in which hyperparameters are selected based
on the “average” loss function Eq. (2.13) (green) or the “max” loss function Eq. (2.14)
(orange).

As mentioned, both different choices of loss function (see Fig. 2.13) lead to equivalent
results, but the corresponding hyperparameter values can be quite different. For
instance, the optimal architecture for fits based on the alternative loss function
Eq. (2.14) has more than twice the number of neurons in the hidden layers compared
to the baseline settings.

We now specifically discuss the hyperoptimization and its results for our
default choice. Concerning the network architecture, until NNPDF3.1, each PDF
was parametrized with an individual neural network. While the number of
independently parametrized PDFs was gradually increased, this remained unchanged
since NNPDF1.0 [44]. Now the hyperoptimization scan is run with a single network
which outputs the value of all PDFs. So while in all NNPDF fits up to and including
NNPDF3.1 NNi(x) in Eq. (2.3) denotes the i-th neural network, in NNPDF4.0 it
indicates the activation state of the i-th neuron in the last layer of the neural net. The
architecture selected by the hyperoptimization is 2-25-20-8 with hyperbolic activation
functions except for the final linear layer, and it is shown in Fig. 2.2.

The NNPDF4.0 architecture has 763 free parameters, to be compared to a total of
296 parameters for the NNPDF3.1 neural nets. We emphasize however that a larger
network does not necessarily imply better performance, and that for a given dataset
there exists a lower bound to the number of required free network parameters but
probably not an upper one. Given comparable performance, smaller networks are
preferred in order to reduce the computational costs.

Hyperoptimization stability

The main goal of the hyperoptimization procedure is to identify the best optimization
settings for the current problem of determining the PDFs. This raises the question
of deciding in which cases a new hyperoptimization would be required. Our
current understanding encompasses changes to the experimental data, the theoretical
description, and methodological choices (such as the choice of PDF basis).
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Parameter NNPDF4.0 L as in Eq. (2.14)

Architecture 2-25-20-8 2-70-50-8
Activation function hyperbolic tangent hyperbolic tangent
Initializer glorot_normal glorot_uniform

Optimizer Nadam Adadelta

Clipnorm 6.0×10−6 5.2×10−5

Learning rate 2.6×10−3 2.5×10−3

Maximum # epochs 17×103 45×103

Stopping patience 10% of max epochs 12% of max epochs
Initial positivity Λ(pos) 185 166
Initial integrability Λ(int) 10 10

Table 2.2: The baseline hyperparameter configuration (left) selected using the k-folds
hyperoptimization procedure with hyperoptimization loss Eq. (2.13) and used to
perform the NNPDF4.0 fits in the evolution basis. We also show an configuration
selected using the alternative hyperoptimization loss Eq. (2.14) (right).

We have checked that the procedure is quite stable upon reasonably small changes
of the dataset. In particular, the datasets included in Table 2.1 do not correspond
exactly to the datasets included in the final dataset as listed in App. A, since the final
appraisal of the data to be included was performed after the methodology was set.
Furthermore, when removing datasets the given methodology remains viable, though
in principle there might be a computationally more efficient one giving the same results
for the small datasets. Of course in principle the only way of being absolutely certain
whether a new hyperoptimization is needed or not is to actually perform it.

On the other hand, a substantial change in methodology or dataset generally needs
a new hyperoptimization. An example of this is the flavor basis plot included in
the combination using the PDF4LHC15 prescription shown in Fig. 2.3. Likewise,
the addition of a large number of new datasets affecting kinematic regions or PDF
combinations for which currently there is little or no information might have an impact
on the fit sufficient to warrant a new run of the hyperoptimization procedure.

Note that the need for a re-hyperoptimization upon large changes to the dataset
does not imply that the uncertainties obtained with the methodology are not robust.
The hyperparameters are selected to accurately fit a given dataset; for example if
a specific subset of data were to be removed such that the dataset spans a smaller
kinematic range, presumably a less ‘aggressive’ methodology is required to accurately
describe the data (though likely at the cost of an increase in uncertainty). Likewise,
the inverse would be true for a dataset spanning a much larger kinematic range; in
such a scenario, if the methodology were not updated, likely not all features of the
data would be fitted to the same precision as could be obtained with a more aggressive
methodology. This then leads to a less precise – though generally not less accurate
– determination of the PDFs than could be obtained upon a re-hyperoptimization of
the hyperparameters. These are hypothetical scenarios to sketch a picture of how the
hyperparameters can depend on changes to the dataset, for this reason the definition
of aggressiveness of the methodology is intentionally left arbitrary.
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2.2 Experimental data
Having discussed the methodology employed for the NNPDF4.0 determination, we
continue by providing a brief overview of the global dataset that is the basis for
the NNPDF4.0 release, as well as the theoretical calculations corresponding to the
datasets.

The kinematic coverage in the (x,Q2) plane of the NNPDF4.0 dataset entering
the default NNLO fit is shown in Fig. 2.14. For hadronic data the corresponding
kinematic values have been determined using LO kinematics. Whenever an observable
is integrated over rapidity, the center of the integration range is used to compute the
values of x. The datapoints corresponding to datasets that are new in NNPDF4.0 are
indicated with a black edge.

In essence, the baseline NNPDF4.0 dataset is largely a superset of the baseline
NNPDF3.1 dataset, extending the NNPDF3.1 global dataset with 44 new datasets.
There are a few exception to this rule, namely, the single-inclusive jet data in
NNPDF3.1 have been replaced with corresponding dijet datasets, and various
minor changes have been made to certain datasets already present in NNPDF3.1,
or their theoretical treatment. This includes datasets being replaced by more
recent measurements of the same cross-sections, and in some cases more differential
distributions of the same process have been included due to correlations becoming
available. In terms of theoretical treatment some minor changes have been made as
well, for example, the fixing of a bug in APFEL affecting the computation of the NLO
charged current structure functions, and updating the branching ratio of charmed
hadrons into muons with the value from PDG 2020 [104]. For a detailed discussion of
changes made regarding datasets also included in the NNPDF3.1 determination, the
reader is referred to Chapter 2 of Rev. [7].

We will briefly go over the datasets that have not been included in earlier
determinations by NNPDF. For the first time, this includes data from the LHC Run
II at a collision energy of 13 TeV. While some of these new measurements correspond
to processes already present in the baseline NNPDF3.1 dataset, they also include data
from direct photon production, single top production, dijet production, and gauge
boson production with jets which have not been included in any previous NNPDF
determination.

In particular, the new datasets with respect to NNPDF3.1 are the following:

DIS. The ration Rµν of dimuon to inclusive neutrino-nucleus CC DIS cross-sections
from NOMAD [105] as a function of the neutrino beam energy. The H1 [106]
and ZEUS [107] measurement of charm and bottom production cross-sections in
DIS have been replaced with the combined measurement of Ref. [108].

DIS jet. DIS single-inclusive jet and dijet production data from ZEUS [109–111] in
the high-Q region and H1-HeraII [112,113] in the high- and low-Q regions.

Fixed-target DY. The recent SeaQuest [114] measurement of the production of a Z
boson decaying into muon pairs.

Incl. W and Z. The ATLAS measurements of the W and Z differential cross-section
at

√
s = 7 TeV in the central and forward rapidity regions [115], of double

and triple differential DY lepton pair production at
√
s = 8 TeV [116, 117], of
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Figure 2.14: The kinematic coverage of the NNPDF4.0 dataset in the (x,Q2) plane.
Points with a black edge around it are new in NNPDF4.0 and were not included in
any previous NNPDF release.
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W production and decay at
√
s = 8 TeV [118], and of W and Z decay into

leptons at
√
s = 13 TeV [119]. The LHCb measreument of the Z cross-section

at
√
s = 13 TeV [120].

W+jet. The measurement of W boson production with additional jets from
ATLAS [121] at

√
s = 8 TeV. The measreuments of W production with a charm

jet from ATLAS [122] at
√
s = 7 TeV and CMS [123] at

√
s = 13 TeV.

Top pair. The ATLAS [124] differential and CMS [125] double differential normalized
cross-sections measured at

√
s = 8 TeV. The ATLAS total cross-section [126]

and the CMS absolute differential distributions in the lepton+jets channel [127]
and in the dilepton channel [128].

Dijet. Single-inclusive jet production from ATLAS [129] and CMS [130] at
√
s =

8 TeV. Dijet production from ATLAS [131] and CMS [132] measurements at√
s = 7 TeV and the CMS measurement [133] at

√
s = 8 TeV.

Direct photon. Isolated photon production measurements from ATLAS at
√
s =

8 TeV [134] and
√
s = 13 TeV [135].

Single top. Single top production from ATLAS [136–138] and CMS [139–141]
measurements at

√
s = 7, 8 and 13 TeV.

Of these processes, jet production in dis, top pair production, dijet production,
direct photon production and t-channel single top production have not been included
in previous NNPDF releases. For an exhaustive list of all included datasets in the
NNPDF4.0 determination we refer the reader to App. A. For a description of how the
theoretical predictions corresponding to the measurements are obtained, we refer the
reader to Sect. 2 of Ref. [6].

2.2.1 The impact of datasets with tension
The baseline dataset described above is constructed to be maximally consistent, this
is discussed in detail in section 4 of Ref. [6]. However, here we will briefly assess
the sensitivity of the resulting PDF upon the exclusion of those datasets where some
indication of inconsistency was found but that were eventually included in the baseline
dataset.

To identify possible dataset inconsistencies, three quantities are used. First is the
total χ2 per datapoint, second is the distance in terms of standard deviations that the
χ2 per datapoint evaluated for a given dataset differs from its expected value:

nσ ≡ χ2 − 1
σ [χ2] = χ2 − 1√

2/Ndat
, (2.15)

and third is the inverse of the smallest eigenvalue of the experimental correlation
matrix. This provides a proxy for the stability of the experimental covariance matrix.
For each of these quantities a threshold value is decided, and for those datasets where
the threshold is crossed, additional checks are performed. In particular this involves
giving additional weight to the identified datasets one-by-one, and seeing how this
impacts the fits.
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Since the decision of whether to include a given dataset or not is not a simple one,
but rather is based on a combination of many different factors, one may wonder how
much these decisions impact the PDFs. One way to observe that these decisions do not
have a significant impact is shown in Fig. 2.15. Here seven new PDF determinations
have been performed, each one by removing one of the datasets with particularly large
values for the estimators described above, these are ATLAS 7 TeV dijets [131], NMC
σp [142], BCDMS F p

2 [18], HERA I+II charm [108], CMS 7 TeV dijets [132], HERA
inclusive [143], and E866 σp [144]. These seven PDFs are then combined using the
PDF4LHC15 prescription, which means that the combined PDF is an unweighted
combination of the seven different PDF sets.

Fig. 2.15 compares the up, antiup, gluon and down quark PDFs and their
uncertainties of the NNPDF4.0 baseline determination to this combination of the seven
PDF sets where different datasets have been omitted. From this it can be concluded
that the results are stable and changes are comparable with statistical fluctuations.

2.3 Important features of NNPDF4.0
Here we will discuss some of the main features of the NNPDF4.0 determination.
So far in this chapter we discussed two main sources of changes to the NNPDF4.0
determination with respect to the earlier NNPDF3.1 determination: the dataset and
the methodology. Here we will study the impact of the new methodology, as well as
the impact of the new dataset, independently. We will then study the implications of
the NNPDF4.0 PDF set for hadron collider phenomenology. Finally, we will discuss
the implications of the independent determination of the charm PDF.

2.3.1 Impact of the new data
As discussed above in Sect. 2.2, the NNPDF4.0 dataset is not a pure extension of
the NNPDF3.1 dataset. Instead, also some changes have been made regarding the
treatment of data already included in the NNPDF3.1 determination. These updates
mostly consist of updated measurements of the same observable, and updates to
the theory calculations. The global dataset that incorporates these updates to the
NNPDF3.1 dataset has been dubbed the NNPDF3.1-like dataset, which is the dataset
that we will compare the full NNPDF4.0 dataset to here.

To assess the impact of the new data – and also the impact of the new methodology
in Sect. 2.3.2 – we study a quantity relevant for LHC physics, namely, the parton
luminosities as a function of the invariant mass of the final state mX at

√
s = 14 TeV.

While various definitions of the parton luminosity as a function of the invariant mass
can be used, here we will define it as

Lij

(
MX ,

√
s
)

≡
channels∑

ij

1
s

∫ 1

τ

dx

x
fi (x,MX) fj (τ/x,MX) , (2.16)

where i and j are the parton flavor indices, and τ = M2
x/s.

The impact of the new data is assessed by comparing the luminosity of the baseline
NNPDF4.0 PDF set to a PDF set determined using the same NNPDF4.0 methodology,
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Figure 2.15: The NNPDF4.0 baseline PDFs and their relative uncertainties compared
to a combination of PDFs where in their determination datasets with poor statistical
estimators have been omitted one-by-one. The combination is performed using the
PDF4LHC15 prescription.
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Figure 2.16: A comparison of the gg and qq luminosities Eq. (2.16) as a function of the
invariant mass (top) and their relative 1σ uncertainties (bottom), between the baseline
NNPDF4.0 PDF set (green) and a PDF set determined using the same NNPDF4.0
methodology but fitted to the NNPDF3.1-like dataset (orange).

but instead fitted to the NNPDF3.1-like dataset. In Fig. 2.16 we compare the gluon-
gluon and quark-quark channel luminosities of both PDF sets along with their 1σ
uncertainties. Even though the uncertainties remain largely unchanged there is a
clear shift of the central value that, for some values of the invariant mass, at the 2σ
level. From this it can be concluded that while the extended NNPDF4.0 dataset does
not improve the precision of the PDF fit, the NNPDF4.0 dataset does result in an
improved accuracy as a result of the larger amount of information included in the
NNPDF4.0 dataset.

2.3.2 Impact of the new methodology
Similar to the assessment of the impact of the new data above, here we will again
study the luminosities as a function of the invariant mass for two different PDF sets.

In Fig. 2.17 we compare the luminosities of the baseline NNPDF4.0 PDF set to a
PDF set determined using the NNPDF3.1 methodology and the NNPDF4.0 dataset.
From these plots it is clear that while the two methodologies are in perfect agreement,
the PDF set obtained with the NNPDF4.0 methodology achieves a much higher
precision that that obtained using the NNPDF3.1 methodology.
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Figure 2.17: Same as Fig. 2.16, but here the baseline NNPDF4.0 PDF (green) set
is compared to a PDF set determined using the NNPDF3.1 methodolgy and the
NNPDF4.0 dataset (orange).

Combining this observation with the previous observation about the impact of the
new data, it can be concluded that while the change in central value of any predictions
is due to the change in dataset, the change in uncertainty is entirely due to the change
in methodology.

2.3.3 Implications for phenomenology
To demonstrate precision that NNPDF4.0 provides, we study here a quantity that is
relevant for LHC phenomenology: the PDF uncertainty on the luminosity differential
in rapidity y at an energy scale of

√
s = 14 TeV. This can be written as

L̃ij

(
MX , y,

√
s
)

=
channels∑

ij

1
s
fi

(
MXe

y

√
s
,MX

)
fj

(
MXe

−y

√
s

,MX

)
, (2.17)

from which Eq. (2.16) can be obtained by integrating over rapidity:

Lij

(
MX ,

√
s
)

=
channels∑

ij

∫ log
√

s/MX

− log
√

s/MX

dyL̃ij

(
MX , y,

√
s
)
. (2.18)
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In Fig. 2.18 the relative PDF uncertainty on the luminosity differential in rapidity
is presented as a function of both the invariant mass mX and the rapidity y of the
final state. Here the impact of the decrease in uncertainty as previously observed
in Sect. 2.3.2 is clearly visible. In particular it can be seen that where NNPDF3.1
reaches uncertainties of around 1% in a limited range of phase space, for NNPDF4.0 a
precision of around 1% is obtained for a much larger kinematic domain and for several
parton channels.

2.3.4 The charm PDF
In the baseline NNPDF4.0 determination the charm PDF is treated on the same
footing as the light quark PDFs and fitted independently. Such a treatment has
various advantages [145], among with is the fact that it allows for a non-perturbative
intrinsic charm component.

Fig. 2.19 compares the independently determined charm PDF at the parametrization
scale of Q0 = 1.65 GeV to the perturbatively calculated charm PDF at the same
scale. The two PDFs are very different, and in particular the uncertainties of the
perturbatively generated charm PDF do not seem faithful. The independently fitted
charm PDF is less sensitive to the choice of the charm mass mc and the uncertainties
are significantly larger. Nevertheless, the independently determined charm PDF shows
a clear valence-like bump around x ∼> 0.1 approaching 3σ significance.

Discovery of an intrinsic charm contribution to the proton however cannot be
claimed based on this PDF determination since it is given in a four-flavor-number
scheme with in which up, down, strange and quark are sensitive to radiative corrections
and mix with each other and the gluon. To accurately determine the intrinsic
component of the charm PDF, it needs to be determined in the three-flavor-number-
scheme in which only the three light quarks are sensitive to radiative corrections.
Note though, that the valence-like peak is found at large values of x where charm is
radiatively generated only at a low rate and thus one would not expect the scheme
change to have a major impact on the valence-like bump. This exercise was performed
explicitly in Ref. [146], where indeed the valence-like peak remained largely unchanged
upon this transformation of flavor number scheme and thereby provides evidence for
intrinsic charm.

2.4 Open-source code
Along with the release of the NNPDF4.0 PDF sets, also the NNPDF code [7] has been
made publicly available under the GNU General Public License v3.0, allowing for the
freedom to run, study, share and modify the software . It can be found on the Github
page of the NNPDF collaboration

https://github.com/NNPDF/,

along with user-friendly, and continuously updated documentation

https://docs.nnpdf.science/.

This release contains not only the NNPDF fitting framework, but also the codes
needed to transform experimental data into a common format, to produce FK-tables,
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Figure 2.18: The relative PDF uncerainty on the luminosities Eq. (2.17) for NNPDF3.1
(left) and NNPDF4.0 (right) plotted as a function of the invariant mass mX and
rapidity y of the final state.
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Figure 2.19: A comparison between the baseline NNPDF4.0 charm PDF (green) which
has been parametrized independently, and the charm PDF determined by perturbative
matching (orange). The charm mass is mc = 1.51 GeV in both cases.

and to perform the data analysis and visualization. In addition to the codes, the public
release includes the original and filtered experimental data, the fast NLO interpolation
grids for the computation of hadronic observables, and whenever available the bin-by-
bin NNLO QCD and NLO electroweak K-factors.

For previous releases of NNPDF only the PDF sets produced with the framework
were made publicly available as through the LHAPDF framework [78] as LHAPDF
interpolation grids, while the code itself remained private. As a result, the code itself
could not be scrutinized and results could not be reproduced by external parties. It also
meant that the only method of obtaining variations of existing PDFs – for example
a PDF set determined using a reduced dataset – was by requesting them from the
NNPDF authors. In practice this was a limitation to benchmarking studies such as
those performed by the PDF4LHC working group [147]. In such a benchmarking study
the differences between PDF determinations from the different fitting collaborations
are attempted to be understood, but often differences are the result of a complex
combination of various factors. Studies such as these are therefore aided by the code
being open access.

The NNPDF code consists of the following main packages:

• The buildmaster code for handling experimental data is a C++ code that can
be used to take experimental as provided by experimental collaboration – for
example through the HEPData interface [148] – and generate files containing
information about the data and the treatment of uncertainties in a format that
can conveniently be used within the rest of the NNPDF framework.

• The APFELcomb code for the generation of FK-tables. It does this by taking
matrix elements, such as those obtained from APPLgrid, FastNLO for hadronic
observables or APFEL for DIS observables, and combining them with DGLAP
evolution kernels from APFEL.
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• The validphys framework for the analysis and visualization of data related
to PDF determinations. The validphys framework is build on top of the
reportengine framework [149], which is a data science framework supporting
declarative inputs in YAML format and checks constraints at initialization time
while building a computational graph. Most of the plots in this thesis have been
produced entirely with validphys, and in many other cases the validphys API
has been used to obtain data about the PDFs.

• The n3fit fitting framework that takes as input the experimental data and
FK-tables, and produces the PDF replicas as has been discussed in detail in
Sect. 2.1.3.

The public availability of the NNPDF code opens up a number of possibilities for
users to perform their own analysis of PDFs using the NNPDF framework or extensions
thereof. Examples of possibly interesting applications for users that the NNPDF code
allows are the assessment of the impact of a specific dataset or group of datasets by
producing fits based on a reduced dataset, or by implementing a dataset that has
not yet been included in the NNPDF framework. The open-source code also allows
users to perform fits with different settings of the theory calculations. This enables
for example the study of αs dependence by performing fits to theories with different
values of αs [150], the estimation of missing higher order uncertainties (MHOU) by
varying the factorization and renormalization scales [151,152], study the sensitivity to
heavy quark masses by varying those. Finally, since the open-source code is public,
users can extend its functionality. For example, one can extend the framework to allow
for the simultaneous determination of PDFs and Wilson coefficients in the Standard
Model Effective Field Theory framework [153], or even apply it to the determination
of other non-perturbative QCD quantities such as nuclear PDFs [154], fragmentation
functions [155], or polarized PDFs [156].

It should be noted that some of the functionality described above is already available
in the xFitter framework [157,158]. However the NNPDF framework provides some
complementary functionalities, specifically by offering a PDF parametrization based
on state-of-the-art machine learning tools, a more extensive experimental dataset, and
a great number of tools for the statistical analysis and visualization of data.
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Advanced machine learning tools

In the previous chapter we introduced the NNPDF4.0 PDF determination. We
observed how an increase in data quality, in particular as a result of the large number
of new processes, resulted in more accurate PDFs with no significant impact on
their precision. We then observed how the improved methodology instead resulted
in a significant reduction of the PDF uncertainties. Thus, while both NNPDF3.1
and NNPDF4.0 provide an accurate determination of the PDFs, NNPDF4.0 is an
improvement over NNPDF3.1. Similarly, in this chapter we discuss two main directions
of improvements to the methodology that may be utilized for future releases.

In Sect. 3.1 we present a method that allows us to replace the (x, log x) splitting
in the first layer of the neural network with a data-based scaling, and we will
see how this further enables us to remove the preprocessing prefactor, and by
extension the corresponding iterative procedure for their determination, present in
the parametrization Eq. (2.3). In Sect. 3.2 we propose a way to further automate
the hyperoptimization routine thereby reducing the need for human intervention. In
particular, we propose a method to optimize the selection of folds for the k-folds cross-
validation, and a measure to quantify the degree of overfitting that occurred during
the fitting of the PDFs. In this way, we address two main directions for improvement
of the hyperoptimization routine discussed in Sect. 2.1.4.

3.1 Improved PDF parametrization
All of the most used PDF sets are parametrized at some input scale Q0 by a function
of the form in Eq. (1.67)

xfi (x,Q0) = Aix
(1−αi)(1 − x)βiPi(x), (3.1)

where the indices i correspond to the type of parton, and Pi is a functional form that
is different between PDF fitting groups. This is a generalization of Eq. (2.3) for the
parametrization employed by the NNPDF collaboration in which Pi is represented by
a single neural network. As also mentioned before, for other modern PDF sets such as
MSHT20 [63], CT18 [64], and ABMP16 [65], Pi represents a polynomial in functions
of x, such as

√
x.
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The PDFs are kinematically constrained at x = 1 per Eq. (1.66) which is enforced
through the (1 − x)βi component in Eq. (1.67) by all PDF fitting collaborations .
The motivation for this term stems from the constituent counting rules [159]. In the
fitting methodologies this component not only ensures that the condition of Eq. (1.66)
is satisfied, but it partially controls the large-x extrapolation region where data is
unavailable. The small-x behavior instead is controlled by the prefactor x(1−αi). The
introduction of this factor was inspired by Regge theory [160]. While enforcing this
behavior implies a methodological bias [58], studies on the extrapolation behavior of
PDF determinations confirm both Regge theory and counting rules for the valence
distributions [161]. Regardless, the effect of the exponents αi and βi as a source
of bias [44] is mitigated in the NNPDF methodology by independently and randomly
sampling them from a uniform distribution per replica, and freezing their values during
the fit. This is to be contrasted with the approach of other collaborations where
the αi and βi are treated as parameters that are to be optimized during the fit.
The boundaries defining the distributions from which the exponents are sampled in
the NNPDF approach are determined through the iterative procedure described in
Sect. 2.1.2.

