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Introduction

HERA data on deep inelastic scattering (DIS) at small x show a very striking

property: the total cross section σγ
∗p

tot , which is a priori function of two independent
variables — the photon virtuality Q2 and the Bjorken variable x — seems to
depend only on the variable τ = Q2R2(x), see Fig. 1. This scaling behaviour,
first noticed by Staśto, Golec-Biernat and Kwieciński [1], is usually referred as
”geometric scaling”.

In [1] the authors build up a simple model which captures the main features
of the scaling behaviour. In their model R2(x) = Q2

0 (x/x0)
λ, with Q0 = 1 GeV,

λ = 0.3 − 0.4, x0 = 3 × 10−4 in order to fit the data. Though this model is in
good agreement with all the HERA data (in the small x region, x < 0.01), its
assumptions are quite arbitrary and it can’t be derived from first principles, so
from a theoretical point of view it is unsatisfactory.

We may then wonder whether it is possible to explain geometric scaling within
the framework of perturbative QCD. To answer this question, first of all we have to
improve the standard perturbative QCD in order to obtain a fully reliable theory
in the kinematic region of geometric scaling. In this region indeed a “naive”
perturbative treatment fails, because of many effects.

First, this region is characterised by large values of Q2. Now, a n−loop con-
tribution to an amplitude involving momenta of order Q is found to contain up
to n factors log(Q2/µ2) (where µ is the renormalization scale) as well as factors
αn
s , so standard perturbation theory breaks down if αs log(Q

2/µ2) is large, even
though αs is small. In other words, if Q2 is large enough that αs log(Q

2/µ2) ∼ 1,

all terms of order
(

αs log(Q
2/Λ2)

)k
and αs

(

αs log(Q
2/µ2)

)k
must be resummed in

order to achieve an accuracy up to O
(

α2
s

)

. This resummation is accomplished by
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation (see e.g. [2]),
one of the standard tools of traditional perturbative QCD.

However, in the geometric scaling kinematic region we can’t limit ourselves to
the DGLAP resummation. This region indeed is characterised not only by large
values of Q2, but also by small values of x (or equivalently by large values of the
center of mass energy squared for the sub-process γ∗ + P → X). Hence there are
many small x phenomena that we cannot neglect. First, when x is small enough
that αs log(1/x) ∼ 1, all terms of the form (αs log(1/x))

k, which are present in the
splitting functions [2], must be resummed. This time the resummation is performed
by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [3]. Thus BFKL effects
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Figure 1: The original geometric scaling observation

must be considered in order to obtain a realistic splitting function for the DGLAP
evolution.

Another important small-x effect could be the saturation of the parton dis-
tributions. At very high energy (i.e. at very small x) partons must recombine
in order to ensure the unitarity of the theory. Both DGLAP and BFKL theories
break down in this limit. The DGLAP approach fails because parton recombina-
tion is a higher twist effect, while the DGLAP equation is a leading twist result.
The BFKL approach fails because it doesn’t take in account multiple interactions.
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Even if our knowledge of high energy QCD is far from complete, there are some
interesting results, namely new evolution equations: the Balitsky/JIMWLK hi-
erarchy [5, 6] and the Balitsky-Kovchegov [5, 7] equation. For large values of Q2

(say Q2 > Q2
s(x), where Qs(x) is an opportune x−dependent saturation scale)

these equations reduce to the standard BFKL equation, while in the saturated
regime Q2 < Q2

s(x) their solutions noticeably differ from the BFKL solution. For
what concerns geometric scaling, the key point with these new equations is that
in the saturated regime they admit solutions with scaling behaviour.

One may then be tempted to interpret geometric scaling as a manifestation
of parton saturation. However at HERA the saturation scale should be at most
several GeV2, while data exhibit scaling behaviour also for Q2 much larger. Iancu
and others [8], using BFKL methods, have shown that geometric scaling is appro-
ximatively valid also in the region 1 <∼ log(Q2/Q2

s) ≪ log(Q2
s/Λ

2
QCD). This region

is usually referred as the “extended geometric scaling region”. At HERA a realistic
estimate for the saturation scale is Qs ∼ 2 GeV, which would imply approximate
geometric scaling for Q2 < 400 Gev2, i.e. for almost all of HERA data considered
in [1].

All this seems to suggest that the geometric scaling observation at HERA is
in fact a signal of parton saturation. In other words, the small-x HERA dynamics
should be determined by saturation effects. But this is at least strange. First of all
the derivation in [8] is a fixed coupling one and it doesn’t take in account DGLAP
evolution (i.e. it doesn’t resum large-Q2 logarithms). It would be astonishing if
it would work in such a wide kinematic window (0.05 GeV2 < Q2 < 450 GeV2).
Furthermore, we do know that the DGLAP theory works very well in most of the
geometric scaling window. For instance, the Bjorken scaling violations predicted
by the DGLAP theory are clearly visible at HERA. Moreover, the parton distri-
bution functions (PDFs) extracted from HERA data using the DGLAP evolution
have been used as input for the calculation of other processes, for example for
the Drell-Yan production, and they always led to results in good agreement with
phenomenology.
A complete failure of the traditional DGLAP-based perturbative QCD in all the
geometric scaling kinematic range seems then if not impossible at least unlikely.
Hence the traditional explanation of geometric scaling in terms of saturation only
is not fully convincing. In other words, a satisfactory understanding of geometric
scaling in still missing.

In order to understand geometric scaling, we have first to study the true evo-
lution in the small x HERA range. From a theoretical point of view, this study is
interesting because in this regime we have to deal with a non abelian gauge the-
ory in presence of two large scales (Q2 and 1/x) and with a quantum field theory
near the unitarity bound. The outcomes of this study are important also from a
phenomenological point of view. Consider indeed for instance the parton distribu-
tion functions extracted from HERA data. Until now indeed they are extracted
using the DGLAP evolution. Hence if in the small x region the real evolution is
dominated by saturation effects our HERA small x PDFs are wrong and must be
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adjusted. This is not a minor problem, since the HERA PDFs will be used as
input at LHC.

Summarizing, it is very important to understand the real small x behaviour
of HERA data. The aim of this thesis is exactly to investigate, both from a
theoretical and from a phenomenological point of view, the small x HERA region
in order to understand the true nature of geometric scaling and hence of the small
x evolution.
This thesis will be organised as follows. In the first chapter we will deal with
standard QCD evolution equations. We will give a brief derivation of the DGLAP
and BFKL equations in the context of DIS and we will revise their standard
solutions. We will then show how to improve the DGLAP kernel using the BFKL
one and vice versa. Chapter two will be devoted to high energy QCD. We will show
that most of the known results in this area can be obtained within the framework of
perturbative QCD. Following an approach pioneered by Mueller [21], we will derive
the BK equation as a non linear generalization of the BFKL equation. We will
then see that the BK equation can predict geometric scaling. In chapter three we
will study in detail geometric scaling. First of all we will show that the traditional
derivation of geometric scaling has little to do with saturation. Then we will give a
derivation of geometric scaling using only the traditional QCD evolution. Finally,
we will test our theory on the existing HERA data.



Chapter 1

QCD evolution equations

This first chapter will be devoted to the study of the traditional evolution equations
of perturbative QCD, that is to the study of the DGLAP and BFKL equations.
In Sec. 1.1 we will introduce the deep inelastic lepton-hadron scattering (DIS) and
the structure functions, just to fix the conventions.
Then in Sec. 1.2 we will review the derivation of the DGLAP equation in the
context of DIS. Using the collinear factorization we will show that this equation is
nothing but a renormalization group equation. Then we will calculate the leading
order kernel of the DGLAP equation and by generalizing this calculation we will
give an interpretation of the DGLAP theory in terms of Feynman graphs. We will
close the section by quoting one of the standard solution of the DGLAP equation,
the double scaling solution.
In Sec. 1.3 we will introduce the kT factorization and we will use its symmetries to
derive the BFKL equation. Then we will sketch out the calculation of the BFKL
kernel and show its principal features. We won’t go any further in this direction
because we will calculate the full BFKL kernel in the next chapter, in the context
of the colour dipole approach to DIS. After showing the traditional solutions of
the BFKL equation, we will quote the main problems of the BFKL theory. In the
next chapters we will show how this problems can be solved (or at least how the
theory can be improved).
Sec. 1.4 will be devoted to perturbative resummations. This way we can improve
the DGLAP and BFKL theory in order that they are reliable both in the high Q2

and in the small x region. We will see that these resummations solve most of the
problems of the BFKL evolution.

Our exposition will be far from complete, we will limit ourselves to a rapid
overview. For a detailed discussion we refer to the literature, for example to [10]
and references therein. A good and complete introduction to the BFKL theory in
the context of jet physics can be found in [12].



2 QCD evolution equations

1.1 Deep Inelastic Scattering

Consider the deep inelastic lepton-proton scattering:

k
k’

p
X

q

Figure 1.1: Deep Inelastic Scattering

It is customary to parametrize this process in terms of the variables1

Q2 ≡ −q2, x ≡ Q2

2p · q =
Q2

Q2 + s
, (1.1)

where s is the Mandelstam variable referred to the sub-process γ∗ + P → X. It is
clear from (1.1) that the small x limit corresponds to s >> Q2, while the large x
limit corresponds to the soft region, s ∼ 0.

As long as only photons are exchanged (that is, no parity-breaking electroweak
effects are present), the DIS cross section can be written as

dσ

dxdQ2
=

4πα2
em

Q4

[[

1 +

(

1− q · p
k · p

)2
]

F1 +
1

x

(

1− q · p
k · p

)

[F2 − 2xF1]

]

. (1.2)

The structure functions Fi = Fi

(

x,Q2
)

encode all the non trivial information
about the proton structure. At the lowest order in the perturbative expansion
they obey the Callan-Gross relation 2xF1 = F2. Even if this relation is spoiled by
radiative corrections, it is often convenient to introduce the factor R ≡ F2/2xF1−1
and to write the cross section as

dσ

dxdQ2
=

2πα2
em

Q4x

[

2− 2
q · p
k · p +

(

q · p
k · p

)2 1

1 +R

]

F2(x,Q
2). (1.3)

1We will neglect systematically proton mass
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1.2 DGLAP equation

1.2.1 Operator Product Expansion and factorization

One of the most powerful tools of perturbative QCD is the factorization theorem,
which states that for a general hard process with incoming hadrons all the non-
perturbative effects can be factored out into universal (i.e. process-independent)
parton distribution functions.

To see how this work in DIS, we first have to write down the cross section
(1.2) as σ ∝ LµνW

µν , that is to split the cross section into a leptonic part Lµν =
4e2
(

kµk
′
ν + k′µkν − gµνk · k′

)

, fully determined from QED, and a hadronic part
Wµν = 1/(4π)

∫

d4xeiq·x 〈P |Jµ(0)Jν(x)|P 〉, where P is the proton state and Jµ

the electromagnetic current.
Following (1.2) we can parametrize the hadronic tensor as

Wµν =

(

−gµν + qµqν

q2

)

F1 +

(

pµ − qµ
p · q
q2

)(

pν − qν
p · q
q2

)

F2

p · q . (1.4)

Recalling the Callan-Gross relation F2 = 2xF1, we may introduce a longitudinal
structure function FL = F2 − 2xF1 and rewrite Eq. (1.4) as:

Wµν =
FL

2x
eµνL +

F2

2x
eµν2 , (1.5)

with

eµνL = gµν − qµqν

q2

eµν2 = −gµν − 2x

q2
(pµqν + pνqµ)− 4x2

q2
pµpν .

(1.6)

F2/2x and FL/2x can be extracted from W by the mean of the projectors:

Ωµν
2 = −1

2
gµν +

3x

p · q p
µpν , Ωµν

L =
Q2

(p · q)2
pµpν . (1.7)

Using the optical theorem, we can relate the hadronic tensor to the imaginary
part of the forward Compton scattering, that is

Wµν =
1

2π
Im

∫

d4xeiq·x 〈P |T (Jµ(0)Jν(x)) |P 〉 ≡ 1

2π
Im 〈P |Tµν |P 〉 . (1.8)

The time ordered product of the two electromagnetic currents can be Wilson ex-
panded. We may categorize the operators that contribute to this operator product
expansion (OPE) according to the irriducible representation of the Lorentz group
to which they belong, that is according to their spin. We can then write the Wilson
expansion as

Tµν =

∫

d4xeiq·xT (Jµ(x)Jν(0)) ∼
∑

s

Cµν
µ1µ2...µs

(q) Oµ1µ2...µs , (1.9)



4 QCD evolution equations

where Oµ1...µs is symmetric and traceless (that is it is an operator with spin s). In
Eq. (1.9) “∼” means that this expansion is valid for all matrix elements, provided
q is much larger than the characteristic momentum in any of the external states.
Having in mind (1.5), we parametrize the expansion (1.9) as

∑

s

Cµν
µ1µ2...µs

(q) Oµ1µ2...µs =
∑

s

[(

gµν − qµqν

q2

)

qµ1qµ2C
L
s + (−gµνqµ1qµ2+

−gµµ1
gνµ2

q2 + qµgνµ1
qµ2 + qνgµµ1

qµ2

)

C(2)
s

]

qµ3 ...qµs

(

2

Q2

)s

Oµ1µ2...µs . (1.10)

In order to obtain a result for W , we have to evaluate the matrix element
of O on the proton state. This matrix element can depend only on the proton
momentum p, that is

〈P |Oµ1µ2...µs |P 〉 = 2As

(

p2
)

pµ1pµ2 ...pµs , (1.11)

where the factor 2 is for future convenience.
Using Eq. (1.10) and (1.11) we then obtain

〈P |Tµν |P 〉 =
∑

s

(

1

x

)s
(

2As

(

p2
)

CL
s

(

Q2
)

eµνL + 2As

(

p2
)

C(2)
s

(

Q2
)

eµν2

)

.

(1.12)
Let us now discuss the contribution of an operator of dimension d and spin s to
this expansion. From Eq. (1.11) it follows that the coefficient As has dimension
[A] = dO − s − 2. Since 〈P |Tµν |P 〉 is dimensionless, this implies that Cs has
dimension [C] = −dO + s + 2. In other words, the contribution of the operator
Oµ1...µs is of order

〈

P
∣

∣Cµν
µ1µ2...µs

(Q) Oµ1µ2...µs
∣

∣P
〉

∼
(

1

x

)s(mP

Q

)dO−s−2

≡
(

1

x

)s(mP

Q

)t−2

,

(1.13)
where we have introduced the twist t = d− s.
In the deep inelastic region, Q2 → ∞, we can consider only small-twist operators,
the others being suppressed by powers of 1/Q. This approximation is usually
referred as the leading twist approximation. In our case the operators with lowest
possible twist are:

Oµ1µ2µ3...µs

f = ψfγ
µ1 iDµ2 iDµ3 ... iDµsψf − traces (1.14)

Oµ1µ2µ3...µs
g = Fµ1ν

a iDµ2iDµ3 ... iDmus−1 Fµs
a ν − traces, (1.15)

where the symmetrization is implicit. Here f is a flavour index, a is a colour index
and D is the covariant derivative.

Let us now see how all of this can be related W , that is to the structure
functions F . For definiteness we will focus on F2, that is we will consider T2 ≡
Ωµν
2 〈Tµν〉. From Eq. (1.12) we obtain

T2 =
∑

s

(

1

x

)s

2CsAs, (1.16)
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where we have dropped the index 2 in C in order to shorten the notation. Using
the Cauchy’s theorem we can extract CkAk:

CkAk =
1

2π
Im

∫ 1

0
dxT2(x)x

k−2. (1.17)

But recalling Eq. (1.8) this implies

CkAk =

∫ 1

0
dxF2(x)x

k−2 =

∫ 1

0
dx
F2(x)

x
xk−1 ≡ M [F2/x] (k), (1.18)

that is CjAj are related to F2 by Mellin transform2 .

Introducing

Cf (x,Q
2) ≡

∫ c+i∞

c−i∞

dN

2πi
x−NCf

N (Q2)

qf (x,Q
2) ≡

∫ c+i∞

c−i∞

dN

2πi
x−NAf

N (Q2)

(1.19)

and using the Laplace convolution theorem we obtain

F2(x,Q
2) = x

nf
∑

i=1

Ci ⊗ (qi + q̄i) + Cg ⊗ g, (1.20)

[f ⊗ g](x) ≡
∫ 1

x

dy

y
f

(

x

y

)

g(y),

where nf is the number of active flavours.

Equation (1.20) express the factorization theorem. The parton distribution

functions qi, g are target dependent and are not perturbative quantities. As their
name suggests, they represent (at least at the lowest order in the perturbative
expansion) the probability density of finding a parton with momentum xp in a
proton with momentum p.
The coefficient functions Ci are target independent and can be calculated in or-
dinary perturbative QCD, for example with DIS on parton. At leading order we
have

Ci(x,Q
2) = e2i δ(1− x), Cg(x,Q

2) = 0, (1.21)

where ei is the carge of the flavour i. It is always possible to choose a scheme such
that (1.21) are true at all order in perturbation theory. In such schemes we can
then write

F2(x,Q
2) = x

∑

e2i
(

qi(x,Q
2) + qi(x,Q

2)
)

. (1.22)

2The Mellin transform is nothing but a Laplace transform with respect to the variable
ξ = log (1/x).
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1.2.2 Renormalization group and DGLAP equation

Although the partonic distribution functions are essentially non perturbative quan-
tities, it is possible to calculate their dependence on the energy scale using the
renormalization group.

To simplify the notation, we suppose there is only one flavour. Suppose there is
a typical energy scale, say a renormalization scale µ. Then Cj = Cj

(

Q2/µ2, αs(µ
2)
)

and Aj = Aj

(

αs(µ
2)
)

. Since F2 is an observable, it can’t depend on the renor-

malization scale, that is µ2 d
dµ2F2(Q

2/µ2, µ2) ≡ 0. This in turn implies

0 ≡ µ2
d

dµ2
(

Cj

(

Q2/µ2, αs(µ
2)
)

Aj

(

αs(µ
2)
))

;

1

Cj
µ2

d

dµ2
Cj = − 1

Aj
µ2

d

dµ2
Aj ≡ −γj

(

αs(µ
2)
)

. (1.23)

Since Cj is a perturbative quantity, the anomalous dimension γ must be perturba-
tive too. Thus the logarithmic derivative with respect to µ2 of Aj is a perturbative
quantity, even if Aj are target-dependent and essentially non perturbative. We
have the main result

µ2
d

dµ2
Aj(µ

2) = γj
(

αs(µ
2)
)

Aj(µ
2). (1.24)

Introducing t = log
(

Q2/Λ2
QCD

)

Eq. (1.24) is rewritten as

d

dt
Aj(Q

2) = γj (αs(t))Aj(Q
2). (1.25)

The general solution of (1.25) is

Aj(Q
2) = Aj(µ

2) exp

(

∫ αs(Q2)

αs(µ2)
dz
γj(z)

β(z)

)

≡ Γj(Q
2, µ2)Aj(µ

2), (1.26)

where β is the usual QCD β-function, that is d
dtαs(t) = β (αs(t)). Similarly one

can obtain

Cj

(

Q2/µ2, αs(µ
2)
)

= Cj

(

1, αs(Q
2)
)

Γj(Q
2, µ2) (1.27)

In general then we can rewrite (1.18) as

∫ 1

0
dxxn−2F2(x,Q

2) =
[

Cn

(

1, αs(Q
2)
)

Γn(Q
2, µ2)

]

An(µ
2), (1.28)

where we have separated the perturbative part (in square bracket) from the non
perturbative one.
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When more than one flavour is active (1.25) becomes a matrix equation, which
can be written as

d

dt

(

g(N, t)
qi(N, t)

)

= αs(t)

(

γ (N,αs(t))gg γ (N,αs(t))gqj
γ (N,αs(t))qig γ (N,αs(t))qiqj

)

·
(

g(N, t)
qj(N, t)

)

,

(1.29)
where we put qi(N, t) ≡ Ai

N (t).
Eq. (1.29) is the celebrated Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation in Mellin space.

Defining the splitting function P (x, αs(t)) as the inverse Mellin transform of
the anomalous dimension,

P (x, αs(t)) ≡
1

2πi

∫ c+i∞

c−i∞
x−nγ (N,αs(t)) dN, (1.30)

we obtain the DGLAP equation in coordinate space:

d

dt

(

g(x, t)
qi(x, t)

)

= αs(t)

(

P (αs(t))gg P (αs(t))gqj
P (αs(t))qig P (αs(t))qiqj

)

⊗
(

g(t)
qj(t)

)

. (1.31)

1.2.3 The LO solution of the DGLAP equation

In this section we will derive the leading order expression of the evolution factor
Γ in Eq. (1.26). From this solution we will see that the DGLAP equation at this
order resums all the logarithmic terms of the form αs log

(

Q2/µ2
)

.
Our starting point is just Eq. (1.28). Since γ(j) is target-independent, we

can evaluate it with DIS on parton. Our normalizations were chosen such that
Aj(p

2) = 1 on parton state, hence for a partonic process Eq. (1.28) becomes:

∫ 1

0
dxxn−2F̂2(x,Q

2) = Cn

(

1, αs(Q
2)
)

Γn

(

Q2, µ2
)

, (1.32)

where the hat is a reminder that we are dealing with partons.
The functions γN (αs), β(αs) and CN (1, αs) admit a perturbative expansion. At
leading order we can write

γN (αs) = γ0(N) +O(α2
s), β(αs) = −β0α2

s +O(α3
s)

CN (1, αs) = C0(N) + C1(N)αs +O(α2
s).

(1.33)

This in turn implies that at this level of accuracy we can write

ΓN

(

Q2, µ2
)

= exp

(

∫ αs(Q2)

αs(µ2)

γN (z)

β(z)
dz

)

=

=

(

αs(Q
2)

αs(µ2)

)−γ0(N)/β0

=

(

1 + β0αs(Q
2) log

(

Q2

µ2

))γ0(N)/β0

.

(1.34)
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From this equation it is clear that at this order the DGLAP equation resums all

the logarithms of the form
(

αs(Q
2) log

(

Q2

µ2

))k
, that is it resums all the leading

logarithms (LL) of Q2. It is easy to see that at NL the DGLAP equation resums

the NLL terms αs

(

αs(Q
2) log

(

Q2

µ2

))k
and so on.

Consider again Eq. (1.34). If we consider only the LO (and not the LL)
approximation, that is if we don’t consider the logQ2 resummation, we can write:

ΓN

(

Q2, µ2
)

= 1 + γ0(N)αs log

(

Q2

µ2

)

+O(α2
s). (1.35)

But this and Eq. (1.27) imply

CN

(

Q2/µ2, αs(µ
2)
)

=
(

C0(N) + αs(Q
2)C1(N)

)

(

1 + γ0(N)αs(Q
2) log

Q2

µ2

)

=

= C0(N)

(

1 + αsγ0(N) log
Q2

µ2

)

+O(α2
s). (1.36)

If we Mellin-antitransform this last equation we obtain

C
(

x,Q2/µ2, αs

)

= C0(x) + αsC0 ⊗ P0 log

(

Q2

µ2

)

. (1.37)

If we replace C0 with its actual expression C0 = e2δ(1− x) we obtain:

C
(

x,Q2/µ2, αs

)

= e2
(

δ(1− x) + αsP0(x) log

(

Q2

µ2

))

. (1.38)

But C
(

x,Q2/µ2, αs

)

is just F̂2/x, that is the partonic structure function. Then if

we consider DIS on parton and we calculate F̂2, the coefficient of the logarithmic
term log

(

Q2/µ2
)

gives us the leading order splitting function. In the following
section we will do exactly this calculation.

1.2.4 The LO splitting functions

As we have said in the previous section, to calculate the LO splitting functions
all we have to do is to consider DIS on parton at O(αs) (which is a perturbative
process) and to pick up the coefficient of the logarithm log

(

Q2/µ2
)

. Logarithmic
terms of this form can be produced within the framework of Feynman graphs in
two ways: either by loop integrals or by phase space integrals. Tree level diagrams
and loop corrections have the same kinematic structure, so their contribution to
the splitting functions will be a trivial one (nonetheless they are important, since
they are necessary to regularize the infrared divergences at x → 1). The truly
interesting part will come from phase space integrals, that is from real emission.

To see how this machinery works let us consider partonic DIS with one gluon
emission. In order to obtain (1.38) we have to evaluate the two Feynman graphs
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q

p

pf
+

q

k
p′

pf

p

Figure 1.2: Real gluon emission in partonic DIS

in Fig. (1.2).
Consider first the diagram on the left. A straightforward calculation leads to

Wµν
0 =

1

4π
4e2
(

pµpνf + pνpµf − gµνp · pf
) (2π)4δ(p+ q − pf )

(2π)3 2Ef
. (1.39)

In this case x = 1. Indeed

x = − q2

2p · q = − q2

(p+ q)2 − q2
=

q2

q2 − p2f
=
q2

q2
= 1. (1.40)

This condition must be enforced by δ(Ef − Ei). Using the relation

dx

dEf
=

Ef

p · q (1.41)

we may write
δ(Ef − Ei)

Ef
=

δ(x− 1)

Ef dEf/dx
=
δ(x− 1)

p · q . (1.42)

Then Eq. (1.39) can be rewritten as:

Wµν
0 = e2

(

pµpνf + pνpµf − gµνp · pf
) δ(1− x)

p · q . (1.43)

From this it immediately follows (see (1.7)):

Ωµν
L Wµν = 0 −→ FL = 0 (Callan-Gross relation) (1.44)

Ωµν
2 Wµν =

1

2
e2δ(1− x) −→ F̂2

x
= C2 = e2δ(1− x), (1.45)

in agreement with (1.21).