Despite its generalized use in PDF determination, the fixed functional form is a
part of the methodology that leaves room for improvement. Namely, if we are able
to remove the preprocessing entirely, this provides two main benefits. First, and
perhaps most obviously, if we are able to remove this preprocessing from the NNPDF
methodology this also reduces the need for the iterative procedure to determine the
ranges of the exponents. Second, the required sampling of the exponents corresponds
to an additional source of data-independent replica-by-replica fluctuations. This
may affect the hyperoptimization procedure of Sect. 2.1.4, namely a relatively poor
methodology may perform well on the hyperoptimization metric if the randomly
sampled preprocessing exponents result in a better agreement of the fit to the data
than the expected performance of that methodology. Inversely, a relatively good
methodology may perform poorer during hyperoptimization as a result of the same
fluctuations in the preprocessing exponents. Finally, it is worth mentioning that the
PDFs are only based on data in the domain 10−5 ≲ x ≲ 0.75 while PDF grids are
delivered in the domain 10−9 ≤ x ≤ 1 and as a result the preprocessing impacts
the extrapolation behavior of the PDFs. While there are theoretical arguments [162]
that suggest the power-like behavior of PDFs in the limits of x → 1 and x → 0 as
described by the preprocessing function, it is not clear that this is also true for the
finite region in which the PDF is provided through the LHAPDF6 interface. Though,
even if we assume that this is indeed the case, it is still not clear at which scale Q2

the exponential scaling should hold given that it is not preserved under the evolution
equations discussed in Sect. 1.3.

Another aspect of the PDF parametrization that is the result of an explicit human
choice is the (x, log x) split in the first layer of the neural network as shown in Fig. 2.2.
The choice for this splitting of the input results from the observation that typically
PDFs show logarithmic behavior at small-x (x ≲ 0.01) and linear behavior at large-
x (x ≳ 0.01) [68], and together with the prefactor it ensures convergence of the
optimization algorithm in the small-x region.

In what follows we will show, in Sect. 3.1.1, how the scaling of the x-grids that are
given as input to the neural network can be automated to replace the (x, log x) split
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in a way that allows for a more flexible parametrization. Then, in Sect. 3.1.2, we show
how this scaling allows to remove the preprocessing from the parametrization entirely.

3.1.1 A data-based scaling of the input x-grids

Often, in machine learning problems, the input data can be unbalanced or span several
orders of magnitude. Such is the case of PDF fitting, where the input is concentrated
at small-x.

This can be a problem because, as we will explicitly show below, having input
features of different magnitudes introduces an artificial impact on the importance of
each feature within the network. This problem is exacerbated for gradient descent
based algorithms where the issue propagates to the learning rate of the weights of
the network. Thus, even if the algorithm is still able to find the global minimum,
the rate of convergence is not equal for all features. In the case we are interested in
(the NNPDF methodology with an early stopping algorithm) this can lead to locally
overfitted or underfitted results in different regions of the kinematic domain. Ideally
the fitting methodology should result in a uniform rate of convergence across all input
scales.

In short, the problem is that while the data spans multiple orders of magnitude,
the fitting methodology requires the inputs to be of the same length scale. Below we
discuss the impact of the input scaling on the PDFs, and provide a methodology that
takes an arbitrary input grid and scales it such that the optimizer always has a good
resolution across the entire input grid.

At this point one may note that the input x-grids of the neural network are the
grids defined in the FK-tables as shown in Eq. (2.7) and Eq. (2.8), which may differ
from the x-values of the corresponding experimental datasets. While this is true, from
the perspective of the fitting methodology, the grid choice is arbitrary and thus the
problem remains.

In NNPDF fits, the input variable is mapped to (x, log x) in the first layer of the
neural network which facilitates the methodology in learning features of the PDF that
scale either linearly or logarithmically in x. As mentioned before, these scales are
carefully chosen in accordance with the typical scaling of PDFs which is logarithmic in
the small-x region while it is linear in the large-x region. In the structure function fit
presented in Ref. [68] it was further noted that the choice of input scales could affect
the rate of convergence but not the final result. However, the (x, log x) split can have
an effect on the shape of the PDFs when determined using the modern framework.
This is seen in Fig. 3.1, where we compare the gluon PDF of the NNPDF4.0 fit to
a PDF generated using the same data, theory and methodological settings, but with
the (x, log x) input scaling replaced with only an (x) input. While the NNPDF4.0
methodology was sensitive to the small-x region (where the logarithmic behavior is
expected) when we remove (log x) from the input we can observe a hint of saturation
in said region. Despite the fact that the (x) and (log x) variables contain the same
information the split has a noticeable effect on the fit. We will now present an
alternative data-based scaling and show that this scaling finds agreement with the
results found using the (x, log x) scaling, thereby providing evidence that the (x, log x)
does not introduce an inefficiency in the methodology.
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Figure 3.1: Comparison between the gluon PDF generated with the standard
NNPDF4.0 methodology (green) and our modification in which we have removed the
splitting layer of x to (x, log x) (orange). While we observe good compatibility between
both PDFs in the large-x region, as we enter in the small-x region our modified PDF
saturates. This is evident also in the χ2 of the modified fit which was blocked at
χ2 = 1.20 while NNPDF4.0 is able to get it to χ2 = 1.16.

In order for the optimization algorithm to be able to easily learn features across
many orders of magnitude we can perform a feature scaling of the training input x
such that the distances between all points are of the same order of magnitude. In
particular, we can consider mapping the combined training input x-grid from the FK-
tables of all datasets as discussed in Sect. 2.1 to an empirical cumulative distribution
function (eCDF) of itself. The eCDF is defined as a step function that starts at 0
and increases by 1/Nx at each point of the input x-grids, with Nx the total number
of nodes in the x-grids. If the x-grids of n FK-tables share a common point in x,
the step-size corresponding to this point is instead n/Nx. This results in a function
whose value at any x corresponds to the fraction of points in the x-grids that are less
than or equal to x. In other words, while the x values present in the FK table are not
uniformly distributed on the domain 0 ≤ x ≤ 1, applying the eCDF makes it that they
are. A density plot of the distribution of input points without scaling, logarithmically
scaled, and after applying the eCDF is shown in Fig. 3.2. This figure also clearly shows
that both inputs to the neural network as used in NNPDF4.0 [6] have a high density
of points on the same scale.

Applying the eCDF results in a distribution on the domain 0 ≤ x ≤ 1. However,
for the results presented in this paper the eCDF transformation is followed by a linear
scaling, resulting in a total transformation of the input x̃ = 2 · eCDF(x) − 1, meaning
that the input values to the neural network are in the range −1 ≤ x̃ ≤ 1. This is done
to ensure that the input is symmetric around 0 which results in improved convergence
for many of the commonly used activation functions in neural networks.

Since using the eCDF means that we apply a discrete scaling only for values present
in the input x-grids, we need to also add both an interpolation and an extrapolation
function to extract PDF values at values of the momentum fraction that do not coincide
with the input x-grids. Here it is important to note that the PDFs are made publicly
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Figure 3.2: Histograms showing the distribution of the unscaled x points in the FK-
table x-grids (top-left), as well as the distribution of the input points after scaling
with log x (top-right) and eCDF (bottom).

available through the LHAPDF interface, and that they are correspondingly stored in
the LHAPDF grid format [78]. Because LHAPDF grids are provided on the domain
10−9 ≤ x ≤ 1, the problem of extrapolation can be turned into an interpolation
problem by including the points x = 10−9 and x = 1 in the input x-grid before
determining the eCDF, and defining a methodology for interpolation.

The simplest option for an interpolation function is a “nearest neighbor” mapping,
whereby we map any input on the continuous domain 0 ≤ x ≤ 1 to the nearest node in
the x-grids of the FK-table. We can nevertheless improve this simple mapping by using
instead a continuous function. A requirement of any such interpolation function is that
it needs to be monotonically increasing. However, if we determine the interpolation
between each two points of the FK-table x-grids the optimization algorithm will be
agnostic to the existence of this interpolation function as it is never probed. Ideally,
in particular for the evaluation of validation data of which the corresponding FK-
tables were not included when defining the eCDF scaling, we want the optimizer to
probe the interpolation functions such that it is able to learn its properties and as
a result provide a more accurate prediction in the interpolation region as well. As
such, the interpolation functions are not defined between each neighboring pair of
values in the input x-grid, but rather we select Nint evenly distributed points (after
the eCDF transformation) between which to define interpolation functions. Here Nint
is a new hyperparameter, though not necessarily one that needs to be free during
hyperoptimization of the methodology. To obtain a monotonic interpolation function,
we propose determining the interpolation functions using cubic Hermite splines [163].

By scaling the input in this way, we remove any restrictions on the PDF resulting
from the input features while simultaneously simplifying the model architecture by
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Figure 3.3: Comparison between the gluon and up PDFs determined using the
NNPDF4.0 methodology (green) and a PDF determined using input scaling based
on the eCDF (orange) with all other parameters the same.

getting rid of the mixing of two different orders of magnitude in the first layer. In
Fig. 3.3 we compare the gluon PDF generated using the NNPDF4.0 methodology, to a
PDF generated using the same data and theory settings, but with the (x, log x) input
scaling replaced with the eCDF input scaling as described above. This comparison
of the gluon PDF is representative for all flavors, and shows that the PDFs produced
with this new scaling are in agreement with those found using the (x, log x) input. If
the PDFs had not been in agreement that would have suggested that the PDFs have
a component that scales neither linearly nor logarithmically, and was therefore missed
when enforcing the (x, log x) scaling.

3.1.2 Removing the prefactor
In the previous section we discussed a new way of treating the input for the PDF
fitting by rescaling the input in a systematic way that depends only on the fitted data
itself. This is a purely data-driven approach and thus free of sources of bias due to
the choice of functional form. As explained, the data-based scaling of the input grid
in x will also allow us to remove the prefactor entirely.

In what follows we will discuss the consequence of removing the prefactor.
Specifically, by “removing the prefactor”, we understand a treatment which is
equivalent to setting αi = 1 and βi = 0 in Eq. (2.3), while enforcing the condition of
Eq. (1.66). As a result the PDF model is simply written as

xfi(x,Q0) = Ai [NNi(x) − NNi(1)] . (3.2)

A similar model, without the model-agnostic input scaling, has previously been applied
to the study of fragmentation functions [95]. We will focus on the effects of the change
in the small-x and large-x extrapolation regions where the lack of data makes the fit
particularly prone to methodological biases.

Earlier we mentioned that the motivation to include the prefactor in NNPDF is
to improve convergence during optimization and that its effect as a source of bias
in the extrapolation region was mitigated by randomly sampling the exponents αi

and βi from a uniform distribution and keeping their values fixed as opposed to
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allowing the optimizer to determine their values. However, removing the preprocessing
entirely not only has the advantage of avoiding bias, but also removes the replica-by-
replica fluctuations introduced by the different values of the exponents used for each
replica. These fluctuations are an inefficiency of the fitting methodology, which may
in particular affect the hyperoptimization routine discussed in Sect. 2.1.4. The reason
for this is that the performance of each hyperparameter configuration is tested by
performing k = 4 fits, hence the sample size (and thus potential impact of random
fluctuations) is non-negligible.

The improvements in efficiency achieved with the NNPDF4.0 with respect to the
NNPDF3.1 methodology discussed in Sect. 2.1 allow us to remove the prefactor
without a significant change in computational costs. Therefore any possible benefit
of the prefactor in terms of convergence no longer outweighs its disadvantages. As
an example of where fluctuations between replicas as a result of the randomized
exponents of the prefactor can limit the development of the methodology, one can
consider the hyperoptimization procedure previously discussed in Sect. 2.1.4. Namely,
in the current scenario an otherwise good hyperparameter setup with poor exponents in
the prefactor can return a worse figure of merit during hyperparameter optimization
than a relatively poorer hyperparameter setup with very suitable exponents. As a
result many more hyperparameter combinations need to be tested to overcome the
statistical noise. Removing the replica-by-replica random sampling of the exponents
removes this effect from hyperoptimization.

The uncertainties of the fit in the extrapolation region are closely related to
the ranges the prefactor exponents are sampled from. Removing them from the
parametrization also removes the random sampling. Therefore, we will next validate
the obtained small-x and large-x uncertainties.

For brevity and clarity, we will from now on refer to the proposed methodology
without the prefactor and with the eCDF input scaling as the “feature scaling”
methodology.

3.1.3 Validation of the updated parametrization

After any significant change to the fitting methodology, it is important to re-evaluate
the choice of the hyperparameters of the model. The model parameters obtained
through the hyperoptimization procedure applied to the feature scaling methodology
are given in Tab. 3.1. Note that the selected activation function does not saturate
asymptotically for large or small values of x, thus preventing saturation outside
the data region. The choice of activation function was however not fixed during
the selection of hyperparameters, this activation function has been selected by the
hyperoptimization algorithm among a selection of both saturating and non-saturating
activation functions.

Having identified the best settings for the hyperparameters, we can analyze the
effect that changing the parametrization has on the PDFs and the predictions made
with them. The χ2 values obtained with the updated methodology are shown in
Fig. 3.4 where they are compared to those of NNPDF4.0. From this it is clear that
the feature scaling methodology is able to find agreement to the data that is as good
as NNPDF4.0.
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Architecture 1-59-49-48-42-8
Activation function |x| tanh(x)
Initializer glorot_normal

Optimizer Nadam

Clipnorm 1.5×10−5

Learning rate 4.3×10−3

Maximum # epochs 19×103

Stopping patience 24% of max epochs
Initial positivity Λ(pos) 34
Initial integrability Λ(int) 10
Nint 40

Table 3.1: The hyperparameter configuration used to perform the feature scaling fits.
The configuration has been selected using the hyperoptimization routine of Sect. 2.1.4.

In what follows we will study the implications of the methodology in more detail,
in many cases by comparing it to a PDF based on the same experimental dataset
and theory setting, but produced using the NNPDF4.0 methodology. Specifically, we
will perform various tests to validate the PDFs both in the extrapolation regions, as
well as in the data region. These tests comprise the validation of the NNPDF4.0
methodology, and we will show that the performance of feature scaling is very similar
to that of NNPDF4.0.

Validation of the small-x extrapolation region

To begin with, we need the PDFs to accurately describe the kinematic domain from
which the methodology has not seen data during training. If we are able to determine
the χ2 for this unseen data, that would provide some insight into the generalization
of our methodology in the extrapolation region.

By definition, testing the accuracy in a region where there is no data to test against
is impossible. Given that waiting for a future collider to become operational could
take decades, the next best thing we can do is to perform a fit to a “historic” dataset
representing the knowledge available at an earlier point in time. To this end we
utilize the “future test” technique introduced in Ref. [164], and used to validate the
extrapolation region of the NNPDF4.0 PDFs. For consistency we keep the same
datasets as presented in the original future test paper (pre-HERA and pre-LHC).
In short, the test goes as follows: if the prediction from our methodology is able to
accommodate (within uncertainties) currently available data that was not included in
the fit, then the test is successful and we consider the generated uncertainties to be
faithful.

Since the aim of doing a future test is to determine the ability of a methodology
for PDF determination to provide a generalized fit, we need to take into account not
only the uncertainty of the experimental data but also the uncertainty of the PDF
itself. This is done by redefining the covariance matrix in the chi-squared-distribution
Eq. (2.9) as

(covtot)ij = (covexp)ij + (covpdf)ij , (3.3)
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Figure 3.4: A comparison of the χ2 per process type between NNPDF4.0 (green) and
feature scaling (orange), the total χ2 of feature scaling is 1.17 while that of NNPDF
is 1.16.

where covexp corresponds to the covariance matrix defined in Eq. (2.10) without
the t0 prescription applied, while covpdf corresponds to the covariance matrix of the
observables calculated from PDF predictions:

(covpdf)ij = 1
Nrep

Nrep∑
r=1

P r
i P

r
j − 1

Nrep

Nrep∑
r=1

P r
i

1
Nrep

Nrep∑
k=1

P k
j , (3.4)

where P r
i is the prediction of the i-th datapoint using the r-th PDF replica.

As can be seen in Fig. 3.5, where we compare the gluon and upquark PDFs of the
NNPDF4.0 fit, to a PDF generated using the feature scaling methodology, the plots
show good agreement between the two PDFs. While only the two partons are shown,
this is representative of all flavors. The prediction of the feature scaling methodology
in the extrapolation region is validated by performing a future test of the feature
scaling methodology. The results of this future test results shown in Tab. 3.2. Each
column corresponds to a fit perform using all previous datasets (for instance, the pre-
LHC fit includes all the data in pre-HERA as well). Instead, each row corresponds to
the partial dataset used to compute the χ2. We make a distinction between χ2 inside
parentheses with the experimental covariance matrix, and the χ2 without parentheses
corresponding to a covariance matrix as defined in Eq. (3.3). Before seeing these
results one may wonder whether, because all datasets are sensitive to the same large-x
region, the datasets are consistent and thus the test is trivial. The answer to this
becomes clear by looking at the χ2 values inside the parentheses which indicate that
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Figure 3.5: Comparison of the gluon and upquark PDFs between a fit performed with
the NNPDF4.0 methodology (green), and one with the feature scaling methodology
(orange).

when the PDF uncertainties are not considered the fit quality is very poor for unseen
data.

We can analyze the result starting on the third row corresponding to the NNPDF4.0
dataset. For the fit that included the entire dataset (third column) it makes virtually
no difference whether or not the PDF uncertainties are taken into account. This is
quite different for the pre-HERA fit (first column): even though the central PDF is off
(χ2 = 7.23), once its uncertainties are considered, the quality of the fit is comparable
to that of NNPDF4.0 with with a χ2 of 1.29 compared to 1.21. In the second row
instead the pre-LHC dataset is considered. Both the NNPDF4.0 and the pre-LHC
fit, where the dataset is included, produce a trivially good χ2 for their fitted data.
When we compute the prediction using the pre-HERA fit instead the number is much
worse. Once again, upon considering the PDF uncertainties, the number is of order
one, though still significantly larger than the corresponding values in the fits with pre-
LHC or NNPDF4.0 data. This suggests that qualitatively good agreement is obtained
but stability upon changes to the dataset can still be improved.

It should be noted that in all cases the methodology used has been hyperoptimized
for the full NNPDF4.0 dataset. While one may argue that the fits to the historic
datasets require re-hyperoptimization and to redo the iteration required for the t0
procedure discussed in Sect. 2.1.3, the main purpose of the exercise performed here is
to compare the future test results obtained with the feature scaling methodology to
those obtained with the NNPDF4.0 methodology in Ref. [6].

If we compare these results as presented in Tab. 3.2 for the feature scaling
methodology, to the results for the NNPDF4.0 methodology shown in Tab. 3.3, we
observe much the same properties. Indeed, even in cases in which the out-of-sample
χ2 differs greatly between both methodologies, the results are compatible once the
PDF uncertainties are considered. This confirms that, when PDF uncertainties are
considered, the agreement to out-of-sample data is of a similar level as that of fitted
data where the PDF uncertainty is not considered.

We must note however a deterioration of the results in Tab. 3.2 with respect to
those of Tab. 3.3 which points to a greater dependence on the considered dataset with
the feature scaling methodology. In part this may be a consequence of the fact that
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Dataset Ndat pre-HERA fit pre-LHC fit NNPDF4.0 fit

pre-HERA 2076 0.87 (0.92) 0.91 (1.03) 0.98 (1.08)
pre-LHC 1273 1.35 (5.61) 1.17 (1.27) 1.18 (1.20)
NNPDF4.0 1269 1.29 (7.23) 1.22 (4.72) 1.21 (1.29)

Table 3.2: χ2 values per datapoint as obtained during a future test of the feature
scaling methodology. The columns correspond to fits based on a given dataset, while
the rows correspond to the datasets for which the χ2 values are shown. While for
the fit the dataset are inclusive (i.e., the NNPDF4.0 fit includes also the pre-LHC
and pre-HERA datasets) the χ2 is computed in an exclusive manner (i.e., the χ2 as
calculated for the NNPDF4.0 dataset only uses “post-LHC” data). The values in bold
represent the performance on datasets that were not part of the training. The values
inside parentheses correspond to a χ2 defined with σ as defined in Eq. (3.3), while
those without parenthesis are defined with only the experimental covariance matrix.

the datasets used in the NNPDF4.0 determination have been carefully selected by
analyzing their impact on PDF fits using the NNPDF4.0 methodology (see Sect. 4 of
Ref. [6]), while those same datasets have here been used to validate the feature scaling
methodology instead of performing again the appraisal of the datasets for the feature
scaling methodology. Nevertheless, in Sect. 2.2.1 we analyzed the impact of seven
datasets which all had particularly large values for measures used to determine whether
or not to include the corresponding dataset in the PDF fit, and the results obtained
there suggest that no significant impact is to be expected upon the removal of these
datasets from the fit. However, a more likely explanation for this difference is related to
the fact that the preprocessing ranges of the NNPDF4.0 methodology are determined
using the global NNPDF4.0 dataset. Some information on the full NNPDF4.0 dataset
may thus be encoded in the preprocessing exponents and therefore be present in the fits
performed using the NNPDF4.0 methodology, even if the data used during training was
the pre-LHC or pre-HERA subset of the global dataset. Thus, while the preprocessing
ranges of the fits with the NNPDF4.0 methodology have been determined using the
NNDPF4.0 dataset, one of the main improvements provided by the feature scaling
methodology is that it is able to accommodate directly different datasets without
the need to determine the range of preprocessing exponents. This may also explain
why the out-of-sample χ2 of feature scaling is actually better than that achieved by
NNPDF4.0. One may explicitly check this hypothesis by determining the ranges of the
preprocessing exponents one would obtain through the iterative procedure described
in Sect. 2.1.2 if only the pre-HERA or pre-LHC datasets were available, and repeating
the future test using the resulting methodologies. This however is left for future work.
Here it suffices to note that, when considering the PDF uncertainties, the χ2 of the
PDF predictions and the “future datasets” excluded from the corresponding fit is close
to one.

Finally, having removed the preprocessing, one may consider further constraining the
small-x region using different methods. One such possibility is proposed in Ref. [165]
where a Gaussian Process is used to sample pseudodata in the extrapolation region
by explicitly learning the correlation of the DIS data in the small-x region.
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Dataset Ndat pre-HERA fit pre-LHC fit NNPDF4.0 fit

pre-HERA 2076 0.87 (0.91) 0.94 (1.01) 1.01 (1.06)
pre-LHC 1273 1.22 (26.1) 1.18 (1.21) 1.17 (1.20)
NNPDF4.0 1269 1.28 (22.6) 1.28 (2.15) 1.23 (1.29)

Table 3.3: Same as Tab. 3.2 for the NNPDF4.0 methodology.

Evaluation of large-x extrapolation

Upon removing the prefactor, we not only affect the small-x extrapolation region of
the PDFs, but also the large-x extrapolation region. It is difficult to apply the idea of
the future test to also validate the faithfulness of the predictions in the large-x region
due to the limitations of the datasets that do not contain any large-x datapoints
(irrespective of how we define large-x precisely). For example, removing all datasets
which contain a point in x ≳ 0.3 leaves a set of datasets which do not provide sufficient
constraints on the PDF to perform the future test. Nevertheless, here we will assess
the large-x extrapolation behavior of the PDF produced with feature scaling.

To do so, let us visually inspect the PDFs themselves in this region, and see how
the PDFs based on the NNPDF4.0 methodology compare to those that have been
produced with feature scaling. A comparison of the gluon and strange PDF in the
domain 0.6 < x < 1 is shown in Fig. 3.6. Note here that there is no data available
for x > 0.75, meaning that what is shown is mostly extrapolation region, and these
representative examples show a good agreement between the NNPDF4.0 PDF and
the feature scaling counterpart. We further want to point out that due to the lack of
data in this region different parametrization choices can lead to significantly different
results. In particular this can be seen by comparing the NNPDF4.0 PDFs to those
produced by MSHT or CT, where the observed difference may be related to the more
flexible PDF parametrization used by NNPDF4.0 [166].

As a more rigorous check of the large-x extrapolation region one could create
pseudodata based on predictions corresponding to PDFs that have a different
(exponential) behavior in the extrapolation region, e.g. a change of the βi exponent
outside the data region. One can then perform a future test to this pseudodata, to
quantify how well the PDFs generalize in the extrapolation region. The development
of such a test, however, is left for future work.