Consider now the real gluon emission. It is convenient to introduce the Sudakov
parametrization, that is

p = (P, 0, 0, P ), η =
1

4P
(1, 0, 0,−1), k = (1− z)p+ kT + yη, (1.46)
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where kT = (0, kx, ky, 0) and y is fixed by the mass-shell condition 0 = k2 = −k2
T +

(1− z)y. In this parametrization p′ = p− k = zp−kt− yη and p′2 = −k2
T /(1− z),

while the invariant phase space is

d3k

(2π)32k0
=

1

(2π)3
d2kT p dz

2(1− z)p+ y/(2p)
. (1.47)

Logarithmic singularities can arise only from the quark propagator going on-shell
(we are neglecting quark masses). So we are interested in the collinear region, that
is in the limit kt → 0, y → 0. In this limit we can rewrite the phase space as

d3k

2(2π)3k0
≈ d2kT

2(2π)3
dz

1− z
. (1.48)

Since in the propagator we have an ”almost-real” quark, we may use theWeizsäcker-
Williams approximation:

i
6 p′
p′2

= i
∑

pol

u(p′)ū(p′)

p′2
+O(k2

T ). (1.49)

Consider now the matrix element for the process p+γ∗ → k+pf . Using (1.49)
we can split the squared amplitude:

|Mp+γ∗→pf+k|2 ≈ |Mp′+γ∗→pf |2
1

p′4
|Mp→k+p′ |2, (1.50)

where we have neglected terms which don’t give birth to logarithms. In this
approximation we can write

W1 =

(

d3pf
(2π)3 2Ef

∣

∣Mp′+γ∗→pf

∣

∣

2
(2π)4δ(Pi − Pf

)

·

·
(

d2kT

2(2π)3
dz

1− z

∣

∣Mp→k+p′
∣

∣

2 1

p′4

)

.

(1.51)

Consider for the moment the first line only. With the replacement p′ → p this is
exactly like W0. Let us then discuss the effects of p′. First of all, it changes the
kinematics. In this case indeed we have

x = − q2

2p · q = − q2

2/z p′ · q = −z q2

2p′ · q = z, (1.52)

hence we will have δ(x− z). Then Wµν becomes:

Wµν
p′+γ∗→pf

= e2
(

p′µpνf + p′νpµf − gµνp′ · pf
) δ(z − x)

p · q =

= z e2
(

pµpνf + pνpµf − gµνp · pf
) δ(z − x)

p · q .

(1.53)
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This implies that the LO coefficient C2 can be written as

C2(x) = e2
(

δ(1− x) +

∫

dz

(

d2kT

2(2π)3
1

1− z

∣

∣Mp→k+p′
∣

∣

2 1

p′4

)

(z δ(x− z))

)

=

= e2
(

δ(1− x) +

[

d2kT

2(2π)3
x

1− x

∣

∣Mp→k+p′
∣

∣

2 1

p′4

])

. (1.54)

Consider now the term between the square brackets. Extracting the g2s term
from the amplitude and recalling that in our parametrization p′2 = −k2T /(1 − x)
we obtain

[

d2kT

2(2π)3
x

1− x

∣

∣Mp→k+p′
∣

∣

2 1

p′4

]

=
g2s

16π2

∫

dk2T
k2T

x(1− x)

k2T

∣

∣Mp→k+p′
∣

∣

2
. (1.55)

Assume now that |M|2/k2T is independent on kT . Then Eq. (1.55) becomes

[

d2kT

2(2π)3
x

1− x

∣

∣Mp→k+p′
∣

∣

2 1

p′4

]

= αs

(

x(1− x)

4πk2T

∣

∣Mp→k+p′
∣

∣

2
)

log

(

Q2

µ2

)

, (1.56)

where µ2 is an infrared regulator. But now from Eq. (1.56), (1.54) and (1.38) it
follows that3

P0(x) =
x(1− x)

4πk2T

∣

∣Mp→k+p′
∣

∣

2
. (1.57)

This argument can be easily generalized to the case of more than one flavour.
In this case we have four splitting functions, one for each sub-process shown in Fig.
1.3. The origin of the name splitting functions is then clear: Pj←i ≡ Pji express
somehow the probability for a parton i to splitting into a parton j.

Pqq Pgq Pqg Pgg

Figure 1.3: Leading order contribution to the splitting functions

3In fact, this splitting function is correct only if x < 1, i.e. it is not infrared safe. In
order to obtain the true infrared regularised splitting function we have to evaluate also
the virtual diagrams.
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At LO one obtain [2]:

P 0
qq(x) = CF

[

1 + x2

(1− x)+
+

3

2
δ(1− x)

]

, CF =
4

3
(1.58)

P 0
qg(x) = TR

[

x2 + (1− x)2
]

, TR =
1

2
(1.59)

P 0
gq(x) = CF

[

1 + (1− x)2

x

]

(1.60)

P 0
gg(x) = 2Nc

[

x

(1− x)+
+

1− x

x
+ x(1− x)

]

+ δ(1− x)
11Nc − 4nfTR

6
. (1.61)

Note that only gluon entries are singular as x→ 0.

1.2.5 Feynman graphs interpretation of the LL series

We can think at the LL DGLAP evolution as a geometrical series in terms of
Feynman graphs. For simplicity, we will deal only with real gluon emission.

We saw that a term αs log
(

Q2

µ2

)

is produced by the process in Fig. (1.3a). At

the same way we can produce all the logarithms
(

αs log
(

Q2

µ2

))

by iterating this

mechanism, that is we can obtain the leading log series by the gluon ladder shown
in Fig. 1.4.

+

kT1

+ ... +

kT1

kT2

kTn...
+ ...

Figure 1.4: Gluon ladder

The LL series is then produced by the phase-space integrals

∫ Q2

µ2

dk2Tn

k2Tn

∫ k2Tn

µ2

dk2Tn−1

k2Tn−1

...

∫ k2T3

µ2

dk2T2

k2T2

∫ k2T2

µ2

dk2T1

k2T1

=
1

n!
logn

(

Q2

µ2

)

. (1.62)

Note that the LL series is generated only if kT1 ≪ kT2 ≪ ... ≪ kTn , otherwise
kT1 would act as an ultraviolet cut-off and no large logarithms would be produced.
In order to see this, consider just two gluon emission. The first quark propagator
has an off-shellness equal to −k2T1

/(1 − x1), while the second equal to −(kT1 +
kT2)

2/(1− x2). Hence we have the factors

∫

dk2T2

(kT1 + kT2)
2

dk2T1

k2T1

. (1.63)



1.2 DGLAP equation 13

From this it is clear that only if kT2 ≫ kT1 we have the logarithmic structure as
in Eq. (1.62). This argument can be easily generalized to multiple emissions.

Consider now the first step of the ladder, kT1 = µ. It is just the factorization
scale. Above this scale we have factorization and perturbative DGLAP equation.
Non perturbative effects enter trivially, just as boundary condition. Under this
scale instead there are all the non trivial non perturbative phenomena that deter-
mine the parton distribution functions.

Since the intermediate quarks are increasingly virtual as we go up the ladder,
one can interpret them as components of the proton when this is probed at suc-
cessively higher scales. In other words, an intermediate quark with k2T ≈ Q2 can
be thought of as a constituent of the proton made visible when the wave function
of the proton is analysed with a resolution ∆x ∼ 1/Q2. In this picture, the proton
seen at one scale can be resolved at a finer scale into a more virtual quark and a
number of gluons.

In this picture we can derive the DGLAP equation in an intuitive way. Assume
indeed to consider the quark distribution at some scale Q2 and then to slightly
increase Q2 to Q2 + ∆Q2. This opens up a new region of phase space for the
emission of a quark with transverse momentum Q2 < k2T < Q2+∆Q2. This quark
can be emitted both from a quark and a from gluon, with probabilities respectively
equal to αsPqq(z)∆Q

2/Q2 and αsPqg(z)∆Q
2/Q2. But then at this scale we may

write

q
(

x,Q2 +∆Q2
)

− q
(

x,Q2
)

=

= αs
∆Q2

Q2

∫ 1

0
dx′
∫ 1

0
dz
(

Pqq(z)q(x
′, Q2) + Pqg(z)g(x

′, Q2)
)

δ(x− x′z) =

= αs
∆Q2

Q2

∫ 1

x

dz

z

(

Pqq(z)q
(x

z
,Q2

)

+ Pqg(z)g
(x

z
,Q2

))

,

(1.64)

which in the limit ∆Q2 → 0 reduces to

Q2d q(x,Q
2)

dQ2
= αs

∫ 1

x

dz

z

(

Pqq(z)q
(x

z
,Q2

)

+ Pqg(z)g
(x

z
,Q2

))

, (1.65)

i.e. to the (fixed coupling) evolution equation for q.

1.2.6 The double scaling solution

In order to see how the DGLAP equation works in practice, in this section we will
derive one of its standard solutions, the double scaling solution. This is a solution
valid in the region of large Q2 and small x, that is it may be valid in the kinematic
window of geometric scaling.

We start from the expression

F2(x,Q
2) = x

nf
∑

i=1

e2i
(

qi(x,Q
2) + qi(x,Q

2)
)

. (1.66)
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It is convenient to introduce the singlet and non singlet quark distributions, defined
respectively as

qS ≡
nf
∑

i=1

(qi + q̄i) , qNS ≡
nf
∑

i=1

(

e2i
〈e2〉 − 1

)

(qi + q̄i) , (1.67)

where
〈

e2
〉

≡ 1
nf

∑nf

i=1 e
2
i .

Then Eq. (1.66) becomes

F2(x, t) =
〈

e2
〉

x (qS(x, t) + qNS(x, t)) , (1.68)

while the DGLAP equation (1.31) becomes

d

dt

(

g
qS

)

= αs(t)

(

Pgg Pgq

Pqg PS
qq

)

⊗
(

g
qS

)

, (1.69)

d

dt
qNS = αs(t)Pqq ⊗ qNS . (1.70)

In order to find the solution to these equations, it is convenient to work in
the N -Mellin space. In this space indeed the leading order solution for a generic
parton distribution p(N,T ) is just

p(N, t) = p(N, t0)e
1
β0

γ(N)ζ
, (1.71)

with ζ ≡ log(t/t0). If we want the solution in the x space, we must antitransform
Eq. (1.71):

p(x, t) =

∫ c+i∞

c−i∞

dN

2πi
eξNp(N, t), (1.72)

where ξ = log(1/x).
Assume for the moment that all the singularities of the initial condition p(N, t0)

are to the left of those of γ(N) (which are always poles on the real axis at non-
positive integer values of N). Then at small x, i.e. at large ξ, the integral may be
evaluated by the saddle point method, with the saddle point condition

ξs +
1

β0

dγ

dN
ζ = 0. (1.73)

We may thus obtain the leading small x behaviour of the DGLAP equation by ex-
panding the matrix of the anomalous dimensions around its rightmost singularity,
determining the corresponding splitting functions by inverse Mellin transforma-
tion, and then solving the resulting simplified DGLAP equation. It is convenient
to work with new parton distribution defined as Q ≡ xq, G ≡ xg. Because of the
x factor the anomalous dimensions associated to Q and G are not the same as the
ones associated to q and g. However it is trivial to obtain the relation between
γAB and γab:

γAB(N) = γab(N + 1), (1.74)
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where A,B = Q,G and a, b = q, g.

Expanding the LO anomalous dimensions γAB obtained from the splitting fun-
ctions (1.58) we obtain:

γS(N) =
1

N

(

2CA 2CF

0 0

)

+

(

11
6 CA − 2

3TRnf −3
2CF

4
3TRnf 0

)

+O(N)

γNS(N) =
CF

N + 1
+
CF

2
+O(N + 1), (1.75)

where CA = Nc = 3. From what we have said it is clear that qNS behaves like xqS
or xg, hence it may be neglected at small x. In the following then we will consider
only the singlet distribution.

In order to solve the DGLAP equation we have to diagonalize the anomalous
dimension matrix (1.75). The resulting eigenvalues are

λ+ = 2CA
1

N
+

(

11

6
CA +

2

3
TRnf − 4

3

CF

CA
TRnf

)

(1.76)

λ− = −4

3

CF

CA
TRnf , (1.77)

with associated eigenvectors

Q+ =
2

3

TRnf
CA

NG+, Q− = −CA

CF
G. (1.78)

Note that only λ+ is singular at N = 0, hence in the small x limit F2 will be
dominated by the “large” eigenvector G+.

In x space the eigenfunctions obey the following decoupled differential equa-
tions:

(

∂2

∂ξ∂ζ
+ δ+

∂

∂ξ
− γ2

)

G+(ξ, ζ) = 0

(

∂

∂ζ
− δ−

)

G−(ξ, ζ) = 0,

(1.79)

with

δ+(ξ, ζ) =
11 +

2nf

27

β0
, δ− =

16

27β0
nf , γ2 =

12

β0
(1.80)

and β0 = 11− 2
3nf .

From what we have said, the evolution is dominated by G+, which obeys a two
dimensional wave equation with ‘time’ 1

2(ξ + ζ) and ‘space’ 1
2(ξ − ζ). From this

some properties of the solution G+ follow. First of all, the equation is essentially
symmetrical in ξ and ζ, hence G+ evolves equally in x and t (up to the small
asymmetry induced by the damping term proportional to δ+). Any further asym-
metry in ξ and ζ must thus come from the boundary condition. Moreover, the
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propagation is “timelike” into the forward light-cone at the origin (ξ, ζ) = (0, 0),
along the “characteristics” ξ =constant and ζ =constant. Furthermore, at a given
point (ξ, ζ), G+ depends only on the boundary conditions contained within the
backward light cone formed by the two characteristics through (ξ, ζ), that is to
calculate G+(ξ, ζ) is is unnecessary to know what happens at smaller values of x
or larger values of t. Note finally that the equation is linear, hence contributions
to G+ from different parts of the boundary are simply added together.

Let us now write the solutions of Eq. (1.79). The solution to the second
equation is trivial, we only have to integrate. Thus the general solution is:

G− (ξ, ζ) = e−δ−ζG− (ξ, 0) . (1.81)

For the first equation, if we write z = 2γ
√
ξζ it becomes a Bessel equation. Then

the general solution for G+ is

G+(ξ, ζ) = I0

(

2γ
√

ξζ
)

e−δ+ζG+(0, 0)+

+

∫ ξ

0
dξ′I0

(

2γ
√

(ξ − ξ′)ζ
)

e−δ+ζ ∂

∂ξ′
G+

(

ξ′, 0
)

+

+

∫ ζ

0
dζ ′I0

(

2γ
√

ξ(ζ − ζ ′)
)

e−δ+(ζ−ζ′)

(

∂

∂ζ ′
+ δ+

)

G+

(

0, ζ ′
)

,

(1.82)

with

I0(z) ≡
∑

n=0

∞
(

1
4z

2
)n

(n!)2
=

1√
2πz

ez
(

1 +O

(

1

z

))

. (1.83)

Obviously the behaviour of G depends on the boundary conditions. Let us con-
sider two classes of relevant boundary conditions. First assume that G(x, t0) ≈
constant for small x. In this case the leading singularity comes from the anomalous
dimension, hence our argument applies. Expanding the Bessel function I0 in Eq.
(1.82) we obtain:

G(σ, ρ) ≈ G+(σ, ρ) ≈
N√
4πσ

e
2γσ−δ+

σ
ρ

(

1 +O

(

1

σ

))

, (1.84)

where we have introduced the double scaling variables

σ ≡
√

ξζ, ρ ≡
√

ξ/ζ. (1.85)

Assume now that G(x, t0) ∝ x−λ, with λ > 0. In this case we can’t neglect
the singularity of the boundary condition. Evaluating the Mellin inversion integral
(1.72) in the saddle point approximation we obtain

G(σ, ρ) ≈ e
λσρ+

(

γ2

λ
−δ+

)

. (1.86)

For small enough x this behaviour overwhelms the behaviour of Eq. (1.84). How-
ever, if ζ is large enough, that is if ρ ≤ (γ/λ), the leading behaviour is again the
one of Eq. ((1.84).
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Hence we obtain a universal prediction for F2: if ζ is large enough indeed we
have

F2(σ, ρ) ≈ Q+ =
2

3

TRnf
CA

∂G+ ≈

≈ N√
4πσ

γ

ρ
exp

(

2γσ − δ+
σ

ρ

)[

1 +O

(

1

ρ

)

+O

(

1

σ

)]

,

(1.87)

where the boundary dependence is only in the trivial overall factor N .
This means that away from the boundaries perturbative QCD allows us to predict
in a parameter-free way (i.e. independently of the precise form of the boundary
conditions) the asymptotic behaviour of F2.

Let us summarize our results. Recalling Eq. (1.84) we can say that: logG(σ, ρ)
at fixed ρ is asymptotically a linear function of σ, with slope independent of ρ (up
to terms which vanish as 1/ρ), while at fixed σ it is asymptotically a flat function

of ρ. In other words, logG(σ,ρ)
σ is asymptotically independent of both ρ and σ, up

to corrections which vanish as 1/ρ and 1/σ. This property is usually referred as
the “double asymptotic scaling” of G, hence the solution Eq. (1.87) is called the
double scaling solution of the DGLAP equation.
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1.3 BFKL equation

1.3.1 The high energy region and large x-logarithms

In the previous section we have shown that the (LO) DGLAP equation resums all

the contributions of the form
(

αs logQ
2
)k
, hence it is fundamental when we are

in the high virtuality region. Assume now that we are in the high energy region,
s≫ Q2.

If s is such that αs log(s/Q
2) = αs log(1/x) ∼ 1, we have to resum all the

contributions of the form (αs log(1/x))
k to obtain an accuracy up to O(αs)

2. Let
us see if the DGLAP equation can perform this resummation. Consider again Eq.
(1.34). It is clear then that the leading order DGLAP equation resums terms of the

form
(

αs log(Q
2) log(1/x)

)k
, that is it resums the double leading log series (DLL)

. Unfortunately this resummation neglects those terms which contain the leading
power of log(1/x) but which aren’t accompanied by the leading power of log(Q2).
The resummation of these terms, which are present in the evolution of the parton
densities, is accomplished by the BFKL equation [3].

This section will be devoted to the derivation of the BFKL equation. There
are many approach to BFKL theory. We will follow the kT factorization one, since
it exploits explicitly the parallelism between DGLAP and BFKL equations.

1.3.2 kT factorization and BFKL-like equation

In order to obtain the BFKL equation, we need a more general form of the fac-
torization theorem (1.20). It is possible to prove that the two-particle reducible
contribution to an inelastic γ∗P → X scattering satisfies, at least at leading log x
(LLx), the fundamental factorization [9]:

σ(x,Q2) =

∫ 1

x

dy

y

∫ W 2/4

0

dk2

k2
C

(

y

x
,
Q2

k2
, αs(µ

2)

)

f(y, k2, µ2), (1.88)

where σ is the adimensional cross-section, k is a transverse momentum, W is
the square of the center-of-mass energy for the subprocess γ∗P → X, C is a
perturbatively calculable quantity and f is the unintegrated parton distribution,
which is related to the usual integrated one by

F (x,Q2) =

∫ Q2

0

dk2

k2
f(x, k2). (1.89)

Eq. (1.88) expresses the kT factorization theorem.
For our purposes it is useful to introduce S2 = Λ2/x, l2 = Λ2/y, so that (1.88)

becomes

σ(S2/µ2, Q2/µ2, µ2) =

∫ ∞

0

dl2

l2

∫ ∞

0

dk2

k2
C

(

S2

l2
,
Q2

k2
, αs(µ

2)

)

f

(

l2

µ
,
k2

µ2
, µ2
)

,

(1.90)
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where the formal extension of the integration limits is of no consequence for our
application (provided that the definitions of C and f are suitably extended). The
symmetry of (1.90) is now totally manifest. Just as the high virtuality limit cor-
responds to Q2 → ∞ at fixed S2, so the high energy limit is now S2 → ∞ at fixed
Q2.

Eq. (1.90) assumes a simpler form in the Mellin space. If we define

σ(N,M,µ2) :=

∫ ∞

0

dS2

S2

(

Λ2

S2

)N ∫ ∞

0

dQ2

Q2

(

Λ2

Q2

)N

σ

(

S2

µ2
,
Q2

µ2
, µ2
)

, (1.91)

the double factorization (1.90) can be expressed as

σ(N,M) = C
(

N,M,αs(µ
2)
)

f(N,M,µ2) (1.92)

To derive the BFKL equation from (1.92), we will adopt the following strategy:
first we will show how the mass factorization (and hence the DGLAP equation)
follows from (1.88), then we will use the manifest symmetry of (1.88) to obtain
the high energy factorization (and hence the BFKL equation).

Consider then the large Q2 limit. We can rewrite (1.92) as

σ(N,Q2/µ2, µ2) =

∫ c+i∞

c−i∞

dM

2πi

(

Q2

Λ2

)M

C(M,N,αs

(

µ2)
)

f(N,M,µ2) (1.93)

Since the Mellin transform of (Λ2/Q2)k logn(Λ2/Q2) is n!/(M − k)n+1, it follows
that the leading singularity at large Q2 is at M = 0, singularities further to the
left vanish as powers of 1/Q2 (and hence they are neglected in the leading twist
approximation).

It is possible to prove that in a nonabelian gauge theory only two-particle
reducible diagrams can contain logarithmic singularities [10],[11]. Hence the two-
particle irreducible unintegrated distribution function has at most a pole atM = 0,
while the two-particle reducible coefficient function may contain (and in fact it
does) logarithmic singularities which correspond to multiple poles at M = 0. We
may then perform a Laurent expansion of the coefficient function

C
(

N,M,αsµ
2
)

=
∞
∑

i=−∞

Ck

(

N,αs(µ
2)
)

M−M−1, (1.94)

so that at leading twist we have

C(N,Q2/Λ2, µ2) =
∞
∑

m=0

1

m!
Cm

(

N,αs(µ
2)
) (

log(Q2/Λ2)
)m

(1.95)

The logarithmic singularities are generated perturbatively, so Cm(N,αs) will begin
at O(αm

s ).
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We can proceed similarly with f . Power counting arguments [11] show that f
is regular at M = 0, so

f(N,M,µ2) =
∞
∑

i=0

fi(N,µ
2)M i, (1.96)

with

fm(N,µ2) =
1

m!

∫ ∞

0

dk2

k2
(

log(µ2/k2)
)m

f(N, k2/µ2, µ2). (1.97)

To obtain the leading twist behaviour of F2, we must combine Eq. (1.94) and
(1.96) and keep only the M = 0 singularities. Moreover, at leading log accuracy,

we have to keep only terms like
(

αs log(Q
2)
)k
. Since Cm(N,αs) begins at O(αm

s ),
this implies that at leading log in (1.96) only the first term survives. But f0(N,µ

2)
is the integrated distribution function F (N,µ2), so we obtain from (1.93) the mass
factorization theorem:

σ(N,Q2/µ2, µ2) = C(N,Q2/µ2, αs(µ
2))F (N,µ2) +O(1/Q2) (1.98)

From (1.98) the general DGLAP-like equation (1.25) and the general solution
(1.28) follow immediately.

We can now exploit the symmetry between N andM to derive an energy facto-
rization theorem. Let us consider the high-energy limit S2/Λ2 → ∞. From [10],[11]
it follows that only two-particle reducible graphs produce logarithmic singularities.
Moreover, it can be shown by explicit calculation that only two-gluon reducible
graphs grow logarithmically. We may then separate two-gluon reducible graphs
from the others (two-quark reducible and two-particle irreducible), see Fig(1.5).

For the two-gluon reducible contribution Eq. (1.88) holds, so in analogy with
(1.93) we can write

σ(2)(M,S2/µ2, µ2) =

∫ c+i∞

c−i∞

dN

2πi

(

S2

Λ2

)N

C
(

N,M,αs(µ
2)
)

f(N,M,µ2). (1.99)

Just as the leading twist contribution were determined by M = 0 singularities, so
the high-energy large logarithms arise from N = 0 singularities. We then expand
C and f around N = 0. Recalling that (as for the M -behaviour) f has at most a
pole at N = 0, while C has multiple poles, we can write

C
(

N,M,αs(µ
2)
)

=
∞
∑

−∞

Cn

(

M,αs(µ
2)
)

N−n,

f(N,M,µ2) = N−1
∞
∑

0

fn(M,µ2)Nn

(1.100)
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(a) (b) (c)

Contributions to the forward scattering. (a) is two-gluon reducible, (b) is two-
gluon irreducible but two-quark reducible, (c) is two-particle irreducible. At high
Q2 (a) and (b) are leading twist and evolve, while (c) is higher twist and hence
power-suppressed. At high S2 none of them are power suppressed, but only (a)
evolves, while (b) and (c) are asymptotically constant.

Figure 1.5: Contributions to the forward amplitude.

with

fn(M,µ2) =
1

n!

∫ ∞

0

dl2

l2
(

log(µ2/l2)
)n
l2
∂

∂l2
f(M, l2/µ2, µ2) =

= − 1

n!

∫ 1

0
dy (log y)n

∂

∂y
f(M, y, µ2).

(1.101)

Defining4 F (M,µ2) ≡ f0(M,µ2) we can write in analogy with (1.98)

σ(M,S2/µ2, µ2) = C
(

M,S2/µ2, αs(µ
2)
)

F (M,µ2)+

+σq(M,S2/µ2, µ2) +O(1/S2), (1.102)

where σq(M) contains the two-gluon irreducible terms (which approach a constant
in the high energy limit)5.

Using the results of the DGLAP section then from (1.102) it follows immedi-
ately:

S2 ∂

∂S2
F (M,S2) = χ

(

M,αs(S
2)
)

F (M,S2), (1.103)

σ(M,S2/µ2) = C
(

M, 1, αs(S
2)
)

ΓM (S2, µ2)F (M,µ2), (1.104)

with

ΓM (S2, µ2) ≡ exp

(

∫ αs(S2)

αs(µ2)

dα

β(α)
χ(M,α)

)

(1.105)

4Note that this definition of F (M,µ2) is not directly related to F (N,µ2)
5In (1.98) such a contribution is neglected since it is in the higher twist, see Fig(1.5).
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If we hold the coupling fixed, we can write our evolution equation as

d

dt
σ(N, t) = γ(N,αs)σ(N, t) (1.106)

d

dξ
σ(ξ,M)) = χ(M,αs)σ(ξ,M), (1.107)

where ξ = log(1/x).
Eq. (1.106) and (1.107) express respectively the (fixed coupling) DGLAP and

BFKL evolution. Since the BFKL kernel is calculated at fixed coupling, we may
refer to (1.107) as the true BFKL equation. Let us now discuss the running
coupling. We have derived these equations starting from the kT factorization,
which holds surely only at LLx. Hence we can’t trust Eq. (1.106) and Eq. (1.107)
at NLLx. But running coupling effects are NLLx, thus we can’t trust our equations
if the coupling runs. In other words, our derivation is valid only with fixed coupling.
For the DGLAP equation, we have seen in the previous section that the collinear
factorization is an all-order result, so we can let the coupling run without problems.
Unfortunately there isn’t an analogous result for the high-energy factorization,
hence we must limit ourselves to the fixed coupling BFKL equation.