Validation of the data region

Where previously we performed a future test to validate the faithfulness of the PDFs in
the extrapolation region where the PDFs are not constrained by data. Here, instead,
we will validate the faithfulness of the PDFs in the data region by performing a closure
test as first introduced in Ref. [75] and extended in the NNPDF4.0 paper and Ref. [167].
Below we repeat the closure test as performed in Sect. 6.1 of the NNPDF4.0 paper,
but this time for the feature scaling methodology. Unless stated otherwise, the same
settings are used.

When fitting experimental data we are subject to complexities in the data such as
inconsistencies between datasets or limitations of the theoretical calculations. These
complexities make it more difficult to assess the performance of a fitting methodology
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Figure 3.6: Comparison of the large-x extrapolation regions of the gluon (top) and
the strange (bottom) PDFs between NNPDF4.0 (green), feature scaling (orange),
CT18 [64] (blue), and MSHT20 [63] (pink).

by analyzing the result of a fit to experimental data. This realization is what led to the
idea of a closure test, where, instead of fitting to experimental data, a fit to pseudodata
is performed. This pseudodata is generated by taking a fitted PDF as input, and from
that calculating the observables corresponding to those in the experimental datasets,
thereby creating a dataset with an associated, and known, underlying PDF. This allows
us to test whether our methodology is able to faithfully reproduce the underlying PDF.
To test whether our methodology was successful, a number of statistical estimators
are considered that we will discuss next. For a detailed motivation of these estimators
we refer the reader to section 6 of Ref. [6]. As underlying truth we use one non-central
replica from a feature scaling fit.

A first statistical estimator to consider is the ∆χ2

∆χ2 = χ2[f (cv)] − χ2[f (ul)], (3.5)

where χ2[f (cv)] is the loss evaluated for the expectation value of the fitted model
predictions, while χ2[f (ul)] is the loss evaluated for the predictions of the PDF used as
underlying law. The latter loss does not vanish, because the pseudodata includes
a Gaussian random noise on top of the central value predictions made using the
underlying law. As such, ∆χ2 can be understood as an indicator for overfitting
or underfitting: if ∆χ2 > 0, that indicates underfitting, while ∆χ2 < 0 indicates
overfitting. For the feature scaling methodology, the average ∆χ2 as evaluated over
observables corresponding to the full NNPDF4.0 dataset is ∆χ2 = −0.002 (compared
to ∆χ2 = −0.009 for NNPDF4.0), which is at the per mille level indicating a negligible
amount of overfitting. The ∆χ2 estimator has some shortcomings as will be discussed
in Sect. 3.2.2. It is included here to provide a validation using the all the metrics that
have been used for the NNPDF4.0 determination.

Let us estimate the faithfulness of the PDF uncertainty at the level of observables.
For this we use the bias over variance ratio as defined in Eq. (6.15) of Ref. [6]. Here bias
can be understood as a measure of the fluctuations of the observable values with respect
to the central value prediction of the fitted PDF, while variance can be understood as
the fluctuations of the fitted PDF with respect to its central value prediction. Thus
if the methodology has faithfully reproduced the uncertainties in the underlying data
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(bias), this uncertainty should be equal to the uncertainty in the predictions of the
PDFs (variance), and hence the bias to variance ratio Rbv is expected to be one. To
test this, the value of Rbv is determined for out-of-sample data. Specifically, we fit the
PDFs to the NNPDF3.1-like dataset as defined in Ref. [6], and then evaluate the value
of Rbv for the data that is part of the NNPDF4.0 dataset but has not already been
included in the NNPDF3.1-like dataset. This allows us to test how well the predication
made using a PDF fitted with a given methodology generalizes to unseen data. The
value of the bias to variance ratio found for the new, feature scaling, methodology
is Rbv = 1.03 ± 0.04 (compared to Rbv = 1.03 ± 0.05 for NNPDF4.0), where again
the uncertainty corresponds to a 1σ bootstrap error, meaning the agreement to the
expected value of Rbv = 1 is at the 1σ level.

To estimate the faithfulness of the PDF uncertainty at the level of the PDF we
calculate a quantile estimator in PDF space ξ(pdf)

1σ . This quantity corresponds to the
number of fits for which the 1σ uncertainty band covers the PDF used as underlying
law. This is determined for fits performed to pseudodata covering the full NNPDF4.0
dataset. The result is ξ

(pdf)
1σ = 0.70 ± 0.02 (compared to ξ

(pdf)
1σ = 0.71 ± 0.02

for NNPDF4.0), where the uncertainty is a 1σ uncertainty determined through
bootstrapping [168, 169]. Thus the observed ξ

(pdf)
1σ value is in agreement with the

expected value of 0.68 within 1σ.
An analogous estimator can be calculated for the theory predictions in data space

as opposed to PDF space, providing a generalization to quantile statics of the bias of
variance ratio Rbv. Similar to the bias over variance ratio, also for this estimator the
values are calculated on out-of-sample data, where the PDFs have been determined
using NNPDF3.1-like data. The expected value of this quantile estimator depends on
the bias over variance ratio is erf(Rbv/

√
2) = 0.67±0.02 (compared to erf(Rbv/

√
2) =

0.67±0.03 for NNPDF4.0), which is in agreement with the calculated value of ξ(exp)
1σ =

0.69 ± 0.02 (and ξ
(exp)
1σ = 0.68 ± 0.02 for NNPDF4.0).

The validation tests carried out show that the feature scaling methodology produces
faithful results. This way the feature scaling methodology achieves two important
objectives. First, it validates the NNPDF4.0 determination by removing two possible
sources of bias or inefficiencies without a significant change of the results. Second,
it simplifies the PDF parametrization by automatizing steps that until now required
human intervention and it removes a source of statistical fluctuations that interferes
with the hyperoptimization routing. As such it provides a vital step towards the
improvement of the hyperparameter selection protocol which we further develop in
the next pages.

3.2 Improved hyperparameter selection
The k-folds hyperoptimization as described in Sect. 2.1.4 aims to obtain the best
methodology, this being the one that provides the most accurate generalization of
the data. While the automated hyperoptimization provides a useful tool to aid in
the selection of the model hyperparameters, improvements can be made along two
main trajectories to be discussed below, both of which improve the efficiency of the
methodology by reducing the need for human interaction. Similar to the feature scaling
proposed in the previous section, here we will propose directions for improvement
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that allow to automate a human interaction, and show that the result confirms the
faithfulness of NNPDF4.0.

The first improvement we will propose is based on the observation that for the
problem of PDF determination not all datasets are equal: different datasets may
constrain different kinematic ranges and correspond to different processes. As such,
the choice of the folds can have a non-negligible impact on the hyperoptimization
procedure. For instance, if we use two folds, one with only high-x data and another
with only low-x data, the k-folding would be useless, since the extrapolation values
will be, for all intents and purposes, random. It is then important to curate the
folds in a way that ensures they are representative of the whole range of the problem.
In NNPDF4.0 (see Table 3.2 of Ref [6]) the fold selection was a completely manual
process aided by a very extensive appraisal of the individual datasets considered for
the NNPDF4.0 release. This careful curation of the folds would, in principle, have to
be repeated each time a change is made to the target dataset. In practice though, this
does not have to be redone upon small changes to the dataset since there is a certain
redundancy on the kinematic coverage of the data. Nevertheless, even the decision
not to redo the selection is one that needs to be taken with care.

The second improvement we will propose relies on the observation that it is possible
that the hyperparameter setup corresponding to the lowest hyperoptimization loss
Eq. (2.13) results in overlearning. This is a consequence of the simplified nature of the
fits that are performed during optimization as well as random samplings that affect
the performance of the individual fits. One such random sampling that affected the
model choice during hyperoptimization as performed for the NNPDF4.0 determination
is the sampling of the preprocessing exponents for which we proposed a solution in
Sect. 3.1. Other fluctuations include those due to the randomized initialization of
the neural network and optimization algorithm. After deciding on a hyperparameter
configuration it is necessary to validate the chosen methodology by performing future
tests and closure tests. However, in particular closure testing requires a lot of
computational resources and is therefore not feasible to perform for more than a select
few configurations. Furthermore, while the closure test provides a method of testing
the faithfulness of the PDF uncertainty, it lacks an adequate measure for the detection
of inefficiencies due to overfitting. As a result, the fit corresponding to the antistrange
and gluon PDFs presented in Fig. 2.11 passed a closure test, though visual inspection
suggests that the clear wiggles present in the PDF replicas are unlikely to correspond
to features of the underlying PDF of nature.

One may, and arguably should, wonder whether the features shown in Fig. 2.11 do
truly correspond to overfitting. In Sect. 3.2.2 below, we will therefore define a measure
for the degree of overfitting, and using this measure we will show that those features
indeed correspond to overfitting.

3.2.1 Automated fold selection for hyperoptimization
The assessment of data is a very time-consuming task and, for the purposes of
hyperparameter configuration, the only information we are interested in is which
regions of the (flavour, x) space of the PDFs depend on a given dataset. Since we have
an extensive corpus of data, small inefficiencies in the dataset selection lead to similarly
small inefficiencies in the hyperparameter optimization. In practice this means that
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suboptimal configurations are selected by the algorithm that need to be discarded
further down the line. However, as we introduce more data these inefficiencies will
only increase and on top of this, when new data is introduced it is not straightforward
to define new folds.

The following algorithm aims to optimize the selection of the datasets for each fold
in an automated way, offering a recipe that can be applied for every dataset change
without losing previous information, and which is expected to produce an equally good
result:

1. Create a level-0 dataset (see App. D) based on the predictions from a selected
PDF replica.

2. Perform a fit to the dataset generated at 1. This fit will to serve as a reference.

3. Perform many fits, O
(
103), with a random selection of the datasets.

4. Train a neural network to learn the distance with respect to the reference fit
based on a mask corresponding to a choice of fold.

In order to assess which datasets have an effect in which part of (flavor, x) space
we start by removing any possible sources of inconsistencies. To this end, we create
level-0 data1: fake data generated from a given underlying law (for instance, a replica
from the NNPDF4.0 set) using theoretical predictions. The data created in this way is
perfectly consistent since it eliminates all unknowns (known and otherwise) impacting
experimental measurements and the corresponding predictions.

We then create a full fit targeting said fake data. Since the data still spans a finite
range and it allows for a certain level of interpolation, doing a full fit with random
initial states generates some spread of acceptable fits.

For the automated fold selection we train a neural network to learn how well the
PDFs are constrained in (flavor, x) space based on a choice of folds as encoded in a
mask. To this end we need to generate training data to train our model. This is done
by performing many fits, O

(
103), to random selections of the datasets (note that for

NNPDF4.0 the number of datasets is O(80) and thus the total number of possible
combinations is completely impossible to test explicitly). Full fits are not needed, as
the reference fit provides some spread. Intuitively, when we (randomly) hit a good
fold we should find a PDF that it is very close to the reference PDF as shown in the
left plot of Fig. 3.7 and instead, when we hit a very bad fold, we should find that, in
some regions, the distance between the PDF and the reference is very bad as shown
in the right plot of Fig. 3.7.

The random selection of datasets then acts as a boolean mask that, applied to the
input collection of datasets, moves the resulting PDF away from the reference PDF.
We can then select a measure of the distance between the reference and the result, and
train a neural network to learn the optimal mask. Examples of such measures may be
the Kullback-Leibler divergence [170], Hellinger distance [171], or the usual NNPDF
distance defined in App. C. The loss function of this procedure is then defined as the
integration of this distance over x, summed for all flavors. To obtain the results of
Fig. 3.7 the Hellinger distance has been used.

1The concept of level-0 data was originally introduced in the context of closure tests as discussed in
App D
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Figure 3.7: Resulting gluon for a good (left) and bad (right) choice of fold. The
reference fit with its spread is represented in blue. The fold-fits (orange) are performed
so that they can only access half of the datasets. In the left plot this subset of data
is such that the gluon is well constrained in the entire x range. Instead, in the right
plot the fold chosen doesn’t contain enough information at small x for the gluon and
the resulting PDF looks nothing like the reference.

This method allows us to automatically select folds with a cost equivalent to O(10)
of the common PDF determinations. An added benefit of this method is that the
library of fits can be reused for future dataset appraisals since for any extra dataset,
the fits already performed correspond to masks where any new dataset is folded away.

3.2.2 Detecting overfitting

The automated hyperparameter selection based on k-folds cross-validation is useful
to preselect potentially good hyperparameter setups, and to provide some constraint
on the optimal range for certain parameters. Nevertheless, simply picking the setup
that corresponds to the smallest hyperoptimization figure of merit without further
inspection of the resulting PDF, can lead to significantly overfitted or underfitted
results.

Since an overfitted solution correspond to a model that is, roughly speaking, more
complex than the underlying law, the PDF arc-length and the spread thereof are
commonly used as a diagnostic tool to analyze features related to overfitting. The arc-
length of a PDF roughly corresponds to the complexity of the PDF replicas: if both
the mean value and the spread in arc-length are relatively small, this can indicate
a methodology that is not sufficiently flexible and therefore leads to underlearning,
whereas if those quantities are relatively large, they may indicate a methodology that
is too flexible and is learning noise in the data. However, the problem with the arc-
length, and related measures of model complexity, is that it is unknown what the
arc-length is expected to be from theoretical arguments. The PDF arc-length can be
used to compare different fitting methodologies, but it does not provide an absolute
measure of overfitting. While useful insights can be gained from studying how certain
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changes to the methodology or dataset impact the arc-length, when it comes to the
detection of overfitting or underfitting its benefits are very limited.

In practice the way in which the final hyperparameter selection was done in
NNPDF4.0, is that after the hyperoptimization routine provided a ranking of O(103)
setups, the ones with the lowest hyperoptimization loss as defined in Eq. (2.13)
were selected and their distribution studied in detailed by creating Monte Carlo
representations of the PDFs consisting of the standard number of 100 replicas fitted
to the pseudodata replicas (compared to the fits to the experimental central values
as performed during hyperoptimization). At this point human interaction is required
to decide where the threshold of overfitting is by balancing a lower χ2 loss against
the increased complexity that this in general implies. While the determination of this
threshold is a potential source of bias, we will show that no significant overfitting is
present in the NNPDF4.0 determination.

In what follows, we will first review the criterion that has been applied in previous
releases of NNPDF to avoid overfitting, after which we propose a statistical estimator
for the degree of overfitting thus removing the need for a human intuition to detect
overfitting. Although applied here to the NNPDF methodology, in principle it can
be generalized to a variety of machine learning problems that rely on performing an
ensemble of fits.

Detecting overfitting in a closure test

Once the hyperoptimization procedure has found a good candidate methodology we
need to test (among other things) how well it generalizes to unseen data, i.e., we need
to ensure that the methodology is not prone to overfitting.

The first step in the quality control of a methodology is the closure test which ensures
that the uncertainties are faithfully reproduced. In fact, the closure test checks both
overfitting and underfitting. This is based on the observation that in level-1 and
level-2 closure tests (see App. D), the χ2 calculated using the mean of the fitted
PDFs should agree with the χ2 computed using the input PDF. Thus in particular
χ2 [⟨T [ffit]⟩,D1] ≈ χ2 [T [fin ] ,D1], where T [ffit] is a theory prediction from a single
fitted replica, T [fin] is the theoretical prediction corresponding to the input PDF,
D1 indicates that level-1 pseudodata has been used, and the brackets ⟨·⟩ denote an
averaging over replicas.

Whether a certain methodology leads to underfitting or overfitting is then tested
using the ∆χ2 metric defined as

∆χ2 = χ2 [⟨T [ffit]⟩,D1] − χ2 [T [fin ] ,D1]
χ2 [T [fin ] ,D1] , (3.6)

which has first been introduced in Ref. [75]. This metric provides a measure for the
difference between the χ2 of the central prediction of the closure test fits, and the χ2

of the input PDF set, both defined with respect to the same closure test dataset. This
estimator thus provides a measure for how well the methodology is able to produce
the theoretical predictions of the input PDF.

In particular, if the optimization algorithm is sufficiently efficient, it may decrease
χ2 [⟨T [ffit]⟩,D1] to a point where ∆χ2 = 0 suggesting that the underlying law has
been perfectly reproduced. However, in practice we may also find ∆χ2 to be larger
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than 0 indicating that the optimal χ2 has not been reached, thus corresponding to
an underlearning methodology. Or alternatively, we may find ∆χ2 to be well below
0, this may indicate that the methodology has learned noise in the data, and is thus
overfitted.

Nevertheless, a replica distribution can be perfectly sampled from the posterior
distribution, while still resulting in a negative ∆χ2 . This means that a good
methodology can still result in a negative value, which was indeed the case for the
NNPDF4.0 determination. In such a case the negative value could also correspond to
a combination of smaller correlation with the level-1 data and a smaller bias. If, in
such a scenario, the PDF uncertainties are reproduced correctly as indicated by the
other estimators that constitute the closure test, we say the methodology has passed
the closure test regardless of whether the ∆χ2 estimator has a negative value or not.

The ∆χ2 metric may nevertheless be used as a diagnostic tool when a methodology
fails to produce the correct results for the other statistical estimators of the closure
test. However, failing to produce the correct results for other estimators would already
indicate a failed closure test, and as such the closure test is not able to discard
methodologies purely based on overfitting.

In order to solve these problems, the future test targeting only overfitting has been
introduced in NNPDF4.0. In the future test, several subsets of the global dataset are
constructed. The future test passes if the uncertainties generated by the all subsets
are such that the quality of the fit is compatible with the fit to the global dataset
when accounting for PDF uncertainties.

While in principle the combination of future and closure tests should be able to
discard bad methodologies, in practice they suffer of important drawbacks. The first
is that a closure test is expensive to perform: to obtain values for the statistical
estimators at the required level of accuracy it is needed to repeat the same fit around
25 times. The measure we will propose in the next section will only require a single fit.
While the future test is computationally cheaper, it still requires several fits to different
dataset variations. In addition it is, as previously mentioned, a relative measure in
that compares the fit quality of the fit to a subset of the data to the fit performed
to the full global datasets. Because of this, the future test can only be utilized if we
know that the uncertainties of the full dataset fit are correctly propagated and it will
always follow a closure test.

In what follows, we propose a metric which instead requires one single fit and
provides an absolute number. This metric tackles both the problem of the computing
cost of our current tests and allows for it to be used in an automated procedure.

A new overfitting metric

The basic idea of the overfit metric we propose here is that, since the validation data
is used to test the generalization of the parametrization during the fit, no information
about the validation data should be present in the final fitted PDFs. In practice
some information about the validation pseudodata used during the fitting of the PDF
replica may be present in the final result. This happens because the validation and
training datasets are not fully uncorrelated, as such, a sufficiently efficient setup
of hyperparameters may succeed at fitting even the validation pseudodata. This
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phenomenon renders the early stopping algorithm an insufficient tool to prevent
overfitting entirely.

So how do we test if the methodology has learned features from the validation
pseudodata? Let us consider a fit of a given PDF replica f (r) to an underlying data
replica D(r), where r labels the replica number. If a PDF replica f (r) does not contain
information on the specific data replica D(r), then

χ2
val,r

[
T
[
f (r)

]
,D(r)

]
= 1
N

N∑
r′=1

χ2
val,r

[
T
[
f (r)

]
,D(r′)

]
if N → ∞, (3.7)

where the validation mask in the definition of χ2
val,r equal to the mask used during the

fitting of PDF relica f (r). Here the left hand side corresponds to the usual definition
of the validation loss corresponding to the training of a PDF replica f (r). The right
hand side corresponds to the expected validation loss of the PDF f (r) to independently
sampled pseudodata replicas {D(r′) : r′ = 1, . . . , N} not seen by the optimizer during
training.

Using this insight, one may define as a measure of overfitting the difference between
the left hand side and the right hand side of Eq. (3.7):

RO = χ2
val,r

[
T
[
f (r)

]
,D(r)

]
− 1
N

N∑
r′=1

χ2
val,r

[
T
[
f (r)

]
,D(r′)

]
. (3.8)

A negative value of RO is then a characteristic of an overfitting methodology.

Let us now, as an example, consider the methodology with a poor value of the
clipnorm for which the resulting antistrange and gluon PDFs are shown in Fig. 2.11.
Previously we stated a suspicion of overfitting, and here using the RO metric we
will confirm this suspicion. This is a fit that intuitively appears overfitted from the
PDF plot in Fig. 2.11, though it passes all the quantitative validation checks used in
NNPDF4.0. This methodology could therefore only be rejected based on close visual
inspection of the resulting PDFs. Thus, at the very least, the lack of an objective
measure for overfitting leads to a sizeable amount of wasted computing resources and
human effort.

If we calculate the RO value of Eq. (3.8) for PDFs consisting of 100 replicas, we
find RO = −0.023 ± 0.012, where the uncertainty is the 1σ uncertainty as determined
through the bootstrapping method [168,169]. This indicates that the RO value found
for this fit is 1.9σ away from the RO = 0 point corresponding to no overfitting. We
can then compare this to the RO = −0.001 ± 0.013 found for the baseline NNPDF4.0
methodology.

This suggests that the intuitive impression that the fit without a carefully tuned
gradient clipping is overfitted is correct and we have a metric that allows to measure
to what extent the resulting PDF is overfitted. It further provides a confirmation that
upon calculating RO for the NNPDF4.0 baseline methodology, we find the expected
result of RO = 0 with 0.1σ agreement.
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The overfitting metric during model selection

So far we have seen how the RO metric can be used to detect overfitting, making
it a useful additional tool for the validation of a fitting methodology. We will now
see how, due to the low computational costs required, it can be used to largely
reduce the arbitrariness in model selection present in the current hyperoptimization
procedure. In particular, it addresses the manual identification of the single best
hyperparameter configuration among the ranking that the hyperoptimization routine
generates. In practice this manual identification mainly involves balancing between a
low χ2 value or a low model complexity. While, all other things being equal, a lower
model complexity is preferred per Occam’s razor, but in general PDFs that have better
agreement with the data are more complex (which may indeed indicate overfitting). In
the hyperoptimization procedure used in NNPDF4.0 it was still up to the PDF fitter
to strike a balance between the two and effectively pinpoint the threshold between
underfitting and overfitting.

With the RO overfitting metric of Eq. (3.8) this choice can be made algorithmically
instead, even though we only have a measure of to identify overfitting while for all
non-overfitted and underfitted the expected value of RO vanishes. One may think
that also a measure for underfitting is required, to make sure that a given potential
candidate is not underlearned, but this is not necessary. Namely, an underfitted result
will by definition have poorer agreement to the data than a well-fitted or overfitted
result and as such will not be a preferred setup based on the corresponding χ2. Thus,
after running the hyperoptimization scan we can perform the following steps:

1. Perform regular Nrep replica fits for the best Nmeth methodologies as ranked by
the hyperoptimization routine.

2. Determine the RO for these Nmeth methodologies.

3. Discard all replicas with RO < 0 with more than Nσσ confidence.

4. Of the remaining configurations, select the one with the lowest χ2
val averaged

over replicas.

With the RO we are now able to apply a completely algorithmic approach to the
selection of the hyperparameter configuration. Nevertheless, it is clear that even this
algorithm requires to make a choice about certain parameters, specifically we need to
choose values for Nrep, Nmeth and Nσ.

Of these, Nmeth is rather inconsequential. It has to be sufficiently large to ensure
that a spectrum of fits from underfitted to overfitted are included in the Nmeth setups,
but at some point (which in practice is found to be of order O(10) setups) this
requirement is sufficiently satisfied. The reason that this is largely inconsequential can
be understood from the fact that many configurations with very different values for the
hyperparameters allow for equally complex solutions. This has been shown explicitly
in section 3.3.4 of Ref. [6], where two very different hyperparameter configurations are
shown to produce PDFs with good agreement.

Both Nrep and Nσ are more consequential. A larger vale of Nrep will result in a
decrease of the bootstrap standard error as 1/

√
Nrep, while Nσ defines our confidence

threshold for when we consider a deviation RO from 0 to be a signal rather than the
result of statistical noise. Reasonable values for these that we recommend are Nrep =
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100 as this is the standard sample size used to provide PDFs as part of any NNPDF
release and is considered to produce a result with sufficient statistical accuracy for most
purposes. At the same time Nσ can be taken to be conservatively small, we recommend
a value around Nσ = 0.5. This will filter a significant number of configurations as a
result of statistical noise instead of being truly overfitting, though, because many
different configurations will produce the same results this is not a problem: if Nmeth is
chosen sufficiently large the likelihood of removing all “best” setups due to statistical
noise is very small.

Reasonable choices for the parameters Nrep, Nmeth and Nσ need to be made, though
for the reason discussed above the final result will not be very sensitive to minor
changes to these values, as long as the parameter values are chosen conservatively.
What “reasonable” here may change depending on the complexity of the optimization
problem but for the problem of fitting PDFs to the global NNPD4.0 dataset, the
mentioned values are recommended.

Finally, it should be noted that while the RO overfitting metric and the
corresponding hyperoptimization algorithm have been designed with the NNPDF
methodology in mind, its application is not limited to the NNPDF framework. In fact,
the RO value is particularly suitable for the detection of overfitting in the context of
ensemble learning methods.
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Chapter 4

Methodological uncertainties in PDFs

In chapter 2 we discussed the NNPDF4.0 PDF determination where the data
uncertainties are propagate to the PDFs by producing Monte Carlo replicas of the
experimental data and performing fits to these data replicas to produce Monte Carlo
PDF replicas. As the determination of PDFs approaches the precision domain,
the need for a careful understanding and validation of PDF uncertainties becomes
increasingly important. In the previous chapter we therefore stressed the importance
of testing the faithfulness of these uncertainties, as is currently mainly done using
closure tests in the data region, and future tests in the extrapolation region. We
also proposed an extension of the validation procedure by introducing a measure for
overfitting that we suggest to be used in addition to the existing validation checks.

In this chapter we will discuss PDF uncertainties, specifically those related to the
chosen parametrization. In Sect. 4.1 we study the correlation between different sets of
PDFs, and we will see that a significant component of the correlations is not due to the
underlying data because the data do not determine the PDFs uniquely. Specifically, we
show that data-driven correlations can be used to assess the efficiency of methodologies
and consider the feasibility of using data-driven correlations for the combination of
different PDFs into a joint set. In Sect. 4.2 we briefly elucidate some aspects of the
sampling method that is fundamental to the NNPDF methodology. In particular, we
will discuss the minimization target used for the NNPDF4.0 determination and what
consequences this has for the posterior distribution. We also introduce the kinetic
energy of the PDF as a measure of complexity in order to provide an understanding
of the likelihood given to certain candidate PDF functions that is usually obscured by
the non interpretability of a neural network model.

4.1 Correlations between PDFs
Just as full information on data uncertainties requires knowledge of the experimental
covariance matrix – and not just the uncertainties on individual datapoints – full
information on PDF uncertainties is encoded in the point-by-point covariance matrix
between all pairs of PDFs at any pair of points. Correlations between PDFs play a
fundamental role in PDF determination. The study of correlations between PDFs and
observables is a commonly used tool to understand the impact of PDF uncertainties on
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Chapter 4 Methodological uncertainties in PDFs

theoretical predictions of observables, as well as the impact of individual observables
on the PDF determination. This relevance was first emphasized in Ref. [172] and
subsequently applied to Higgs phenomenology in section 3.2 of Ref. [173], and the
construction of minimal PDF sets using the methodology discussed in Ref. [174].

The covariance matrix between PDFs reads

Cov [fp
a , f

q
a ] (x, x′) = E

[
fp

a

(
x,Q2

0
)
fq

a

(
x′, Q2

0
)]

−E
[
fp

a

(
x,Q2

0
)]
E
[
fq

a

(
x′, Q2

0
)]
, (4.1)

while the related correlation matrix is

ρ [fp
a , f

q
a ] (x, x′) = Cov [fp

a , f
q
a ] (x, x′)√

Var [fp
a ] (x) Var [fq

a ] (x′)
, (4.2)

where fp
a (x,Q2

0) is the p-th PDF in the set Φa with a momentum fraction x and at a
scale Q2

0, and variance

Var [fp
a ] (x) = Cov [fp

a , f
p
a ] (x, x) = E

[
fp

a

(
x,Q2

0
)2
]

− E
[
fp

a

(
x,Q2

0
)]2

, (4.3)

with E the average over the probability distribution of PDFs. In what follows, we
will use indices a, b to label the PDF sets (NNPDF3.1, NNPDF4.0, MSHT20, CT18,
. . . ) and the indices p, q to label the PDF flavors (up, down, anti-up, gluon, . . . ). In
this chapter we will limit ourselves to the study of correlations where x = x′ and for
brevity of notation the x and Q2

0 dependence will be suppressed.
The PDF covariance matrix Cov [fp

a , f
q
a ] (x, x′) is the second moment of the

joint distribution of PDFs. It can be computed in a standard way [76], given a
representation of this distribution as a multigaussian in parameter space for a given
PDF parameterization, or as a Monte Carlo sample of PDF replicas.

The correlation between different PDF flavors of the same PDF set as given in
Eq. (4.2) has been widely computed and used. However, one may also define the
correlation between different PDF sets [175,176]. Each PDF set is a determination of
the universal true PDFs. As such, one may consider different PDF sets as independent
determinations of the same physical quantity. Generally, a pair of independent
determinations of the same quantity are characterized by an uncertainty and the
correlation between them. In the presence of uncertainties, each determination
may be thought of as a random variable. So for a distinct pair of determinations
one can define their covariance and correlation, which may then be combined
using the standard methodology that is used for the combination of correlated
measurements [83,177]. Indeed, the correlation between two determinations expresses
the amount of new information that each determination introduces. Namely, if two
determinations are fully correlated they are repetitions of the same determination
and hence a combination will not provide any additional information or allow for
an improvement upon the uncertainty of the individual determination, while if
two determinations are fully uncorrelated this indicates that the determinations are
completely independent and the two determinations together contain more information
than the individual determinations, thus allowing for an increased precision upon
performing a combination.

In this picture we can view any PDF set Φa consisting of a PDF fp
a (x,Q2

0)
and its estimated error as an instance in the probability distribution of PDF
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determinations [178], in the same way a measurement is an instance in the probability
distribution of measurement outcomes. Thus we can generalize the covariance matrix
of Eq. (4.1) by extending it to the characterization of different PDF sets Φa and Φb:

Cov [fp
a , f

q
b ] ≡ Cov [fp

a , f
q
b ] (x, x) = E [fp

af
q
b ] − E [fp

a ]E [fq
b ] , (4.4)

where in this case the corresponding correlation matrix reads

ρ [fp
a , f

q
b ] = Cov [fp

a , f
q
b ]√

Var [fp
a ] Var [fq

b ]
. (4.5)

Here again we assume that x = x′, and dependence of the PDFs on x and Q2
0 has been

suppressed in the notation.
Eq. (4.4) and Eq. (4.5) provide the covariance and correlation between two PDF

flavors, p and q, from two different PDF sets, Φa and Φb. We will therefore refer to the
covariance matrix of Eq. (4.4) as cross-covariance and to the corresponding correlation
matrix of Eq. (4.5) as cross-correlation. The expected value in Eq. (4.4) is now defined
as the average over the full probability distribution of PDF sets, hat is, over distinct
determinations of which Φa and Φb are two generic instances.

If we set p = q, the cross-covariance Eq. (4.4) reduces to the correlation between
two different determinations of the p-th PDF in the sets Φa and Φb, henceforth S-
covariance:

Cov [fp
a , f

p
b ] = E [fp

af
p
b ] − E [fp

a ]E [fp
b ] , (4.6)

while the same restriction on the cross-correlation Eq. (4.5) provides the S-correlation

ρ [fp
a , f

p
b ] = Cov [fp

a , f
p
b ]√

Var [fp
a ] Var [fp

b ]
. (4.7)

In this section it will be important to clearly distinguish the S-correlation Eq. (4.7)
defined as a correlation in the space of different PDF sets, from the previously
mentioned correlation defined in the space of PDFs within a given set Eq. (4.2). For
clarity and brevity of notation, we will henceforth refer to the latter as F-correlation
and the corresponding covariance Eq. (4.1) as F-covariance. Both the S-covariance
and F-covariance are special cases of the cross-covariance Eq. (4.4).

F-covariance is a well understood and commonly used concept. If we consider a
PDF set Φa of Monte Carlo PDF replicas denoted by {fp,(r)

a (x,Q2
0)}, where r labels

the replica number, the F-covariance can be obtained by simply averaging over the
replicas. The S-covariance rather less trivial since it requires the construction of
PDF replicas that span the space of possible independent determinations of a given
PDF – including, the results that might have been found by different groups using
different methodologies. The S-covariance was explicitly determined for the first time
in Ref. [77], and in this section we will discuss the non-trivial aspects of averaging over
the space of PDF determinations.

The reason why averaging over the space of PDF determinations is subtle, is because
the outcome of a PDF determination does only depend on the underlying data. The
problem of PDF determination is that of determining a probability distribution in
a space of functions [178] from a discrete set of data. Hence, the result is not
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unique. If the PDFs are fitted to a functional parametrization with a relatively small
number of free parameters when compared to the number of datapoints, such as the
parametrization employed for the CT18 PDF determination [64], a unique best fit
exists. However, in this determination, a fit is repeated with different parametrization
choices, thereby leading to a distribution of best fits for a fixed dataset. In the NNPDF
framework the PDFs are parametrized using a neural network that provides a very
general functional form. As such, there is an ensemble of best fits of equal quality to
fixed underlying data. This ensemble of best fits will be discussed in more detail in
Sect. 4.2 of this chapter.

The distribution of the best fits for a fixed underlying dataset adds a contribution to
the PDF uncertainty, and more generally to the corresponding covariance matrix, that
is not driven by the covariance matrix of the underlying dataset. When one calculates
the S-correlation as defined in Eq. (4.7), there is thus a contribution to it which comes
from integrating over a space of PDF determinations from fixed underlying data. Since
the correlation by construction has a value on the interval between -1 and +1, and
there is a non-zero contribution to the correlation corresponding due to non data-driven
components, this means that the data-driven component is strictly smaller than one.
In what follows we will refer to the non data-driven component of the correlation as
the “functional correlation” for notational brevity (without committing ourselves to its
precise origin). It should be noted that this non data-driven component also contains
uncertainties that are unrelated to the parametrization, for example choices in theory
settings such as the value of the strong coupling constant, or missing higher order
corrections. These can however in principle be accounted for by simply varying the
relevant parameters (though in practice one immediately sees how this is problematic
for non-parametric parameters), and we will not discuss them here: we will always
consider theory assumptions to be fixed.

In this section, we will investigate the relative sizes of the data-driven and functional
components. This will be done by computing explicitly the data-driven S-correlation
for PDFs determined from the same underlying data.

Knowledge of the relative magnitude of the data-driven component of the correlation
provides information relevant for applications. For example, as mentioned before, the
F-correlation Eq. (4.2) is a commonly used tool for the assessment of the impact of a
dataset on the determination of the PDFs. In this context it is then surely important
to know how much of the PDF is determined from the underlying data. Furthermore,
correlations between different determinations of the same quantity can generally be
used to perform a combination of those different determinations. Combined PDF
sets, such as the PDF4LHC21 set [147], can be viewed in a similar way, namely,
as the combination of different determinations of the true PDF. At present, these
combinations are performed by simply assuming that all PDF sets in the combination
are equally likely. However, one might think that they should instead be combined as
correlated measurements, and that a determination of the data-driven S-correlation
might be useful to this goal [176]. It is then interesting to investigate possible ways to
implement such a procedure, and their consequences.

In Sect. 4.1.2 we will present results for the data-driven component of the S-
correlation, both between different PDF sets determined from the same underlying
data and with the same methodology, and between pairs of PDF sets determined
using the same data, but different methodologies. We will use the results to shed light
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on the origin of the PDF S-correlation, and we will explain how S-correlations can be
used as a diagnostic tool when comparing different methodologies. In Sect. 4.1.2 we
will discuss the implications of our result for the construction of combined PDF sets.

4.1.1 PDF cross-correlations
In what follows we will explicitly calculate the cross-covariance given in Eq. (4.4), and
from the knowledge of the covariance matrix determine the cross-correlation matrix
of Eq. (4.5). To achieve this goal we will use PDFs consisting of Monte Carlo replicas
produced using the NNPDF methodology, specifically the methodologies used for the
NNPDF3.1 and NNPDF4.0 determinations. Even though here we limit the study to
PDF sets in the Monte Carlo representation, this is not restrictive since PDFs in a
Hessian representation can be converted to PDFs in a Monte Carlo representation
using the methodology developed in Ref. [179]. A PDF set Φa is represented by a set
of N PDF replicas {fp(r)

a : r = 1, . . . , N} of the p-th PDF flavor, that provides
an importance sampling of the probability distribution of the PDF set. We will
assume that the number of PDF replicas N is fixed and sufficiently large to provide
an accurate determination of the correlations. To this end, we will provide the
uncertainty as a result of finite size effects along with the central value whenever
we plot the correlations. Finally we assume that all the PDFs considered provide a
faithful representation of the underlying data distribution such as they are tested in a
closure test [6, 167].

Correlated replicas

Data replicas, and by extension PDF replicas, are independent and identically
distributed random samples and hence the expected value of a statistical estimator
X that is a function of the PDFs can be obtained through a simple averaging over
replicas as given by Eq. (2.1) in Sect. 2.1.1:

⟨X [fp
a ]⟩ = 1

Nrep

N∑
r=1

X
[
fp(r)

a

]
. (4.8)

In particular, the mean and F-covariance matrix Eq. (4.1) of a PDF set are thus given
by

E [fp
a ] = ⟨fa⟩ , Cov [fp

a , f
q
a ] = ⟨fp

af
q
a⟩ − ⟨fp

a ⟩ ⟨fq
a⟩ . (4.9)

Henceforth, we will use the angle brackets to denote the average over replicas, while
the symbol E represents a generic average.

PDF replicas are constructed by generating a Monte Carlo representation of the
underlying data (i.e. an ensemble of data replicas) which can then be fitted using
any chosen methodology to obtain a corresponding Monte Carlo representation in
PDF space (i.e. an ensemble of PDF replicas). The details of this procedure have
previously been discussed in Sect. 2.1.1. It should be noted that this approach is
not unique to the neural network parametrization employed by NNPDF, instead, also
polynomial PDF parametrization such as those employed by the MSTW analysis [180]
can be used in conjunction with the Monte Carlo approach, which has been shown

83



Chapter 4 Methodological uncertainties in PDFs

to produce PDF uncertainties that are in good agreement with the corresponding
uncertainties resulting from the Hessian approach [179].

When computing the F-covariance between PDFs of different flavors p and q in
the same PDF set Φa, both flavors have been fitted to the same data replicas, so in
particular

⟨fp
af

q
a⟩ = 1

N

N∑
r=1

fp(r)
a fq(r)

a . (4.10)

Here it is important to understand that a PDF replica f
p(r)
a has been fitted to a

data replica with the same index r. However, the PDF replica fp(r)
a is generally not

a unique solution for a data replica with index r, instead there exists a probability
distribution of PDFs that correspond to a given underlying data replica. Within
the NNDPF methodology this can be explained as a result of the complexity of the
neural network being larger than model complexity preferred by the data, and thus
the best-fit neural network trained to fixed underlying data is not unique. In practice,
because of the stochastic nature of the initialization of the NNPDF model, as well
as the optimization algorithm, this means that upon repeatedly fitting the same data
replica, multiple equally good solutions will be found. This will be explicitly shown in
Sect. 4.2. In the methodology employed by other PDF fitting groups a similar scenario
unfolds, however in these cases it stems from fitting each data replica with an ensemble
of different functional forms, each resulting in a different best fit solution [63,64,181].
It is clear that this spread in the PDFs fitted to the same fixed set of underlying
data is unrelated to the covariance matrix of the data. This is why, to calculate the
covariance, in Eq. (4.10) fp(r)

a and fp(r)
a need to correspond to the same PDF replica,

that is two replicas that have been fitted to the same underlying data replica.

Now let’s turn our attention to the computation of the S-covariance and S-correlation
between two PDF sets Φa and Φb, where the S-covariance can be written as

Cov [fp
a , f

p
b ] = ⟨fp

af
p
b ⟩ − ⟨fp

a ⟩ ⟨fp
b ⟩ , (4.11)

while the S-correlation can be written as

ρ [fp
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p
b ] = Cov [fp
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Var [fp
a ] Var [fp

b ]
. (4.12)

Naively, one may think that the S-correlation can be calculated between any two
PDF sets, {fp(r)

a } and {fp(r)
b }, however it should be noted that if the PDF replicas

are independently sampled then the S-covariance, and thus the S-correlation Eq. (4.7),
will vanish. In fact, the same applies to the F-covariance, and F-correlation Eq. (4.2).
Namely if we were to consider a PDF set Φa consisting of 2N independent PDF
replicas, we find

1
N

N∑
r=1

fp(r)
a f

p(N+r)
b = ⟨fp

a ⟩ ⟨fp
b ⟩ . (4.13)

and thus the S-covariance Eq. (4.11) vanishes within finite size effects resulting from
the Monte Carlo representation.
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To determine the correlation between different PDF sets, we thus need to calculate
the S-covariance between two PDF sets Φa and Φb where the constituent replicas of
both sets are correlated. To clarify what this means, let us assume, for the sake of
argument, that the data does uniquely correspond to a best fit PDF. In this case, each
replica fp(r)

a is in fact uniquely determined from the underlying data replica with the
same index r. If under this assumption we consider two PDF sets Φa and Φb that have
been fitted to the same underlying data replicas, but using different methodologies,
the unique best fits are nevertheless not exactly the same, i.e. f

p(r)
a ̸= f

p(r)
b . The

S-correlation between those sets however, can now be calculated using Eq. (4.11) and
Eq. (4.12). The S-correlation will generally be non-zero since the PDF replicas fp(r)

a

and fp(r)
b are correlated through the underlying data replica r. It is now obvious that

if a = b, the S-correlation is equal to unity. Namely, this is because the unique solution
f

p(r)
a is used in the computation of averages.
However, we know that in practice this is not the case since the data replicas do not

uniquely determine the corresponding PDF replicas. In fact, the replicas correspond
to a distribution of best fits {fp(r,r′)

a }. In the same way r runs over data replicas, r′

runs over “functional” or methodological replicas. For each data replica with index r,
the index r′ labels all other aspects that determine the answer. For example, if we
consider a methodology in which the functional uncertainty is estimated by varying
over an ensemble of different functional forms, such as in Refs. [63,64,181], the index
r′ would label the different functional forms. If a = b, then for fixed r and fixed
r′ the same answer is obtained and the correlation is one: each PDF set has unit
correlation to itself. The full S-correlation is thus obtained, not only by varying over
data replicas r, but also requires varying over “methodology replicas” r′ in a correlated
manner. However, if only r is varied in a correlated manner between Φa and Φb, while
variations in r′ are uncorrelated, this again leads to a vanishing of the corresponding
component following Eq. (4.13).

Thus, if only r is correlated, but r′ is uncorrelated, the computation of the S-
correlation will only account for the data-driven component of the S-correlation while
the functional component vanishes. If we then set a = b in Eq. (4.11), the S-covariance
matrix reduces to variance and the full S-correlation should be equal to unity within
statistical fluctuations due to finite size effects. After all, we are calculating the
correlation of a PDF set to itself. However, as discussed, if between two determinations
of Φa, only the data replicas r are varied in a correlated way while the methodological
replicas r′ are completely independent, the functional component of the S-correlation
is not accounted for in the calculation and may come out to be less than unity. Thus,
the amount by which the data-driven component of the S-correlation deviates from
unity is a measure of the correlation as a result of not integrating over functional
replicas in a correlated manner. It tells us how significant the functional component
of the S-correlation is, with respect to the data-driven component. This procedure
thus tells us, crudely speaking, to what extent the PDFs are determined from the
underlying data.

One can then wonder if the functional component of the S-correlation can be
calculated directly. To do this, it would be needed to produce two sets of PDF
replicas {fp(r,r′)

a } such that varying the index r′ fully spans the possible best fits
obtained from a fixed underlying data replica with index r. It would be needed to
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produce “functional replicas” as well as data replicas, if you will. This may – at least in
principle – be possible for certain parametric model parameters contained in r′ such as
the value of the strong coupling constant αs, and the preprocessing exponents discussed
in Sect. 2.1.3 for which we will calculate the impact explicitly below. However, this
appears to be nontrivial in general for non-parametric aspects of the methodology that
determine in which of the many equivalent best fits a particular minimization will end
up.

In what follows we will focus on the computation of the data-driven component of
the S-correlation using Eq. (4.11). This means that we will compute the S-correlation
between PDF sets Φa and Φb, consisting of the PDF replicas {fp(r)

a } and {fp(r)
b }

respectively, where we assume that in both cases the index r corresponds to the same
underlying data replicas. We will also “compare a PDF set to itself”. By this we
mean that we calculate the cross-correlation or S-correlation between two sets of PDF
replicas that have been fitted using the same methodology {fp(r,r′)

a }, and {fp(r,r′′)
a }.

In this case again, r also labels the underlying data replica that is the same for both
determinations, while the indices r′ and r′′ span the space of best fits to the fixed data
replica.

One may write

⟨fp
af

p
a ⟩ = 1

N

N∑
r=1

f
p(r,r′)
a f

p(r,r′′)
a , (4.14)

though since we can not vary r′ and r′′ in a correlated manner between two fits, in
practice {fp(r,r′)

a }, and {fp(r,r′′)
a } are two different fits from Φa to the same set of

underlying data replica. To better understand what this implies, it can be contrasted
with the F-covariance as calculated using Eq. (4.10), where the PDFs are taken from
a single fit and therefore corresponds to having r′ = r′′ in Eq. (4.14). As stated above,
in what follows we will refer to the situation of Eq. (4.14) as comparing a PDF to
itself and the resulting quantity will be referred to as the data-driven component of
the cross-correlation or S-correlation.

The data induced S-correlation and cross-correlation

We compute the data-induced component of the S-correlation, both between a pair of
PDF sets determined from the same underlying data using two different methodologies,
and between a PDF set and itself, as defined above. Specifically, we consider the
NNPDF3.1 methodology as presented in Ref. [59], and the NNPDF4.0 methodology.
The differences between both methodologies have been discussed in Sect. 2.1, though
here the details of these methodologies are not relevant, and it suffices to know that
they are both faithful, and compatible with each other as shown in the luminosity
plots in Sect. 2.3.2 (and will again be verified explicitly for the PDFs here).

In order to compute the F-correlations and S-correlations to be discussed below, we
have generated several PDF sets of approximately 1000 PDF replicas each, using the
open-source NNPDF code. These PDF replicas have been generated by performing
fits to a dataset which consists of the deep-inelastic scattering (DIS) data used for
the NNPDF3.1 PDF determination, as listed in Table 1 of Ref. [59]. The kinematic
coverage of this data in the (x,Q2) plane is shown in Fig. 4.1. The reasons for choosing
a DIS-only dataset are to limit the use of computational resources, as well as to deal
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Figure 4.1: The gluon PDF as determined with the NNPDF3.1 and NNPDF4.0
methodologies, on a linear (left) and logarithmic (right) scale in x.

with a dataset involving a single, well-understood process, thereby avoiding possible
complications related to tensions between data, slow perturbative convergence, and
other issues that could obscure our conclusions. Uncertainties on the S-correlations due
to the finite size of the replica sample are estimated using a bootstrapping procedure.
Further details on the computation of the S-correlation are given in Appendix B.

To begin with, we have constructed four PDF sets, all determined from the same
underlying data replicas: two using the NNPDF3.1 methodology, and two using the
NNPDF4.0 methodology. Whereas a detailed comparison of PDFs produced using the
NNPDF4.0 and NNPDF3.1 methodologies is given in Ref. [6] and for the luminosities
in Sect. 2.3.2, in Fig. 4.2 we show a representative comparison of the gluon PDF as
determined using these two methodologies. The general features of the comparison
discussed in Sect. 2.3.2 are apparent from this example: namely, first, that results
found with either methodology are compatible within uncertainties and central values
are generally quite similar, and second, that the NNPDF4.0 methodology leads to
rather smaller uncertainties, so generally whereas the NNPDF4.0 central value is
within the NNPDF3.1 uncertainty band, the NNPDF3.1 central value is not within
the rather smaller NNPDF4.0 uncertainty band.