In the derivation of our equation, we considered for simplicity only one parton
type. Consider now all the quark flavours and the gluon. In Sec. 1.2.6 we have
shown that we can diagonalize the anomalous dimension matrix and consider sepa-
rately the evolution of the two eigenvectors G+ and G−. Moreover, it is possible to
prove that [23] only the gluon entries of the anomalous dimension matrix contain
LLx singularities. From this it follows that only one evolution has x−logarithms,
hence that only G ≡ G+ obeys the BFKL equation, while d

dξG− = 0 (for a detailed
discussion, see [22]).

To sum up our results, we obtained that in the limit Q2 → ∞, x fixed the
evolution is described by the DGLAP equation

d

dt
G(N, t) = γ (N,αs(t))G(N, t), (1.108)

while in the limit x → 0, Q2 fixed (in particular at fixed αs) the evolution is
described by the BFKL equation

d

dξ
G(ξ,M) = χ(M,αs)G(ξ,M), (1.109)

where G is the eigenfunction associated to the largest eigenvalue γ of the γij singlet
matrix.
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1.3.3 The BFKL kernel

It is clear from the discussion above that the BFKL kernel can be calculated
evaluating the process in Fig. (1.6),

A A

B B

φA (k1)

φB (k2)

ΓN (k1,k2)

Figure 1.6: Gluon-mediated DIS

where A is the virtual photon and B the proton.
We are interested in the forward A+B → A+B scattering amplitude T , since

from the optical theorem Im T is related to the total cross section σ.
Using the kT factorization theorem we can write

σ ∼
∫

d2k1

k21

∫

d2k2

k22
φA(k1)φB(k2)

∫ c+i∞

c−i∞

dN

2πi
ΓN (k1,k2), (1.110)

where ki are transverse momentum vectors of the gluons with virtuality −(k)2,
φi are suitable (unintegrated) structure functions, ΓN is the g − g kernel and
s = 2pApB is the squared invariant mass of the colliding particles.

It can be proved (see e.g. [12]) that the g− g kernel obeys a generalised BFKL
equation:

N ΓN (k1,k2) = δ2(k1 − k2) +

∫

d2kK(k1,k)ΓN (k,k2). (1.111)

In order to obtain the x evolution equation (1.107) we have to invert the N -Mellin
transform (remember N ↔ d/dξ).
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At the integrated level we thus obtain

dG(ξ,Q2)

dξ
=

∫ ∞

−∞

dk2

k2
K

(

αs,
Q2

k2

)

G(ξ, k2) = K ⊗G. (1.112)

We may perform an M -Mellin transform to undo the convolution in (1.112). Eq.
(1.109) is then obtained, with

χ(M,αs) =

∫ ∞

0

dQ2

Q2
K

(

αs,
Q2

k2

)(

Q2

k2

)−M

. (1.113)

Note that the N -Mellin transform in Eq. (1.110) is perform with respect to the
symmetric variable s/k1k2. Previously we defined it with respect to s/Q2, with Q2

the virtuality of one of the two particles (say Q2 = k21). This difference is irrelevant
at LO, but at NLO it must be taken in account and it modifies the relation (1.113)
between χ and K.

Order by order in perturbation theory the Feynman graphs leading to K are
symmetric upon the exchange k1 ↔ k2. This in turn implies

1

Q2
K

(

Q2

k2

)

=
1

k2
K

(

k2

Q2

)

(1.114)

and hence a symmetry upon the exchange M → 1 − M in the kernel χ. This
symmetry is spoiled by running coupling effects.

The BFKL kernel χ is known up to O(α2
s). An approximate form for the

NLL contribution is also known, [13]. One may wonder how we can write a O(α3
s)

BFKL kernel if we know that the BFKL equation holds only at LLx. Now, explicit
calculations have shown that this equation should hold also at NLLx. Moreover,
we will see in the next chapter that within the framework of the ABF formalism
one can show that G obeys a (running coupling) BFKL-like equation order by
order in perturbation theory. Hence we can legitimately consider the BFKL kernel
at any given order in perturbation theory. If we write

χ(αs,M) = αsχ0(M) + α2
sχ1(M) +O(α3

s) (1.115)

then

χ(αs,M) = αs
Nc

π
(2ψ(1)− ψ(M)− ψ(1−M)) ≡ αsχ0(M), (1.116)

where ψ(x) = Γ′(x)/Γ(x) and Γ is the Euler gamma function. Note the symmetry
M ↔ 1−M . The kernel χ0 is shown if Fig. 1.7.

The perturbative expansion (1.115) is very unstable, see Fig. 1.8. Even for αs

very small, the NL term completely overwhelms the LO term. This bad behaviour
of the perturbative series can be understood and regularized in the context of the
ABF formalism, as we will see in Sec. 1.4.
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Figure 1.7: The LO BFKL kernel

1.3.4 Standard solutions of the BFKL equation

The general solution of the LO BFKL equation (1.109) in M−Mellin space is

G(ξ,M) = G(ξ0,M)eαsχ0(M)ξ (1.117)

By taking the inverse Mellin transform we obtain

G(ξ, t) =
1

2πi

∫ c+i∞

c−i∞
G(ξ0,M)eαsχ0(M)ξ+Mt (1.118)

If t and ξ are both large, we can evaluate (1.118) in the saddle point approximation.
The saddle condition is

d

dM
(αsχ0(M)ξ +Mt)M=M0

= 0, −→ χ′0(M) = − t

αsξ
≡ −R. (1.119)

We can then distinguish three interesting regions.
Consider first the limit R→ ∞, that is the limit Q2 → ∞, x fixed. In this case

the general solution (1.118) is determined by the behaviour of χ near the origin.
We can then expand

χ0(M) =
Nc

π

(

1

M
+ 2ζ(3)M2 + 2ζ(5)M4 + ...

)

, (1.120)
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Figure 1.8: The NL BFKL kernel , αs = 0.2

where ζ(x) is the Riemann-zeta function. Keeping only the M = 0 pole we obtain

M0 =
√

αsNc

π
ξ
t and

G(ξ, t) ∝ exp

(

√

4αsNc

π
ξt

)

, (1.121)

that is the fixed coupling version of the double scaling solution (1.84) (if we neglect
the small damping term proportional to δ+). This solution is quite obvious, since
the R→ ∞ region is exactly the double scaling region.

Consider now the limit R ∼ 0, that is the limit x→ 0 with Q2 fixed. We expect
this region being dominated by the large x-logarithms, which aren’t resummed in
the DLL approximation. We expect then a departure from the double scaling
solution. In fact if R ∼ 0 we may expand χ0 near its minimum, that is near
M = 1/2:

χ0(M) =
Nc

π

(

4 log 2− ψ′′(1/2)

(

M − 1

2

)2

+ ...

)

, (1.122)

which leads to the asymptotic behaviour

G(ξ, t) ∝ exp (αsχ0(1/2)ξ) ≈ x−λ0 , λ0 = αs
Nc

π
4 log 2. (1.123)

This is the Pomeron prediction.
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Finally, consider the limit R → −∞. This corresponds to the region Q2 → 0
with x large but fixed. This is the photoproduction limit. We then expect a linear
vanishing of G in Q2. In Mellin space this limit correspond to the M ∼ 1 region.
Expanding χ0 near M = 1 we then obtain

M0 = 1−
√

αsNc

π

ξ

|t| , G(ξ, t) ∝ Q2 exp

(

√

4αsNc

π
ξ|t|
)

. (1.124)

We obtain the right qualitative behaviour, even though quantitatively we can’t
trust (1.124), since near Q2 ≈ 0 non perturbative effects must be important.

1.3.5 Problems with the BFKL evolution

The standard BFKL approach has a series of major problems. First of all, we have
said that the BFKL equation can be derived only at LLx. The original BFKL equa-
tion was written as an evolution equation for the unintegrated gluon distribution
F . In this context, we can’t say if the BFKL theory holds also beyond the leading
order. The key point is the validity of a BFKL-like equation, that is of a universal
property of the unintegrated gluon distribution. Explicit calculations have shown
that at NLLx the BFKL theory should hold, that is the calculations of different
processes have all given the same result for F . Of course this is not a proof, but
rather a hint of the validity of the BFKL theory. However, at NNLLx one can
see that different processes lead to different results for F . Hence we do know that
at NNLLx the original BFKL theory fails. However, if we limit ourselves to the
integrated distribution G, then in the next section we will show that a BFKL-like
equation holds order by order in perturbation theory. Within that context we will
show that all the traditional problems with the running coupling version of the
BFKL equation can be solved.
Another major problem of the BFKL theory is the perturbative instability. We
have seen that for reasonable values of αs the NL correction αsχ1 completely over-
whelms the leading order term. This problem too can be solved with perturbative
resummations, as we will show in the next section.

Apart from these, the standard BFKL approach has other two problems,
namely the violation of unitarity and the infrared diffusion. Consider the gen-
uine BFKL prediction, i.e. the Pomeron solution. With a quadratic kernel the
complete solution is

G(ξ, t) ∝ 1
√

−2αsNcψ′′(1/2)y
exp

(

αs
Nc

π
4 log 2ξ +

t

2
+

π

αsNc

1

4ψ′′(1/2)

t2

ξ

)

=

=
Q π

√

βαs
Nc

π ξ
x−αs

Nc
π

λ exp

(

− t2

2αs
Nc

π βξ

)

, (1.125)

with λ = 4 log 2 ≈ 2.77 and β = −2ψ′′(1/2) ≈ 33.66.
The first problem of (1.125) is unitarity. Froissart-Martin theorem states that
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a cross section can grow at most as log2(s), that is log2(1/x). Since λ > 0,
Eq. (1.125) violates asymptotically the bound. This violation is typical of linear
evolution, as we shall see in the next chapter.
Another problem is the infrared diffusion. Consider φ = G/Q, where G is the hard
Pomeron solution (1.125). Neglecting the dilatation factor eαsNc/πλξ φ is solution
of the diffusion equation

∂φ

∂ξ
=
β

2

∂2φ

∂t2
, (1.126)

which express t-diffusion with time variable ξ. Eq. (1.126) implies that as the
energy grows the infrared region of transverse momenta becomes more relevant,
that is the perturbative treatment fails.

It is not clear whether these problems persist also after the perturbative re-
summations of both logQ2 and log 1/x terms. We know that these resummations
ameliorate the situation, but both the violation of unitarity and the infrared diffu-
sion seem to persist. However we will see in the next chapter that these problems
can be solved within the framework of the BK theory, which should be the correct
theory in the very high energy regime.
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1.4 Improving DGLAP and BFKL: the ABF

formalism

In the previous sections we have obtained two evolution equations that resum

terms of the form
(

αs logQ
2
)k

(DGLAP equation, t evolution) and (αs log 1/x)
k

(BFKL equation, x evolution). Both the equations in the DLL approximation

resum the
(

αs logQ
2 log 1/x

)k
contributions.

We may then ask if it is possible to resum both (αs log 1/x)
k and

(

αs logQ
2
)k
.

The answer is yes, thanks to the Altarelli-Ball-Forte (ABF) formalism. This section
will be devoted to the explanation of this technique.

1.4.1 Fixed coupling duality

In a region such that Q2 and 1/x are large both DGLAP (1.108) and BFKL (1.109)
equations are valid. Their mutual consistency implies a duality relation [14],[15]
between the kernels γ and χ:

χ (αs, γ(αs, N)) = N, γ (αs, χ(αs,M)) =M. (1.127)

In order to obtain (1.127), consider the N -Mellin transform of Eq. (1.109):
∫ ∞

0
dξe−Nξ d

dξ
Gξ,M = χ(M,αs)G(N,M). (1.128)

Integration by parts leads to
[

e−NξG(ξ,M)
]∞

0
+NG(N,M) = χ(M,αs)G(N,M). (1.129)

The square bracket on the l.h.s provides an N independent boundary condition,
say H0(M) ≡ G(0,M). Solving for G(N,M) we find

G(N,M) =
H0(M)

N − χ(M,αs)
. (1.130)

The leading twist behaviour of G(N, t) is determined by the rightmost sin-
gularity of G(N,M) in the M -plane, the contributions of additional singularities
further on the left being suppressed by powers of Q2. Perturbative singularities
are given by solutions of the equation χ(αs,M) = N , while singularities of the
boundary condition H0(M) are non perturbative. If we suppose that the leading
singularity is a perturbative one, we obtain

G(N, t) =

∫ c+i∞

c−i∞

dM

2πi
eMt H0(M)

N − χ(αs,M)
= − H0(Ms)

χ′(αs,Ms)
eMst, (1.131)

where Ms is such that χ(αs,Ms) = N .
Consider now the analogous DGLAP solution

G(N, t) = H̃0(N)eγ(αs,N)t. (1.132)
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Provided the t-independent boundary condition H̃0(N) is related to H0(M) by

H̃0(N) = − H0(Ms)
χ′(αs,Ms

, the solutions (1.131) and (1.132) coincide (up to higher twist

and nonperturbative terms) if Ms = γ(N), that is if the duality relations (1.127)
hold.

Using (1.127), knowledge of LO and NLO BFKL kernel determines the coeffi-
cients of the expansion of γ(αs, N) in powers of αs at fixed αs

N :

γ(αs, N) = γs

(αs

N

)

+ αsγss

(αs

N

)

+ ... (1.133)

To see how this works write down the duality relation in the form

αsχ0

[

γs

(αs

N

)

+ αsγss

(αs

N

)

+ ...
]

+

+α2
sχ1

[

γs

(αs

N

)

+ αsγss

(αs

N

)

+ ...
]

+ ... = N (1.134)

and expand in αs at αs/N fixed:

χ0

(

γs

(αs

N

))

+ αsχ
′
0

(

γs

(αs

N

))

γss

(αs

N

)

+ αsχ1

(

γs

(αs

N

))

+ ... =
N

αs
. (1.135)

From this we find

χ0

(

γs

(αs

N

))

=
N

αs
, (1.136)

γss

(αs

N

)

= −χ1

(

γs
(

αs

N

))

χ′0
(

γs
(

αs

N

)) . (1.137)

This new expansion contains all the logarithmic singularities we want to resum: if
for example we write

γs

(αs

N

)

=
∞
∑

k=1

g
(s)
k

(αs

N

)k
(1.138)

then the associated splitting functions reads

Ps(αsξ) ≡
∫ c+i∞

c−i∞

dN

2πiαs
eNξγs

(αs

N

)

=

∞
∑

k=1

g
(s)
k

(k − 1)!
(αsξ)

k−1. (1.139)

Similarly Pss resums the subleading singularities αs (αs log(1/x))
k and so on.

Note that the splitting function coefficients are factorially suppressed with respect
to those of the anomalous dimension, hence the radius of convergence of Ps is
infinite. This is very important, since it ensures that we can use our results even
for very small x.
Obviously analogous results hold for χ; in this case the expansion χs + χss + ...

resum all the contributions of the form αn
s

(

αs log(Q
2/Λ2)

)k
.
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Graphical representation of different expansions of (a) γ and (b) χ in powers of
αs and (a) 1/N and (b) 1/M . Vertical lines correspond to terms of the same fixed
order in αs, while diagonal lines correspond to terms of the same order in α at fixed
αs/N (a) or αs/M (b). The solid lines denote terms of the same order in the DL
expansion. Note that the traditional (vertical) and the duality-obtained (diagonal)
expansions have in general one common term, which is the term retained in the
DLL approximation.

Figure 1.9: Double leading expansion

We may then reorganize the expansion of our kernels into a double leading (DL)
expansion, organized in terms of ”envelopes” of the contributions summarized in
Fig. 1.9. Consider for example γ. Up to NLO the DL expansion is

γ(αs, N) =
[

αsγ0(N) + γs

(αs

N

)

− a
αs

N

]

+

+αs

[

αsγ1(N) + γss

(αs

N

)

− αs

(

b2
N2

+
b1
N

)

− b0

]

+ ... (1.140)

The terms a and bi remove double counting terms, corresponding to those terms
in Fig.1.9a with (m,n) = (1, 1), (1, 0), (2, 1), (2, 2). In particular we obtain a =
αsNc/π (the DLL term) and b2 = gs2 = 0, b1 = gss1 = nfNc

(

5 + 13/(2N2
c )
)

/(18π2),
b0 = −

(

11/2N3
c + nf

)

/
(

6πN2
c

)

.
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1.4.2 The momentum conservation constraint

The DL expansion (1.140) can be further improved if we consider momentum
conservation constraints.
Remember the OPE expansion (1.12). The spin two operator in (1.14) is just the
stress-energy tensor. Since it is a conserved tensor, its anomalous dimension must
vanish (see e.g. [19]).
This in turn implies γqq(αs, 2) + γgq(αs, 2) = 0 and γqg(αs, 2) + γgg(αs, 2) = 0, or
(recall (1.74)) γQQ(αs, 1) + γGQ(αs, 1) = 0 and γQG(αs, 1) + γGG(αs, 1) = 0. But
from this it follows

γ(αs, 1) ≡ γ+(αs, 1) = 0, γ−(αs, 1) = γQQ(αs, 1)− γQG(αs, 1). (1.141)

We can then improve (1.140) by adding a term which implement the condition
γ(αs, 1) = 0. From the DL point of view such a term is subleading, but it may be
important for the phenomenology.

Let us now consider the BFKL kernel χ. The momentum conservation con-
straint also explains the bad behaviour of the traditional perturbative expansion
of χ. Duality indeed implies

χ (αs, 0) = χ (αs, γ(αs, 1)) = 1 (1.142)

Since χ0(M) ∼ 1/M for M ∼ 0, because of momentum conservation the pertur-
bative expansion must be badly behaved. A simple model for this behaviour is to
think of replacing αs/M with

αs/(M + αs) = αs/M − αs/M
2 + ... (1.143)

in order to satisfy the momentum conservation constraint.
Consider now the DL expansion

χ(αs,M) =

[

αsχ0(M) + χs

(αs

N

)

− Nc

π

αs

M

]

+

+αs

[

αsχ1(M) + χss

(αs

N

)

− αs

( c2
M2

+
c1
M

)

+ c0

]

+ ... (1.144)

At LO the momentum conservation constraint is satisfied exactly. Indeed γ0(1) = 0
and [χ0((M)−Nc/πM ] ∼M2 near M = 0. At NLO the constraint is not exactly
satisfied because the constant contribution to χ1 does not vanish, even though
it is numerically very small. We can then restore the constraint by adding a
(subleading) correction.

The bad behaviour of the perturbative expansion is tamed in the DL reor-
ganization, see Fig. 1.10. The new expansion is stable up to M < 0.3 − 0.4.
Furthermore in this region χ evaluated in the DL expansion is very close to the
exact DGLAP dual. This show that in this region the dominant contribution to χ
(and thus to γ) comes from the resummation of large-Q2 logarithms.
Beyond M ∼ 0.4 the DL expansion becomes unstable because of the M = 1
singularities. In the next section we will see how to stabilize these singularities
exploiting the full symmetry of χ.
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Figure 1.10: Different approximations to the the χ functions

1.4.3 Fixed coupling symmetrization

We said that order by order in perturbation theory the kernel K(k1,k2) is sym-
metric upon the exchange k1 ↔ k2, that is χ is symmetric upon the exchange
M ↔ 1−M . However this symmetry can be spoiled by two effects: an asymme-
tric choice for the N -Mellin transform and running coupling.

With the coupling held fixed, the kernel asymmetry is due only to the choice
of the definition of ξ. If we choose a symmetric definition for ξ, for example
ξ = log(s/

√

Q2k2), the resulting (fixed coupling) kernel χσ must be symmetric.
It can be shown [16] that the effect of changing variables from the symmetric

ξ = log
(

s/
√

Q2k2
)

to the DIS ξ = log
(

s/Q2
)

choice is a change of the kernel χ

from χσ to χΣ. The symmetric and the DIS kernels are related by [16]

χΣ

(

M +
1

2
χσ(M)

)

= χσ(M) → χσ

(

y − 1

2
χΣ(y)

)

= χΣ(y), (1.145)

where we have omitted the dependence on αs in order to shorten the notation.
The regularization ofM = 1 poles is then done in three steps: first we perform the
DL resummation of M = 0 poles, then we determine the associated χσ through
(1.145) and symmetrize it, finally we going back in DIS variables by using (1.145)
in reverse.

We will perform this regularization in a toy model, pretending that the all-
order anomalous dimension is αsγ0(N), that is χ = χs. This corresponds to a
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leading logQ2 (or collinear) approximation to the BFKL kernel. The calculation
with the real DL kernels can be found in [4].

In order to perform this change of variables it is convenient to define for a
generic kernel χ (αs,M) an ”off-shell” generalization χ̄(αs,M,N) such that

χ(αs,M) = χ̄ (αs,M, χ(αs,M)) . (1.146)

Using duality relations (1.127) the on-shellness condition (1.146) can be rewritten
as

N = χ̄ (αs, γ(αs, N), N) , (1.147)

We then obtain χ(αs,M or γ(αs, N) by putting either N or M ”on-shell” (i.e. set
N = χ(αs,M) or M = γ(αs, N)) in the off-shell relation N = χ̄(αs,M,N).

With the off-shell kernels the change of variables is trivial. The (non sym-
metrized) off-shell version of χσ is obtained simply by the shift M →M +N/2 in
χs. Then we can perform the desired symmetrization. Note the this is allowed at
leading logQ2, because the symmetrizing terms are by construction free of poles
at M = 0 and thus subleading in logQ2. Finally we can return to the DIS kernel
χΣ by performing the inverse shift M →M −N/2. We thus obtain the kernels

χ̄σ(αs,M,N) = χs

(

αs

M +N/2

)

→ χs

(

αs

M +N/2

)

+ χs

(

αs

1−M +N/2

)

,

χ̄Σ(αs,M,N) = χs

(αs

M

)

+ χs

(

αs

1−M +N

)

.

(1.148)

Consider the large-N behaviour of χ̄Σ ∼ χs

(

αs

M

)

+ χs

(

αs

N

)

= χs

(

αs

M

)

+ O
(

αs

N

)

.

Putting M on shell we obtain N = χs

(

1
γ0(N)

)

+ O
(

αs

N

)

= N + O
(

αs

N

)

, thus the

resummation does not spoil the identification of the resummed kernel with the
DGLAP result at large N . This in turn guarantees that the resulting anomalous
dimension matches smoothly to the DGLAP anomalous dimension.

Our resummed kernel (1.148) is still unsatisfactory, since it violates the mo-
mentum conservation constraint because of the symmetrizing term. However this
violation in subleading. Near M ∼ 0 the symmetrizing contribution behaves as
χs (αs/(1−M +N)) = χs(αs)(1 + O(N)). From the on-shellness relation N =
χ(αs,M) = χs (αs/M) = O (αs/M) it follows immediately O(N) = O(αs/M),
then the momentum violation is O(αs) = O

(

αn+1
s M−n

)

, thus next-to-leading in a
DL expansion. We can then enforce momentum conservation without spoiling the
restored symmetry by simply adding the subleading term

χm(αs, N) = cm(αs)fm(N), (1.149)

with fm(1) = 1, fm(0) = fm(∞) = 0. The infinity condition ensures that the
extra term does not spoil the large-N identification of the resummed kernel with
the DGLAP result, while the condition fm(0) = 0 ensures that χm is subleading,
since cm = O(αs).
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Let us now turn to the generic properties of the symmetrized on-shell kernels.
From the momentum conservation condition in DIS variables, χ(αs, 0) = 1 we
obtain

1 = χΣ(αs, 0) = χσ

(

αs, 0−
1

2
χΣ(αs, 0)

)

= χσ

(

αs,−
1

2

)

,

χσ

(

αs,
3

2

)

= χσ

(

αs, 1 +
1

2

)

= χσ

(

αs,−
1

2

)

= 1. (1.150)

Going back in DIS variables these in turn imply

χΣ(αs, 0) = χΣ(αs, 2) = 1. (1.151)

Since in the central region M ∼ 1/2, χ = O(αs) and thus rather less than one,
momentum conservation implies that, at least for small enough values of αs the
symmetrized kernel will have a minimum order by order in the DL expansion.
Since the change of variables from symmetric to DIS variables is just a shift M →
M −N/2, there will be a minimum in DIS variables too.

Consider now the position and curvature around the minimum. By construc-
tion χσ has a minimum for M = 1/2, while the minimum of χΣ is displaced.
Moreover, differentiating (1.145) with respect to M we obtain

χ′Σ(αs,M) =
χ′σ (αs,M − 1/2χΣ(M))

1 + 1
2χ
′
σ

(

αs,M − 1
2χΣ(M)

)

χ′′Σ(αs,M) =
χ′′σ (αs,M − 1/2χΣ(M))

(

1 + 1
2χ
′
σ

(

αs,M − 1
2χΣ(M)

))3 . (1.152)

The minimum of χΣ is then at Ms, determined by Ms =
1
2 + 1

2χΣ(αs,Ms), which
implies

χσ

(

αs,
1

2

)

= χΣ(αs,Ms), χ′′σ

(

αs,
1

2

)

= χ′′Σ(αs,Ms), (1.153)

that is the intercept and curvature of χΣ and χσ are the same.

1.4.4 Running coupling effects

So far we considered only fixed coupling duality. When one goes beyond LLx,
that is beyond leading-order approximation for χ, running coupling effects can’t
be neglected.

In M space the usual running coupling αs(t) becomes a differential operator
α̂s, since in Mellin space t ↔ −∂M . Hence the BFKL evolution equation (1.109)
becomes [17]

d

dξ
G(ξ,M) = χ(α̂s,M)G(ξ,M). (1.154)
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Plot of different BFKL kernels in DIS variables. Note that at NLO only the
symmetrized kernel (denoted by NLOres) has a minimum.

Figure 1.11: Effects of symmetrization

Since M and α̂s do not commute,

[

α̂−1s ,M
]

= −β0 + αsβ0β1 + ..., (1.155)

Eq. (1.154) is meaningless if we don’t fix an operator ordering. Different ordering
choices correspond to different choices for the running coupling argument.

In order to see this, we consider the BFKL equation (1.112) with two different
arguments of the running coupling. Let us start with the traditional argument
t = log

(

Q2/µ2
)

. We then write Eq. (1.112) as:

dG(ξ, t)

dξ
=

∫ ∞

−∞

dt′
∞
∑

p=i

αs(t)
pK

(p)
L (t− t′)G

(

ξ, t′
)

. (1.156)

Consider now the Mellin transform of the r.h.s.:
∫

dt

∫

dt′αs(t)KL(t− t′)G(ξ, t′)e−Mt =

= αs(−∂M )

∫

dt′e−Mt′G(ξ, t′)

∫

dtKL(t− t′)e−M(t−t′) = α̂sχL(M)G(ξ,M).

(1.157)
We see that if the coupling runs as usual with Q2 the derivative w.r.t. M in (1.154)
acts both on the kernel and on G.
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Assume now that the coupling runs with k2. Then Eq. (1.112) becomes:

dG(ξ, t)

dξ
=

∫ ∞

−∞

dt′
∞
∑

p=i

αs(t
′)pK

(p)
R (t− t′)G

(

ξ, t′
)

, (1.158)

with t′ = log(k2/µ2). In Mellin space the r.h.s. becomes

∫

dt

∫

dt′αs(t
′)KR(t− t′)G(ξ, t′)e−Mt =

=

[

αs(−∂M )

∫

dt′e−Mt′G(ξ, t′)

]
∫

dtKL(t− t′)e−M(t−t′) = χL(M)α̂sG(ξ,M)

(1.159)
In this case the derivative w.r.t. M acts only on G and not on the kernel.

Consider now the symmetrizing procedure of the previous section. Because it
is based on the interchange Q2 ↔ k2, it is now clear that the running coupling
symmetrized version of α̂k

sf(M) = 1
2

(

α̂k
sf(M) + f(1−M)α̂k

s

)

.

1.4.5 LO running coupling duality

In this section we will consider the leading running coupling effects, that is we will
deal with the one-loop expansion for α̂s

α̂s =
αs

1− β0αs
d

dM

(1.160)

and with kernels linear in α̂s:

χ = α̂sφ(αs,M). (1.161)

Note that φ could obviously be the leading order χ0.
In this approximation the double Mellin transform of (1.154) becomes

(

1− β0αs
d

dM

)

NG(N,M) + F (M) = αsφ(M)G(N,M), (1.162)

where F (M) is a boundary condition.
The general solution of (1.162) can be written as

G(N,M) = H(N,M)+

+

∫ M

M0

dM ′ exp

[

M −M ′

β0αs
− 1

β0N

∫ M

M ′

dM ′′φ(M ′′)

]

F (M ′)

β0αsN
, (1.163)

where H(N,M) is the solution of the homogeneous equation

H(N,M) = H(N,M0) exp

[

M −M0

βαs
− 1

β0N

∫ M

M0

dM ′φ(M ′)

]

. (1.164)
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If we change the integration variable from M ′ to

y(M,M ′) =
1

β0αsN

∫ M

M ′

[

N − αsφ(M
′′)
]

dM ′′, (1.165)

then Eq. (1.163) becomes

G(N,M) = H(N,M) +

∫ y,M,M0

0
e−y

F (M ′(y,M))

N − αsφ (M ′(y,M))
dy, (1.166)

with H proportional to e−y. Since y → ∞ in the limit αs → 0, αs/N fixed,
the homogeneous term vanishes to all orders in the perturbative expansion. The
perturbative solution then is reproduced only by the inhomogeneous term.

Consider now the N Mellin transform of the inhomogeneous term:

G(N, t) =

=

∫ c+i∞

c−i∞

dM

2πi
exp

[

Mt+
M −M0

β0αs
− 1

β0N

∫ M

M0

dM ′′φ(M ′′)

]

I(N,M)

N
, (1.167)

where

I(N,M) =

∫ M ′

M0

dM ′ exp

[

M0 −M ′

β0αs
+

1

β0N

∫ M ′

M0

dM ′′φ(M ′′)

]

F (M ′)

β0αs
. (1.168)

We can solve (1.167) in the saddle point approximation. Assuming I(N,M) to be
a smooth function of M the saddle condition is

t+
1

β0αs
− 1

β0N
φ(Ms) =

1

β0αs(t)
− 1

β0N
φ(Ms) = 0. (1.169)

Identifying Ms with the anomalous dimension γs and φ with χ0 we obtain

χ0

(

γs

(

αs(t)

N

))

=
N

αs(t)
, (1.170)

that is a running coupling generalization of the leading order duality relation
Eq.(1.136). Substituting back the saddle condition in the exponent of Eq. (1.167)
we get (differentiating the duality relation with respect to t)

Ms

αs(t)β0
− M0

αsβ0
− 1

β0N

∫ Ms

M0

dM ′φ(M ′) =

∫ t

t0

dt′γs

(

αs(t
′)

N

)

, (1.171)

where αs = αs(t0).
Performing the saddle integral we obtain

G(N, t) =

√

Nβ0αs

−φ′(Ms)
exp

(
∫ t

t0

dt′γs

(

αs(t
′)

N

))

I(N,Ms)

N
+ ... (1.172)
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Eq. (1.172) has two major problems: first it seems to violate factorization because
of the t-dependent factorMs in the boundary condition I, second it seems to violate
duality because the t-dependent prefactor 1/

√

−φ′(Ms) spoils the identification of
the anomalous dimension γs. Both this problems are fictitious.

In order to check duality, consider the prefactor 1/
√

−φ′(Ms). Differentiating
the duality relation it can be rewritten as

1
√

−φ′ (γs (αs(t′)/N))
= exp−

[

1

2
log−φ′

(

γs
(

αs(t
′)/N

))

]

=

= exp

[

β0

∫ t

t0

dt′
φ′′ (αs(t

′)/N)φ (αs(t
′)/N)

2φ′2 (αs(t′)/N)
αs(t

′)

]

× 1
√

−φ′(Ms(t0)
=

= exp

[
∫ t

t0

dt′∆γss
(

αs(t
′)/N

)

]

1
√

−φ′ ((αs(t0)/N))
. (1.173)

The t0 dependent factor can be absorbed in a redefinition of the boundary condi-
tion. Duality is then preserved provided we add to γ the extra factor ∆γss. We
can treat the same way all the contributions generated by the saddle expansion.
The result is a new anomalous dimension of the form [18]

γrc
(

αs(t
′)/N

)

= γs
(

αs(t
′)/N

)

+ β0αs(t)∆γss
(

αs(t
′)/N

)

+

+ [β0αs(t)]
2∆γsss

(

αs(t
′)/N

)

+ ... (1.174)

Consider now factorization. I(N,Ms) can be written in terms of the variable
y, Eq. (1.165), as

I(N,Ms) =

∫ y(Ms)

0
dye−y

F (M ′(y,M0))

N − φ(M ′(y,M0))
(1.175)

If we take 1−αs/Nφ < 0 andM ′ < M0, then in the perturbative limit y(Ms) → ∞.
Factorization is thus preserved, since the t dependence disappears to all orders in
the perturbative expansion (even though the boundary condition still depends on
t0 because M ′ =M ′(y,M0)).

Exploiting this property we can rewrite the general solution (1.167) as

G(N, t) =

∫ c+i∞

c−i∞

dM

2πiM
eMt exp

[

M −M0

β0αs
− 1

β0N

∫ M

M0

dM ′′φ(M ′′)

]

I(N, t0)

N
.

(1.176)
In the next subsection we will try to solve explicitly Eq. (1.176) with approximate
kernels φ.

Note that in this section we have shown that the running coupling BFKL
equation is equivalent to the usual DGLAP equation (with of course a suitable
kernel). Hence at this order the existence of a BFKL-like equation is ensured
by the existence of the DGLAP equation. One can show that the results of this
section hold to any given order in the perturbative expansion [24]. But then this
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implies that a BFKL-like equation for G holds at any given perturbative order,
since we know that the DGLAP equation for G is an all order result. In other
words, perturbative duality ensures that a BFKL-like equation for G holds also
beyond LLx, even if our derivation of Eq. (1.109) was based on the kT factorization
(which is valid only at LLx). We stress that the BFKL equation holds for G: an
explicit calculation shows that beyond NLLx it doesn’t hold for the unintegrated
gluon distribution.

The DLL approximation

In order to check Eq. (1.176) consider the DLL kernel, that is φ(M) = Nc

π
1
M . We

know that in the DLL approximation the solution G(N, t) is

GDLL(N, t) ∝ exp

[

− Nc

β0πN
log (αs(t)/αs)

]

(1.177)

In the DLL approximation the integrand of (1.176) is

f(N,M) ∝ exp

[

M

(

1

αs(t)

)

− Nc

πβ0
logM

]

=M
− Nc

πβ0N e
M 1

αs(t) , (1.178)

that is we have to perform a Mellin inversion of M−k with respect to the
variable z = 1/αs(t). The inversion can be done exactly with the result

f(N, t) ∝
(

1

αs(t)

)
Nc

πβ0N

, (1.179)

that is the correct (1.177) behaviour.

Quadratic kernel and asymptotic behaviour

Consider a generic kernel φ expanded around is minimum:

φ(M) = c+
k

2
(M −Mmin)

2 +
h

3!
(M −Mmin)

3 + ... (1.180)

It can be shown [18] that only the first two terms are relevant in order to derive
the asymptotic small-x behaviour of G, the other terms lead to contributions that
vanish in the ξ → ∞ limit6. In this subsection then we will limit ourselves to
quadratic kernels.

In this case the Mellin inversion (1.176) can be done exactly. If we set Mmin =
1/2 (the minimum of χσ) and choose M0 = 1/2 we get

G(N, t) = K(N)e1/(2β0αs(t))Ai [z (αs(t), N)]
I(N, t0)

N
, (1.181)

6From here it is clear the importance of the symmetrizing procedure discussed in Sec.
1.4.3, since it ensures that order by order in the DL expansion the kernel χ has a minimum.
Without symmetrizing this property is spoiled, see Fig. 1.10.
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where K is a t-independent factor,

K(N) = e1/(2β0αs)

(

2β0N

k

)
1
3 1

π
, (1.182)

z(αs, N) =

(

2β0N

k

)
1
3 1

β0

[

1

αs
− c

N

]

, (1.183)

and Ai(z) is the Airy function, which satisfies

Ai′′(z)− zAi(z) = 0, (1.184)

and that behaves asymptotically as

Ai(z) =
1

2
π−1/2z−1/4 exp

(

−2

3
z3/2

)

(

1 +O(z−3/2)
)

. (1.185)

In order to determine the large-ξ behaviour of G(ξ, t) we must distinguish three
cases, depending on the sign of c. Here we will discuss only the case c > 0, which
is the one corresponding to the LO kernel χ0. The interested reader can found an
exhaustive treatment off all the possible cases in [18].
For large ξ, we may determine G(ξ, t) by evaluating by saddle point the N -Mellin
inversion integral of G(N, t) (1.181). The saddle condition is dominated by the
Airy function and has the form

ξ =
dAi[z(αs, N)]/dN

Ai[z(αs, N)]
. (1.186)

As ξ grows, the saddle is drawn towards the N → 0; however for N small enough
the derivative changes sign and the real saddle is lost. The saddle condition still
has a pair of complex solutions, which can (for ξ large enough) be determined
explicitly using the asymptotic expansion (1.185). We have N± = e±iπ/4(a/ξ)1/2,
with a a constant factor. The large ξ asymptotic behaviour is then dominated by
the contribution from this pair of complex saddle point, which add to give cosine
oscillations:

G(ξ, t) ∼ exp
(

√

2kξ
)

cos (2kξ) . (1.187)

As ξ becomes large, G(ξ, t) becomes negative and starts to oscillate, so the solution
looks unphysical. In order to solve this puzzling situation, consider the general
solution of G(N, t), Eq. (1.26), with boundary G(N, t0) = F0(N):

G(N, t) = Γ(t, t0, N)F0(N), (1.188)

with in this case

Γ(t, t0, N) =
G(N, t)

G(N, t0)
= e1/(2β0)(1/αs(t)−1/αs(t0))

Ai[z(αs(t), N)]

Ai[z(αs(t0), N)]
(1.189)
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Since for large ξ the oscillations (1.187) are t-independent, they cancel in the ratio
G(N, t)/G(N, t0), leaving Γ smooth and asymptotically monotonic in ξ as ξ → ∞.
The oscillations are then factored out in the initial condition.

From Γ we can extract the anomalous dimension

γA (αs(t), N) =
d

dt
logG(N, t) =

1

2
+

(

2β0N

k

)1/3 Ai′[z(αs(t), N)]

Ai[z(αs(t), N)]
. (1.190)

The large-N behaviour of γA is easily determined using the asymptotic expansion
(1.185):

γA(αs, N) ∼ 1

2
−
√

2

k

[

N

αs
− c

]

, (1.191)

which is the ”naive” dual anomalous dimension, that is the anomalous dimension
obtained by fixed-order duality with the replacement αs → αs(t).

Figure 1.12: The Airy anomalous dimension γA for c = 1 and αs = 0.2

As N decreases γA increases indefinitely until it blows up for the value N = N0(t)
corresponding to the first zero of the Airy function, z0 ≈ −2.338 (see Fig. 1.12).
Ai′(z) is regular at z = z0, so at N = N0 the anomalous dimension has a simple
pole.

From Eq. (1.189) it then follows directly the asymptotic behaviour of G:
approximating the Airy function with its pole we get

G(ξ, t) ∼ x−N0(t0). (1.192)



1.4 Improving DGLAP and BFKL: the ABF formalism 43

Expanding the LO kernel χ0 around its minimum we find c ≈ 2.65, k ≈ 32,
which lead to N0 ≈ 0.3 for Q2

0 = 1 GeV2 and N0 ≈ 0.25 for Q2
0 = 10 GeV2.

We see that the running coupling resummation softens the hard pomeron (1.123)
prediction.

1.4.6 NL kernels with running coupling

If we want to evaluate the running-coupling kernels beyond LO accuracy, we must
refine the approximations of the previous section. The asymptotic behaviour of γ
is again determined by the quadratic approximation of χ near its minimum. Since
the intercept and the curvature of χσ and χΣ are the same, we can expand χσ

around the well-known minimum Mmin = 1/2:

χσ(αs,M) = c(αs) +
1

2
k(αs)

(

M − 1

2

)2

. (1.193)

Beyond LO accuracy c(αs) → c(α̂s),k(αs) → k(α̂s). At NL accuracy it is sufficient
to consider the linear term in the expansion of c(α̂s) and k(α̂s) in powers of α̂s−αs

[4], that is

c(α̂s) = c(αs) + (α̂s − αs)c
′(αs) +O

[(

β0
d

dM

)]

(1.194)

and similarly for k.

The solution of (1.176) can then be expressed in terms of the Bateman function.
For a complete derivation we refer the interested reader to [4], here we will limit
ourselves to cite the main results of the NL running coupling resummation. We
saw that the small-x behaviour of G is determined by the leading singularity of the
anomalous dimension. In Fig. 1.13 we report the dependence of this singularity
on αs for various anomalous dimensions.
Note that the general effect of resummation is to soften the small-x behaviour. The
most accurate calculation (NLO Bateman) gives the softest behaviour prediction,
say G ≈ x−0.2 for αs ≈ 0.2.

For αs large enough the NLO BFKL seems to produce a soft pomeron predic-
tion. However, we can’t trust this prediction because of the bad behaviour of the
unresummed perturbative expansion of χ. Note instead that the resummed LO
and NLO predictions are close to each other.

Consider now the full anomalous dimension and its associated splitting func-
tion, shown in Fig. 1.14. Note that the resummed NLO anomalous dimension
follows closely the traditional one up to N ∼ 0.2, then its rise grows faster because
of the pole in the Bateman function. A careful analysis of these plots shows that
up to very small x, say x ∼ 10−5, the difference between the full resummed split-
ting function and the DGLAP NL result is practically unnoticeable. Considerable
differences start only from x ∼ 10−6. Hence, even if αs log 1/x ∼ 1 already for
much larger values of x (say x ∼ 10−2 with αs ∼ 0.2), their influence is negligible
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The rightmost singularity for various anomalous dimensions. BFKL LO, res fix
LO and res fix NLO denote the location of the cut for respectively αsχ0, χσLO

and χσNLO with β0 = 0. LO Airy, LO Bateman and NLO Bateman denote the
location of the pole for the running coupling resummation of the corresponding
three curves. BFKL NLO denotes the location of the stationary point of the NLO
kernel.

Figure 1.13: Leading singularity for various anomalous dimensions

in the perturbative HERA domain. This explain why standard phenomenologi-
cal analysis of HERA data, which are based upon pure DGLAP evolution, are so
successful even in the small-x region.

On the other hand, in the HERA domain these resummation effects cannot be
responsible for ”strange” phenomena, that is in this region saturation effects (if
they are present) cannot be explained by perturbative resummations.
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Comparison between resummed and traditional anomalous dimensions and split-
ting functions. GLAP LO and GLAP NLO are the traditional kernels, while LO
rc res and NLO rc res are the running coupling resummed kernels.

Figure 1.14: Resummed evolution kernels





Chapter 2

High energy QCD

2.1 The idea of parton saturation

We saw that in the very high energy limit the traditional BFKL approach fails,
since it violates the Froissart-Martin unitarity bound. In the early ’80s Gribov,
Levin and Ryskin [25] and somewhat later Mueller and Qiu [26] suggested that
this breakdown could be due to saturation effects. In the high energy limit the
gluon splitting leads to a very high gluon density, but this process cannot go on
indefinitely: when the density inside the proton becomes too high gluons can no
longer be treated as free. We must consider parton recombination, that is gluon
fusion.

A schematic picture of this process is shown in Fig. 2.1, which depicts the x
and Q2 evolution of the parton distribution functions. Consider first the horizontal
direction, i.e. DGLAP evolution. Using the uncertainty principle we can associate
to each parton a typical size r ∼ 1/kT . The DGLAP kinematic regime of strong
transverse ordering then implies that partons on the right are ”smaller” than
partons on the left. Now consider the vertical direction, i.e. BFKL evolution.
We will show that in this case the ξ evolution is obtained through the emission
of partons without ordering of transverse momenta, that is of partons with kT1 ≃
kT2 ≃ ... ≃ kTN

≃ q2 (where kT1 is the transverse momentum of the parent parton).
Because of this kinematic constraint then the size of the upper partons is bounded
to be of the same order as the original ones. Hence for a given Q2 a point is reached
where the finite size of the hadron will soon impose an upper bound to the number
of partons that can be accommodated without overlapping. Conversely, for a given
x there is a saturation momentum Qs(x) beyond which we cannot neglect parton
recombination effects. Since we may expect that bigger partons reach a saturated
regime sooner, the saturation scale Qs(x) should be an increasing function of x.

The first step towards a theory for the saturated regime was made by Balitsky
[5] who constructed an infinite hierarchy of coupled equations for Wilson line
operators in the small-x approximation. Indipendently Kovchegov derived in the
colour dipole approach a non linear generalization of the BFKL equation, valid
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Figure 2.1: Schematic picture of parton saturation

in the large-Nc (see Appendix A) approximation and at leading log 1/x [7]. In
the large-Nc limit the Balitsky hierarchy decouples and its first term reduces to
the Kovchegov equation. Thus, this equation is usually referred as the Balitsy-
Kovchegov (BK) equation. An alternative approach is the Jalilian-Marian-Iancu-
McLerran-Weigert-Kovner-Leonidov (JIMWKL) hierarchy [6], that describes the
change of the correlation functions of the colour charge density in the hadron
wavefunction. This equation can be derived in the Color-Glass-Condensate (CGC)
approach, an effective theory in which one consider the radiation of soft gluons in
a strong background field. In the large Nc the JIMWKL hierarchy decouples and
becomes equivalent to the BK equation.

An exhaustive presentation of all these derivation goes beyond the scope of this
thesis. In the following we will limit ourselves to the Kovchegov theory, which is
by far the simplest and it is model independent. Moreover, its link with the BFKL
theory is transparent. To see this, we must derive the BFKL equation in the colour
dipole formalism [21]. This chapter is hence organised as follows. In section 2.2
we introduce the colour dipole approach to DIS and within that context we give
a precise definition of geometric scaling. Then in section 2.3 we use the dipole
formalism to derive the BFKL equation and we evaluate the leading order kernel.
This derivation is generalized in section 2.4 to multiple interactions, leading to the



2.2 The colour dipole approach to DIS 49

BK equation. In section 2.5 we show how geometric scaling arises from the BK
equation. Section 2.6 is devoted to the extended geometric scaling region, that is
to geometric scaling above the saturation scale.

2.2 The colour dipole approach to DIS

The colour dipole is an alternative approach to DIS which at small x is very useful,
since it shows that the γ∗P interaction in this limit can be factorized in a γ∗ → qq̄
part and in a qq̄ − P interaction.

Consider indeed the structure of the interaction in the proton rest frame. In
order to have non trivial QCD interactions the virtual photon must split in a qq̄
pair, that is in a colour dipole. In addition, we will have in general several extra
gluons. This situation is depicted in Fig. 2.2.

~q~q

Figure 2.2: The virtual photon splitting

The effect of the extra gluons can be thought of as a binding energy. Hence we
can write the energy difference between the qq̄ state and the photon state as:

∆E = Epair − Eγ∗ =
√

M2
pair + ~q2 − Eγ∗ =

√

M2
pair +Q2 + E2

γ∗ − Eγ∗ =

=
1

2

M2
pair +Q2

Eγ∗
+O





(

M2
pair +Q2

Eγ∗

)2


 , (2.1)

where Mpair is the invariant mass of the qq̄ pair.
Remembering that in the proton rest frame x = Q2/ (2mPEγ∗), in the high virtu-
ality limit Q2 ≫M2

pair Eq. (2.1) reduces to

∆E = mP x+O
[

(mP x)2
]

. (2.2)

In the small-x limit we can then estimate the life time of the pair as Tpair ∼
1

∆Epair
∼ 1/(mP x). On the other hand the typical interaction time is Tint ∼ Rp,

with Rp the proton radius. For small x then Tint ≪ Tpair. This implies that in
the high energy limit the qq̄ pair is ”frozen” during the interaction. Thus we can
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ψγ∗
→qq̄

Nqq̄−P

Figure 2.3: Colour dipole approach to DIS

factorize DIS in a γ∗ → qq̄ splitting and in a fixed-size dipole scattering off a
proton, as shown in Fig. (2.3).

All the above statement can formalised [27],[28]. The result is that it is possible

to write the total cross section σγ
∗P

tot as

σγ∗Ptot (x,Q2) =
∑

i=T,L

∫

d2r

∫

dz|ψi(r, z,Q
2)|2N(r, x), (2.3)

where ψT,L is the wave function for the splitting of a transverse (T ) or longitudinal
(L) polarized virtual photon into a qq̄ pair and N is the total dipole cross section.
In addition, r is the separation of the quarks in the qq̄ pair and z is the light-cone
momentum fraction of the photon carried by the quark (or antiquark).
The wave functions of the virtual photon can be calculated in perturbative QED.
At the lowest order in αem and neglecting quark masses they are given by [28]:

|ψT |2 =
3αem

2π2

∑

f

e2f

[

(

z2 + (1− z)2
)

z(1− z)Q2K2
1

(

√

z(1− z)Qr
)]

|ψL|2 =
2αem

2π2

∑

f

e2f

[

4Q2z2(1− z)2K2
0

(

√

z(1− z)Qr
)]

, (2.4)

where K0,1(x) are the Bessel-McDonanld functions.

The original geometric scaling observation [1] was made in terms of σγ
∗P

tot , that
is

σγ
∗P

tot (x,Q2) = σγ
∗P

tot

(

Q2/Qs(x)
2
)

. (2.5)

Since F2 is related to σγ
∗P

tot by

F2(x,Q
2) =

Q2

4π2αem
σγ

∗P
tot . (2.6)
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we can express geometric scaling in terms of F2:

F2(x,Q
2)

Q2
= f

(

Q2/Qs(x)
2
)

(2.7)

Using (2.4) it is straightforward to see that the geometric condition (2.5) is equi-
valent to

N(r, x) = N (rQs(x)) , (2.8)

thus in order to understand geometric scaling we can limit ourselves to the dipole
cross section.

2.3 BFKL in the colour dipole approach

2.3.1 BFKL from Feynman graphs: general strategy

Before starting our derivation in the colour dipole approach, let us consider the
connection between BFKL and Feynman graphs, as we did for DGLAP in Sec.
1.2.5. We have essentially two purposes: first to understand which diagrams are
relevant in the BFKL theory and second to find out the correct kinematic regime.
This section will be stopped half-way: the effective calculation of the BFKL kernel
will be done in the next section, within the colour dipole formalism.

To obtain BFKL, we have to evaluate the kernel Γ shown in Fig. 1.6. We
could use a technique similar to that used in Sec. 1.2.5: write down an evolution
equation from a ladder graph. But how should this ladder be built? Since we are
interested in small-x logarithms, which can arise by phase space integration in dx,
we have to consider only terms which behave like ∼ 1/x near x = 0. Consider the
basic “building blocks” of the DGLAP evolution, i.e. Pij : only the gluon entries
Pgg and Pgq have such a behaviour, hence only the q → gq and g → gg splitting
are relevant in our ladder. Moreover, only the first “rung” of this ladder can be of
quark type in a leading log approximation. Consider indeed Fig 2.4. The graph on
the left has a quark rung in the middle of the ladder, associated to the subprocess
q → gq (marked in green). Since Pgq is singular in x = 0, this emission will
produce the desired term αs log 1/x. But consider now the lower rung, marked in
red in the figure. It must be associated to a q → q or to a g → q splitting. The
corresponding splitting functions are regular in x = 0, hence this emission will
lead to a factor αs but unaccompanied by a log 1/x term. Thus this graph can be
neglected in a leading log approximation. Consider now the ladder on the right.
Since in this case the quark rung is the lowest one, there is only the q → g splitting.
Hence this graph is leading order. Then in the leading log approximation only the
first rung can be of quark type, i.e. quark emission cannot be iterated. Thus we
may consider gluon-only ladders, the eventual first quark rung being only a trivial
prefactor.
Until now we have considered only the DGLAP-relevant building blocks. In fact,
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Figure 2.4: Quark and gluon ladder

there is another process which can produce large energy logarithms, namely a s-
channel gluon emission. The two basic blocks of our ladder are then shown in Fig.
2.5.