As in all NNPDF determinations, it can be checked explicitly that independently
determined PDF replicas all provide a consistent representation of the same underlying
probability distribution. Namely, we can check that the standard deviation of the
mean of Nrep replicas is equal to σ/

√
Nrep. In order to perform this check, we have

generated yet another set of PDF replicas with the NNPDF4.0 methodology, now based
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Figure 4.2: The gluon PDF as determined with the NNPDF3.1 and NNPDF4.0
methodologies, on a linear (left) and logarithmic (right) scale in x

on a new set of data replicas. In Fig. 4.3 we show the distance between the central
values and uncertainties of the two different sets of PDF replicas determined using
the NNPDF4.0 methodology trained on different sets of data replicas. The distance
(defined in Appendix C) is the mean square difference of central values in units of the
standard deviation of the mean. It is apparent that indeed its value is of order one,
as it ought to be. This shows that as the number of replicas increases, both central
values and uncertainties of PDFs converge to the mean and standard deviation of the
underlying probability distribution.

Having verified that samples of PDF replicas behave as expected, we now proceed to
the computation the data-induced component of the S-correlation Eq. (4.7). Results
are shown in Fig. 4.4, where we show the S-correlation between two sets of replicas
determined with the NNPDF3.1 methodology (orange), between two sets of replicas
determined with the NNPDF4.0 methodology (green), and between a set of replicas
determined with the NNPDF3.1 methodology and a set of replicas determined with
the NNPDF4.0 methodology (blue). The error bands show the 2σ uncertainty due to
the finite size of the replica set, estimated using bootstrapping (see Appendix B).

It is apparent from the plots that the data-induced PDF S-correlation drops very
quickly to zero outside the data region, as it ought to. For light quarks, the correlations
drop to zero for x ≲ 10−4 and x ≳ 0.4, while the data region is rather smaller for
the gluon and heavy quarks. This is because in a DIS-only PDF determination the
gluon PDF is only determined indirectly by scaling violations, while the PDFs for
heavier quarks are determined by charged current data, i.e. mostly by fixed-target
neutrino DIS data. However, interestingly, even in the middle of the data region
the S-correlation of pairs of PDF sets determined using the NNPDF3.1 methodology
is typically around 40% and never exceeds 60%. The S-correlation of PDF sets
determined using the NNPDF4.0 methodology, in turn, is typically around 60%
and never exceeds 80%. The S-correlation between PDF sets determined using the
NNPDF3.1 and NNPDF4.0 methodologies, finally, is very similar to the S-correlation
between the pair of NNPDF3.1 PDF sets.

As discussed before, the deviation from unity of the data-driven S-correlation when
comparing of a PDF set to itself is a measure of the size of the functional component
of the S-correlation. Both for the NNPDF3.1 and NNPDF4.0 methodologies, this
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Figure 4.3: Distances between central values Eq. (C.5) (top) and uncertainties
Eq. (C.6) (bottom) of two PDF sets determined using the NNPDF4.0 methodology.
Results are shown both on a logarithmic (left) and linear (right) scale in x. The
distances are discussed in more detail in Appendix C.

deviation is substantial. Note that, as shown in Fig. 4.3, any two independent sets
of replicas for the same set have the same mean and uncertainty within finite-size
fluctuations, and that these fluctuations scale as expected and in particular go to
zero in the limit of a large number replicas. Note also that the deviation of the S-
correlation from 100% is much larger than the uncertainty due to the finite size of the
replica sample, so the correlation loss cannot just be due to an insufficient number of
replicas.

The fact that the S-correlation of NNPDF3.1 PDFs is smaller than that of
NNPDF4.0 PDFs is consistent with the fact that the NNPDF4.0 methodology leads
to smaller uncertainties than the NNPDF3.1 methodology, even though both can be
shown to be faithful using closure tests. Indeed, the only way PDF sets determined
from the same underlying data can have different uncertainties is if one of the two has
a smaller functional (i.e. non data-driven) component of the uncertainty. But then we
would expect that the methodology characterized by a smaller functional uncertainty
also has a smaller functional S-correlation: i.e. that it is determined to a greater
extent by the underlying data. This is indeed what happens here: NNPDF4.0 has a
smaller uncertainty for a fixed dataset, and accordingly a larger S-correlation.

It is interesting to observe that the data-induced component of the S-correlation
between NNPDF3.1 and NNPDF4.0 PDFs is almost always similar to that of the
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Figure 4.4: The data-driven component of the S-correlation Eq. (4.11). Results are
shown for all PDF flavors and the gluon. We consider PDF sets determined with
the NNPDF3.1 methodology or the NNPDF4.0 methodology, and the three curves
shown correspond to comparing pairs of sets with either methodology to themselves
(NNPDF3.1: green, NNPDF4.0: orange) or with each other (blue). The shaded
band for each curve is the 2σ uncertainty due to the finite size of the replica
sample, estimated by bootstrapping (see Appendix B). Here and below ⃝ denotes
the operation of comparing quantities computed from two sets of replicas that are
correlated by being fitted to the same underlying data.
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PDF set that has the smallest correlation to itself, namely NNPDF3.1 (a possible
exception being the charm PDF, which is a special case because in a DIS-only fit it
is almost undetermined). This suggests a “weakest-link” explanation: the data are
more weakly correlated to NNPDF3.1 than to NNPDF4.0, and so inevitably the data-
driven correlation between NNPDF3.1 and NNPDF4.0 is dominated by this weaker
correlation. This is apparent, for instance, in the small x region, where the data-driven
S-correlation of NNPDF3.1 to itself is significantly weaker than that of NNPDF4.0.

All this suggests that the data-driven component of the S-correlation between
PDF sets for a given methodology can be used as a criterion for the assessment of
the efficiency of the methodology itself, with the interpretation that a methodology
leading to higher cross-correlation is more efficient. Namely, PDFs determined
using a methodology characterized by higher S-correlation have a smaller functional
component of the S-correlation, i.e. they are to a greater extent determined by the
underlying data. So for instance the weaker S-correlation of NNPDF3.1 at small x
suggests that in this region the NNPDF3.1 uncertainties could be reduced without
loss of accuracy, as is indeed the case [6].

In order to further investigate the functional component of the S-correlation, we have
produced sets of PDF replicas in which some methodological choices are correlated or
decorrelated. First, we have produced a set of replicas in which preprocessing is also
correlated. To understand this, recall that neural networks used to parametrize PDFs
include a preprocessing function Eq. (2.3), whose parameters are randomly varied
between replicas. We have thus produced a new pair of NNPDF4.0 replicas in which
not only the data, but also the preprocessing exponents are correlated: so in Eq. (4.11),
replicas fp

a (x,Q2
0)(r) and fp

b (x,Q2
0)(r) are not only fitted to the same underlying data,

but also have the same value of the preprocessing exponents.
Results are shown in green in Fig. 4.5, compared to the previous results of Fig. 4.4,

shown in orange. It is clear that in the data region, where the data-induced S-
correlation is largest, the extra correlation due to preprocessing is negligible. As PDFs
extrapolate further away from the data region, the contribution due to preprocessing
is increasingly large: for instance for the gluon at large x ≳ 0.4 the data-induced
correlation rapidly drops to zero as x → 1, but the correlation due preprocessing makes
up for the decrease and in fact it somewhat exceeds it as the kinematic boundary at
x = 1 is approached.

Furthermore, we have produced a PDF set, based on the NNPDF4.0 methodology,
but with a different architecture of the neural net, i.e., different number of layers
and layer sizes. This is thus effectively a variation of the NNPDF4.0 methodology.
Results, also shown in Fig. 4.5 (in blue), demonstrate that this specific aspect of
the methodology has little impact: the S-correlation is essentially the same as in
the case where the architecture of the neural networks is the same in the two sets
being compared. This shows that these two methodologies lead to very similar results,
which in turn suggests that correlating the neural network architecture would have a
less significant impact than that of correlating preprocessing.

These two examples illustrate how, at least in principle, all components of the S-
correlation could be determined, namely, by correlating all methodological aspects
that determine the final result. As already discussed, whereas this is easily done for
parametric choices (like the values of the preprocessing exponents), it is rather more
difficult for non-parametric aspects, such as, for instance, the choice of minimization
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Figure 4.5: The data-driven component of the S-correlation Eq. (4.11) between PDFs
determined with the NNPDF4.0 methodology (same as Fig. 4.4) compared to the
case in which also the preprocessing-induced component is included in the correlation
(green), and the case in which the neural network architecture is changed with all
other aspects of the methodology kept fixed (blue). Results are shown for the up,
anti-down, strange and gluon PDFs.

settings. These aspects are of course closely tied to the non-uniqueness of the best fit
for given data, which leads to functional uncertainties.

Finally, we compare, for a fixed methodology, the data-driven component of the S-
correlation for a pair of PDF flavors, to the cross-correlation between them: in Fig. 4.6
results are shown for the up and the down PDFs, both for the NNPDF3.1 methodology
and the NNPDF4.0 methodology. Clearly, unlike the diagonal S-correlation in the
flavor basis Eq. (4.7), the correlation between two different PDF flavors need not be
positive. This is indeed seen in the figure, namely, the up and down PDFs turn out
to be anti-correlated at large x. Furthermore, one would generally expect any cross-
correlation between two different PDF flavors to be weaker than the S-correlation
— indeed, if all sources of S-correlation were included, the S-correlation would be
100%. This is again borne out by the explicit computation, that shows that the
cross-correlation is generally smaller in modulus than the S-correlation. Note that for
the less efficient NNPDF3.1 methodology, for which all S-correlations are smaller, as
already discussed, the cross-correlation is accordingly smaller in modulus.

In the same figure we also compare, again for a fixed methodology, the data-induced
component of the cross-correlation between the up and down PDFs to the standard
F-correlation Eq. (4.2). Note that if the cross-correlation was entirely data-driven, for
a fixed methodology these two quantities would coincide. But in actual fact they differ
because in the computation of the F-correlation, Eq. (4.10) is used (the replicas are
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Figure 4.6: Top: comparison of the data-driven component of the S-correlation
Eq. (4.11) of the up and down PDFs and the up-down cross-correlation Eq. (4.5).
Bottom: comparison between the data-driven component of the up-down cross-
correlation Eq. (4.5) and the standard F-correlation Eq. (4.2) for the up and down
quark PDFs. Results are shown for the NNPDF3.1 (left) and the NNPDF4.0
methodology (right). In all plots (a) and (b) denote two distinct sets of correlated
replicas (i.e. fitted to the same underlying data), so (a) ⃝ (b) denotes the case in
which the replicas are correlated but distinct while (a) ⃝ (a) denotes the case in which
the replicas are identical.

fully correlated), while in the computation of the cross-correlation, Eq. (4.14) is used
(the replicas are only correlated through data). Whenever the S-correlation is sizable,
the data-induced component of the cross-correlation, and the F-correlation are very
close to each other. This means that the functional component of the PDF uncertainty
is essentially uncorrelated between different PDFs, i.e. that the standard F-correlation
is due to the correlation between the underlying data. This is as one expects, and
justifies using PDF correlations to estimate the impact of data uncertainties on PDFs
uncertainties and conversely.

However, when the data-induced component of the S-correlation is small, then the
S-correlation can differ significantly from the F-correlation. This is clearly seen when
comparing the up-down correlation in the region 10−4 ≲ x ≲ 10−2 computed with
the NNPDF3.1 methodology to that computed with the NNPDF4.0 methodology.
With the NNPDF4.0 methodology, the data-driven S-correlation in this region is
large, and the standard up-down correlation is quite close to the cross-correlation.
With the NNPDF3.1 methodology, on the other hand, the data-driven S-correlation
is almost vanishing. This means that, with NNPDF3.1 methodology, PDFs in this
region are completely dominated by functional uncertainty, which then screen out the
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Chapter 4 Methodological uncertainties in PDFs

PDF correlation when computing the cross-correlation. In other words, the functional
component of the S-correlation (between a PDF and itself) is generally non-negligible,
while the functional component of the cross-correlation (between two different PDFs
or two different x values) is generally quite small.

4.1.2 Combined PDF sets
As mentioned in the introduction of Sect. 4.1, combined PDF sets have been
produced [76, 182], with the goal of providing a common, conservative PDF
determination. The underlying idea is that so-called global PDF sets, namely PDFs
determined using the widest possible amount of experimental information available
at a given time, differ due to theoretical and methodological assumptions. If these
assumptions all satisfy reasonable criteria of reliability, (as will be specified below)
these different PDF determinations are considered to be equally likely, and thus a
conservative choice is to combine them into a single determination. One may then
reasonably ask whether this combination might be constructed in such a way as to
explicitly take account of the cross-correlation between PDF sets.

The PDF4LHC15 combination

The PDF4LHC15 prescription [76] for combining different PDF sets Φa, Φb, . . . may
be described as follows. All sets being combined are turned into a Monte Carlo
representation, i.e. each of them is represented by a set of N PDF replicas {fp

i (r) :
r = 1, . . . N}, where the index i runs over the sets that are being combined. The
combined set is then defined simply as the union of the replicas in the individual sets:
specifically to combine two sets Φa and Φb, we select randomly N/2 replicas from each
set, and then define the replicas for the combined set {F p} = {F p(r) : r = 1, . . . N} as

F p(r) =
{
f

p(r)
a for r = 1, . . . , 1

2N ,
f

p(r)
b for r = 1

2N + 1, . . . , N .
(4.15)

The combination assumes that, in the absence of an objective criterion for deciding on
the relative probability of the different sets, they are equally probable, and thus that
we should take the same number of replicas from each set.

The combined set {F p} is then treated in the same way as the individual sets for
the calculation of estimators, with the averages taken over all the replicas in the set
according to Eq. (2.1). Thus in particular the mean of any PDF in the combined set
is immediately seen to be given by

E[F p] = 1
2 (⟨fp

a ⟩ + ⟨fp
b ⟩), (4.16)

while the F-covariance between two PDFs is

Cov[F p, F q] =⟨F pF q⟩ − ⟨F p⟩⟨F q⟩
= 1

2 (⟨fp
af

q
a⟩ + ⟨fp

b f
q
b ⟩) − 1

4 (⟨fp
a ⟩ + ⟨fp

b ⟩)(⟨fq
a⟩ + ⟨fq

b ⟩)
= 1

2 (Cov[fp
a , f

q
a ] + Cov[fp

b , f
q
b ])

+ 1
4 (⟨fp

a ⟩ − ⟨fp
b ⟩)(⟨fq

a⟩ − ⟨fq
b ⟩).

(4.17)
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Thus in the combined set, the central PDF is the mean of the central PDFs in each set
(up to the usual statistical uncertainties of order 1/

√
N), whereas the uncertainties

are always greater than the mean of the uncertainties, the extra term being due to the
spread of the central predictions. This is as it should be: when the sets used in the
combination disagree, the uncertainty is increased.

The expressions Eq. (4.16) and Eq. (4.17) can be generalized straightforwardly to
the combination of n PDF sets, by taking N/n replicas at random from each (always
keeping N ≫ n of course): then

F p(r) =


f

p(r)
a1 for r = 1, . . . , N

n ;
f

p(r)
a2 for r = N

n + 1, . . . , 2 N
n ,

...
...

f
p(r)
an for r = n−1

n N + 1, . . . , N ,

(4.18)

and

E[F p] = 1
n

∑
a

⟨fp
a ⟩,

Cov[F p, F q] = 1
n

∑
a

Cov[fp
a , f

q
a ] + 1

n2

∑
a̸=b

(⟨fp
a ⟩ − ⟨fp

b ⟩)(⟨fq
a⟩ − ⟨fq

b ⟩).
(4.19)

For large n the extra term in the covariance of the combination increases the result
according to the covariance of the distribution of central values, since in the pairwise
sum there are n(n− 1) terms.

The PDF4LHC15 prescription is based on the assumption that the PDF sets that
are being combined, viewed as measurements of the true underlying PDF, are all
equally likely, which means that they have approximately the same uncertainty and are
approximately 100% correlated, i.e. they are not independent. Indeed, independent
(uncorrelated or partly correlated) measurements of the same quantity a priori bring
in new information on the true value, so the uncertainty on their combination is
always smaller or equal to the uncertainty of any of the measurements that are being
combined, (see e.g. Ref. [177]), as will be discussed further below.

In fact, an important property of the PDF4LHC15 combination prescription is that
if the constituent PDF sets Φa are perfectly correlated, meaning that taking averages
over replicas of the different PDF sets all give the same result, the combination also
gives this result. Note that perfectly correlated sets will still be distinct, in the sense
that the replicas will not be the same: it is only the averages over the full ensemble of
replicas that are the same, in the limit when the number of replicas N becomes very
large. An example are the various replica sets considered in Sect. 4.1.1, all based on
the NNPDF4.0 methodology: both the two sets compared in Fig. 4.3, with replicas
based on different underlying data replicas, and those compared in Fig. 4.4, based on
correlated underlying data replicas. For these pairs of sets, ⟨fp

a ⟩ = ⟨fp
b ⟩ for all a, b,

and Cov[fp
a , f

q
a ] = Cov[fp

b , f
q
b ]. This is of course true irrespective of the number of sets

n used in the combination: it is just the same as when combining several batches of
PDF replicas from a given PDF set (such as NNPDF4.0) into a single larger replica
set.
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Chapter 4 Methodological uncertainties in PDFs

To ensure that these assumptions are reasonable, that is, the PDF sets used in
the PDF4LHC15 combination are highly correlated, and as such can reasonably be
combined by giving equal weight to each set, a number of criteria was adopted [76]:

• Each set is based on a global dataset, and in practice these global datasets are
very similar, both in size and content.

• Theoretical calculations are performed to the same order in αs, using a VFNS,
and benchmarked against one another.

• External parameters such as αs and quark masses are given common values
where possible.

• Each PDF determination includes procedural and functional uncertainties in the
adopted methodology.

Furthermore, an extensive benchmarking was performed in order to make sure that
indeed uncertainties from the various sets were approximately equal, and that these
criteria were sufficient to ensure that the PDF sets used in the combination could be
be meaningfully assigned equal probability in the combination.

Correlated PDF combination

It is clear that even though the PDF sets included in the PDF4LHC15 combination
are highly correlated, the correlation is manifestly not complete. Even assuming that
the benchmarking and parameter settings can achieve complete agreement, there will
still be some decorrelation through the choice of global dataset, and in the different
methodologies used by the different groups. It has therefore been suggested [176] that
a more precise and accurate result might be obtained if different PDFs are combined as
independent, partly correlated measurements of the underlying true PDF. The logic is
that, even in the presence of a common underlying dataset, each PDF determination,
based on a different methodology, might be extracting different information from the
data, just like different detectors could provide partly independent though correlated
information on the same physical phenomenon. A correlated combination might then
be advantageous because it would lead to a more precise and accurate prediction.

Unbiased correlated measurements of the same underlying observable can be
combined in a standard way (see e.g. Sect. 7.6 of Ref. [177]). Specifically, viewing
the expectation values E[fp

a ] a = 1, 2, . . . of PDFs as measurements of an underlying
true value, their correlated combination is a weighted average, that we can in turn view
as the expectation value of the probability distribution for a combined determination
F̃ p:

E[F̃ p] =
∑

a

wp
aE[fp

a ], (4.20)

with weights wp
a given by

wp
a =

∑
b Cov−1[fp

a , f
p
b ]∑

c,d Cov−1[fp
c , f

p
d ]
, (4.21)
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where Cov−1[fp
a , f

p
b ] is the matrix inverse of the S-covariance. The square uncertainty

on the combination Eq. (4.20) is the variance of the probability distribution of F̃ p,
given by

Var[F̃ p] =
∑
a,b

wp
aw

p
b Cov[fp

a , f
p
b ]. (4.22)

Of course, all this relies on the assumption that the measurements are unbiased, and
that the correlation between them, namely, the S-correlation Eq. (4.7), can be reliably
computed.

Even so, the combination Eq. (4.20) is subject to several caveats. Specifically, the
weights wp

a Eq. (4.21) depend not only on p but also on x because the cross-correlation
does (recall Eq. (4.4)), and consequently, the combined PDF Eq. (4.20) does not
automatically satisfy sum rules. Furthermore, for the same reason, the result of the
combination will generally depend on the scale at which it is performed, because
with x-dependent weights even if the PDF sets fp

a , for each a satisfy QCD evolution
equations, the combination does not. Finally, in order to compute physical observables
using the combined PDFs, knowledge of the diagonal uncertainty Eq. (4.22) is not
sufficient: rather, the full cross-covariance matrix for all p, q and all x, y would be
required. This could be done in principle by sampling the PDFs, computing their
F-correlation, and then turning the result into a Hessian representation by using
techniques similar to those of Ref. [183]. A way out of all these problems might be
to perform the weighted combination Eq. (4.20) not at the level of PDFs, but rather
at the level of physical observables. However, this has the further disadvantage that
cross-covariances and weights would have to be re-computed for each new observable.

Be all that as it may, our goal here is not to investigate the most efficient way
to implement the weighted combination, but rather, to explore the implications of
performing a correlated weighted PDF combination according to Eqs. (4.20-4.22).
As discussed above, in practice the PDF sets in the PDF4LHC15 combination have
approximately equal uncertainties. When this is the case, the weights Eq. (4.21) are all
approximately equal, and constant (independent of x), and then all the aforementioned
problems can be ignored. Indeed, when we combine two PDF sets Φa and Φb such
that Var[fp

a ] = Var[fp
b ] the S-covariance is

Cov[fp
a , f

p
b ] =

(
δab + (1 − δab)ρ[fp

a , f
p
b ]
)
Var[fp

a ], (4.23)

from which it follows, using Eq. (4.21), that wa = wb = 1
2 .

This equal weight situation can be very simply implemented in a Monte Carlo
approach, in a completely equivalent way. Indeed, assuming that Monte Carlo replicas
are available for two PDFs, Φa and Φb, the correlated combination is found by
combining the two sets of replicas into a single replica set given by

F̃ p(r) = 1
2 (fp

a
(r) + fp

b
(r)) (4.24)
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for r = 1, . . . , N . Then E[F̃ p] = ⟨F p(r)⟩ = 1
2 (⟨fp

a
(r)⟩ + ⟨fp

b
(r)⟩), is in agreement with

Eq. (4.20) when wa = wb = 1
2 . The F-covariance Eq. (4.17) evaluated over the replica

set Eq. (4.24) is now given by1

Cov[F̃ p, F̃ q] = ⟨F̃ pF̃ q⟩ − ⟨F̃ p⟩⟨F̃ q⟩
= 1

4 (⟨fp
af

q
a⟩ + ⟨fp

b f
q
b ⟩ + ⟨fp

af
q
b ⟩ + ⟨fp

b f
q
a⟩)

− 1
4 (⟨fp

a ⟩ + ⟨fp
b ⟩)(⟨fq

a⟩ + ⟨fq
b ⟩)

= 1
4 (Cov[fp

a , f
q
a ] + Cov[fp

b , f
q
b ]) + 1

4 (Cov[fp
a , f

q
b ] + Cov[fp

b , f
q
a ]).

(4.25)

Note that when expressed in terms of the replicas from the original sets Φa and Φb

the F-covariance between two PDFs in the combined set now depends on the cross-
covariance between the corresponding PDFs of the original sets Cov[fp

a , f
q
b ] Eq. (4.4).

Considering the diagonal case p = q in Eq. (4.25), the variance of the PDFs of
the combined set now depends on the S-correlation, and, using Var[fp

a ] = Var[fp
b ],

Eq. (4.25) with p = q reduces to

Var[F̃ p] = 1
2 (1 + ρ[fp

a , f
p
b ]) Var[fp

a ], (4.26)

which is the same as Eq. (4.23) when a = b.
Using the correlated Monte Carlo approach, the properties of the correlated

combination are especially transparent. Specifically, it is clear that the uncertainty
computed using Eq. (4.25) is always smaller than that found using the PDF4LHC15
combination. To see this, note that the correlation |ρ[fa, fb]| ≤ 1 or equivalently
|Cov[fa, fb]| ≤

√
Var[fa]

√
Var[fb]. It follows that the square uncertainty on F p(x,Q2

0)
satisfies the inequality

Var[F̃ p] ≤ 1
4 (Var[fp

a ] + Var[fp
b ]) + 1

2

√
Var[fp

a ]
√

Var[fp
b ]

≤ 1
2 (Var[fp

a ] + Var[fp
b ])

≤ Var[F p],

(4.27)

where in going from the first to the second inequality we have trivially made use of the
fact that 1

2 (x + y)2 ≤ x2 + y2, and the third inequality follows from the observation
that the second term in Eq. (4.17) is non-negative.

The second inequality Eq. (4.27) has the obvious implication that, as already
mentioned before, and seen explicitly from Eq. (4.26), whenever the correlation
ρ[fp

a , f
p
b ] < 1 the uncertainty of the correlated combination F̃ p is smaller than either

of the uncertainties on fp
a or fp

b , that have been assumed to be approximately equal
when forming the correlated combination according to Eq. (4.24), Var[fp

a ] ≈ Var[fp
b ].