Consider now the kinematics. In the Pγ∗ center of mass frame we can write p =

(P, 0, 0, P ), q =
(

√

−Q2 + P 2, 0, 0,−P
)

, hence
√
s = EP+Eγ∗ =

√

−Q2 + P 2+P

and P =
(

Q2 + s
)

/ (2
√
s). In the high energy limit s ≫ Q2 then we can write

p =
√
s/2(1, 0, 0, 1), q =

√
s/2(1, 0, 0,−1). We can use these vectors as a basis for

a Sudakov parametrization:

ki = xip+ yiq + ki, (2.9)

where ki is the transverse momentum.
We want now to evaluate the phase space for the gluon ladder. For simplicity, we
don’t consider the dipole-proton interaction but a simpler process, namely a qq̄
scattering with gluon emission. One can easily convince oneself that the results
hold also in the qq̄ − P case.

Consider then the qq̄ → qq̄+ g+ g process shown in Fig 2.6, where the blob A
represents one of the graphs in Fig. 2.5. In this case l1 plays the role of p and l2
of q, that is ki = xil1 + yil2 + ki.
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B’ = (x2 − x3, k2)

B = (x1 − x2, k1)

C’ = (x2, p2)

C = (x3, p3)

A = (x1, p1)

C = (x3, p3)

A = (x1, p1)

C’ = (x1 − x3, p2)

B’ = (x2, k2)

B = (x1 − x3 − x2, k1)

Diagrams for gluon emission contributing to the BFKL kernel χ0. For each line
the parton’s energy (in units of p) and transverse momentum are indicated.

Figure 2.5: BFKL ladder building blocks

A(pi, xi)

l1 k0

k1

k2

k3l2

Figure 2.6: t-channel gluon emission

In the following we will assume that A stands for the t-channel gluon emission
(Fig. 2.5 on the left). It can be shown with a similar procedure that the results
are the same for the s-channel emission (Fig. 2.5 on the right).
Neglecting all the quark masses we can write the phase space for our process as

∫

dΦ2+2 =

∫

d4k0
(2π)3

d4k3
(2π)3

d4k1
(2π)3

d4k2
(2π)3

δ
(

k20
)

δ
(

k23
)

δ
(

k21
)

δ
(

k22
)

·

·(2π)4δ4 (l1 + l2 − k0 − k3 − k1 − k2) =
1

(2π)8

∫

d4p1d
4p2d

4p3·

·δ
(

[l1 − p1]
2
)

δ
(

[l2 + p3]
2
)

δ
(

[p2 − p3]
2
)

δ
(

[p2 − p1]
2
)

, (2.10)
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where we have used in the first step the momentum-conservation δ4 to eliminate
the integration over k2 and in the second step we have performed the change of
variables k0 = l1 − p1, k3 = l2 + p3, k2 = p2 − p3 and k1 = p1 − p2. In the Sudakov
parametrization Eq. (2.10) becomes

∫

dΦ2+2 =
(s

2

)1+2
(

1

2π

)(2+2)·3−4 ∫
(

2+1
∏

i=1

dxidyid
2pi

)

δ
(

−sy1(1− x1)− p 2
1

)

·

·δ
(

sx3(x3 + y3)− p 2
3

)

2
∏

i=1

δ
(

s(xi − xi+1)(yi − yi+1)− (pi − pi+1)
2
)

, (2.11)

with the obvious n-gluon generalization

∫

dΦ2+n =
(s

2

)1+n
(

1

2π

)3n+2 ∫
(

n+1
∏

i=1

dxidyid
2pi

)

δ
(

−sy1(1− x1)− p 2
1

)

·

·δ
(

sxn+1(xn+1 + yn+1)− p 2
n+1

)

n
∏

i=1

δ
(

s(xi − xi+1)(yi − yi+1)− (pi − pi+1)
2
)

.

(2.12)
The form (2.12) is totally generic, while we are interested in the leading log

x (LLx) region. One can see that large x-logarithms arises by strong ordering of
longitudinal momenta, that is x1 ≫ x2 ≫ ... ≫ xn+1, |y1| ≪ ... ≪ |yn+1|. Indeed
it is easy to see that in this regime the phase space factor Eq. (2.12) simplifies to

∫

dΦ2+n =

(

n
∏

i=1

∫ 1

xi+1

dxi
xi

)

n+1
∏

i=1

d2pi, (2.13)

with |y1| ≈ p 2
1 /s and xn+1 ≈ p

2

n+1/s. We recognize immediately the “logarithmic”

term
∫ 1
x dx1/x1

∫ 1
x1
dx2/x2...· ·

∫ 1
xn−1

dxn/xn = 1/n! logn(1/x).

Consider now an evolution from x0 to x, with both x0 and x small, say O(1/s)
(and the same for y). Then from s xiyi+1 ≈ (pi−pi+1)

2 we obtain p2
i ≈ p2

k. Hence
the virtual gluons have transverse momenta of the same order. This implies that
an emitted gluon has approximatively no transverse momentum. Then, since both
xi and yi are small and ki ≈ 0, the emitted gluons are soft, that is ki ≪ l1, l2. Let
us summarize the main features of such an emission:

1 ≪ x1 ≪ ...≪ xn+1 ≈
k2

s
, 1 ≪ |yn+1| ≪ ...≪ |yn| ≈

q2

s
,

p
2

1 ≈ p
2

2 ≈ ... ≈ p2
n+1 ≈ q2, ki soft. (2.14)

Eq. 2.14 defines the multi-Regge kinematics. The BFKL theory holds exactly in
this regime.

Now we have all the necessary tools to derive the BFKL equation: we can
calculate the amplitudes for the graphs in Fig. 2.5 and write a x-evolution equation
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exactly in the same way we did for DGLAP in Sec. 1.2.5. This is the fastest way
to obtain BFKL, but it is not easily generalised for multiple scattering (i.e. for the
non linear evolution). Moreover, the effective calculation is quite long and difficult,
mainly because of the virtual corrections. We will adopt then a slightly different
technique. BFKL can be viewed as an evolution equation for the probability that
the gluon on the bottom of the ladder is generated by a parent gluon on the top
through a x evolution. In the following we will derive a generating functional for
this probability. Of course this is rather an awkward way to obtain BFKL, but
with our generating functional we will be able to consider multiple scattering and
hence to obtain in Sec. 2.4 the BK equation.

Our derivation of this generating functional will go through some steps. First
we will calculate the probability Pn that our original qq̄ dipole emits n gluons and
express it through a generating functional. Then we will rewrite this generating
functional in terms of creation/annihilation operators. This will enable us to eval-
uate the gluon ladder diagram and hence to obtain the BFKL equation. From the
very beginning of our derivation we will work in the large-Nc limit (see Appendix
A if you are not familiar with the large-Nc expansion). At the end we will show
that for BFKL this is not an approximation, indeed all the leading log terms of
BFKL are also leading Nc. Unfortunately this is not the case for the non linear
generalizations.

2.3.2 The dipole branching generating functional

In order to obtain the probability for the n gluon emission, we first need the
amplitude for the process qq̄ → qq̄ + ng. We may write this amplitude as a wave
function:

ψ
(n)
αβ (k1, k2, ..., kn) = 〈q̄β(q − k1 − k2 − ...− kn) qα(k1) g(k2)...g(kn)|ψ〉 , (2.15)

where α and β are spinor indexes and |ψ〉 stands for our quark-antiquark pair

(onium) of momentum q. Of course if αs = 0 we have
∣

∣ψ(0)
∣

∣

2
= 1 and ψ(n) = 0 for

n 6= 0 (obviously as long as only QCD is involved).
We will work in the multi-Regge kinematic regime of strong longitudinal or-

dered ((1−x1), x1 ≫ x2 ≫ x3...) and soft (ki ≪ k1, k0) gluons. We will parametrize
the emitted gluon four momenta and polarizations as

ki = xip+ yiη + ki, ǫi = ωiη + ǫi, (2.16)

with p = (Q, 0, 0, Q) and η = 1/(2Q)(1, 0, 0,−1). Note that xi are defined as in the
previous section (remembering the multi-Regge kinematics we have xi−xi+1 ≈ xi),
while y and ω are easily calculated respectively from the on-shell and transversality
conditions:

y =
k2

x
, ω =

k · ǫ
x
. (2.17)

In the multi-Regge regime we can use the eikonal approximation: we write the qqg
vertex as ḡsu(kq + kg)γ

µu(kq) ≈ gsu(kq)γ
µu(kq) = 2gsk

µ
q . This holds up to terms
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which are suppressed by powers of x. Note that from this it follows that a quark
propagates as a scalar particle. That is, when gluons are soft we can neglect the
spin of the quarks.

We are ready now to calculate our wave function. We start with the simplest
case, that is with ψ(1). The relation between this and the 0-gluon wave function
is depicted in Fig. 2.7. Suppose we know ψ(0). Then we can evaluate ψ(1) by

1

k

p

1

p - k

2

1
k

p-k-kp-k-k

k
2

1
k

k
2

1 12

Figure 2.7: 0-gluon and 1-gluon onium wave functions

simply evaluating the Feynman graphs in Fig. 2.7. Up to an overall phase factor
the result is:

ψ(1)(k1, k2) = gst
A

[

ψ(0)(k1)
k0 · ǫ2
k0 · k2

− ψ(0)(k1 + k2)
k1 · ǫ2
k1 · k2

]

, (2.18)

which in the multi-Regge limit simplifies to

ψ(1)(k1, x1,k2, x2) ≈ 2gst
A
[

ψ(0)(k1, x1)− ψ(0)(k1 + k2, x1)
] k2 · ǫ2

k2
2

. (2.19)

We see that the 1-gluon wave function is created from different configurations of the
0-gluon function. When we add more gluons, the number of possible configurations
grows and the resulting function is very difficult to deal with. The situation is
simplified if we Fourier-transform the transverse momenta:

ψ(n−1)(b1, x1, ...,bn, xn) =

∫ n
∏

i=1

d2ki

(2π)2
eiki·biψ(n−1)(k1, x1, ...,kn, xn). (2.20)

Using the well-known result F
[

a · k/k2
]

= i/(2π) a · b/b2 we obtain (once again
neglecting an overall phase factor):

ψ(1)(b1, x1,b2, x2) =
gs
π
tAψ(0)(b1, x2)

(

b02

b202
− b12

b212

)

· ǫ2, (2.21)
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with bij ≡ bj − bi, b0 ≡ 0.
What we are interested in is not the amplitude associated to the gluon emission,

but its probability. We have then to evaluate the square of the wave function,
summed over all colours and polarizations and integrated over the phase space,
that is

Φ(1)(k1, x1) =
∑

col, hel

∫

d2k2

2(2π)3
dx2
x2

∣

∣

∣
ψ(1)(k1, x1,k2, x2)

∣

∣

∣

2
. (2.22)

In terms of transverse coordinates we obtain

Φ(1)(b1, x1) =

∫

ρ
d2b2

∫ x1

x0

dx2
x2

αsCF

π2
b201
b202b

2
12

Φ(0)(b1, x1), (2.23)

where ρ and x0 are just cutoffs that will not appear in physical quantities. The
integrand on the r.h.s. can be rewritten as

CF
b201
b202b

2
12

= CF

(

1

b202
+

1

b212
− 2b02 · b12

b202b
2
12

)

. (2.24)

These terms are shown in Fig. 2.8 in the double-line representation. The first two
terms correspond to the top two graphs, while the interaction term corresponds
to the bottom ones.

Figure 2.8: 1-gluon contributions to the onium squared wave function

All these contributions arise from planar graphs with one boundary quark loop.
For large Nc we may then expect a behaviour like Nc. Indeed this is the case, since
CF → Nc/2 in this limit.

Consider now the emission of an additional gluon. We have to evaluate two
classes of diagrams, illustrated in Fig. 2.9. Graphs similar to A are planar, hence
they have a colour factorO(Nc), while graphs similar to B have only one colour loop
and are associated with a colour factor O(1/Nc). In the large-Nc approximation we
retain only planar graphs. Consider the non-planar graph Fig. 2.9B. It corresponds
to the interference between different dipoles. One can easily convince oneself that
this is the case for all non-planar graphs. Our approximation hence corresponds
to neglecting interference effects.
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A B

Figure 2.9: 2-gluon contributions to the onium squared wave function

Planar graphs can be thought of as composed by colour dipoles: the emission of
the first gluon converts a single colour dipole into two colour dipoles. The “quark
part” of the gluon line forms a colour dipole with the antiquark and conversely
for the “antiquark part”. From each new dipole a new gluon can be emitted.
Obviously the emission of a quark part and of an actual quark would be in general
different. But in the multi-Regge regime the only ggg relevant coupling for the
emission of a soft gluon 3 from a gluon 2 is 2gsk2 · ǫ3, that is the emission of a
dipole quark part is exactly the same as an emission of an actual quark (it can
be easily shown that the quartic interaction is suppressed by factors of the form
x3/x2).
Neglecting all the interferences, we obtain for the two-gluon emission the factorized
form:

Φ(2)(b1, x1) =

∫

d2b2d
2b3

∫ x1

x0

dx2
x2

∫ x1

x2

dx3
x3

I01→2 (I21→3 + I02→3) Φ
(0), (2.25)

where Iij→k is the factor associated to the splitting of the dipole ij due to the
emission of k:

Iij→k =
αsCF

π2
b2ij

b2ikb
2
jk

→ αsNc

2π2
b2ij

b2ikb
2
jk

. (2.26)

One can easily convince oneself that also the n-gluon term will be factorized in
multiple splittings. This is the power of the large-Nc approximation: we can
neglect interferences and then obtain the desired probability in a factorized form.

From this factorized form we could easily write down a BFKL equation for
the unintegrated onium gluon distribution (see e.g. [2]). However we want a
formulation that can be easily generalized to the case of multiple scattering, hence
we must push the formalism a little further.
We can express the features of the dipole branching using a generating functional
Z(b01, ξ1, ξ, u). We define Z such that the probability of finding n dipoles of
transverse size c with rapidity less than ξ generated from a parent of size b01 and
rapidity ξ1 is1

Pn(b01, ξ1, ξ, c) =
1

n!

δnZ(b01, ξ1, ξ, u)

δu(c)n

∣

∣

∣

∣

u=0

. (2.27)

1Note that our definition of Z is slightly different from [21].
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It is easy to obtain a perturbative equation for Z. In the trivial case αs = 0 we
can have only the original dipole, that is P1(b01, ξ1, ξ, c) = δ(b01 − c), (in the spirit
of the multi-Regge kinematics we assume ξ > ξ1), Pn = 0 for n 6= 1. Hence we
can write Z(b01, ξ1, ξ, u) = u(b01) + O(αs). At the next order in αs we may have
one gluon emission, i.e. one dipole splitting. The probability for the splitting
b01(ξ1) → b12+ b02(ξ2 < ξ) (that is for the emission of a gluon with transverse size
b2 and rapidity less than ξ) is

P̃ (b01, ξ1, ξ, b2) =

∫ ξ

ξ1

dξ2I01→2Φ
(0)(b01, ξ1) =

∫ ξ

ξ1

dξ2I01→2 +O(α2
s). (2.28)

Then we have P2(b01, ξ1, ξ, b2, b3) = P̃ (b01, ξ1, ξ, b2)δ(b3−b12)+permutations, hence

Z(b01, ξ1, ξ, u) = u(b01) +

∫

d2bk

∫ ξ

ξ1

dyI01→ku(bk)u(b1k) +O(α2
s). (2.29)

By iterating this procedure it is easy to see that in the multi-Regge kinematics the
full result is

Z(b01, ξ1, ξ, u) = u(b01) +

∫

d2bk

∫ ξ

ξ1

dyI01→kZ(bk, y, u)Z(b1k, y, u). (2.30)

This equation express nothing but the factorization of the probability, with the
“branching ratio” given by Iij→k, as shown in Fig. 2.10.

Z

Z

Z

Figure 2.10: Graphical representation of Eq. (2.30)

However Eq. (2.30) can’t be true. Consider indeed the normalization condition
∑

n Pn = 1. From Eq. (2.30) it follows Z|u=0 = 0, then we can write:

∞
∑

n=1

Pn =
∞
∑

n=0

δnZ

δun

∣

∣

∣

∣

u=0

· 1n = Z|u=1. (2.31)

Now, it is easy to see from Eq. (2.30) that Z|u=1 6= 1. This is because until now
we have considered only real emissions, neglecting virtual corrections. The fastest
way to encorporate these effects is to enforce the condition Z = 1 order by order
in perturbation theory.
Start from O(αs). From (2.30) we obtain

Z(b01, ξ1, ξ, 1) = 1 + αs
CF

π2
(ξ − ξ1)

∫

ρ

d2bk

b2kb
2
1k

b201 +O(α2
s) =
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= 1 + αs
CF

π2
(ξ − ξ1)4π log

(

b01
ρ

)

+O(α2
s). (2.32)

In order to keep the correct normalization we must then shift the coefficient of the
linear term in u from 1 to 1− 4αs

CF

π (ξ − ξ0) log(b01/ρ):

Z(b01, ξ1, ξ, u) = u(b01)

(

1− 4αs
CF

π
(ξ − ξ1) log(b01/ρ)

)

+

+

∫

d2bk

∫ ξ

ξ1

dyI01→kZ(bk, y, u)Z(b1k, y, u) +O(α2
s) (2.33)

Iterating this procedure we obtain for Z the correct result

Z(b01, ξ1, ξ, u) = u(b01) exp

[

−4αsCF

π
log

(

b01
ρ

)

(ξ − ξ1)

]

+

∫

d2bk

∫ ξ

ξ1

dy e
−

4αsCF
π

log
(

b01
ρ

)

(ξ−y)
I01→kZ(bk, y, u)Z(b1k, y, u). (2.34)

2.3.3 The generating functional in operator language

In the previous section we have obtained a generating functional for the probability
of the process qq̄ → qq̄ + ng, with each gluon characterised by a transverse coor-
dinate bi (the Fourier transform of its transverse momentum) and having rapidity
ξi less than a choosen value ξ. Moreover, in deriving Eq. (2.34) we have supposed
ξ1 < ξ2 < ... < ξn, i.e. each splitting leads to an increase in rapidity. This is not
yet what we need, that is an equation which describes the rapidity evolution of
our original gluon ladder. In order to obtain such an equation we must rewrite
our generating functional in terms of creation and annihilation operators. Within
this approach indeed we will be able to link the gluon ladder with the generating
functional. The evolution of the former will then follow immediately from the
evolution of the latter. In this section therefore we will build up the operator
formalism, while in the next one we will show the link between Z and the gluon
ladder.

What we want to describe is the evolution in rapidity of an ensemble of dipoles.
We will use an approach analogous to the classical perturbation theory in the
interaction picture, with ξ playing the role of the time variable. We start by
defining the states of our theory. To this purpose we define an operator a†(b),
which creates a dipole with transverse momentum b, and an analogous annihilation
operator a(b), with fundamental commutator

[

a(b), a†(b′)
]

= δ(b− b′). (2.35)

The basic process of the theory is dipole branching, leading to a triple-dipole
vertex carrying a factor Iij→k. We must consider the virtual correction too. From
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(2.34) we obtain that the matrix element for the process b01 → b01 is not 1 but
1 −

∫

d2b2I01→2, thus in this case also we have a factor Iij→k. These interaction
vertices are resumed in Fig. 2.11, where a double line stands for a dipole (note
that this has nothing in common with the ’t Hooft double line representation).

bij

bik

bjk

bijbij

αsCF

π2

b2ij

b2
ik

b2
jk

−4αsCF
π

log
(

bij
ρ

)

Figure 2.11: Feynman rules for the dipole picture

Our interaction Hamiltonian will be then V = Vreal + Vvirtual, with

Vreal =

∫

d2b01d
2b2I01→2 a

†(b2)a
†(b12)a(b01) =

=
αsCF

π2

∫

a2

b2c2
δ(a+ b+ c)a†(b)a†(c)a(a) d2a d2b d2c and

Vvirtual = −
∫

d2b01d
2b2I01→2 a

†(b01)a(b01) =

= −4αsCF

π

∫

d2b log

(

b

ρ

)

a†(b)a(b). (2.36)

Consider now Pk(b1, ξ1, ξ,b2, ...,bk) in the operator approach. First of all we
must create the dipole b1. Then we have to evolve in rapidity, considering all the
possible branchings. Assume the rapidity is increased in (ξ − ξ1)/δξ small steps.
For each step the branchings are determined by the operator 1 + V δξ, hence we
can write the rapidity-evolved state |b′1〉 as

|b′1
〉

= (1 + V δξ)(ξ−ξ1)δξ |b1〉 . (2.37)

In order to obtain Pk, all we have to do is to project |b′1〉 over the k-dipole state
〈b2, ...,bk| . In the limit δξ → 0 we obtain

Pk(b1, ξ1, ξ,b2, ...,bk) =
〈

0
∣

∣

∣
a(b2)...a(bk)e

V (ξ−ξ1)a†(b1)
∣

∣

∣
0
〉

. (2.38)
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Note that because of our definition of V this is in fact a probability, and not an
amplitude (and correspondingly a Feynman graph built up from Fig. 2.11 is in
fact the square of a traditional Feynman graph, integrated over the phase space).
From Eq. (2.38) it follows immediately an analogous expression for the generating
functional Z:

Z(b1, ξ1, ξ, u) =

〈

0

∣

∣

∣

∣

exp

(
∫

d2c u(c)a(c)

)

eV (ξ−ξ1)a†(b1)

∣

∣

∣

∣

0

〉

. (2.39)

In order to verify that Eq. (2.39) is the correct form for Z, let us check the
condition Z|u=1 = 1. To simplify this calculation we must rewrite (2.39) in a
slightly different way. We introduce the notation

au ≡
∫

d2ba(b)u(b),
[

au, a
†(b)

]

= u(b). (2.40)

From this, using the Baker-Campbell-Hausdorff formula, it follows

[

eau , a†(b)
]

=

(

[

au, a
†(b)

]

+
1

2

[

au,
[

au, a
†(b)

]]

+ ...

)

eau = u(b)eau (2.41)

and hence
eauf

(

a†(b)
)

= f
(

a†(b) + u(b)
)

eau . (2.42)

Since eau | 0〉 = | 0〉, we can then rewrite Eq. (2.39) as (dropping ξ1):

Z(b1, ξ, u) =
〈

0
∣

∣

∣
exp

(

(V (a, a† + u)ξ
)(

a†(b1) + u(b1)
)
∣

∣

∣
0
〉

, (2.43)

with

V
(

a, a† + u
)

=
αsCF

π2

∫

d2a d2b d2c
a2

b2c2
δ(a+ b+ c)·

·
[(

a†
b
a†caa + uba

†
caa + a†bucaa + ubucaa

)

−
(

a†aaa + uaaa

)]

. (2.44)

If u = 1 the linear term in a cancels, leaving only terms of the form a†a or a†a†a.
Then

〈

0
∣

∣

∣
eV (a,a†+1)a†

∣

∣

∣
0
〉

= 0,
〈

0
∣

∣

∣
eV (a,a†+1) · 1

∣

∣

∣
0
〉

= 1, (2.45)

leading to the desired condition Z|u=1 = 1.

2.3.4 The gluon ladder from the generating functional

Consider again Eq. (2.39), and expand the exponential eau . Then Z becomes:

Z(b1, ξ, u) = Pb1→0 +

+

∫

d2b2u(b2)Pb1→b2 +
1

2

∫

d2b2d
2b3u(b2)u(b3) (Pb1→b2b3 + Pb1→b3b2) + ...

(2.46)
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b

u(b)

Figure 2.12: Feynman rule for an external field u

Figure 2.13: Graphical representation of a term contributing to Z

We can think of u as an external field coupled to our dipoles, with the associated
Feynman rule shown in Fig. 2.12:
A typical contribution to the sum (2.46) is depicted in Fig. 2.13. By differentiating
once w.r.t. u we select a dipole in the final state, thus differentiate w.r.t. u corre-
sponds to cutting away a crossed external vertex and replacing it by an effective
dipole. Consider now the external legs ending on a crossed vertex. Putting u = 0
or u = 1 corresponds respectively to destroying these legs or to summing over all
the possible configurations (i.e. summing over all the possible dipole emissions),
see Eq. (2.46).

Now we are ready to state the main result of the dipole approach to BFKL.
Define

nk (b0, ξ0, ξ, b1, b2, ..., bk) =
δkZ(b0, ξ0, ξ, u

δu(b1)δu(b2)...δu(bk)

∣

∣

∣

∣

u=1

, (2.47)

then nk represents the inclusive probability for the process b0 → b1+b2+ ...+bk,
obtained through an evolution in rapidity. Here inclusive means that we sum over
all the possible dipole emissions.

Let us now go back to gluon-language. Then nk gives the probability that a
gluon b0 of rapidity ξ0 evolves to a collection of k gluons with rapidities ξ0 < ξi ≤ ξ
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through all the possible intermediate emissions of gluons. In particular, note that
n1 is nothing but our resummed gluon ladder! Moreover, this is exactly our ladder,
hence in this case the large Nc limit is not an approximation.
In Fig. 2.14 we show some of the typical Feynman graphs resummed by nk. These
diagrams are usually referred as fan graphs.

Representation of n1, n2, n3. The yellow blob is the BFKL kernel Γ.

Figure 2.14: Ladder and fan graphs
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2.3.5 The BFKL equation

Now we have all that we need to obtain the BFKL equation for the dipole cross
section N .

We start by writing an evolution equation for n1. From Eq. (2.34) it follows
that

n1(b01, ξ, c) = δ(c) exp

[

−4
αsCF

π
log

(

b01
ρ

)

ξ

]

·

·αsCF

π2

∫ ξ

0
dye−4

αsCF
π

log
b01
ρ

(ξ−y)
∫

d2b2
b201
b212b

2
2

(n1(b02, ξ, c) + n1(b12, ξ, c)) .

(2.48)
Differentiating w.r.t. ξ and recalling that in the large Nc limit CF = Nc/2 we
obtain the evolution equation:

d

dξ
n1(b01, ξ, c) =

αsNc

2π2

∫

d2b2
b201
b201b

2
2

(n(b2, ξ, c) + n(b12, ξ, c)− n(b01, ξ, c)) ,

(2.49)
which is the BFKL equation for the kernel n1. Note that the dependence on the
cutoff ρ has disappeared.

Consider now N . Using the kT factorization we can write N as the convolution
of the gluon ladder n1 and a suitable proton (unintegrated) structure function
φP (c):

N(b, ξ) =

∫

d2c

c2
φP (c)n1(b, ξ, c). (2.50)

Then N and n1 obey the same evolution equation, that is

d

dξ
N(b1, ξ) =

αsNc

2π2

∫

d2b2
b21
b22b

2
12

(N(b2, ξ) +N(b12, ξ)−N(b1, ξ)) . (2.51)

To solve this it is convenient to consider the M -Mellin transform of N . Writing
indeed N(b, ξ) as

N(b, ξ) =

∫ c+i∞

c−i∞

dM

2πi

(

b2

c2

)M

N(M, ξ) (2.52)

and substituting (2.52) in Eq. (2.51) we obtain

d

dξ
N(M, ξ) = αsχ0(M)N(M, ξ), (2.53)

with

χ0(M) =
Nc

2π2

∫

d2b2 b21
b22b

2
12

(

(

b22
b21

)M

+

(

b212
b21

)M

− 1

)

. (2.54)

This is exactly the BFKL kernel Eq. (1.116).
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2.4 Multiple scattering and the BK equation

In the previous section we have shown how the BFKL equation can be derived
considering the scattering of a qq̄ pair off a proton. In fact, we have considered only
single dipole-parton interactions: writing N as the convolution n1 ⊗ φP we have
implicitly assumed that the colour dipole “sees” only one parton, characterised by
an unintegrated distribution φP . This approximation is acceptable if Q2 is high
and x is not too small, otherwise the partons within the proton overlap and the qq̄
pair no longer sees a single parton. When x is very small then we have to consider
interactions with an arbitrary number of partons. This situation is represented
graphically in Fig. 2.15. On the left there is only one scattering, leading to the

P P

γ∗γ∗

P P

γ∗γ∗

Figure 2.15: Multiple scattering

usual BFKL equation. On the right we have multiple scattering, neglected by the
BFKL evolution.
In order to obtain a correct description of the small-x region we must consider all
the possible scatterings. Here the power of our formalism becomes apparent: the
resummed graphs for multiple scattering are nothing but fan graphs with 2,3,...,k,...
endpoints, that is n2, n3,..., nk... Thanks to the generating functional formalism
we can take in account all these possible graphs.
The generalisation to multiple scattering is straightforward to obtain:

N = n1 ⊗ φ −→ N = n1 ⊗ φ+ n2 ⊗ φ⊗ φ+ ...+ nk ⊗ φ⊗ ...⊗ φ+ ...

There is only one subtlety we must be careful with: once convoluted, the gluons
become identical particles. Hence we have to divide our probability nk by k! not to
count k times the same configuration. Defining ñk = nk/k! and using Eq. (2.39)
we obtain

ñ2(b0, ξ,b1, b2) =
1

2!

δ2Z(b0, ξ)

δu(b1)δu(b2)

∣

∣

∣

∣

u=1

=
αsNc

2π2

∫ ξ

0
dye
−2αs

Nc
π

log
b0
ρ
(ξ−y)·
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·
∫

d2bk
b20

b2kb
2
0k

(

1

2!

(

n
(2)
k,1,2 + n

(2)
0k,1,2

)

+
1

2!

(

n
(1)
k,1n

(1)
0k,2 + perm.

)

)

, (2.55)

where we set n
(k)
i,j,...,k+1 = nk(bi, y,bj , ..., bk+1).

Consider the terms in the last line of Eq. (2.55): the n2/2! terms are nothing but
our original ñ2, while the terms in n1 under convolution are all the same, giving a
net contribution equal to n1(bk, y,b1)n1(b0k, y,b2).
One can easily convince oneself that the solution for ñi is the same as Eq. (2.55),
but with the last line substituted by

·
∫

d2bk
b20

b2kb
2
0k

(

ñ
(i)
k,1,...,i + ñ

(i)
0k,1,...,i +

∑

l+m=i

n
(l)
k,1,...,ln

(m)
0k,l+1,...,m

)

, (2.56)

where we neglect the factorials and permutations in the spirit of the future convo-
lution (i.e. Eq. (2.56) is wrong, but under convolution it is equivalent to the true
solution).

From ni we can immediately obtain the dipole cross section N̂ (the reason for
the hat will be clear in the following) by simply convoluting with φP and summing
over i, with the result

N̂(b, ξ) = φP (b)e
−2αs

Nc
π

log b
ρ
ξ
+
αsNc

2π2

∫ ξ

0
dye
−2αs

Nc
π

log b
ρ
(ξ−y)·

·
∫

d2c
b2

c2(c− b)2

(

N̂(c, y) + N̂(c− b, y) + N̂(c, y)N̂(c− b, y)
)

. (2.57)

Assume that φP (b) = φP (b). Then N̂(b, ξ) = N̂(b, ξ), since the kernel of Eq.
(2.57) depends only on b. This is a reasonable assumption: φP describes the
propagation of a dipole in the proton, which we expect to be isotropic in the
transverse plane. In the following we will make this assumption.
Differentiating Eq. (2.57) w.r.t. ξ we obtain the multiple-scattering generalization
of the BFKL equation:

d

dξ
N̂(b01, ξ) =

αsNc

2π2

∫

d2b02
b201
b202b

2
12

·

·
(

N̂(b02, ξ) + N̂(b12, ξ)− N̂(b01, ξ) + N̂(b02, ξ)N̂(b12, ξ)
)

, (2.58)

with initial condition N̂(b, 0) = φP (b).
However it is not difficult to see that the solution of Eq. (2.58) is always negative.
It is convenient then to consider for our dipole forward amplitude not N̂ but
N = −N̂ . Then the dipole cross section obeys:

d

dξ
N(b01, ξ) =

αsNc

2π2

∫

d2b02
b201
b202b

2
12

·

· (N(b02, ξ) +N(b12, ξ)−N(b01, ξ)−N(b02, ξ)N(b12, ξ)) , (2.59)
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Eq. (2.59) is the celebrated Balitsky-Kovchegov (BK) equation. For N ≪ 1, that
is far from the unitarity bound, the BK equation reduces to the usual BFKL.
For N > 1 its derivative w.r.t. ξ is negative, hence N decreases because of the
N2 term. We see that thanks to the non linear term the problems with unitarity
vanish, even for very large ξ.

In order to show in the next section that Eq. (2.59) exhibits geometric scaling
it is useful to return to the momentum space. It is also convenient to use a slightly
different definition of Fourier transform:

N(k, ξ) ≡
∫

d2b

2πb2
e−ik·bN(b, ξ), N(b, ξ) = b2

∫

d2k

2π
eik·bN(k, ξ). (2.60)

Exploiting the fact that N(b, ξ) = N(b, ξ) Eq. (2.60) can be rewritten as

N(k, ξ) =

∫ ∞

0

db

b
J0(b k)N(b, ξ), N(b, ξ) = b2

∫ ∞

0
kdkJ0(b k)N(k, ξ). (2.61)

With these definitions the geometric scaling condition now reads

N(k, ξ) = N (k/Qs(ξ)) . (2.62)

In momentum space Eq. (2.59) can be written as

d

dξ
N(k, ξ) = ᾱsχ0(−∂L)N(k, ξ)− ᾱsN

2(k, ξ), (2.63)

where ᾱs = αsNc/π, χ0 is the LO BFKL kernel Eq. (1.116) and L = log(k2/k20),
with k0 some fixed momentum scale. In the next section we will show that Eq.
(2.63) admits scaling solutions.

2.5 Geometric scaling from the BK equation

Because of the non linear term Eq. (2.63) is quite difficult to study. However
if we consider the case of a quadratic kernel the theory of non linear differential
equations tells us that Eq. (2.63) asymptotically admits a scaling solution. It
is interesting to note that this asymptotic behaviour is determinated only by the
linear part of the equation, hence is quite general, since we have no doubt about
the BFKL equation.
For a generic kernel we don’t have similar results. However it is possible to show
that in the saturated regime (i.e. where the non linearities become important) the
solution exhibits again geometric scaling.

In the next section we will show how geometric scaling arises form the full
BK equation but with a quadratic kernel. In Sec. 2.5.2 instead we will derive
the geometric scaling using the full kernel but an approximate form of the BK
equation.
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2.5.1 The quadratic kernel and geometric scaling

Assume the full kernel χ0 is replaced by its quadratic approximation near the
minimum, as in Sec. 1.4.5:

χ0(−∂L) = c+
d

2

(

∂L +
1

2

)2

. (2.64)

For the (fixed coupling) BFKL equation this should be a good approximation only
if L << ξ. We may then assume that is the case also for the BK equation. In the
quadratic approximation Eq. (2.63) reduces to a well-known differential equation,
the Kolmogorov-Petrovsky-Piscounov (KPP) equation. To see how this happens,
consider the change of variables:

t =
ᾱsd

2
(1− γ̄)2ξ, x = (1− γ̄)

(

L+
ᾱsd

2
ξ

)

,

u(t, x) =
2

d(1− γ̄)2
N

(

2t

ᾱsd(1− γ)2
,

x

1− γ̄
− t

(1− γ̄)2

)

, (2.65)

with γ̄ = 1− 1
2

√

1 + 8c/d. Then Eq. (2.63) becomes

∂tu(t, x) = ∂2xu(t, x) + u(t, x) (1− u(t, x)) , (2.66)

that is the KPP equation. It is known since a long time that for a certain class of
initial conditions this equation admits a travelling wave solution, that is a solution
which is function of x −m(t) only. In terms of N this implies geometric scaling,
as we shall now show.
First of all, let us be more specific about the initial conditions. It is known that if
we choose an initial condition at time t = t0 such that u(t0, x) decreases smoothly
from 1 to 0 as x goes from −∞ and +∞ and has the asymptotic behaviour

u(t0, x) ∼ e−βx for x→ +∞, (2.67)

then the KPP equation admits travelling wave solutions at large times. This means
that there exists a function w such that

u(x, t) ∼ w (x−mβ(t)) for t→ ∞, (2.68)

with

mβ(t) =







(1/β + β)t+O(1) for β < 1
2t+ 1

2 log t+O(1) for β = 1
2t− 1

2 log t+O(1) for β > 1.
(2.69)

Assume now to be in the supercritical case β > 1 (we will see in a while that this
should be the case for QCD), then in terms of N Eq. (2.68) becomes

N(k, ξ) = N
(

k2/Q2
s(ξ)

)

, with Q2
s(ξ) = k20ξ

− 3
2(1−γ̄) eᾱsd( 1

2
−γ̄)ξ, (2.70)
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that is the travelling wave solution is nothing but a scaling solution.
Of course all this depends on the initial conditions. Munier and Peschansky
(MP) suggested that the intial conditions for QCD could be in fact of the form
of Eq.(2.67) [29]. Consider first the limit x → ∞ at fixed t = t0, that is the
limit L → ∞, ξ fixed. MP invoked colour transparency, leading to the asymp-
totic behaviour N(k, ξ) ∝ k−2. In terms of u this means u(t0, x) ∼ e−βx, with
β = 1/(1 − γ̄) ≈ 1.55, hence the x → ∞ limit has the correct form. Moreover,
β > 1, then we are in the supercritical region. It has been shown [30] that in the
supercritical regime logarithmic corrections to the initial condition (2.67) do not
affect the asymptotic behaviour of the solution, that is we have geometric scaling
even if N(k, ξ) ∝ k−2 logm k. Consider now the limit u(t0,−∞), that is L→ −∞,
ξ fixed. This is a non perturbative region, but MP suggested that N should have
an upper bound because of strong absorption. In terms of u this leads to the
desired condition u(t0,−∞) < c.
Then if these assumptions about the initial conditions are right, the BK equation
provides a geometric scaling solution, with saturation scale given in Eq. (2.68).
In terms of the Bjorken x the saturation scale reads Q2

s(x) = Q2
0x
−λ (log(x))η ≈

Q2
0x
−λ, with λ = ᾱsd

(

1
2 − γ̄

)

.
Of course this is an asymptotic results. Munier and Peschansky used a scaling

ansatz to derive the principal subasymptotic correction, obtaining:

N(k/Qs(ξ), ξ) = C

√

2

ᾱsχ′′(Ms)
log

(

k2

Q2
s(ξ

)(

k2

Q2
s(ξ

)−γc

·

· exp
[

− 1

2ᾱsχ′′(Ms)ξ
log2

(

k2

Q2
s(ξ)

)]

, (2.71)

with Ms being the solution of Msχ
′(Ms) = χ(Ms).

They also tried to generalize these results to the case of running coupling. This
is a very delicate point. First of all, we don’t know if the BK equation holds
also when the coupling runs. Furthermore, we don’t know the argument of the
running. Several possible arguments have been proposed for the non linear regime,
but it still lacks a definitive result. Munier and Peschanski simply ignored these
problems, assuming that BK equation still holds and that the coupling runs with
the standard argument log k. Note that with this choice [αs(L), χ(−∂L)] 6= 0,
hence there are ordering ambiguities. MP simply assumed that χ acts on N but
not on the running coupling, that is they keep the coupling on the left of χ. If all
these assumptions are correct, Munier and Peschanski get:

N(k/Qs(ξ), ξ) = Cξ1/6
(

k2

Q2
s(ξ)

)−Ms

·

·Ai



z0 +

(

√

2bMsχ(Ms)

χ′′(Ms)

)1/3
log
(

k2/Q2
s(ξ)

)

ξ1/6



 , (2.72)
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with the saturation scale given this time by

Q2
s(ξ) = Λ2

QCD exp





√

2χ(Ms)

bMs
ξ +

3

4

(

χ′′(Ms)
√

2bMsχ(Ms)

)1/3

z0ξ
1/6



 , (2.73)

where b =
11Nc−2nf

12Nc
and z0 = −2.338 is the first zero of the Airy function.

All these results are valid only near the wavefront, that is only for k ≈ Qs(ξ).
Moreover, we stress once again that Eq. (2.71), (2.72) and (2.73) are not predic-
tions of the BK theory, since they were obtained imposing a scaling ansatz. The
only genuine prediction is that for a quadratic kernel with the coupling held fixed
and a suitable boundary condition we may have an asymptotically scaling solution.
However numerical studies [31], [32], [33] of the BK equation seem to suggest that
the predictions Eq. (2.71), (2.72) and (2.73) are almost correct.

2.5.2 Geometric scaling in the saturated region

In the previous section we have seen that near the saturation momentum Qs(ξ)
the solution of the BK equation with a quadratic kernel asymptotically displays
geometric scaling. In this section we will investigate the saturated region, that
is the region dominated by the non linear effects. We will follow explicitly the
derivation given by Iancu and others [8].
In the saturated regime N ≈ 1, hence we may write N(b, ξ) = 1−S(b, ξ). In terms
of S the BK equation (2.59) becomes:

d

dξ
S(b01, ξ) = −αsNc

2π2

∫

d2b02
b201
b202b

2
12

(S(b01, ξ)− S(b02, ξ)S(b12, ξ)) . (2.74)

If S ≈ 0 we may neglect the quadratic term in (2.74). The resulting equation is
ill-defined since it is ultraviolet divergent. But this is not a problem: we are in
the saturated approximation, that is q2 ≪ Qs(ξ)

2 or b ≫ 1/Qs(ξ). Hence the
saturation scale acts as a cutoff to our integral. The resulting equation is

d

dξ
S(b, τ) = −αsNc

π
log
(

b2Qs(ξ)
2
)

S(b, ξ), (2.75)

which shows that S is indeed a scaling solution. Note that we have cheated in
this derivation: putting Qs(ξ) as a cutoff we have changed the ξ-dependence of S.
However there are hints suggesting that at least to leading-log accuracy and for
large b the result should be essentially correct [8].

Let us now determine an expression for the saturation scale. Following [8] we
put in the BK equation a scaling solution and obtain then an expression for Qs(ξ).
Note that once again we are using a scaling ansatz.
Before we start our calculation, note that for a scaling function f(ζ), with ζ =
− log

(

b2Q2
s(ξ)

)

(we used this form for future convenience) we have

d

dξ
f(ζ) = −

(

d

dξ
logQ2

s(ξ)

)

f ′(ζ) = b2
d

db2
f(ζ)

(

d

dξ
logQ2

s(ξ)

)

. (2.76)
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Hence assuming that S is a scaling solution we have
∫

d2b
1

b2
d

dξ
S(b, ξ) = π (S(∞, τ)− S(0, τ))

d

dξ
logQ2

s(ξ) = −π d
dξ

logQ2
s(ξ), (2.77)

where we used the boundaries indicated in the previous section, that is S(∞, 0) = 0
and S(0, ξ) = 1. Therefore to obtain an equation for Qs we have to divide by b2

and integrate over d2b the r.h.s. of Eq. (2.74):

d

dξ
logQ2

s(ξ) =
αsNc

π
c, with

c =

∫

d2b01d
2b02

2π

1

b212b
2
02

(S(b01, ξ)− S(b12, ξ)S(b02, ξ)) . (2.78)

It is easy to see that if S is a scaling solution then c is independent of ξ. Then the
equation for Qs becomes

d

dξ
logQ2

s(ξ) =
αsNc

π
c, −→ Q2

s(ξ) = Q2
0e

αsNc/π cξ, (2.79)

in agreement with the result of the previous section.
The authors of [8] extended these results also to the case of running coupling.
In this case they suggest that the typical scale of the problem is not Q2 but the
saturation scale Q2

s (for further discussion on this choice we refer the reader to the
original paper). If this is the case the derivation of Qs is exactly the same as in
the fixed coupling case, but with the result

d

dξ
logQ2

s(ξ) = c
Nc

π
αs

(

Q2
s(ξ)

)

−→ Q2
s(ξ) = Λ2

QCDe
√

2b0c(ξ+ξ0), (2.80)

with b0 = 12Nc

11Nc−2nf
and ξ0 an integration constant. Surprisingly enough, even in

this case we obtain forQs a result in agreement with the one of the previous section.
This situation is quite puzzling: we obtain the same result with two different
arguments for the coupling! It is not yet clear why this happens. Incidentally,
this is an indication that the running coupling version of the BK equation should
be handled with care. In other words, a “true” running coupling BK equation is
sorely needed. Some progress in this way have been made by Weigert, Kovchegov
and others [34], [35], [36], but a final result is still missing.

2.6 The extended geometric scaling region

Until now we have considered only the region where the full BK equation differs
from the original BFKL. Let us consider the low energy regime, where we can
neglect all the non linear effects. Iancu and others have shown [8] that also in this
regime there exists a region in which geometric scaling is approximatively valid.
Such region is usually referred as the extended geometric scaling region.
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The argument is very simple. Assume a function satisfies a saturation condition

f(ξ,Q2)|Q2=Q2
s(ξ)

= 1, (2.81)

then without loss of generality we can approximate this function near the satura-
tion line as

f(ξ,Q2) ≈
(

Q2

Q2
s(ξ)

)λ(ξ)

, (2.82)

with λ(ξ) = ∂ log f/∂ logQ2|Q2
s(ξ)

. Assuming that this expansion can be extended
up to values of Q2 large enough that the non linear effects can be neglected, λ(ξ)
can be determined by solving the BFKL equation with the saturation boundary
condition (2.81). Of course this doesn’t imply that (2.82) is a scaling solution: this
happens only if λ is independent of ξ. We shall see that this is the case with the
BFKL evolution.

Consider indeed the solution to the (fixed coupling) BFKL equation:

N(b, ξ) =

∫ c+i∞

c−i∞

dM

2πi
N(M, ξ0) expMl + ᾱsχ0(M)ξ, (2.83)

with l = log(Q2/Λ2) Q2 ≡ 1/b2 and Λ is some fixed scale. We assume that ξ and l
are large enough to evaluate the integral in the saddle point approximation. The
saddle condition reads

d

dM
χ0(M)|M0 = − l

ᾱsξ
≡ R. (2.84)

This implies that Ms(l, ξ) = M0(R). Then defining F (M,R) = −MR + χ0(M)
and neglecting all the fluctuations around the saddle we can write the solution
(2.83) as

N(b, ξ) ≃ eᾱsξF (M0(R),R). (2.85)

Consider now the saturation criterion Eq. (2.81). In our case this criterion reads

N (b = 1/Qs(ξ), ξ) = 1. (2.86)

Strictly speaking, the r.h.s. of this equation is not exactly 1, since for b ≈ 1/Qs

we have seen that S(b, ξ) ≈ 0 but it is not equal to 0. N = 1 is reached only
asymptotically. However, replacing 1 by k < 1 would modify our following results
by subleading terms of order 1/(ᾱsξ) · log k (see [8]) which we may neglect to the
accuracy of our calculation. In the following then we will suppose that Eq. (2.86)
holds. This saturation criterion yields the following condition on F :

F (M0(Rs), Rs) = 0 for Rs =
1

ᾱsξ
log

Q2
s(ξ)

Λ2
. (2.87)

Note that Rs is a pure number and not a function of ξ. This implies

Q2
s(ξ) = Λ2eRsᾱsξ, (2.88)
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in agreement with Eq. (2.79). Moreover, in this case the slope Rs can be easily
computed. Indeed combining Eq. (2.84) and (2.86) and writing M0(Rs) =Ms we
obtain

χ0(Ms) =MsRs =Msχ
′
0(Ms). (2.89)

Using for χ0 its LO expression (1.116) we can solve this equation numerically,
with the result

Ms = 0.6275..., Rs = 4.8833... (2.90)

Assume now we want to evaluate N for R slightly above Rs, that is for values of
b which, while still being much shorter than the saturation length 1/Qs(b), are
nevertheless close to it in logarithmic units. More precisely, we shall ask

0 < R−Rs ≪ Rs, i.e. 1 < log
Q2

Qs(ξ)2
≪ Q2

s(ξ)

Λ2
. (2.91)

The condition R > Rs, that is Q
2 ≫ Q2

s, ensures that we are in the linear regime,
while the condition R−Rs ≪ Rs allows us to write

F (M0(R), R) = F (M0(Rs), Rs)) +
d

dR
F (M0(R), R)

∣

∣

∣

∣

R=Rs

(R−Rs) + ... =

= −Ms(R−Rs) + ... (2.92)

where we used both the saturation criterion F (M0(Rs), Rs) = 0 and the fact that
M0 is a saddle point. This indeed implies:

d

dR
F (M0(R), R)

∣

∣

∣

∣

R=Rs

= −M0(Rs) +
∂F

∂M

∣

∣

∣

∣

M=M0

∂M0

∂R

∣

∣

∣

∣

R=Ms

= −Ms. (2.93)

Therefore above the saturation scale the dipole cross section N can be approxi-
mated as follows

N(b, ξ) ≃ e−ᾱsξMs(R−Rs) =
(

b2Q2
s(ξ)

)Ms
. (2.94)

We see that neglecting the fluctuations around the saddle condition and keeping
only the first non trivial term of the Taylor expansion (2.92) the solution of the
BFKL equation exhibits geometric scaling. Let us relax these approximations.
We don’t consider corrections to the saddle point, since they are suppressed by
1/ᾱsξ. We consider instead the corrections coming from higher order terms in the
expansion (2.92). These terms violate scaling. For instance, if we keep also the
second order of the expansion, we obtain

N(b, ξ) ≃
(

b2Q2
s(ξ
)Ms

exp

[

− M ′s
2ᾱsξ

log2
1

b2Q2
s(ξ)

]

, (2.95)

with M ′s = dM0(R)/dR|R=Rs . The impact of higher order terms in the expansion
(2.92) is controlled by the ratio (R − Rs))/Rs, hence the scaling behaviour holds
in the window

1 < log
Q2

Q2
s(ξ)

= log
Q2

Λ2
− cᾱsξ ≪ cᾱsξ. (2.96)



2.6 The extended geometric scaling region 75

Let us summarize the range of validity of our approximation. First, the saddle
point approximation requires that both ξ and l are large. Second, we must have
Q2 ≫ Q2

s in order to neglect the non linear effects. Third, R−Rs ≪ Rs in order to
truncate the Taylor expansion (2.92) at the first non trivial term. These conditions
define the extended geometric scaling region.

In summary, we have seen that geometric scaling persists also above the satu-
ration scale in the kinematic window

1 <∼ log

(

Q2

Q2
2

)

≪ log

(

Q2
s

Λ2

)

. (2.97)





Chapter 3

Geometric scaling:

a systematic approach

3.1 The linear evolution: analytical results

3.1.1 Saddle point methods: general analysis

In the previous chapter we have seen that geometric scaling can be obtained also
from the fixed coupling BFKL equation with a saturation boundary, but that
derivation relied on two major approximations. First, we evaluated the inverse
Mellin integral in a saddle point approximation. Second, we considered the saddle
point only in the neighbourhood of the saturation line t = λξ, with λ constant.
We may then ask where these approximations are reliable and if geometric scaling
depends strongly on them. For example, if we consider also the third term in the
Taylor expansion, does geometric scaling break down or does this only lead to a
subasymptotic correction? Furthermore, it is important to understand whether
the saturation ansatz is necessary to the scaling or not. Moreover, it is interesting
to investigate if these results hold only for the BFKL kernel or if they are more
general, i.e. if they are valid also for a DGLAP-like evolution. In this section we
will answer these questions. In analogy with the analysis of the previous chapter,
in a first step we will limit ourselves to the fixed coupling case. We will consider
the running coupling case later.