The third inequality Eq. (4.27) has the perhaps less obvious implication that even if
the two sets are fully correlated, so ρ[fp

a , f
p
b ] = 1, the uncertainty on the PDF4LHC15

combination F p, can be larger that the uncertainty of either fp
a or fp

b , even though the
uncertainty on the correlated combination F̃ p is the same as that on both fp

a and fp
b .

This happens whenever the central values of the two sets are not the same ⟨fp
a ⟩ ≠ ⟨fp

b ⟩.

1We note that Eq. (26) of the publication [77] that corresponds to Eq. (4.25) in this thesis contains
a mistake in the second line, namely the parentheses are not placed correctly. The final result of
line three is nevertheless correct in Ref. [77]
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This is a situation that the combination formula Eq. (4.20) cannot accommodate.
Indeed, the uncertainty of this correlated combination can never exceed that of the two
determinations that are being combined. This follows from the assumption that the
two determinations are unbiased estimators of the same underlying true value. Upon
these assumptions, unit correlation means that the covariance matrix has a vanishing
eigenvalue, so the two determinations have the same central value and uncertainty.

However, it is clearly possible to have two random variables that have unit
correlation but do not have the same central value (or uncertainty). In particular
the correlation of any two sets of random variables fr

1 and fr
2 is invariant under the

linear transformations fr
1 → c1f

r
1 +k1, fr

2 → c2f
r
2 +k2, for any constants c1, c2, k1, k2,

which change their mean values and variances. In the Bayesian combination one simply
takes the point of view that the two measurements are equally likely determinations
of the underlying true quantity, so a priori they might be fully correlated, and yet
their mean values and variances might differ. In such a situation, the variance of the
PDF4LHC15 combination always comes out larger than those of the determinations
that are being combined. So, both the second and the third inequalities Eq. (4.27)
become equalities only if PDF sets Φa and Φb are identical, i.e. they have the same
central value, uncertainty, and unit correlation.

These results are easily generalized to the case of n PDF sets:

E[F̃ p] = 1
n

∑
a

⟨fp
a ⟩,

Cov[F̃ p, F̃ q] = 1
n2

∑
a

Cov[fp
a , f

q
a ] + 1

n2

∑
a̸=b

Cov[fp
a , f

q
b ].

(4.28)

In this case

Var[F̃ p] ≤ 1
n2

∑
a

Var[fp
a ] + 1

n2

∑
a ̸=b

√
Var[fp

a ]
√

Var[fp
b ]

≤ 1
n

∑
a

Var[fp
a ]

≤ Var[F p],

(4.29)

and again equality can only be achieved when there is complete equivalence between
all the PDF sets in the combination, i.e. when f

p(r)
a = f

p(r)
b for all r, p and for all

pairs a, b. Otherwise, the correlated combination inevitably reduces uncertainties.

Even disregarding the issue related to PDF sets that have different central values
despite being very highly correlated, the main problem with the reduction in
uncertainty in the correlated combination is that it is reliable only if the cross-
correlation has been correctly estimated. In particular, if the cross-correlation is
underestimated, then the uncertainty on the combination is underestimated: in the
most extreme case, in which two PDFs are fully correlated, but the cross-correlation
is incorrectly determined to be very small, the uncertainty on the combination is
underestimated by a factor

√
n (assuming again the uncertainties of the n starting

PDFs are approximately the same).
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Figure 4.7: Check that the Monte Carlo combination Eq. (4.24) and the correlated
combination Eq. (4.20) of PDF sets yield the same answer. Ten sets sets of 43
NNPDF4.0 PDF replicas are combined : 1) as the correlated weighted average
Eq. (4.20) of the ten result from the ten sets determined using the data-driven
component Eq. (4.11) of the S-correlation (correlated combination); or 2) as the
average set of 43 replicas obtained using Eq. (4.28) from the ten replicas determined
from each data replica (Monte Carlo combination). Results are shown for the down
(left) and gluon (right) PDF. We show the PDFs normalized to the correlated weighted
PDF (top), and the relative 1σ uncertainty (bottom).

In practice, the problem resides in the construction of the correlated replicas to be
used combination Eq. (4.24): this ought to be done in such a way that the averages
over replicas in Eq. (4.25) lead to a faithful determination of the F-covariance and
the S-covariance. As we discussed before, if the sets of replicas {fp

a
(r)}, {fp

b
(r)} that

are being combined in Eq. (4.24) are randomly selected from the two sets, then the
correlation vanishes regardless of its true value, see Eq. (4.13). If one selects replicas
fp

a
(r), fp

a
(r) that are fitted to the same underlying data replica, then the S-correlation

does not vanish, but it is generally underestimated because it only includes its data-
driven component, as explicitly shown in Sect. 4.1.1.

The problem is especially severe when combining n different sets, because in
this case underestimating the correlation between each pair of sets will lead to an
increasingly large underestimation of the uncertainty on the combination as the
number of sets increases. This is because in this case one is effectively assuming that
the differences between the different determinations are due to each of them being a
partly independent measurement, and as such doing more and more determinations
reduces the uncertainty indefinitely.
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Figure 4.8: Comparison of the uncertainty on the correlated PDF combination and
the PDF4LHC15 combination for 10 sets of 43 PDF NNPDF4.0 replicas. The
correlated combination is obtained as the correlated weighted average of the ten results
Eq. (4.20) (same as shown in Fig. 4.7); the PDF4LHC15 combination is found by
simply combining all replicas in a single 430-replica set.
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Figure 4.9: Comparison of the relative uncertainty on the large x gluon PDF
determined using (from top to bottom) NNPDF3.1 methodology (purple, dot-dashed),
NNPDF3.1 and NNPDF4.0 uncorrelated (PDF4LHC15) combination (green, dotted),
NNPDF4.0 methodology (blue, solid), correlated combination (orange, dashes).

In order to expose the problem, we have considered an implementation of the
combination Eq. (4.20). We have constructed ten sets of Nrep PDF replicas, all
determined from the same Nrep underlying data replicas. In practice we take Nrep = 43
because this is the largest number we got after applying the procedure discussed in
Appendix B. We have then computed the ten by ten S-correlation matrix Eq. (4.11) for
each PDF and each x value, and we have combined the ten sets using Eq. (4.20). We
have explicitly checked that this is equivalent to instead using Eq. (4.28) to combine
the ten sets in a single set with 43 replicas. This is demonstrated in Fig. 4.7 where two
representative PDFs determined using either method are compared and seen to agree.
This shows that the correlated Monte Carlo combination Eq. (4.28) is equivalent to
the combination using the correlation matrix Eq. (4.20).

We have then compared this correlated combination to the PDF4LHC15
combination. The latter of course simply consists of putting together all replicas
in a single 430 replica PDF set. Results are shown in Fig. 4.8. It is evident that while
the PDF4LHC15 combination gives by construction the correct answer (since in this
case the PDF is simply being combined to itself), the correlated combination leads to a
rather smaller uncertainty. Clearly this is absurd. The reduction in uncertainty is the
consequence of the fact that the S-correlation computed using Eq. (4.11) only includes
the data-induced component. This underestimates the true correlation, because as we
have seen in Sect. 4.1.1 (see in particular Fig. 4.4) it leads to a S-correlation which is
rather lower than one, while in actual fact all these PDFs are fully correlated. The
uncertainty reduction is amplified by having combined ten different sets.

We thus see that combining PDFs determined from the same underlying data as if
they were correlated measurements leads to an incorrect answer because it neglects
the fact that a sizable component of the PDF correlation is not data-driven. Indeed,
if one did determine PDF uncertainties in this way, one would reach the paradoxical
conclusion that PDF uncertainties can be made smaller at will by simply repeating
many times the PDF determination with the same underlying data replicas.
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4.2 Replica sampling for faithful PDF uncertainties

Because of the difficulty in accurately estimating the non-data-driven component of
the self-correlation, which is generally significant, this will be the generic scenario.
As an especially striking example of this situation, in Fig. 4.9 we compare the
relative uncertainty on the gluon PDF that we find if the gluon is determined
using the NNPDF4.0 methodology, the NNPDF3.1 methodology, or the uncorrelated
(PDF4LHC15) or correlated combination. As already discussed (see Fig. 4.2), the
uncertainty found using the NNPDF3.1 methodology is rather larger than that found
using the NNPDF4.0 methodology. Because, as also discussed, central values are very
close, the uncertainty of the PDF4LHC15 combination, Eq. (4.17) is essentially the
average of the uncertainties with the two methodologies. However, the uncertainty
on the correlated combination is actually smaller than either of the uncertainties
with the two methodologies that are being combined. One would thus reach
the paradoxical conclusion that combining PDFs obtained with the more precise
NNPDF4.0 methodology with the previous less precise NNPDF3.1 would actually
lead to a reduction in uncertainty.

We thus conclude that a correlated combination inevitably leads to uncertainty
underestimation and it cannot be considered as an alternative to the PDF4LHC15
combination, even though the latter might lead to uncertainties that are a little
conservative.

4.2 Replica sampling for faithful PDF uncertainties
Having shown in the previous section that a large contribution to the PDF
uncertainties does not correspond to the data uncertainties but rather has a
methodological component, it is important to ensure that these uncertainties are not
underestimated. In the NNPDF framework this is tested using closure tests [167]
for uncertainties in the data region, and future tests [164] for uncertainties in the
extrapolation region. These tests form only a small fraction of the NNPDF framework
that has led to the NNPDF4.0 determination, the full framework in its current state
has been constructed over a period of two decades and presented in dozens of papers.
This spread of information over time and papers may have contributed to certain parts
of the methodology being misunderstood [184]. Therefore let us use this section to
elucidate certain features of the posterior sample of PDFs as constructed using the
NNPDF4.0 framework.

A faithful determination of the PDFs is achieved by computing the probability
measure in the functional space F of possible functions f ∈ F describing the PDFs
at the initial scale. In this respect, PDF fitting is an example of inverse problem: the
is aim to find a posterior probability of f given the data. As such, PDFs are defined,
and can be extracted from data only within a well-defined theoretical framework (e.g.
using perturbative QCD in a given scheme and at a given order of perturbation theory).
These choices, together with any of the theoretical assumptions such as integrability,
positivity and sum rules, determine the prior for the probability measure.

In the NNPDF approach, since the very beginning [68] the probability measure is
represented by a Monte Carlo ensemble of functions {fi : k = 1, ..., Nrep}, which
is obtained following the procedure discussed in Sect. 2.1.1. This ensemble of fitted
functions yields a representation of the probability density in F , which can be used
to compute the probability distribution of any quantity that depends on the PDFs
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Figure 4.10: The NNPDF4.0 PDF replicas (1000 replica sample) in the σZ-σH plane
(referred to as ZH in the main text). The one, two, three and four σ contours are
shown.

using Eq. (2.1). It is crucial to realize that the Monte Carlo ensemble is not a random
exploration, but rather an importance sampling of F . As a result, the number of
replicas needed to obtain a faithful representation in the PDF space does not require
an exponentially growing number of replicas, with an exponent proportional to the
number of parameters used to parametrize the function f , rather a Monte Carlo sample
of Nrep ∼ 1000 is enough to reproduce the correlations of the experimental data to 1%
accuracy, thus to determine the probability in F with the same accuracy, given a prior.
The very same principle is at the basis of the PDF4LHC15 [76] and PDF4LHC21 [147]
combinations.

We illustrate the outcome of such a random sampling by showing probability
contours for the final replica distribution from the NNPDF4.0 PDF determination.
Of course, a PDF set is a set of functions, so confidence levels for it should be shown
in a space of functions [178], which is difficult to visualize. We can instead consider a
projection of the PDF on a finite dimensional space. In order to make contact with
the discussion in Ref. [184], we choose a two-dimensional space of LHC cross sections,
that of the Z and Higgs total production cross section (ZH plane, henceforth). This is
a useful choice in that the Higgs cross section is gluon driven and the Z cross section is
quark-driven: so points in the ZH plane can be interpreted in terms of the size of the
quark and gluon luminosities. Cross sections are computed as in Ref. [6]. In particular,
partonic cross sections accurate to NLO in the strong coupling are convoluted with
PDFs accurate to NNLO. A center-of-mass energy of 14 TeV is assumed, and cross
sections are integrated in the fiducial phase space specified in Sect. 9.2 of Ref. [6].
Contours in this plane provide a test of the fact that the PDFs are correctly sampled,
given that the cross sections depend on several different combinations of PDFs, evolved
to the appropriate scale and convoluted over x with hard cross sections.

In Fig. 4.10 we show the results for 1000 NNPDF4.0 PDF replicas in the ZH plane,
along with contours representing the standard deviations up to 4σ. The replicas are
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4.2 Replica sampling for faithful PDF uncertainties

distributed as expected given that the underlying distribution of the experimental
uncertainties is Gaussian and it is expected (and has explicitly shown [185]) to lead to
a Gaussian distribution of physical predictions. Indeed, more replicas are concentrated
at the center and less in the tails, with no local distortions or clusters. For example,
the two dimensional three σ contour corresponds to a 98.9% confidence level, so one
would expect 11 NNPDF4.0 replicas outside the three σ contour, to be compared to 14
found in Fig. 4.10 in good agreement with the expected value. This result displays no
evidence for sampling bias in the NNPDF4.0 replica sample and instead confirms that
the replica sample is representative of the probability distribution in the ZH plane.

4.2.1 A lower χ2 does not equal a more likely PDF

PDF fitting collaborations often use the experimental χ2 as the optimization figure
the best possible fit to the central value of the data. However, this statement needs
to be better defined. Specifically, in the case of the NNPDF collaboration, the value
of the χ2 used during the minimization is the t0 χ2 introduced in Ref. [84], which is
defined using the corresponding covariance matrix covt0 of Eq. (2.11) which serves to
avoid the so-called D’Agostini bias.

In addition, as described in the discussion of the NNPDF4.0 methodology in
Sect. 2.1.3, even though the χ2 of the central value PDF (i.e., the average of the
replicas) to the experimental data is often quoted, this value is never known to the
fitting methodology (not the raw experimental χ2 nor the t0 χ2). Instead, the fit uses
for optimization the χ2 to its own replica data and only that corresponding to the
training set. This means the fitting methodology will take (per replica) the path that
minimizes the χ2 of the training set, however, it is not allowed to reach the absolute
minimum of this quantity. In order to avoid overfitting, a small amount of data is
hidden from the fit and used to validation its generalization power. The fit is then
stopped when the validation χ2 stops improving, regardless of the value of the training
χ2.

However, this still does not complete all the components of the target function
minimized within the NNPDF approach. Namely, in order to include theoretical
constraints in the optimization metric we use lagrange multipliers that are added
to the training χ2 and which are thus considered by the optimization algorithm.

It is commonly, though erroneously, understood that expected value of the PDFs
as obtained by summing over replicas corresponds to the absolute minimum of the χ2

while all deviations from the corresponding central PDF should result in an increase
of the χ2. As explained above, this is not enforced in any way. Instead, the randomly
sampled PDF replicas may result in a solution closer to the underlying law from which
they are sampled than the central PDF, though this is a low probability event.

In the case of the NNPDF4.0 determination, a baseline PDF set consisting of 1000
replicas has been released, and in this case each of the individual replicas corresponds
to a larger t0 χ2 to the central data than the t0 χ2 of the central PDF. This is shown
explicitly in Fig. 4.11 where the t0 χ2 of each of the replicas is computed and plotted
in a frequency histograms with the χ2 of the central value PDFs instead marked as
vertical lines. However, if we continue generating replicas, we can generate replicas
which correspond to a lower t0 χ2 than the central value of the set of replicas, in
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Figure 4.12: Scatter plot in the σZ −σH plane including 1000 replicas from NNPDF4.0
(blue), 300 hopscotch functions with a t0 χ2 below the NNPDF4.0 t0 χ2 and the
subset of 40 hopscotch functions (red) which fall outside of the space covered by the
NNPDF4.0 replicas

Fig. 4.11 we show what happens if one continues fitting replicas until a set of 3000
replicas is obtained, in this case there are replicas which have a smaller χ2.

An example where this misunderstanding becomes clear is in Ref. [184], in which
candidate PDF functions, henceforth called hopscotch PDFs, have been generated
by sampling along the eigenvector direction of the Hessian representation of the
NNPDF4.0 1000 replica set. Of these hopscotch PDFs some have a marginally lower
t0 χ

2 to the central value of the datapoints than the NNPDF4.0 central PDF while,
as can be seen in Fig. 4.12, simultaneously falling outside the range covered by the
NNPDF4.0 predictions in the space of predictions of the inclusive Higgs cross-section.
We will now explicitly show that in the Monte Carlo approach no such correlation
exists between the training and validation χ2 of a replica, and its distance from the
central prediction of the Higgs cross-section.
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Figure 4.13: Scatter plot in the σZ − σH plane for all NNPDF4.0 replicas showing the
t0 χ

2 to, the training (left) and validation (right) data used by each individual replica
(i.e., including the Monte Carlo shift and training/validation masks).

The χ2 values per replica for both the training and validation data for the NNPDF4.0
replicas are shown in Fig. 4.13. It is clear that there is no visible correlation between
the position in the ZH plane, specifically the position along the σH axis, and the value
of the χ2. In fact, the fit quality of each PDF replica to its data replica is similar,
and essentially independent of the position in the ZH plane. This means that outlier
replicas are fitted equally well as replicas close to the center of the distribution. Outlier
replicas simply correspond to unlikely data fluctuations. The NNPDF4.0 methodology
has no difficulties in fitting PDFs that correspond to large (or small) values of the Higgs
(or Z) cross-section.

To ensure that there is not some inherent inflexibility in the NNPDF methodology
preventing it from generating replicas similar to the HS PDFs, we check explicitly
that we can fit the HS PDFs if we assume them to be the underlying truth. To this
purpose, we have performed a fit to level 0 closure test data (see App. D). Because the
data are fitted at zero uncertainty, the fit can obtain vanishing χ2. We have picked
as an underlying true PDF the HS PDF that gives the largest Higgs cross-section.
We have then fitted 100 PDF replicas to it, with standard methodology (including
training-validation split). We find ⟨χ⟩tr = 0.03 ± 0.01, ⟨χ⟩val = 0.04 ± 0.02, so indeed
we reach a near-prefect fit. A scatter plot of results in the ZH plane is shown in
Fig. 4.14. It is clear that even though all the fits are equally good and fit the data
perfectly (with zero uncertainty) there is still a distribution of results, due to the fact
that of course the data do not determine the PDF completely. Each replica can be
thought of as a different equally good interpolation of the given data, distributed in
the ZH plane. Several of these results have values of σH that are in fact larger than
the input underlying truth. So there is surely no “hard wall”, and we must conclude
that the NNPDF4.0 methodology has no difficulty in producing replicas with large
Higgs cross section and/or of fitting the HS PDF exactly.

The hopscotch functions do however raise an interesting question: do we understand
why they are given a low probability in the NNPDF4.0 determination? Here we touch
upon the reason that neural networks are often called “black box” models. Namely,
while a neural network is a universal approximator, studying the internal structure of
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Figure 4.14: Scatter plot in the σh − σZ plane of PDF replicas determined in level-0
closure test with the HS PDF with largest Higgs cross-section taken as underlying
truth, shown as an orange point.
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Figure 4.15: The gluon for HS PDFs with low χ values (orange) compared to the
NNPDF4.0 gluon (green) 68%c.l. (left) and 1000 replica sample (right).

a neural network does not provide an insights into its the function it approximates.
In principle, it is thus at the moment impossible to answer such questions as the one
we are asking ourselves here. Nevertheless, we may aim to elucidate certain specific
aspects of the black box.

4.2.2 Kinetic energy of the PDF
Having shown that the NNPDF4.0 methodology has no particular difficulty in fitting
the HS PDF, we now address the question of why these PDFs are unlikely in the
NNPDF methodology.

As a preliminary observation, we note that, given the extremely flexible NNPDF
parametrization (with close to 800 free parameters), it is very easy to obtain fits with a
value of χ that is much lower than that of the reference NNPDF4.0 determination. In
particular since it should be kep in mind that the NNPDF4.0 methodology is carefully
tuned with the aim of avoiding overfitting without while still optimally extracting
information from the data. As a result, if the methodology were to be made slightly
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Figure 4.16: Left: same as the left plot of Fig. 4.15, now showing a detail of the small-x
region. Right: the same as the left plot, but now for the valence octet PDF.
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Figure 4.17: The gluon obtained in a overfitted PDF determination, in which the final
χ value is by about 0.8 smaller than that of the default NNPDF4.0.

more aggressive – such as was done to generate the HS PDFs – this is is likely to result
in overfitting.

As an example of such an overfitted PDF, in Fig. 4.17 we show the gluon distribution
obtained in a fit in which we have artificially modified the minimization procedure in
order to obtain a very low value of χ. Indeed, in this overfitted result, the final value
of the χ of the central PDF to the experimental data is by about δ = 0.08 smaller
than that of the default NNPDF4.0, i.e. δ×Ndat ≈ 300, a difference that is about one
order of magnitude bigger than that of the HS PDFs. The unphysical behavior of the
PDFs thus obtained is manifest and representative of overfitting.

In light of this observation, in Fig. 4.15 we compare the NNPDF4.0 PDF gluon PDF
to the HS PDFs: for NNPDF we show both the central value and 1σ uncertainty (left
plot) and the corresponding replica set (right), while for HS we can only show the set
of individual PDFs since their ensemble has no statistical meaning. It is apparent that
the HS PDFs are characterized by a kink in the region 10−5 ≲ x ≲ 10−3. This kink is
absent both in the central NNPDF4.0 gluon, and also in individual replicas
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Figure 4.18: The gluon PDF obtained from the level-0 PDF replicas of Fig. 4.14
(green), compared to the underlying assumed truth, namely the HS PDF with largest
Higgs cross-section taken as underlying truth (orange).
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Figure 4.19: The kinetic energy Eq. (4.30) for the gluon (left) and down PDFs (right),
for NNPDF4.0 (green) and for the HS PDFs (orange).

In Fig. 4.16 we show a detail of the small x region, in which the kink is clearly
visible. For comparison, in Fig. 4.16 we also show a similar comparison for the octet
valence combination (V8 = u− + d− − 2s−, with q−

i = q − q̄) in which even more
pronounced kinks are seen in the HS PDFs.

It is important to observe that there are essentially no data constraining the gluon in
the region of x ≲ 10−4, so the kink displayed by the HS PDFs is likely not data-driven.
We can actually prove this explicitly by looking at the PDFs obtained in the fit to the
level 0 closure test data of Fig. 4.14. Recall that this PDF produces a perfect fit to
the data, i.e. it has vanishing χ2. In Fig. 4.18 the gluon PDF from this set is shown
and compared to the underlying assumed truth HS PDF. Even though the assumed
truth has the kink that characterizes the HS PDFs, a perfect fit to data as predicted
by a HS PDF has no kink. This indicates that the HS kink is not data driven, but
rather an overfitted feature.

The overfitting metric proposed in Sect. 3.2.2 has the limitation that it can determine
whether a given methodology is overfitted, but it cannot be applied to individual PDFs.
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Figure 4.20: The overfitting metric Eq. (3.8) for the default NNPDF4.0 fit and for the
artificially overfitted variant discussed in text (right).

As an alternative, we can construct a quantitative overfitting estimator by defining
the PDF kinetic energy

KE =

√
1 +

(
d

d log xxf(x,Q2)
)2
. (4.30)

This quantity, integrated between any two values of x gives the arclength of the curve
that xf(x) traverses, viewed as a function of log x. The kinetic energy is thus a local
measure of “wiggliness”: given a pair of curves with fixed extremes, the one with
greater kinetic energy joins the two extremes with a longer curve. It coincides of
course with the Lagrangian of a relativistic free particle (with xf interpreted as space
and log x as time), hence its name, with its integral being equal to the action.

In Fig. 4.19 we compare the kinetic energy of the HS PDFs to that of NNPDF4.0:
we show the gluon and also, for reference, the down quark. It is clear that the HS
PDFs are characterized by higher kinetic energy, specifically for the gluon, but in fact
for all HS PDFs. Furthermore, the kinetic energy itself displays greater fluctuations
for the HS PDFs. We conclude that the HS PDFs are characterized by having a feature
which is not data driven and that corresponds to the given curve being further away
from a least-action geodesic, which is disfavored by the NNPDF methodology.