We will start our analysis with the most delicate point, that is the Taylor
expansion. In particular, what we wish to understand is the impact on geometric
scaling of higher orders in the expansion. What we will do is to rewrite this Taylor
expansion kernel in a way that makes evident if and where there is a scaling
behaviour. We will write a (formal) all order expansion, from which it will follow
that geometric scaling asymptotically holds for a very general class of evolution
kernels, but also that far from the asymptotic region scaling violations may be
very strong. We stress that what we are going to do is just a formal manipulation
of the Taylor expansion: at the end we will come back to our starting point. This



78 Geometric scaling: a systematic approach

may seem strange: usually we know a series expansion and we wish to resum it,
here instead we do know the resummed result but we want a series expansion.
One may ask why we aren’t content with the traditional Taylor expansion. The
answer is just that we don’t want a generic series representation (remember that
we have already the resummed form, a generic expansion will be totally useless),
we want to find the very particular expansion which has a direct relation with the
geometric scaling.

Let us define the terms of the question. First of all we have to write down
an expression for the total γ∗P cross section (which should scale) in terms of
something that we can calculate, namely the parton distribution G:

σγ
∗P

tot ∝ F2(ξ, t)

Q2
≈ A

d

dξ
G(ξ, t)Λ2

QCDe
−t. (3.1)

where A is just a numerical constant and the approximation is that we have ne-
glected the term associated to the small eigenvector G− of the splitting function
matrix, which is asymptotically small at large ξ (see Sec. 1.2.6). We are inter-
ested in the asymptotic behaviour of the cross section, hence following what we
have done in the previous chapter we consider only exponential terms, that is we
write G ≈ eg(ξ,t). From this definition it follows immediately that the condition
for (asymptotic) geometric scaling is

g(ξ, t)− t = h(t− ts(ξ)). (3.2)

Hence as long as we are interested only in the asymptotic behaviour we can consider
simply the function h.
For a BFKL evolution h has the form

h(ξ, t) = χ(M)ξ + (M − 1)t, (3.3)

with an associated saddle point condition

(

χ′(M)ξ + t
)
∣

∣

M=Ms
= 0. (3.4)

For a DGLAP evolution instead we have

h(ξ, t) = (γ − 1)t+Nξ,
(

γ′(N)t+ ξ
)∣

∣

N=Ns
= 0. (3.5)

Note that both the saddle conditions share an important property: they are not
function of t and ξ separately but only of the ratio t/ξ. We will see that from this
the scaling behaviour follows.

In order to stress that this is the only relevant property, we may generalize the
situation by considering

h(x, t) = f

(

b

(

x

y

))

y + b

(

x

y

)

x, (3.6)
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with the associated generalized saddle condition

f ′
(

b

(

x

y

))

+
x

y
= 0. (3.7)

Here f ′ means differentiation of f with respect to its argument. Of course with an
appropriate choice of f and b Eq. (3.6) reduces to the usual expressions (3.3) and
(3.5) for the BFKL and DGLAP evolutions.

Now that we have defined the terms of the question, we are ready to search
for the expansion. Following the ideas of the previous chapter we expand around
the saturation line y = λx. Hence we may define a new variable τ = y − λx and
consider h(x, y) → h(τ, x). Then we expand around τ = 0:

h(x, y) =
∞
∑

k=0

1

k!

dk

τk
h(x, y)

∣

∣

∣

∣

y=λξ

τk. (3.8)

For what concerns the geometric slope λ, we choose it such that h(x, λx) = 0. If
this choice is possible we will show that geometric scaling asymptotically holds,
without requiring any saturation criterion. From our definition of h (3.6) it follows
that λ is defined implicitly by the equation

h(x, λx) = f

(

b

(

1

λ

))

λx+ b

(

1

λ

)

x = 0 −→ λ = − b(1/λ)

f (b(1/λ))
. (3.9)

We can see immediately the purpose of this choice: with λ defined as in (3.9) the
expansion start from O(τ). This ensures that for τ = 0 we doesn’t have a residual
x-dependence which can break scaling. With this choice then our expansion starts
from the linear term. Since dτ = dt, what we have to evaluate is the generic form
of dkt h(x, y)|y=λx. A simple calculation shows that

dyh(x, y) = f ′b′
(

− x

y2

)

y+ b′
(

−x
2

y2

)

+ f = −
(

x

y

)

b′
(

f ′ +
x

y

)

+ f = f, (3.10)

where in the last step we have used the saddle condition Eq. (3.7). For the next
few terms we obtain

d2y =
x2

y3
b′

d3y = −3
x2

y4
b′ − x3

y5
b′′

d4y = +12
x2

y5
+ 8

x3

y6
b′′ +

x4

y7
b′′′

(3.11)

It is easy to generalize Eq. (3.11), with the result that for k ≥ 2 the general term
of this expansion has the form

dkyh(x, y) = (−)k
[

a
(k)
1

x1+1

yk+1
b′ + a

(k)
2

x1+2

yk+2
b′′ + ...+
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+a
(k)
l

x1+l

yk+l
b(l) + ...+ a

(k)
k−1

xk

y2k−1
b(k−1)

]

, (3.12)

with l ≤ k − 1. One obtains immediately that {a(k)1 } = 1
2{2!, 3!, ..., l!, ..., k!}, i.e.

ak1 = k!/2. For what concerns the others coefficients, some algebra shows that a
recursion relation holds:

akl = ak−1l−1 + ak−1l (k − 1 + l). (3.13)

We are now ready to regroup the expanded terms. The sum of terms proportional
to b′ is trivial:

b′
∞
∑

k=2

(−)k
x2

yk+1
ak1
τk

k!
=
b′x2

2

∞
∑

k=2

(−τ
y

)k 1

y
= −b

′

2

x2

y

τ

y

∞
∑

k=1

(−τ
y

)k

=

=
b′

2

x2

y2
τ2

τ + y
−→ 1

2

db

dS

∣

∣

∣

∣

S=1/λ

1

λ2
τ2

τ + λx
. (3.14)

For the other terms things are a little more complicated because of the a
(k)
l co-

efficients, which cannot be written in terms of a generating function. However

we are not directly interested in a
(k)
l but rather in a

(k)
l /k!, which instead have a

generating function representation. One indeed can easily prove by induction that

(−)k+l a
(k+l)
l

(k + l)!
=

(−)l+1

(l + 1)!

dk+1

dxk+1

1

(1 + x)l
. (3.15)

Then for the l-term we have (up to an overall (−)l+1 sign):

b(l)x1+l
∞
∑

k=l+1

a
(k)
l

k!

τk

yl+k
= b(l)

x1+l

yl

∞
∑

i=1

ak+l
l

(k + l)!

τk+l

yk+l
=

=
b(l)

(l + 1)!

x1+l

yl
1

(1 + τ/y)l

(

τ

y

)l+1

−→ b(l)

(l + 1)!

τ l+1

λ2l+1xl
1

(1 + τ/y)l
. (3.16)

Summing up all these contributions we obtain our final result

h(x, y) = fτ + τ
1 + z

z

∞
∑

k=2

(−)k

k!

(

z

λ(z + 1)

)k

dk−1S b(S)|S=1/λ, (3.17)

with z = τ/λx.
We see that for a generic kernel only the first term fτ gives rise to geometric

scaling, while all the others violate it. Whether or not the violations are strong,
it depends on the form of the various kernel (and on the kinematic region). Note
however that there are two regions in which geometric scaling holds for a very
generic kernel. First, we may have z ≈ 0. This correspond to y ≈ λx, x large. This
is nothing but the extended scaling region of the previous chapter. In this region
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geometric scaling holds up to subasymptotic contributes, hence the approximation
of neglecting higher orders in the Taylor expansion is good. Unfortunately, since
this behaviour is totally generic it tells us nothing about the underlying physics.
In other words, the geometric scaling found in [8] has little to do either with a
saturated or with an ordinary behaviour. However, this is something which is
not generic and so that could gives us a hint about the evolution: the procedure
explained above provides us a prediction for the saturation scale τ = 0, that is it
gives us a precise value for the constant λ. This value should be strongly kernel-
dependent, hence a comparison with the phenomenology can give us an information
about the kernel itself and hence about the evolution.

Apart from the extended geometric scaling region, there is another regime for
which the scaling is asymptotically exact, and which definitely shows that the usual
saturation-geometric scaling association must be handled with care. This is the
region z ≫ 1, that is y ≫ λx. For a DGLAP evolution this condition reads t≫ λξ.
Now, all the saturation-based models say that in this limit geometric scaling should
be broken1. Also in this case the effective parameters of the scaling are kernel-
dependent. Furthermore, now apart from λ we have also a prediction for b(1/λ),
hence a comparison with the phenomenology in this region could give us more
information about the evolution. One may object that this new geometric scaling
region is in fact purely theoretical: we are working in a fixed coupling regime,
while at large t the resummation of large logarithms and hence the introduction of
the running coupling is necessary. We will deal carefully with the running coupling
in the next section, for the moment we limit ourselves to one simple observation.
As long as we consider a small t-evolution we can always work in a fixed coupling
regime. Suppose indeed to work at a scale Q2

0 large as we wish. Since physical
quantities aren’t affected by the definition of the renormalization scale, without
loss of generality we can choose as renormalization scale just Q0 . Thus the only
logarithms that we can produce are of the form log

(

Q2/Q2
0

)

. But then if the
evolution is small, i.e. Q2 ∼ Q2

0, we can’t produce any large logarithm and hence
we can work with fixed coupling (fixed of course at the renormalization scale Q0).

Until now our arguments have been totally generic. Let us now study a specific
case, that is a BFKL evolution with a quadratic kernel. Note that this is not a
casual choice: this is the only one kernel for which we have a definitive analytic
argument which states that the BK equation admits travelling waves, i.e. scaling
solutions. The existence of travelling waves is often considered a claim of the deep
connection between geometric scaling and saturation. But let us consider this case
in a pure BFKL approach, without any scaling ansatz. In this case our kernel has
the form

χ(M) = η +
µ

2
(M −M0)

2, (3.18)

1This is not completely correct. What really happens is that in this region all the
arguments leading to the geometric scaling fail. Hence these models can’t predict geometric
scaling, but they also can’t prove its breaking.
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leading to the saddle condition

χ′(Ms) +
t

ξ
= µ(M −M0) +

t

ξ
= 0 −→Ms(S) =M0 − S, (3.19)

that is it gives a trivial condition for the saddle point as function of S. In other
words, with a quadratic kernel the saddle point is not an approximation, it is
the exact result. In this case all the further terms of the expansion die, we are
left only with the scaling term and with the first violation, which behaves like
∼ 1/ξ. From all of this it follows that we cannot see the scaling behaviour as
a consequence of saturation. Of course, the range of validity of the quadratic
approximation (and more in general of the saddle point approximation) and the
parameters of the scaling (that is the exact value of λ) are not at all general, they
depend on the kernel we are using. Hence if in a kinematic region the linear and
non linear predictions are different, a careful analysis of the phenomenology can
give us information about whether evolution is dominating. In the next sections
we will perform such an analysis.

We may stress that geometric scaling arises trivially from a quadratic kernel
only in the fixed coupling case: as we shall show with running coupling things
change. In order to make a comparison with the BK case, we will work with a
BFKL evolution. Note that because of duality this is totally generic: if geometric
scaling holds for the BFKL solution, then it holds also for the DGLAP one, since
duality states that these solutions are the same (with a suitable definition of the
kernels). We consider then the running coupling solution to the BFKL equation,
with the argument of the running coupling Q2 as usual. We have shown in Sec.
1.4.5 that this solution can be written as

G(ξ, t) =

∫ c+i∞

c−i∞

dM

2πi

dN

2πi
G(M0, N0) exp

[

Mt+Nξ − 1

β0N

∫

χ(M ′)dM ′
]

.

(3.20)
In the previous chapter we evaluated the M -Mellin integral and we found an
expression for the dual anomalous dimension. Now we perform first the N -Mellin
inversion. Although it is possible to express exactly the result in terms of Bessel
functions, in the spirit of this section we evaluate the integral in the saddle point
approximation. This gives

G(ξ, t) ≈
∫ c+i∞

c−i∞
G(M0, Ns)

dM

2πi
exp

[

Mt+
√

4A(M)/β0
√

ξ
]

, (3.21)

with A(M) =
∫

χ(M ′)dM ′. We see that we fall in the case previously discussed,
provided that we expand in the new variable τ = t−λ√ξ. This implies a change of
our scaling law. In the next section we will consider more carefully the case of the
quadratic kernel. For the moment we just note that, because of the square root
and of the integral over χ, in the case of running coupling the relation between
the quadratic kernel and the scaling behaviour is no longer a trivial condition and
its reliability must be checked case by case.
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Of course substituting an integral with its saddle point solution it is not in
general a good approximation of reality, that is for large but finite t and ξ. More-
over, we know that with a running coupling quadratic evolution the saddle point
is not reliable. Consider indeed the Airy anomalous dimension, which is an all-
order resummation. It can be shown that this resummed anomalous dimension
can be written as a saddle point term plus a (Borel) resummation of all the saddle
corrections, that is we can write

γA(αs, N) = γs

(αs

N

)

+ β0αs∆γss

(αs

N

)

+ ..., (3.22)

with

γs

(αs

N

)

=
1

2
−
√

2

k

[

N

αs
− c

]

, ∆γss

(αs

N

)

= −β0
χ′′0(γs)χ0(γs)

2χ′20 (γs)
. (3.23)

Note that if we limit ourselves to the saddle condition the leading singularity (that
we know from the all order resummation being a simple pole) is a branch cut.
Moreover, the term ∆γss is singular near M ∼ 1/2 because of the vanishing of the
dominator. One can see by explicit calculations that also all the further terms of
the expansion (3.23) behave badly near M = 1/2. We then see that at least in the
case of quadratic running coupling BFKL evolution the saddle approximation is
not a good one. But since we have said that asymptotically in ξ every kernel can
by replaced by its quadratic approximation near the minimum, we see that this is
the case of all BFKL evolutions when we let the coupling run. In the next section
hence we will try to link geometric scaling to this all-order resummation, without
relying on a saddle point approximation.

3.1.2 Asymptotic scaling with running coupling

In the previous section we have found that the saddle point derivation presented
in [8] is not particularly appealing, since it is based on an approximation (the first
term of a Taylor expansion) of an approximation (the saddle point). Moreover,
being completely generic it doesn’t tell us anything about the evolution. We have
also shown that the saddle point is not a good approximation if the coupling
runs. Now we want to see if geometric scaling is thus just an accident or if it is
the sign of something more profound. Note that the former case looks unlikely:
numerical simulations suggest that the scaling behaviour is a feature of both the
full linear (BFKL) and non linear (BK) evolutions with the full kernel, where with
full we mean that the evolution is (numerically) exact and it does not rely on a
saddle approximation2. Indeed, in this section we will see that we are in the latter
case: we will show that the all order running coupling resummation and geometric

2Typically here people invoke also phenomenology as a support of geometric scaling.
However we will see that the effective phenomenological importance of this scaling law
seems to be dubious, at least for HERA.
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scaling are related, provided that we treat the factorization correctly. Let us see
how all of this work.

It should now be clear that as long as we are interested only in the ξ → ∞
asymptotics we can consider without loss of generality a quadratic BFKL kernel.
We start hence by reviewing the main features of the Airy solution. In the next
section we will show that this solution apart from a prefactor can be approximately
written in terms of the difference t− t0, where t0 is the (fixed) factorization scale.
Then in Sec. 3.1.2 we will show how to promote correctly t0 → t0(ξ). Finally we
will obtain geometric scaling by simply identifying t0(ξ) with the saturation scale
ts(ξ).

The Airy solution revisited

Consider the Airy solution in (N, t) space for the eigenfunction G, that is

G(N, t) = K(N)eM0tAi

[

(

2β0N

k

)1/3 1

β0

(

1

αs(t)
− c

N

)

]

. (3.24)

In the previous chapter we have said that all its major problems (namely un-
physical oscillations for large enough ξ) are in fact due to a wrong factorization:
the oscillating terms are in fact factored out in the initial condition. In other
words, what we are interested in it is not the solution Eq. (3.24) but rather the
evolution factor:

Γ[N, t, t0] =
G(N, t)

G(N, t0)
. (3.25)

Suppose now we want to Mellin transform Eq. (3.25). At ξ large enough the
inversion integral will be dominated by the pole in N = N0 > 0 of G(N, t0).
Further singularities on the left of N0 (as for example the boundary condition
simple pole at N = 0) are suppressed in the high energy limit. It is straightforward
to see that the position of this leading pole Ns is implicitly defined by

c

Ns
=

1

αs(t0)
− β0z0

(

k

2β0Ns

)1/3

, (3.26)

where z0 = −2.33811... is the first zero of the Airy function.

Then we can write the solution of (3.25) as

Γ[ξ, t, t0] ∝ eM0(t−t0)Ai

[

(

2β0Ns

k

)1/3 1

β0

(

1

αs(t)
− 1

αs(t0)

)

+ z0

]

eNsξ, (3.27)

where the last term exp(ξNs) is nothing but the exponential factor arising from the
Mellin inverse transform. Apart from this term we note that the solution (3.27)
has a remarkable property: it is function not of t and t0 separately but only of
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their difference t− t0
3. In other words, we can write Γ(t, t0) as

Γ(t, t0) = f(t− t0) exp [Ns (t0) ξ] . (3.28)

But this has an immediate consequence in terms of geometric scaling. Remember
indeed that the scaling law should hold not for G but for G exp(−t). Now, assume
to choose the initial condition such that

t0 = Nsξ, (3.29)

then we have geometric scaling in term of the variable τ = t−ts, with ts = Nsξ. In
the next section we will show that in fact we cannot operate such a choice without
harm, but for the moment we will neglect this problem and see where the naive
scaling condition (3.29) leads us.

First of all we make some observations. We have derived geometric scaling only
for the evolution factor. If the initial condition doesn’t exhibit a scaling behaviour
the total cross section won’t scale either. However, numerical analysis of the BK
and BFKL equations seems to suggest that for large enough rapidity the boundary
condition are “washed out” by the evolution. If this behaviour is in fact true, then
we recover geometric scaling, at least asymptotically.
Now we want to understand what our choice of the initial condition implies in terms
of evolution. To this purpose consider the evolution of a point in the (t, ξ) plane.
Geometric scaling says that considering the evolution of each point separately
from all the others is in fact superfluous: points on the same t − ts(ξ) = τ line
indeed evolve at the same manner. In other words, geometric scaling implies that
the evolution of a point automatically determines the evolution of the whole line
where it lies, as shown in Fig. 3.1.
Assume indeed to consider two point on the same geometric line (in general this
line could be a curve. In the picture we have assumed for simplicity a linear relation
between ts and ξ, but of course our argument holds for every curve), say A and
B, and assume to evolve them. First we evolve A to A′. Consider now B. Since
the evolution B → A doesn’t affect the total cross section, the evolution operator
OB→A is nothing but the identity operator (obviously we are thinking of such an
operator acting on the cross section). Hence we may write

Ox→x′ σ(B) = Ox→x′OB→A σ(B) = σ(A′), (3.30)

that is we have to know only the evolution of one point in order to know the
evolution of the whole line4 . It is clear then that in a geometric scaling context
the natural boundary condition is not on a single point, but rather on a line.

3In fact this is not completely true, because of the t0 dependence of Ns. We will see
that in a particular situation this term can be factored out, just as we did for unphysical
oscillations. However in general it gives rise to (subasymptotic) scaling violating terms.

4Note that this implies that geometric scaling cannot hold everywhere, it must have
only a limited range of validity. Otherwise indeed we could know all the non perturbative
information from the perturbative one. To see this, assume we want to determine the cross
section in Q0 ∼ ΛQCD. We may then walk up on the geometric line up to a perturbative
scale Q≫ ΛQCD, calculate the cross section and then walk back with our result to Q0.
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ξξ

tt

Evolution of the total cross section σγ
∗P

tot in a generic case (left) and in presence
of geometric scaling (right). Points lying on the same geometric line leads to the
same value for the total cross section

Figure 3.1: Evolution in presence of geometric scaling

Now that we have understood the meaning of our choice of the boundary, we
may explore its consequences. Namely, we want to obtain a functional form for the
saturation scale. From Eq. (3.27) and (3.29) it follows that the naive saturation
scale t0 is implicitly defined by

cξ

t0
=

c

Ns
=

1

αs(t0)
− β0z0

(

k

2β0Ns

)1/3

. (3.31)

Hence we must obtain an approximate form for Ns(t0). To his purpose, we may
rewrite Eq. (3.27) as

c

Ns
= β0t0 − z0β0

(

k

2β0

1

c

(

t0β0 − z0β0

(

k

2β0
...

)1/3
))1/3

, (3.32)

where we have put 1/αs(k) = β0k. In the limit of large saturation scale t0 we may
express the solution of this equation as

c

Ns
= β0t0 +O

(

t
1/3
0

)

. (3.33)

Of course this is just a crude estimate. In general however the solution can be
written as

c

Ns
= a0t0 + a1t

1/3
0 + a2t

1/9
0 + a3t

1/27
0 + ... (3.34)

In terms of the saturation scale this in turn implies

t0 = Nsξ ≈
c ξ

a0t0 + a1t
1/3
0

≈ c ξ

a0t0

(

1− a1
a0
t
−2/3
0

)

, (3.35)
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where we have considered only the first two terms for simplicity. From this we
obtain

t0 =

√

c ξ

a0

(

1− a1
a0
t
−2/3
0

)

=

√

c ξ

a0

(

1− a1
a0
t
−2/3
0

)

=

=

√

√

√

√

cξ

a0

(

1− a1
a0

[

cξ

a0

]−1/3
)

=

√

cξ

a0
− 1

2

a1
a0

(

c

a0
ξ

)1/6

, (3.36)

where these manipulations are valid if we neglect all the terms O
(

ξ1/9
)

. The
generalization of Eq. (3.36) to higher order is trivial. Note that without any
saturation or scaling ansatz we have recovered the same behaviour of the saturation
scale of [37], that is

t0(ξ) = A
√

ξ +Bξ1/6 + ... (3.37)

Moreover, thanks to our all order resummation we are able to find the ξ dependence
of the saturation scale up to any chosen accuracy, while in [37] the scaling ansatz
provided only the first correction, that is the ∼ ξ1/6 term.
Let us now calculate the leading coefficients a0 and a1. From Eq. (3.32) and (3.34)
it follows immediately

a0 = β0, a1 = −z0β0
(

k

2c

)1/3

, (3.38)

from which

A =

√

c ξ

β0
=

√

χ(M0)

β0

√

ξ. (3.39)

All this seems very appealing, but there is a flaw in our argument: by assuming
t0 = t0(ξ) we have in fact changed the evolution equation. In the next section
we will explain how this happens and we will show how to resume the correct
evolution even with ξ-dependent boundaries.

ξ-dependence of the factorization scale

We have said that giving a ξ dependence to the initial scale t0 we have modified
the true evolution equation. At first sight this could seem strange: after all our
starting result Eq. (3.24) was obtained in Mellin space, and the variable Mellin
conjugate to M is t, not t0. The initial scale enters in our equation only in a
later stage of the calculation. Hence we may think that our choice of t0 is totally
legitimate. In fact this is not the case, as we shall now see.

From the definition of Γ Eq. (3.25) we see that t0 is indeed the factorization
scale. If this were not be so, we couldn’t factor out the unphysical oscillations and
hence we would get a totally absurd result. But if it is the factorization scale, it is
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also the scale at which we define the starting condition for the running coupling.
That is the definition Eq. (3.25) implies

αs(t) =
1

β0 log
Q2

Λ2
QCD

=
αs(t0)

1 + β0αs(t0) log
Q2

Q2
0

. (3.40)

Of course the two definitions are equivalent, hence even with our choice of t0
the running still does not depend on ξ (which is obvious: the coupling, being
an observable, cannot depend on the renormalization scale). However, only the
second one is relevant when we calculate the Airy resummation, as one can see
immediately by simply remembering what we have done in the Sec. (1.4.5). The
variable t there defined is not the traditional tΛ = logQ2/ΛQCD

2, but rather
tQ0 = logQ2/Q2

0, with Q0 being the factorization scale. Hence, if we want to give
a ξ dependence to t0 and we want that t0 remains our factorization scale, we have
to give a ξ dependence to t, where here with t we indicate not a precise scale but
rather the Mellin conjugate to M . In order to keep track of t0 in t, we can define a
new variable for the Mellin conjugate to M , that is we may write t = tΛ − t0Λ and
give a ξ dependence only to t0Λ. From now on this new definition will be implicitly
assumed, hence we can drop the Λ index in order to shorten the notation.

With this new definition it is easy to see how the evolution equation changes.
Write indeed G in a Mellin representation:

G(ξ, t) =

∫ c+i∞

c−i∞

dM

2π
eM(t−t0(ξ))G(M, t). (3.41)

From this it follows immediately

d

dξ
G(ξ, t) =

∫ c+i∞

c−i∞

dM

2π
eM(t−t0(ξ))

(

−Mdt0
dξ
G(ξ,M) +

dG(ξ,M)

dξ

)

=

=

∫ c+i∞

c−i∞

dM

2π
eM(t−t0(ξ))

(

−Mt′0 + χ(α̂s,M)
)

G(ξ,M),

(3.42)

that is we do not have our starting BFKL equation any more.

However we can recast Eq. (3.42) in a traditional form by simply defining a
new “geometric scaling” kernel, related to the traditional one by

χgs (α̂s,M) ≡ χ (α̂s,M)−Mt′s, (3.43)

where we have put ts = t0 since this will turn out to be the true geometric scale. As
we shall now see, from a pure theoretical point of view the new term doesn’t give
any problem, since it is only a linear contribution. Assume indeed one considers
a totally generic evolution kernel χ and one performs a Taylor expansion around
M =M0. Since the only interesting contribution for the asymptotic limit ξ → ∞
comes from the quadratic part, we may separate it from the rest of the expansion,
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i.e. we may write

χ(M) =
∞
∑

i=0

dk

k!dMk
χ(M)

∣

∣

∣

∣

M=M0

(M −Ms)
k = c+

k

2
(M −M0)

2 + other terms.