The fact that the HS PDFs display signs of overfitting should not come as a surprise,
given that they have been constructed by varying NNPDF4.0 replicas in such a way
to further reduce the χ2 to the central data, while the NNPDF4.0 replicas have been
constructed in such a way as to marginally avoid overfitting. This suggests that PDF
replicas with features similar to the HS PDFs could be obtained by forcing overfitting
in the NNPDF4.0 methodology.

In order to check this explicitly, we have introduced overfitting in the NNPDF4.0
methodology by changing by hand the fit settings (which are set by the
hyperoptimization procedure). In particular, we doubled the training length, which
in turn implies increasing some parameters (such as the stopping patience) that are
determined as functions of the training length. This leads to a decrease of χ2 by about
0.01, i.e. similar to the greatest reduction observed in the HS PDFs. We can explicitly
check that these PDFs are overfitted using the overfitting metric of Sect. 3.2.2. This
metric vanishes for a proper fit, and it is negative for an overfit. Results are shown
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Figure 4.21: The gluon PDF obtained from the artificially overfitted variant discussed
in text, compared to the default NNPDF4.0 gluon.

in Fig. 4.20, where we compare this metric for the default NNPDF4.0 PDFs and for
this overfitted variant. We see that while for the default RO = −0.001 ± 0.013, for
the overfitted variant RO = −0.027 ± 0.001, which indicates an overfit at the three σ
level.

A comparison of the gluon PDF in this overfitted variant to the default NNPDF4.0
gluon in Fig. 4.21 shows that it starts developing features that are similar to that of
the HS PDFs, specifically a kink in the small x region and a somewhat higher peak.
This provides further evidence that the HS PDFs are overfitted.

Summarizing, we have shown that the HS gluon is characterized by a feature that is
not data-driven and that corresponds to being further away from a least-action curve,
and that similar features can be obtained in NNPDF4.0 replicas by forcing overfitting.
We conclude that NNPDF4.0 replicas that look like the HS PDFs are disfavored by the
NNPDF methodology because they correspond to overfitting solutions. Nevertheless,
PDF replicas leading to results similar to the HS PDFs in the ZH plane (i.e. leading
to similar values of the Higgs and Z cross section) can be obtained as proper fits to
unlikely data fluctuations, given a large enough replica sample.

In this section we have thus seen a specific example of how a careful analysis
using well-understood metrics can lead to a partial understanding of what is going
on inside the black box that is a neural network. To obtain full insight into how prior
assumptions lead to the posterior distribution of a fitting procedure one would need to
use an interpretable model [186]. Where interpretability can colloquially be described
as “the collection of features of the interpretable domain, that have contributed for
a given example to produce a decision (e.g., classification or regression)” [187]. For
neural networks this is still far away, and the topic of ongoing research, nevertheless
other machine learning tools such as gaussian process regression may be considered as
alternative to address this shortcoming of neural networks in PDF fits.
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Chapter 5

The neural network approach for
neutrino structure functions

The NNPDF approach used for the determination of unpolarized PDFs was first
applied to DIS neutral current structure functions [68, 70], and its flexibility allows
for it to be applied to the determination of various other physical quantities. To
date, the neural network approach has been applied to the determination of helicity
PDFs [188], nuclear PDFs [154], fragmentation functions [189], and most recently even
a simultaneous determination of the unpolarized PDFs with Standard Model Wilson
coefficients within the framework of Standard Model Effective Field Theory [153].

In this chapter, to emphasize the wide range of applicability of the NNPDF
approach, we will present a determination of neutrino inelastic structure functions
based on matching a neural network parametrization of structure function data with
NNLO perturbative QCD calculations based on recent analyses of proton and nuclear
parton distributions. In Sect. 5.1 we motivate the need for a modern determination
of the neutrino structure functions at low-Q and present our strategy, in Sect. 5.2
we discuss the theoretical formalism of neutrino inelastic structure functions, and in
Sect. 5.3 we present the fitting strategy.

5.1 Modelling neutrino structure functions at low-Q
The scattering of neutrinos and anti-neutrinos with proton and nuclear targets [190]
can be expressed in terms of the neutrino-nucleus structure functions, F νN

i (x,Q2),
which are analogous to the electron-proton structure functions discussed in Chapter 1.
The DIS component dominates the inclusive neutrino-nucleus scattering cross-section
for neutrino energies with Eν ∼> 1 TeV, and subleading processes such as (in)elastic
scattering off the photon field of nucleons, coherent scattering off the photon field of
nuclei, and scattering on atomic electrons are also well-understood and implemented
in public codes [191].

On the other hand, the description of neutrino structure functions for momentum
transfers, Q, of a few GeV becomes complicated by the poor convergence of the
perturbative expansion in αs, higher-twist effects, heavy quark and target mass
corrections, and nuclear effects for nuclear targets. Eventually, for momentum
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transfers below the proton mass (Q ∼< 1 GeV), the perturbative framework breaks
down and structure functions cannot be expressed anymore in terms a factorized
convolution of PDFs with hard-scattering partonic coefficient functions. For these
reasons, neutrino-nucleus structure functions at low and intermediate values of Q
cannot be evaluated within the perturbative QCD framework and hence alternative
strategies must be adopted.

The phase space region where neutrino structure functions are probed for Q ∼<
few GeV represents a sizable contribution to the total inclusive cross-section for
neutrino energies Eν up to several TeV. For instance, structure functions for
momentum transfers between Q = 1.64 GeV and Q = 2.2 GeV amount to around 10%
of the inclusive cross-section for Eν ≃ 100 GeV [192]. In this low-Q region, one can
distinguish between quasi-elastic scattering, for final-state invariant masses defined in
Eq. (1.16), of W < 1.07 GeV, the resonance region, with 1.1 GeV ≤ W ≤ 1.8 GeV, and
the inelastic region for W ∼> 1.8 GeV, with the latter being the main subject of the work
discussed in this chapter. Given that perturbative QCD calculations cannot be applied,
a widely used strategy to model low-Q region inelastic neutrino structure functions is
the phenomenological Bodek-Yang (BY) model [193–198]. The BY approach is based
on evaluating structure functions in terms of effective leading-order PDFs based on
GRV98 determination [199], suitably extended with scaling variables for mass effects
and with K-factor rescaling to improve the agreement with experimental data. The
BY model is for instance the default option for inelastic structure function in the
GENIE neutrino Monte Carlo event generator [200,201].

While reasonably successful in describing neutrino and electron inelastic scattering
data, the phenomenological BY model introduces a potential source of theoretical
uncertainty in the calculations of inclusive neutrino-nucleus scattering whose
magnitude is difficult to assess. First of all, the BY model is based on an obsolete set
of proton PDFs that ignores all experimental constraints provided in the last 25 years,
assumes an approximate treatment of quark and target mass corrections, ignores QCD
effects beyond those present at the Born level, does not account for recent progress
in our understanding of nuclear structure, and finally lacks a systematic assessment
of the associated model uncertainties. A consequence of this restrictive character is
that the BY model structure functions cannot be smoothly matched to state-of-the-art
calculations based on modern PDFs and higher-order QCD calculations. Improving
the description of these low-Q neutrino structure functions would hence strengthen the
theoretical interpretation of ongoing and future reactor, accelerator, and atmospheric
neutrino experiments involving energies Eν between a few GeV and a few TeV. For
instance, low-Q neutrino structure functions will be most relevant both for the Deep
Underground Neutrino Experiment (DUNE) [202], involving Eν up to several GeV, and
the LHC-based experiments Faserν [203], SND@LHC [204], and the Forward Physics
Facility [205,206], where the Eν peaks at a few hundreds of GeV.

We apply a strategy based on the NNPDF approach to the fitting of PDFs to describe
inelastic neutrino structure functions valid for all values of the momentum transfer Q.
It combines a neural network based parametrization of neutrino structure functions
at low and moderate Q2 values matched to NNLO perturbative QCD calculations
at large Q2. For the former, we perform a fit to all available measurements on
low- and intermediate-Q neutrino structure functions, such that the dependence of
F νN

i (x,Q,A), with i = 2, 3, L, on x, Q, and A is entirely determined from the data,
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and where uncertainties are estimated and propagated with the Monte Carlo replica
method discussed in Sect. 2.1. For the latter, NNLO QCD predictions for neutrino
structure functions are computed with YADISM [207] using as input NNPDF4.0 and
the nNNPDF3.0 [154] global determinations of the nuclear structure. In this matching
procedure, theoretical predictions are weighted by their total uncertainty consisting
on missing higher order (MHO) and PDF errors.

The outcome of this approach is a robust prediction for the neutrino structure
functions Fi(x,Q,A) valid in the whole range of Q with a faithful estimate of
the uncertainties. These predictions can then be used to evaluate the inclusive
neutrino cross-sections without the need to rely on ad-hoc models, hence providing a
valuable input for the interpretation of measurements from a wide variety of neutrino
experiments.

5.2 Theoretical formalism

We will now present an overview of the theoretical formalism underpinning neutrino-
nucleus inelastic scattering cross-sections in terms of structure functions and of the
calculation of the latter in perturbative QCD. The discussion here draws many
similarities to that of Sect. 1.2, with an important difference that here we will consider
the parity violating interaction giving rise to a third structure function. To improve
readability of this chapter we will, where needed, repeat variables already defined in
Sect. 1.2. We will not include a discussion of the calculations of neutrino structure
functions based on YADISM, and limit the discussion to a description of the general
framework needed to motivate restrictions implemented in the parametrization to be
discussed in Sect. 5.3.3.

The double-differential cross-section for neutrino-nucleus scattering can be
decomposed [208, 209] in terms of three independent structure functions F νA

i (x,Q2)
with i = 1, 2, 3. Focusing on the charged-current scattering case, mediated by the
exchange of a W+ weak boson, the differential cross-section reads

d2σνA(x,Q2, y)
dxdy

= G2
F s

2π (1 +Q2/m2
W )2

[
(1 − y)F νA

2 (x,Q2)

+ y2xF νA
1 (x,Q2) + y

(
1 − y

2

)
xF νA

3 (x,Q2)
]
,

(5.1)

where s = 2mNEν is the neutrino-nucleon center of mass energy squared, mN is the
nucleon mass, Eν is the incoming neutrino energy, and the inelasticity y is defined as
y = Q2/(xs). An analogous expression holds for antineutrino scattering, mediated by
the exchange of a W− weak boson, with the only difference being a sign change in
front of the parity-violating structure function xF3,

d2σν̄A(x,Q2, y)
dxdy

= G2
F s

2π (1 +Q2/m2
W )2

[
(1 − y)F ν̄A

2 (x,Q2)

+ y2xF ν̄A
1 (x,Q2) − y

(
1 − y

2

)
xF ν̄A

3 (x,Q2)
]
.

(5.2)
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While the differential cross-section depends on three kinematic variables, (x,Q2, y),
the structure functions themselves depend only on x and Q2. Furthermore, both the
cross-section and the structure functions depend on the atomic mass number A of the
target nucleus via nuclear modifications of the free-nucleon structure functions.

Alternatively, Eq. (5.1) can be expressed in terms of the longitudinal structure
function F νA

L (x,Q2) defined by FL = F2 − 2xF1 given in Eq. (1.29), leading to

d2σνA(x,Q2, y)
dxdy

= G2
F s

4π (1 +Q2/m2
W )2

[
Y+F

νA
2 (x,Q2)

− y2F νA
L (x,Q2) + Y−xF

νA
3 (x,Q2)

]
,

(5.3)

where Y± = 1±(1−y)2 and with a counterpart expression for anti-neutrino scattering,

d2σν̄A(x,Q2, y)
dxdy

= G2
F s

4π (1 +Q2/m2
W )2

[
Y+F

ν̄A
2 (x,Q2)

− y2F ν̄A
L (x,Q2) − Y−xF

ν̄A
3 (x,Q2)

]
,

(5.4)

Expressing the differential cross-section as in Eq. (5.3) is advantageous because
remember from Eq. (1.33) that in the parton model (and in perturbative QCD at
leading order) the longitudinal structure function vanishes, F νA

L (x,Q2) = 0. The
combination of neutrino and antineutrino measurements makes possible disentangling
the different structure functions, for example the cross-section difference

d2σνA(x,Q2, y)
dxdy

− d2σν̄A(x,Q2, y)
dxdy

= G2
F sY−

4π (1 +Q2/m2
W )2

×
[
xF νA

3 (x,Q2) + xF ν̄A
3 (x,Q2)

]
,

(5.5)

is proportional to the parity-violating structure function xF3 averaged over neutrinos
and antineutrinos. Furthermore, the kinematic considerations leading to Eq. (1.66)
imply that these structure functions vanish in the elastic limit x → 1.

Depending on the values of the momentum transfer squared Q2 and of the hadronic
final-state invariant mass W given by

W 2 = m2
N +Q2 (1 − x)

x
, (5.6)

different processes contribute to the neutrino structure functions as depicted in
Fig. 5.1. At the lowest values of Q2 and W 2, quasi-elastic (QE) scattering dominates,
e.g. ν + n → ℓ− + p, where the target nucleon changes without breaking up. As Q2

is increased excited resonances (RES) can be produced, such as ν + n → ℓ− + ∆+,
provided the final-state mass W is above the resonance mass. The ∆+ baryon is a
higher mass spin-excitation of the proton, it can decay as ∆+ → p + π0. Once Q2

becomes large enough that target nucleon breaks up, ν + n → ℓ− + X, one enters
the regime known as inelastic scattering which is the main focus of this work. In the
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Figure 5.1: Total neutrino (left) and antineutrino (right) charged-current cross-section
measurements [210] and corresponding predictions [211] as a function of the neutrino
energy Eν (solid). The various contributing processes are also shown independently
and include quasi-elastic scattering (dashed), resonance production (dot-dash), and
deep inelastic scattering (dotted). The figure is taken from Ref. [210].

following we assume that W ∼> 2 GeV to ensure that the inelastic scattering regime
dominates.

For Q2
∼> few GeV2 we have access to the deep inelastic regime, where structure

functions can be evaluated in perturbative QCD in terms of a factorised convolution
of process-dependent partonic scattering cross-sections and of process-independent
parton distribution functions as discussed in Sect. 1.2.2. The relevant factorization
equation is Eq. (1.34), though here we also consider dependence on the atomic mass
number A.

For massless quarks, charged-current neutrino DIS coefficient functions have been
evaluated up to N3LO in [212, 213]. For massive quarks, the calculation of strange-
to-charm transitions with charm mass effects has been performed at NNLO in [214].
Mass effects can be incorporated in the massless calculation by means of a general-
mass variable-flavour-number scheme as described in Sect. 1.4. As we discuss below,
perturbative corrections to neutrino DIS structure functions are moderate unless Q2

approaches the boundary of the non-perturbative region, Q2 ≃ 1 GeV2.
A key feature of neutrino and anti-neutrino deep inelastic scattering is that each

of the structure functions depends on a different combination of quark and antiquark
PDFs, bringing in a unique sensitivity to quark flavour separation in nucleons and
nuclei. At leading order and considering a proton target, four active quark flavours,
neglecting charm mass effects, and assuming a diagonal CKM matrix, we can express
the F νp

2 and xF νp
3 structure functions as follows

F νp
2 = 2x (ū+ d+ s+ c̄) ,
F ν̄p

2 = 2x
(
u+ d̄+ s̄+ c

)
,

xF νp
3 = 2x (−ū+ d+ s− c̄) ,

xF ν̄p
3 = 2x

(
u− d̄− s̄+ c

)
,

(5.7)
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where the dependence on x and Q have been suppressed. The corresponding
expressions for a neutron target or isoscalar target can be obtained from isospin
symmetry, for instance the LO structure functions for neutrino-neutron scattering
are

F νn
2 = 2x

(
d̄+ u+ s+ c̄

)
,

F ν̄n
2 = 2x (d+ ū+ s̄+ c) ,

xF νn
3 = 2x

(
−d̄+ u+ s− c̄

)
,

xF ν̄n
3 = 2x (d− ū− s̄+ c) .

(5.8)

From Eq. (5.7) and Eq. (5.8) we see how different combinations of neutrino structure
functions provide access to different PDF combinations. For instance, the cross-section
difference Eq. (5.5) for an isoscalar target without nuclear effects, so that xF νA

3 =
(xF νp

3 + xF νn
3 )/2, is given in this approximation by

d2σνA(x,Q2, y)
dxdy

− d2σν̄A(x,Q2, y)
dxdy

= G2
F sY−

2π (1 +Q2/m2
W )2

× [xuV + xdV + xsV + xcV ] ,
(5.9)

in terms of the valence combinations Eq. (1.45). The dependence of the valence PDFs
on x and Q has been suppressed.

As opposed to the case of unpolarized PDF determinations, where one must impose
the momentum and valence sum rules, structure functions in neutrino scattering do
not need to satisfy all-orders sum rules. The exception is the parity-violating structure
function xF3 which enters the Gross-Llewellyn Smith (GLS) sum rule [215], calculable
in perturbative QCD, and given for an isoscalar (N = (p+ n)/2) target by∫ 1

0

dx

x
xF νN

3 (x,Q2) = 3
(

1 +
3∑

k=1

(
αs(Q2)
π

)k

ck(nf )
)
, (5.10)

where the coefficients ck are known. The leading-order contribution to Eq. (5.10)
follows from the partonic decomposition of the isoscalar xF νN

3 in terms of the valence
quark PDFs, as also indicated in Eq. (5.9). In this respect, the GLS sum rule is closely
related to the valence sum rules of Eq. (1.63) and Eq. (1.64) imposed in PDF fits.
While the Gross-Llewellyn Smith sum rule Eq. (5.10) will be satisfied by the QCD
calculation, here we will not impose it explicitly in the data-driven parametrization
but rather verify that it is satisfied within uncertainties a posteriori in the region of
applicability of pQCD. We note that experimentally one cannot access the x → 0
region and hence the evaluation of Eq. (5.10) depends on the modelling of the small-x
extrapolation region.

5.3 Fitting methodology
Let us now describe the methodology used to determine the (anti)neutrino-nucleus
inelastic structure functions and their associated uncertainties across the whole
range of Q values relevant for the interpretation of present and future experiments.
Our approach is based on the combination of the direct constraints provided by
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experimental data at low- and intermediate-Q with those from the perturbative
QCD calculations in the intermediate and high-Q regions. First, we present the
general strategy indicating how the different components of the calculation are
assembled. We then review the experimental data on neutrino structure functions
and cross-sections used here to constrain the machine learning parametrization.
Subsequently we introduce the main features of the ML algorithm, such as the choice
of hyperparameters, the training procedure, and the matching to the perturbative
QCD calculations.

5.3.1 General strategy
A schematic representation of the strategy adopted to describe the inelastic neutrino
structure functions in the complete range of Q is presented in Fig. 5.2. It is based
on classifying neutrino structure functions in three disjoint regions of Q and then
evaluating them separately as follows:

Region I. At low momentum transfers Q ∼< QI, with QI of the order of a few
GeV, the perturbative calculation of neutrino inelastic structure functions is
either not valid (factorization breaks down) or is affected by large uncertainties
related to e.g. highest twist, missing higher perturbative orders, and potential
large-x resummation effects. In this region it is hence advantageous to directly
parametrize the structure functions from existing experimental data on neutrino-
nucleus scattering. Following the NNPDF methodology, this parametrization
is achieved through a combination of neural networks with the Monte Carlo
replica method for the uncertainty estimate. The experimental data that enters
this parametrization is detailed in Sect. 5.3.2 and consists on all available
measurements of inelastic neutrino-nucleus scattering.

Region II. The region of intermediate momentum transfers, defined by QI ∼<
Q ∼< QII where QII is of the order of a few tens of GeV, is well described by
perturbative QCD calculations at NNLO which are provided by YADISM with the
NNPDF4.0 and nNNPDF3.0 determinations of the proton and nuclear PDFs as
inputs respectively. To ensure that the data-driven parametrization from region
I is matched smoothly to this perturbative QCD calculation, level 2 pseudodata
is generated using YADISM which is fitted in the same way as the experimental
data in region I. For a description of level 2 pseudodata see App. D. Given
that NNPDF4.0 and nNNPDF3.0 already include constraints from neutrino
measurements, in particular from CHORUS and NuTeV, in region II no neutrino
data needs to be added to the structure function parametrization.

Region III. In the region of high momentum transfers, Q ∼> QII, the machine
learning model predictions are replaced by those obtained from the YADISM
perturbative QCD calculation, which already entered the fit as pseudo-data in
region II. Hence in region III central prediction and uncertainties coincide with
the YADISM outcome, with a mild smoothing procedure applied to eliminate
residual discontinuities between this and region II. These YADISM predictions
extend up to Q = 106 GeV, the highest values of Q relevant for phenomenology
in particular for ultra-high-energy neutrino cross-sections.
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Figure 5.2: Schematic representation of the strategy adopted to parametrize the
neutrino structure function as a function of Q, here represented by the Bodek-Yang
calculation as implemented in GENIE for x = 0.0126.

In the schematic of Fig. 5.2 the neutrino structure functions are represented by the
Bodek-Yang calculation as implemented in GENIE. Furthermore, the specific values of
the hyperparameters QI = 6 GeV and QII = 40 GeV shown here, are representative of
those used in the fit, and results for the structure function predictions are stable with
respect to moderate variations of the chosen values. Nevertheless, the boundaries of
the three regions should always satisfy the requirements stated above.

5.3.2 Experimental data
In order to parametrize the inelastic structure functions at low- and intermediate-Q
values corresponding to region I in Fig. 5.2, we consider all available data on neutrino
structure functions and double differential cross-sections available in the literature.
We restrict ourselves to those measurements where the incoming neutrino energy Eν

is sufficiently large to ensure that the contribution from the inelastic region dominates.
For this reason we do not consider here neutrino scattering measurements such as those
provided the by ArgoNeuT [216], MicroBooNE [217], T2K [218], or MINERνa [219]
experiments, since there the neutrino energy range is small enough such that inelastic
scattering represents a subleading contribution to the scattering rates.

In Table 5.1 we display the datasets included in this work to parametrize the inelastic
neutrino structure functions in region I. For each dataset we indicate the publication
reference, the range of x covered, the smallest value of Q available, the observables
measured, and the scattering target. A cut of W ≥ 2 GeV is applied to restrict
structure functions to the inelastic region, while data with Q ≥ QI is excluded from
the fit. Fig. 5.3 then displays the kinematic coverage in the (x,Q2) plane of the
measurements listed in Table 5.1.

5.3.3 Neural network parametrization
As explained in Sect. 5.3.1, in the low- and intermediate-Q region we construct a
parametrization of the neutrino structure functions with its associated uncertainties
by training a neural network model to available experimental data.
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Datasets Ref [xmin, xmax] Qmin (GeV) Observables Target

BEBCWA59 [220] [0.028, 0.649] 0.40 F2, xF3 Ne
CCFR [221] [0.015, 0.650] 1.12 F2, xF3 Fe
CHARM [222] [0.015, 0.800] 0.42 F2, xF3, Q̄ CaCO3

CHORUS [223] [0.020, 0.650] 0.57 F2, xF3, σL/σT , d2σ/(dxdy) Pb
CDHS [224] F2, d2σ/(dxdy) D, Fe
CDHSW [225] [0.015, 0.650] 0.44 F1, F2, xF3, d2σ/(dxdy) Fe
NUTEV [226] [0.015, 0.750] 0.44 F2, xF3, d2σ/(dxdy) Fe

Table 5.1: The datasets included in this work to parametrize the inelastic neutrino
structure functions in region I defined in Fig. 5.2.
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Figure 5.3: The kinematic coverage in the (x,Q2) plane of the inelastic neutrino
scattering cross-section data listed in listed in Table 5.1. A kinematic cut of W ≥ 2
GeV is applied to restrict structure functions to the inelastic scattering region, while
data with Q ≥ QI is excluded from the fit and replaced by perturbative QCD
calculations.
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Figure 5.4: The neural network architecture used to parametrize the (anti-)neutrino-
nucleus structure functions.

Given that the double-differential neutrino-nucleus cross-section can be expressed in
terms of three structure functions, we need to parametrize six independent quantities
from experimental data, namely F ν

2 , xF
ν
3 , F

ν
L , F

ν̄
2 , xF

ν̄
3 , F

ν̄
L . For all we determine

their dependence on x, Q2 and A. Hence, we require a mapping from the inputs
(x,Q2, A) to the outputs F ν

i and F ν̄
i with i = 2, 3, L. This mapping is provided

by an artificial neural network with 3 input and 6 output neurons, and whose free
parameters, the weights and biases, are adjusted to reproduce experimental data at
low- and medium-Q (region I) and to the perturbative QCD predictions at medium-
and high-Q (region II). Fig. 5.4 displays a representative example of the neural
network architectures used in this work to parametrize neutrino structure functions.
The architecture is 3-12-10-6-6, which means 3 hidden layers with 12, 10, and 6
neurons each. We note however that here, as for the NNPDF4.0 determination, the
architecture is not fixed by hand, but rather automatically optimized together with
other hyperparameters, such as the gradient descent algorithm and learning rates by
means of the hyperoptimization procedure discussed in Sect. 2.1.4.

Our parametrization of structure functions implements the physical condition of
vanishing in the elastic limit x → 1. This is implemented in a way similar to that
used in the feature scaling parametrization discussed earlier in this thesis, Eq. (3.2),
by relating the output of the neural network to the structure functions as

F ν
i (x,Q2, A) = NNi(x,Q2, A) − NNi(x = 1, Q2, A), (5.11)

for all i = 2, 3, L, with NNi the activation state of one of the output layer neurons of
Fig. 5.4. The same is done for the anti-neutrino structure functions. This way, one
ensures that by construction F ν

i (x = 1, Q2, A) = 0 as required for any value of Q2 and
A. Furthermore, the inputs of the network are preprocessed by means of the feature
scaling method discussed in Sect. 3.1 such that these inputs are read by the network
in a way that maximizes its sensitivity. We note structure functions are not required
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Figure 5.5: Representative comparisons between experimental data and the NN based
parametrization of inelastic neutrino structure functions as a function of Q2 For each
panel the title indicates the dataset (which in turn specifies the corresponding physical
observable) and the values of x and A selected for the comparison. The uncertainties
in the prediction are obtained from the standard deviation over Nrep = 100 Monte
Carlo replicas.

to be positive-definite but it is found that negative configurations are excluded by the
data.

The rest of the methodology is analogous to that used in the NNPDF4.0
determination as laid out in Sect. 2.1. Namely, the figure of merit that determines the
goodness-of-fit of a given theory prediction when compared to the experimental data
is the standard t0 χ

2, error propagation is performed using the Monte Carlo replica
method, and regularization is implemented through cross-validation.

Fig. 5.5 presents representative comparisons between experimental data and our
parametrization of inelastic neutrino structure functions as a function of Q2 For each
panel the title indicates the dataset (which in turn specifies the corresponding physical
observable) and the values of x and A selected for the comparison. The uncertainties
in the predictions are obtained from the standard deviation over Nrep = 100 Monte
Carlo replicas.

The parameterization of the inelastic neutrino-structure functions presented here
provide reliable predictions in the complete range of Q2 values relevant for neutrino
phenomenology, from very low to very high-Q2 values. These results will be
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implemented in the GENIE neutrino Monte Carlo event generator and as interpolation
grids in the LHAPDF6 format. They will make possible the evaluation of the inclusive
neutrino scattering cross-sections for a range of energy values without the need to rely
on model assumptions.
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Chapter 6

Summary

In this thesis we have presented various studies with as a central theme the NNPDF
machine learning framework for the determination of parton distribution functions.

In Chapter 2 we discussed the most recent global determination of parton
distribution functions by the NNPDF collaboration: NNPDF4.0. We first discussed
the general strategy employed for this determination with a focus on the improved
implementation as available through the open-source code. We then briefly reviewed
the datasets included in this determination, while explicitly highlighting those datasets
and processes that have for the first time been used in a PDF determination. We
demonstrated that the results are stable upon the exclusion of those datasets which
show the strongest signals of inconsistencies by performing a combination using the
PDF4LHC15 prescription of various PDF determination each with a different dataset
removed and show that the results remain the same up to statistical fluctuations.
Afterwards, we discussed some of the main features of NNPDF4.0 relevant for
phenomenology. Specifically, we independently assessed the impact on the luminosity
of the changes to the methodology and the changes to the global dataset with respect
to NNPDF3.1. We demonstrated that the qualitative improvements in the data
result in an improved accuracy without affecting the uncertainty, while the updated
methodology results in a more precise determination mainly as a consequence of the
application of a gradient descent based algorithm. We closed the discussion of the
main features of NNPDF4.0 by emphasizing how independent determination of the
charm provides a strong indication for an intrinsic charm component in the proton.
Finally, we have provided a brief overview of the functionality and possibilities of the
open-source NNPDF code.

In Chapter 3 we proposed two main improvements to the methodology used
for the NNPDF4.0 determination. First, we discussed the theoretical assumptions
underpinning the parametrization of the PDFs in the NNPDF framework, which
are enforced through a preprocessing factor and a scaling of the input x-grids. We
demonstrated how a data-based scaling of x can avoid the problem of the inability of
gradient descent based algorithms to efficiently learn features across multiple orders
of magnitude without making assumptions on the scaling of the PDFs in x. We
further demonstrated how this data based scaling allows us to remove the preprocessing
exponents and by extension the replica-by-replica noise corresponding to the random
sampling of the exponents as well as the iterative determination of their distribution of
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the exponents. We then discussed how an important part of the hyperparamtrization
procedure still requires human intervention for both the selection of the folds in k folds
cross-validation, as well as the detection of overfitting in a PDF fit. For the former we
have proposed a method for the automatic selection of the folds by training a neural
network to learn which regions of the PDF (x, flavor) space are constrained by which
datasets. For the latter we have presented a quantitative metric for the detection
of overfitting by testing explicitly if the fit is fully agnostic to the validation dataset
used during training, and thus ensuring the regularization as implemented through a
training-validation split fully prevents overlearning.

In Chapter 4 we studied the methodological contribution to the total PDF
uncertainties. First, we studied the correlation between different sets of PDFs,
specifically, by viewing different PDF sets as distinct determinations, generally
correlated, of the same underlying physical quantity. We examined the extent to which
the correlation between them is due to the underlying data and show that correlations
have a sizable component that is not due to the underlying data, because the data do
not determine the PDFs uniquely. We then showed that the data-driven correlations
can be used to assess the efficiency of methodologies used for PDF determination.
Finally, we have also shown that the use of data-driven correlations for the combination
of different PDFs into a joint set can lead to inconsistent results. In the second section
of this chapter we addressed commonly misunderstood features related to sampling
method of the NNPDF approach. In particular, we introduced the concept of the
kinetic energy of the PDF, which has allowed us to explain certain aspects of the
results provided by the trained neural network that are otherwise considered to be
hidden in the black box model that is the neural network.

In Chapter 5 we have demonstrated the wide applicability of the NNPDF strategy
to the determination of physical quantities other than PDFs. Specifically, we have
presented a strategy for the determination of neutrino inelastic structure functions
valid for the full range of the momentum transfer across a domain where different
processes dominate the cross-section in different regions.
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Appendix A

The NNPDF4.0 global dataset

Dataset Ref. Ndat x Q [GeV]

NMC F d
2 /F p

2 [227] 260 [0.012, 0.680] [2.1, 10.]
NMC σNC,p [142] 292 [0.012, 0.500] [1.8, 7.9]
SLAC F p

2 [17] 211 [0.140, 0.550] [1.9, 4.4]
SLAC F d

2 [17] 211 [0.140, 0.550] [1.9, 4.4]
BCDMS F p

2 [18] 351 [0.070, 0.750] [2.7, 15.]
BCDMS F d

2 [18] 254 [0.070, 0.750] [2.7, 15.]
CHORUS σν

CC [223] 607 [0.045, 0.650] [1.9, 9.8]
CHORUS σν̄

CC [223] 607 [0.045, 0.650] [1.9, 9.8]
NuTeV σν

CC (dimuon) [228, 229] 45 [0.020, 0.330] [2.0, 11.]
NuTeV σν̄

CC (dimuon) [228, 229] 45 [0.020, 0.210] [1.9, 8.3]
[NOMAD Rµµ(Eν )] (*) [105] 15 [0.030, 0.640] [1.0, 28.]
[EMC F c

2 ] [230] 21 [0.014, 0.440] [2.1, 8.8]

HERA I+II σp
NC,CC

[143] 1306 [4·10−5, 0.65] [1.87, 223]
HERA I+II σc

NC (*) [108] 52 [7·10−5, 0.05] [2.2, 45]
HERA I+II σb

NC (*) [108] 27 [2·10−4, 0.50] [2.2, 45]

Table A.1: The DIS datasets analyzed in the NNPDF4.0 PDF determination. For
each of them we indicate a description of the dataset, the corresponding reference, the
number of data points in the fits before kinematic cuts (see Sect.4 of Ref. [6]), and
the kinematic coverage in the relevant variables after cuts. Datasets not previously
considered in NNPDF3.1 are indicated with an asterisk. Datasets not included in the
baseline determination are indicated in square brackets. The Q coverage indicated for
NOMAD is to be interpreted as an integration range.
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Dataset Ref. Ndat Q2 [GeV2] pT [GeV]

[ZEUS 820 (HQ) (1j)] (*) [109] 30 [125,10000] [8,100]
[ZEUS 920 (HQ) (1j)] (*) [110] 30 [125,10000] [8,100]
[H1 (LQ) (1j)] (*) [112] 48 [5.5,80] [4.5,50]
[H1 (HQ) (1j)] (*) [113] 24 [150,15000] [5,50]
[ZEUS 920 (HQ) (2j)] (*) [111] 22 [125,20000] [8,60]
[H1 (LQ) (2j)] (*) [112] 48 [5.5,80] [5,50]
[H1 (HQ) (2j)] (*) [113] 24 [150,15000] [7,50]

Table A.2: Same as Table A.1 for DIS jet data.

Dataset Ref. Ndat yℓℓ mℓℓ [GeV]

E866 σd/2σp (NuSea) [231] 15 [0.07, 1.53] [4.60, 12.9]
E866 σp (NuSea) [144] 184 [0.00, 1.36] [4.50, 8.50]
E605 σp [232] 119 [-0.20, 0.40] [7.10, 10.9]
E906 σd/2σp (SeaQuest) (*) [114] 6 [0.11, 0.77] [4.71, 6.36]

Table A.3: Same as Table A.1 for fixed-target DY data.

Dataset Ref. Ndat Kin1 Kin2 [GeV]

CDF Z differential [233] 29 0.0 ≤ yℓℓ ≤ 2.9 66 ≤ mℓℓ ≤ 116
D0 Z differential [234] 28 0.0 ≤ yℓℓ ≤ 2.8 66 ≤ mℓℓ ≤ 116
[D0 W electron asymmetry] [235] 13 0.0 ≤ ye ≤ 2.9 Q = mW

D0 W muon asymmetry [236] 10 0.0 ≤ yµ ≤ 1.9 Q = mW

ATLAS low-mass DY 7 TeV [237] 6 |ηℓ| ≤ 2.1 14 ≤ mℓℓ ≤ 56
ATLAS high-mass DY 7 TeV [238] 13 |ηℓ| ≤ 2.1 116 ≤ mℓℓ ≤ 1500
ATLAS W, Z 7 TeV (L = 35 pb−1) [239] 30 |ηℓ, yZ | ≤ 3.2 Q = mW , mZ

ATLAS W, Z 7 TeV (L = 4.6 fb−1) (*) [115] 61 |ηℓ, yZ | ≤ 2.5, 3.6 Q = mW , mZ

CMS W electron asymmetry 7 TeV [240] 11 |ηe| ≤ 2.4 Q = mW

CMS W muon asymmetry 7 TeV [241] 11 |ηµ| ≤ 2.4 Q = mW

CMS DY 2D 7 TeV [242] 132 |ηℓℓ| ≤ 2.2 20.0 ≤ mℓℓ ≤ 200
LHCb Z → ee 7 TeV [243] 9 2.0 ≤ ηℓ ≤ 4.5 Q = mZ

LHCb W, Z → µ 7 TeV [244] 33 2.0 ≤ ηℓ ≤ 4.5 Q = mW

[ATLAS W 8 TeV] (*) [118] 22 |ηℓ| < 2.4 Q = mW

ATLAS low-mass DY 2D 8 TeV (*) [117] 84 |yℓℓ| < 2.4 46 ≤ mℓℓ ≤ 200
ATLAS high-mass DY 2D 8 TeV (*) [116] 48 |yℓℓ| < 2.4 116 ≤ mℓℓ ≤ 1500
CMS W rapidity 8 TeV [245] 22 |ηℓ| ≤ 2.3 Q = mW

LHCb Z → ee 8 TeV [246] 17 2.00 < |ηe| < 4.25 Q = mZ

LHCb W, Z → µ 8 TeV [247] 34 2.00 < |ηµ| < 4.25 Q = mZ

[LHCb W → e 8 TeV] (*) [248] 8 2.00 < |ηe| < 4.25 Q = mW

ATLAS σtot
W,Z 13 TeV (*) [119] 3 — Q = mW , mZ

LHCb Z → ee 13 TeV (*) [120] 17 2.00 < |yZ | < 4.25 Q = mZ

LHCb Z → µµ 13 TeV (*) [120] 18 2.00 < |yZ | < 4.50 Q = mZ

Table A.4: Same as Table A.1 for collider inclusive gauge boson production data.
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ATLAS W ± + c 7 TeV (*) [122] 22 |ηℓ| < 2.5 Q = mW

CMS W ± + c 7 TeV [249] 10 |ηℓ| < 2.1 Q = mW

CMS W ± + c 13 TeV (*) [123] 5 |ηℓ| < 2.4 Q = mW

ATLAS W ±+jet 8 TeV (*) [121] 32 0 ≤ pW
T ≤ 800 GeV Q = mW

ATLAS Z pT 8 TeV (pT , mℓℓ) [250] 64 12 ≤ mℓℓ ≤ 150 GeV 30 ≤ pZ
T ≤ 900

ATLAS Z pT 8 TeV (pT , yZ ) [250] 120 |yZ | < 2.4 30 ≤ pZ
T ≤ 150

CMS Z pT 8 TeV [245] 50 |yZ | < 1.6 30 ≤ pZ
T ≤ 170

CMS σtot
tt 5 TeV (*) [251] 1 — Q = mt

ATLAS σtot
tt 7, 8 TeV [252] 2 — Q = mt

CMS σtot
tt 7, 8 TeV [253] 2 — Q = mt

ATLAS σtot
tt 13 TeV

(L=139 fb−1) (*)
[126] 1 — Q = mt

CMS σtot
tt 13 TeV [254] 1 — Q = mt

[ATLAS tt̄ ℓ+jets 8 TeV
(1/σdσ/dpt

T )]
[255] 8 0 ≤ pt

T ≤ 500 GeV Q = mt

ATLAS tt̄ ℓ+jets 8 TeV (1/σdσ/dyt) [255] 5 |yt| < 2.5 Q = mt

ATLAS tt̄ ℓ+jets 8 TeV
(1/σdσ/dytt̄)

[255] 5 |ytt̄| < 2.5 Q = mt

[ATLAS tt̄ ℓ+jets 8 TeV
(1/σdσ/dmtt̄)]

[255] 7 345 ≤ mtt̄ ≤ 1600 GeV Q = mt

ATLAS tt̄ 2ℓ 8 TeV
(1/σdσ/dytt̄) (*)

[124] 5 |ytt̄| < 2.8 Q = mt

CMS tt̄ ℓ+jets 8 TeV (1/σdσ/dytt̄) [256] 10 −2.5 < ytt̄ < 2.5 Q = mt

CMS tt̄ 2D 2ℓ 8 TeV
(1/σdσ/dytdmtt̄) (*)

[125] 16 |yt| < 2.5 340 ≤ mt ≤ 1500

CMS tt̄ ℓ+jet 13 TeV (dσ/dyt) (*) [127] 10 |yt| < 2.5 Q = mt

CMS tt̄ 2ℓ 13 TeV (dσ/dyt) (*) [128] 11 |yt| < 2.5 Q = mt

[ATLAS incl. jets 7 TeV, R=0.6] [257] 90 |yjet| < 3.0 100 ≤ pjet
T

≤ 1992
[CMS incl. jets 7 TeV] [258] 133 |yjet| < 2.5 100 ≤ pjet

T
≤ 2000

ATLAS incl. jets 8 TeV, R=0.6 (*) [129] 171 |yjet| < 3.0 70 ≤ pjet
T

≤ 2500
CMS incl. jets 8 TeV (*) [130] 185 |yjet| < 3.0 74 ≤ pjet

T
≤ 2500

ATLAS dijets 7 TeV, R=0.6 (*) [131] 90 0.0 ≤ y∗ ≤ 3.0 260 ≤ mjj ≤ 4270
CMS dijets 7 TeV (*) [132] 54 |ymax| < 2.5 200 ≤ mjj ≤ 5000
[CMS 3D dijets 8 TeV] (*) [133] 122 0.0 < yb, y∗ < 3.0 133 ≤ pT,avg ≤ 1780

[ATLAS isolated γ prod. 8 TeV] (*) [134] 49 |ηγ | < 2.37 Eγ
T

< 1500
ATLAS isolated γ prod. 13 TeV (*) [135] 53 |ηγ | < 2.37 Eγ

T
< 1500

ATLAS single t Rt 7 TeV (*) [136] 1 — Q = mt

CMS single t σt + σt̄ 7 TeV (*) [139] 1 — Q = mt

ATLAS single t Rt 8 TeV (*) [137] 1 — Q = mt

CMS single t Rt 8 TeV (*) [140] 1 — Q = mt

ATLAS single t Rt 13 TeV (*) [138] 1 — Q = mt

CMS single t Rt 13 TeV (*) [141] 1 — Q = mt

ATLAS single t 7 TeV
(1/σdσ/dyt) (*)

[136] 4 |yt| < 3.0 Q = mt

ATLAS single t 7 TeV
(1/σdσ/dyt̄) (*)

[136] 4 |yt̄| < 3.0 Q = mt

ATLAS single t 8 TeV
(1/σdσ/dyt) (*)

[137] 4 |yt| < 2.2 Q = mt

ATLAS single t 8 TeV
(1/σdσ/dyt̄) (*)

[137] 4 |yt̄| < 2.2 Q = mt

Table A.5: Same as Table A.1 for other LHC processes.
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Appendix B

Computing cross-correlations in the
NNPDF framework

We provide here some details on the computation of the cross-covariance Eq. (4.4) and
S-covariance Eq. (4.11)using NNPDF methodology.

In the NNPDF methodology the data replicas are generated based on a Monte Carlo
method with random initialization. Furthermore, input data are split into a training
subset used by the optimization algorithm and a validation subset used to validate the
optimization [75]. This split is performed randomly for each PDF replica. In order
to compute the data-induced component of the cross-correlation therefore we have
made sure that the two PDF sets that are being compared are fitted to the same data
replicas, with the same training-validation split.

Furthermore, not all fits end up in the final PDF set, but only those that pass
post-fit criteria specified in Ref. [75]. Because these criteria are applied a posteriori,
it might happen that, for a given underlying data replica, the criteria are only passed
by one of the two PDF replicas that are being compared. For the computation of the
cross-correlation, we only include in the final set PDF replicas for which both sets
have passed the criteria.

The S-covariance is then computed using Eq. (4.11), or its obvious generalization in
the case of the cross-covariance Eq. (4.4).

In order to estimate the uncertainty on final results due to the finite size of the
replica sample we have used a bootstrapping method [168,169]. Specifically, we apply
a Monte Carlo algorithm to perform a resampling “with replacement” of the PDF
replicas. This is of course done synchronously for both PDF sets between which the
correlation is calculated. We then calculate the PDF correlation using these resampled
PDF sets. This routine is repeated many times to obtain a precise estimate of the
standard error of the PDF correlation. The magnitude of the uncertainty decreases
with the inverse square root of the number of PDF replicas used to determine the PDF
correlation. We have performed this procedure with 200 resampled sets. The value
was chosen comparing the 2σ standard deviation and the 95% confidence interval, and
checking that for any flavor and any value of x they agree.

Finally, we have by default computed the cross-correlation at the scale Q0 =
1.7 GeV, and we have checked that by repeating the computation with different choices
of Q0 up to 100 GeV results are unchanged.
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Appendix C

Distance estimators

Distance plots such as those shown in Fig. 4.3 provide a measure of the distance
between to PDFs provided in a Monte Carlo representation. This distance estimator
has been introduced in Ref. [75] and is commonly exploited in many of the NNPDF
analyses reference in this thesis, where it can be used as a test of the statistical
equivalence between the PDF sets.

Given a Monte Carlo sample of Nrep replicas representing the probability
distribution of a given PDF set, {f (k)}, the expectation value of the distribution
can be determined using Eq. (2.1). It is given by

⟨f⟩ = 1
Nrep

Nrep∑
r=1

f (r), (C.1)

where the index r runs over all the replicas in the sample, the brackets denotes an
average over replicas, and the x and Q2 dependence of the PDFs is suppressed. The
variance of the sample can similarly be obtained using Eq. (2.2), and reads

Var [f ] = 1
Nrep − 1

Nrep∑
r=1

(
f (r) − ⟨f⟩

)2
. (C.2)

The variance of the mean is then

Var [⟨f⟩] = 1
Nrep

Var [f ] , (C.3)

while the variance of the variance itself can be written as

Var [Var [f ]] = 1
Nrep

 1
Nrep

Nrep∑
r=1

(
f (r) − ⟨f⟩

)4
− Nrep − 3
Nrep − 1 (Var [f ])2

 . (C.4)
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Appendix C Distance estimators

The distance between two PDF sets denoted by {f (r)} and {g(r)}, can be defined
as the square root of the square difference of the PDF central values in units of the
uncertainty of the mean, that is

d (⟨f⟩ , ⟨g⟩) =

√
(⟨f⟩ − ⟨g⟩)2

Var[⟨f⟩] + Var[⟨g⟩] . (C.5)

Analogously, the distance for the variances of the two samples can be defined as

d (Var[f ],Var[g]) =

√
(Var[f ] − Var[g])2

Var [Var[f ]] + Var [Var[g]] . (C.6)

According to these definitions a distance of around d ∼ 1/Nrep indicates a 1σ
disagreement in units of the corresponding denominator. As such, these distances
can be used as a test to check whether the distributions from which the PDFs are
sampled have the same mean and variance.
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Appendix D

Closure testing

The basic idea of closure testing [259] is to perform a PDF determination based on
artificial data that have been generated with perfect statistical properties from a known
underlying input PDF, fin, given a theoretical model. The statistical properties of such
a set of pseudodata is then completely known and controlled, it furthermore does not
contain any internal inconsistencies, and is perfectly consistent with the theoretical
model used in their generation. This then allows to test the fitting methodology by
performing a fit to this pseudodata and check if the underlying PDF is reproduced
with the correct uncertainties. Closure tests were first used to validate certain aspects
of a PDF fitting methodology in Ref. [179], and later adapted by NNPDF to validate
the NNPDF3.0 release [75].

The result of the closure tests fit is an ensemble of PDFs which are to be compared to
the input PDF, fin. The fits are performed in the usual way through the minimization
of a χ2 loss function, Eq. (2.9) with the t0 covariance matrix defined as Eq. (2.11).
In the context of a closure test the true solution is known, namely, it is given by the
input PDF fin, and the ensemble of fitted PDF replicas should correctly reproduce
this known input PDF within the statistical uncertainties determined by the fit.

We distinguish three “levels” of closure tests, corresponding to different levels of
stochastic noise added to the pseudodata generated from the input PDF. Here, the
stochastic noise is generated by sampling the experimental covariance matrix of the
relevant datasets. The three levels are defined as follows:

level 0:

• The central value of the pseudodata is given by predictions of the input PDF

• Each replica is fit to the same data directly corresponding to the predictions of
the input PDF.

level 1:

• The central values of the pseudodata are shifted by some noise generated
in agreement with the experimental covariance matrix. A level 1 dataset is
comparable to an experimental dataset in that it does not sit exactly on top of
the underlying law, but rather contain a layer of noise in accordance with the
experimental uncertainty.
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Appendix D Closure testing

• Each replica is determined using the same shifted data. There is however a
difference in the split of training and validation data used for stopping. The
observed PDF covariance matrix in a PDF ensemble produced with these settings
is due to this split in addition to any methodological uncertainty.

level 2:

• A further level of Monte Carlo noise is added on top of the level 1 shift.

• The level 2 shift changes replica-by-replica during sampling. Thus a level 2
closure test fit is comparable to a real fit within the NNPDF framework (with
known underlying law and statical properties).
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