(3.44)
Now consider the the effect of a generic non quadratic term, say of the cubic
1/6 ζ(M −M0)

2 term for definiteness. In t space this contribution can be viewed
as a differential operator acting on the solution without the cubic term. Suppose
for simplicity that we have only the quadratic kernel plus a cubic correction. Then
what we have said is that the full solution can be written as

G(N, t) = exp

(

−1

6
ζ
d3

dt3

)

G2(N, t), (3.45)

where G2 is the solution with only the quadratic part. The generalization of Eq.
(3.45) to other terms is obvious. Note that in general we can’t deal easily with
terms of the form (3.45), typically we can treat them only perturbatively. However
for a linear terms things become trivial. Indeed the operator associated to such a
term is nothing but

O1(λ) = exp

[

−λ d

dx

]

, (3.46)

that is the generator of translations:

O1(λ)f(z) = f(z − λ). (3.47)

Hence the effect of our linear term is nothing but a shifting of the argument of our
solution. Furthermore, noting that

d

dt
=

(

2β0N

k

)1/3 d

dz
(3.48)

we can write the “geometric scaling” solution straightforwardly:

Ggs(N, t) = K(N)eM0(t−t′s)Ai

[

(

2β0N

k

)1/3 1

β0

(

1

αs(t)
− c

N
− β0t

′
s

)

]

. (3.49)

It is easy to see that this changes nothing in our previous argument, it simply
changes the implicit definition of ts:

ξ c

ts
=

(

c

Ns

)

ξ =

(

1

αs(ts)
+ t′s −

(

k

2β0Ns(ts)

)1/3

β0z0

)

ξ. (3.50)

Hence from a theoretical point of view we obtain the same results of the previous
section. However Eq. (3.50) is very difficult to master, even if we limit ourselves
to the first few terms of the expansion (3.34). Hence me may adopt a different
strategy.
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Assume indeed to perform a slightly different expansion of our original kernel,
that is we expand it around a point near the minimum but which is not the
minimum. For the moment we can choose this point as we like it, later we will
see that the self consistency of our approach impose a unique choice. We can then
write our original kernel as

χ(α̂s,M) = α̂s

(

χ(M0) + χ′(M0)(M −M0) +
1

2
χ′′(M −M0)

2

)

+ ... (3.51)

Then the geometric scaling kernel reads

χgs (α̂s,M) = χ (α̂s,M)−Mt′s =

= α̂s

(

χ(M0) + χ′(M0)(M −M0) +
1

2
χ′′(M −M0)

2

)

−Mt′s. (3.52)

Our strategy will be the following: we search a valueM0 such that the term −Mt′s
cancels exactly the linear term of our geometric scaling term. Acting this way we
obtain a new kernel which is quadratic, to which we can apply all the formalism
derived in the previous section. Of course the new kernel will be in general different
from the starting one, hence we will obtain different parameters for the saturation
scale.
We can treat the running coupling perturbatively. It can be shown [18] that
expanding the Airy solution we find exactly the same terms obtained by the per-
turbative expansion of the running coupling, this ensure that our procedure will
lead to the correct result. The advantage of this perturbative approach is that the
expansion is finite, since our kernel is a polynomial of degree two. Namely, one
found that the geometric scaling kernel can be written as

χgs(αs,M) =
[

αs

(

χ− χ′M0

)

+ α2
sβ0χ

′ − α2
sβ0χ

′′M0 − α3
sβ

2
0χ
′′
]

+

+
[

αsχ
′ + α2

sβ0χ
′′ − t′s

]

M +

[

αs
1

2
χ′′(M −M0)

2

]

, (3.53)

where αs = αs(ts). Assume now that we want to consider the leading behaviour
of the saturation scale. Accordingly this reduces to

χgs(αs,M) = αs

(

χ− χ′M0

)

+
(

αsχ
′ − t′s

)

M + αs
1

2
χ′′(M −M0)

2. (3.54)

Following our program then we have to solve

t′s = αsχ
′ =

1

β0ts
χ′, (3.55)

leading to the following definition for the saturation scale:

ts =

√

2χ′

β0
ξ (3.56)



3.1 The linear evolution: analytical results 91

in analogy with [37]. But remember that the procedure of the previous sections
leads to the prediction

ts =

√

c

β0
ξ. (3.57)

Hence, our approach is self consistent only if cgs = 2χ′. But cgs = χ(M) − χ′M0,
hence we must have χ′(2 + M) = χ. This fix uniquely M0 at a value slightly
different from the one argued in [37].

At last, we can say that the total cross section has indeed a scaling behaviour,
that is

σγ
∗P

tot ∝ e−(t−ts)(1−M0)Ai

[

(

2β0Ns

k

)1/3

(t− ts) + z0

]

. (3.58)

The scaling law is broken by the residual ξ dependence of Ns. However assume
that we are very close to the saturation scale, that is that we have t ≈ ts. Then
we may expand the Airy function and factor out Ns in the boundary condition,
just as we have done with the oscillating behaviour. In this case we obtain

σγ
∗P

tot ≈
(

Q2
s(x)

Q2

)1−M0

log
Q2

Q2
s(x)

, (3.59)

in agreement with [37].

In this section we have clarified that geometric scaling cannot be claimed as
a prerogative of the BK equation. However, note that all our predictions share a
common property: they blow up when ξ → ∞. In the case of running coupling
this bad high energy behaviour is reduced w.r.t. the fixed coupling case, however
from a theoretical point of view this is not a good situation. We have shown that
geometric scaling is neither a proof nor a hint for the existence of a non linear
regime, but such regime (or something very similar) must exist in order to ensure
unitarity. Hence the true “original” prediction of the non linear equation is not
geometric scaling but the saturation of the cross section for small x. As far as we
know all the solutions of the linear equations blow up at very high energy. With
the naive kernel χ0 this growth is very rapid and leads to unitarity violations even
for not so small x. However with the resummed kernels of Sec. 1.4 this rise is
softened, hence the problems with unitarity arise only at very high energies. So,
it is not yet clear where the non-linear effects become relevant. However there
must come a point for which non linearities are relevant, hence requiring the full
BK equation. For what concerns the BK prediction, there is a point that we must
clarify. Because of the non linear damping term we have seen that Eq. (2.59) gives
rise to saturation, and this is totally general. However, it is not clear how this
saturation is reached and if the travelling wave solution (i.e. geometric scaling) is
universal or not. We have said that geometric scaling arises only for a particular
class of the boundary conditions, and also the behaviour of the cross section at
high energy may depend strongly on them. Hence, even if the BK equation is a
perturbative result, its predictions could be dominated by the non perturbative
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input. Of course one should say that this is the case of all QCD phenomena, but
this is not completely true. For example, the DGLAP prediction for F2 is universal
for sufficiently large t, that is the contribution of the boundary is subasymptotic
with respect to the contribution of the perturbative evolution: the non perturbative
information enters only as a trivial overall constant. We don’t know if this is the
case of BK equation. However, it seems that in the region interesting for the actual
DIS phenomenology the solution may be boundary-condition dependent.

3.2 Geometric scaling at HERA

Until now we have worked on a totally theoretical plan, but all our theories must
be tested with the existing experimental results. In this thesis we will focus on
HERA data on deep inelastic scattering. Applications to other processes, namely
experiments with heavy ions, may be found in [38] and references therein.

As we have mentioned in the introduction, a correct understanding of the true
nature of the evolution in the HERA kinematic window is fundamental. Through-
out all this thesis we have shown that from a theoretical point of view knowing
the correct evolution in a given kinematic range is very useful, since it can give
information about possible saturation effects. But also from a phenomenological
point of view the knowledge of the real evolution at HERA is of the highest impor-
tance: all the parton distribution functions extracted from HERA data are evolved
according to a DGLAP theory. If this turn out to be wrong, all our PDF are dis-
torted and hence they introduce systematic errors when we use them as input for
the calculation of others processes. Note that this is not a minor problem: just
to make an example, the Higgs production via gluon fusion at LHC is strongly
dependent on the small-x PDFs.

Hence a careful analysis of the HERA phenomenology is needed. This section
is devoted to such analysis. In fact, in order to perform a more flexible analysis
we won’t work directly with HERA data, but we rather use an interpolation based
on a neural network parametrization. Thus, before starting our true analysis we
will give in Sec. 3.2.1 a short introduction of the neural network approach to deep
inelastic structure functions fitting and we will specify parameters of the net that
we have used.

In order to test our theories, the first task we will accomplish is to understand
what is the exact kinematic window for the geometric scaling at HERA. In Sec.
3.2.2 then we will test the scaling behaviour in different kinematic ranges. Once
stated where the geometric scaling holds, we will extract from the available data
the parameters of the scaling law, namely the geometric slope λ. We will do such
an analysis in Sec. 3.2.3, both with fixed and running coupling. Finally, in Sec.
3.2.5 we will compare the traditional predictions based on the DGLAP evolution
with the ones based on the BFKL/BK theories.
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3.2.1 The neural network parametrization of DIS data

As we have mentioned in the introduction of this section, in our analysis we won’t
to use directly the experimental data, but rather a suitable interpolation Fexp.
This allows us to perform a much more flexible analysis. But of course in order to
obtain reliable results Fexp must contain all the available information about the
data. From a theoretical point of view one can obtain Fexp quite easily: one has
only to choose a basis in an appropriate function space and to expand Fexp on
this basis. Note the result of this expansion is totally independent of the chosen
basis. Then all one has to do is to obtain the appropriate coefficients of this
expansion from experimental data. But of course a non trivial function space
has infinite dimension, hence we would have to determine an infinite number of
coefficients. In other words, we would need an infinite number of experiments.
In fact what one does is to truncate the infinite expansion and to fit the finite
number of coefficients with all the existing data. However in this case the result
is dependent on the chosen basis. The determination of the basis hence leads to a
systematic error which is very difficult to deal with.

In our case we will use a different interpolation system, neural networks. The
main advantage of this approach is that we don’t have to say anything about the
functional form of our Fexp. The strategy of the neural network parametrization
we will use is the following (see Ref. [39]): first with Monte Carlo methods one
generates a probability measure in the function space such that it gives a faithful
representation of Fexp evaluated in the known experimental points, then one feeds
the neural network with this measure. The result is an interpolation extended to
the whole (x,Q2) plane. Of course we can trust this interpolation only in a region
where we have experimental data.

The neural network we will use was trained with all the existing experimental
DIS data (in reality some very old and inaccurate data were removed), that is
with the result of 13 charged lepton-proton scattering experiments. The kinematic
coverage of these experiments in shown in Fig. 3.2. The characteristic triangular
form can be easily understood if one takes in account the relations between x, Q2

and the centre of mass energy
√
s:

ymins <
Q2

x
< s, (3.60)

where ymin depends on the experiment. At HERA
√
s ≈ 314 GeV and ymin ≈ 0.04.

The interested reader can found a more detailed description of these experiments
in [39] and references therein. With respect to what we have said in the previous
sections, we must specify that at sufficiently high virtualities DIS can be mediated
not only by a virtual photon but also by a Z. However our net was built in order
to handle both this cases.

The output of the net is the structure function F2 with the relative error and
correlations. This output not only agrees with the experimental results with which
the net had been trained, but it has also passed various reliability test. Hence we



94 Geometric scaling: a systematic approach

0.01

0.1

1

10

100

1000

10000

100000

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Q
2 

[G
eV

^2
]

x

BCDMS
NMC
E665

ZEUS94
ZEUSBPC95
ZEUSSVX95
ZEUSBPT97

ZEUS97
H1SVX95

H197
H1LX97

H199
H100

Figure 3.2: HERA kinematic range

can safely trust it, provided that we stay in the kinematic region shown in Fig.
3.2.

3.2.2 The geometric scaling window

In order to study the geometric scaling at HERA, first of all we have to know the
kinematic region where the scaling behaviour holds. The goal of this section is
just the determination of this kinematic range.
As a warm-up, we want to reproduce the original geometric scaling observation [1].
To this purpose, we have generated a grid of 1685 points in the

(

x,Q2
)

plane, with
the condition x < 0.01. At HERA this bound implies x ∈

[

1.14 · 10−6, 0.01
]

and
Q2 ∈

[

0.05 GeV2, 450 GeV2
]

. Since the natural variables in our theories are not x
and Q2 but rather ξ and t, we have chosen our points equally spaced in logarithmic
units. Our sample is shown in Fig. 3.3, where we have also depicted two (fixed
coupling) geometric lines, Q2 · xλ = 10 and Q2 · xλ = 0.01. Note that we have
followed carefully the contours of the HERA triangle, in order to be absolutely
sure about the output of the net.

As a starting point for our analysis we use the fixed coupling form for the
saturation line. For λ we use the same value of [1], that is λ = 0.29. We hence plot



3.2 Geometric scaling at HERA 95

x
-610 -510 -410 -310 -210

)2
 (

G
eV

2
Q

-210

-110

1

10

210

310
Data points

=10τ
=0.01τ

Data points

=10τ
=0.01τ

Data points

=10τ
=0.01τ

Data points

=10τ
=0.01τ

Figure 3.3: Data sample

the output of the net in function of the fixed coupling scaling variable5 τ = Q2 ·xλ.
The resulting plot is shown in Fig. 3.4. At first sight geometric scaling seems to
hold almost exactly. However note that the plot is in logarithmic units: the Q2

range is so wide that the error bars aren’t even visible. Hence this plot should be
interpreted with care. Furthermore, dimensional analysis tells us that for large τ ,
and hence for large Q2, the cross section should drop as 1/Q2 up to logarithmic
corrections. Hence in Fig. 3.4 what we are seeing, at least for large τ , could
be only this trivial asymptotic behaviour, which masks all the other interesting
subasymptotic contributions.
In order to quantify what we have just said, we can consider

F (x) = σγ
∗P

tot

(

x,Q2 = τ/xλ
)

, (3.61)

that is the total cross section in function of x at fixed τ . If geometric scaling
holds, then F (x) is a constant. In Fig. 3.5 we plot F for different values of τ .
Note that the scaling behaviour approximatively holds, but these plots clarifies
that the geometric scaling description of HERA data is not as good as one can

5Note that in this section we use a different definition for τ : here τ = Q2/Qs(x)
2, while

in the previous section we have defined τ = t− ts(ξ).
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Figure 3.4: Geometric scaling in the original kinematic window

naively think from Fig. 3.4. In particular, we will see in Sec. 3.2.5 that the
double scaling prediction (i.e. the pure DGLAP prediction) is a better description
of HERA data (of course only in the kinematic range where the DGLAP theory
can be applied).
Note that for small or large τ we have only few points (one can understand this
immediately by inspecting Fig. 3.2), for very small τ we may have just one point
for each different value of τ . But then in this region Fig. 3.4 doesn’t tell us nothing
about the scaling behaviour.

In order to understand if what we are seeing is in fact the geometric scaling
predicted in the previous sections, we can adopt the following strategy. Our scaling
law should hold for BFKL/BK-like evolutions, hence it should be relevant only at
large ξ. Moreover, all our analytical analysis have shown that the scaling behaviour
should be exact only in the asymptotic limit ξ → ∞. Hence if we enlarge the
kinematic window in order to consider also points with smaller rapidities, i.e. with
x > 0.01, we may expect that the scaling behaviour disappears or at least that
we can see some violations. But this is not the case of HERA data, as shown in
Fig. 3.6: geometric scaling holds up to large values of x, say x ∼ 0.1. This may
be a first hint that in fact the scaling behaviour of the cross section is not directly
related with the BFKL/BK geometric scaling prediction, at least for large τ (that
is for large Q2 and x).

Note however that the true non linear prediction, that is saturation, seems to
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Figure 3.5: Total cross section at fixed τ

be visible in the region on the extreme left of the plot. This is of course a region of
very large rapidities, hence our theories should apply, but unfortunately it is also a
region of low virtualities, hence perturbation theory is not reliable: we even reach
values such that Q2 < Λ2

QCD, that is we go through the Landau pole of QCD.
There are arguments showing that one could use perturbation theory even in this
regime, but no one seems to us totally plausible.
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Figure 3.6: Geometric scaling in different kinematic windows

3.2.3 The geometric slope

In order to understand whether the observed scaling behaviour is geometric scaling
or not, we may extract from the experimental data the saturation slope λ and
compare it with our theoretical predictions. However this is not a trivial task: we
do not have a well-defined function to fit. All our analytical predictions indeed
hold only in the asymptotical regime ξ → ∞, while at HERA the largest value of
ξ is 13. Furthermore, data with large rapidities have also small virtualities, hence
our leading order predictions aren’t reliable. Hence our asymptotic expressions are
inappropriate at HERA. Thus in order to extract a phenomenological value of λ
we won’t fit an analytical expression but we rather follow the approach proposed
in [40]. Our strategy will be the following. We will associate to each possible value
of λ a quality factor which express the goodness of the scaling behaviour. Then
we will perform a scan in λ and choose as λexp the one with the highest quality
factor.

Our expression for the quality factor is

Q(λ) =

[

∑

i

(yi+1 − yi)
2

(xi+1 − xi)
2 + ǫ2

]−1

, (3.62)

where x and y are rescaled τ and σγ
∗P

tot , such that 0 < xi, yi < 1, while ǫ is just
a small number. It is easy to see that Eq. (3.62) accomplishes its task. Consider
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indeed two successive points xi, xi+1. If we have the scaling behaviour, that is
if it exists a function σ(xi) such that yi = σ(xi), we may expect that the images
through σ of xi and xi+1, that is yi and yi+1, should be very close. Otherwise,
we expect that yi is not related to yi+1. We then see that Eq. (3.62) is a good
definition for a quality factor. The role of ǫ is very simple: it prevents the sum to
blow up if we have two points with the same x.

λ
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

)λ
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Figure 3.7: Quality factor in the running coupling case

We have used the quality factor Eq. (3.62) to extract λexp both for fixed and
for running coupling geometric scaling, that is with geometric lines defined by
t− λfixξ and by t− λrun

√
ξ. In Fig. 3.7 a typical quality factor plot is shown. In

order to extract a value from such a plot, we perform a gaussian fit (also shown
in Fig. 3.7). Our best fit results are λfix = 0.28 ± 0.04, λrun = 1.62 ± 0.17, in
agreement with the results found in [40].

We can now replot our cross section using these new best fit parameters. In the
case of fixed coupling the shape is almost identical to the one shown in Fig. 3.4,
hence we do not report the plot. Consider instead the running coupling version
of geometric scaling. In this case too the scaling behaviour seems very good, as
shown in Fig. 3.8. But in this case too the same argument of the previous section
applies. In particular if we plot the cross section at fixed τ in function of x we
obtain a behaviour analogous to that depicted in Fig. 3.5.
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Figure 3.8: Running coupling geometric scaling

3.2.4 Comparison with the theoretical predictions

In the previous sections we have seen that geometric scaling holds in a very wide
kinematic regime, both in the case of running and fixed coupling. But this seems
at least strange: for Q2 very large and for a large kinematic window we could
expect a failure of a fixed coupling theory. Note that here we have huge Q2: with
the bound x < 0.1 at HERA we can have Q2 up to 9000 GeV2. Hence we cannot
trust seriously a theory which neglects systematically all the large logarithms of
Q2.

In fact, we have not yet said that the scaling behaviour of HERA data and
the geometric scaling predicted in the previous chapter are the same. In order to
make a comparison, we will quote the main results that we have obtained in the
previous chapter and in the first sections of this chapter. Let us start with the
fixed coupling case. With the BK evolution in the quadratic approximation the
geometric slope is obtained as the speed of the travelling wave solution, that is

λBK, fix = ᾱsχ
′′

(

11

2

)

(

1

2
− 1 +

1

2

√

1 + 8
χ(1/2)

χ′′(1/2)

)

≈ 4.6287ᾱs. (3.63)

With the saddle point approximation of the BFKL equation instead one obtains

λBFKL, fix = ᾱsχ
′(Ms), χ(Ms) =Msχ

′(Ms), (3.64)
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leading to the prediction λ ≈ 4.8833ᾱs. Note that the two predictions are compa-
rable, but both fail completely do describe the data for realistic values of αs. These
predictions lead to a phenomenologically acceptable λ value only for αs ≈ 0.06,
while in the small-x region of HERA we can typically set αs ≈ 0.2. We could have
expected this failure: in such a wide kinematic range we cannot neglect running
coupling effects. Let us then consider the running coupling version of geometric
scaling. In [37] using a scaling ansatz the authors obtained

λansatz, run =

√

2χ′(M0)

β0
, χ(M0) = χ′(M0)M0, (3.65)

leading to the prediction λ ≈ 3.75. In the first section of this Chapter instead we
obtained from the Airy anomalous dimension

λAiry, run =

√

2χ′(M0)

β0
, χ(M0) = χ′(M0)(2 +M0), (3.66)

leading to the prediction λ ≈ 1.78139. We see that in this case too the theoretical
and phenomenological values disagree. Note however that our prediction is closer
to the phenomenological value. Moreover, in this case too we could have expected
a failure of the Airy prediction: we have seen in the previous Chapter that the
Airy approximation is not so good, in order to obtain a correct description of
the phenomenology one should consider the Bateman anomalous dimension. We
obtain a value which is not so bad because we are considering only the leading
asymptotic behaviour of the Airy anomalous dimension, which is not so different
from the Bateman one.

In order to have a representation of the errors of our theoretical estimates,
in Fig. 3.9 we plot the cross section in function of τteor. The theoretical fixed
coupling predictions are not universal, they depend on the value of the coupling.
For the plot in Fig. 3.9 we have chosen the typical value αs = 0.2. There are some
interesting observation about Fig. 3.9. We will left for later the more obvious,
i.e. that the Airy prediction is very good. Consider the two plot on the top of the
figure, that is the fixed coupling and the scaling ansatz running coupling solution.
We note that the running coupling prediction is better than the other. This is
nothing but a further signal saying that in this kinematic window we can’t neglect
large Q2 logarithms (and hence DGLAP evolution). We note also that in the limit
of small τ , i.e. of small t and large ξ, the theoretical predictions seem to capture
the main features of the evolution. This is of course plausible: in this region the
logQ2 terms are not so large, hence we may neglect them. Towards the saturation
region all the theoretical predictions seems to furnish a correct representation of
the data. However in this region we don’t have experimental information enough
for a definitive affirmation: as we have said, in this region the points are just a
few (see Fig. 3.5), so it is not so strange that they lie on the same line. However
this seems not to be just an accident, as we can see in Fig. 3.10. Unfortunately, as
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scaling ansatz prediction λrun ≈ 3.75 and the Airy prediction λrun ≈ 1.78.

Figure 3.9: Geometric scaling with theoretical slopes.

we have said this region corresponds to very small momenta, hence it is dubious if
we can apply standard perturbative theory, even if we are at large rapidities. We
may say hence that at small τ we have a hint that our theories are correct, but we
have no definitive argument.

Let now consider in detail the case of the Airy scaling. From Fig. 3.9 it seems
that the Airy theory can explain all the HERA kinematic window. This should be
strange, since from other analysis it emerges that the Airy anomalous dimension
is not a good approximation of the true evolution [4]. However, we have never said
that the Airy scaling is the correct description of HERA data, we just have shown
that its prediction for the geometric slope is quite accurate. This of course is a
necessary condition for a correct description of the data, but it is not sufficient.
We have fitted the experimental points with a function of the form of the Airy
prediction, that is

σγ
∗P

tot = A

(

1

τ

)1−M0

log
τ

B
. (3.67)
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Figure 3.10: Enlargement of the small τ region.

In Fig. 3.11 we plot our result. Note that there is an agreement with the data
only for small x. Note that with our theory we can’t predict the actual values of
A and B. From Fig. 3.11 it would seem that the small τ region of HERA data can
be explained in terms of perturbative resummation only, that is there is no strong
evidence of saturation effects. However, this region is highly non perturbative,
hence it is dubious whether our analysis applies or not.

Note that the most of HERA data can’t be described in term of the Airy
scaling, hence our theories seems to fail for not so small τ . This is because until
now we have neglected the real relevant evolution, that is the DGLAP evolution.
In the next section we will see that the DGLAP solution explains perfectly the
data in the whole kinematic window where it can be applied (that is at sufficiently
large Q2).

3.2.5 DGLAP evolution

One may legitimately wonder what is the role of DGLAP evolution in the HERA
kinematic range. In this section we will show that for Q2 > 10 GeV2 the DGLAP
solution reproduces all the available data with great accuracy. At first sight this
may seem strange, since we can’t find an analytic scaling prediction. However the
DGLAP solution scales almost perfectly, as we show in Fig. 3.12. This behaviour is
easily understood. Consider indeed the two pair of conjugate variables τ± = t±λξ.
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Figure 3.11: Airy fit

If for a value of λ the derivative of σteor with respect to τ+ is small, then we have
the scaling behaviour. Now, this is exactly the case of our experimental value
λexp = 0.28. The same argument applies also to the case of running coupling
scaling.

Hence the original geometric scaling observation in most of the kinematic win-
dow is nothing but a simple approximation to the DGLAP evolution. Note that
this explains why the scaling behaviour persists also for not so small values of x.

Moreover, in this kinematic window we can consider an approximate solution
to the DGLAP evolution, that is the double scaling prediction. In order to see
that in this kinematic window the double scaling solution is in fact the correct de-
scription of the phenomenology, we plot the experimental results rescaled with the
full asymptotics and subasymptotics double scaling predictions. In other words,
consider the double scaling prediction for F2:

F2(t, ξ) = N γ√
σρ

exp
(

2γσ − δ+
ρ

σ

)

, (3.68)

with σ, ρ, γ and δ+ defined as in Sec. 1.2.6. Eq. (3.68) hence implies that the
rescaled function √

γσ
ρ

γ
eδ+(σ/ρ)−2γσF2 (3.69)

should in fact be a constant. In Fig. 3.13 and 3.14 we plot this function of ρ and
σ, for values of Q2 smaller than 25 GeV2, this way we do not have to consider



3.2 Geometric scaling at HERA 105

τ1 10 210 310

te
or

σ

-210

-110

1

Figure 3.12: The theoretical DGLAP cross section for Q2 > 10 GeV2

bottom quark contribution and hence we can always put nf = 4. Note that in
this case the agreement with the expected prediction is better than in Fig. 3.5.
In other words, as long as Q2 > 10 GeV2 the true small x evolution is just a pure
DGLAP evolution.
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Summary and future work

In this thesis we studied perturbative QCD in the small-x limit. In particular we
have tried to understand the phenomenon of geometric scaling observed at HERA.
In the first chapter we have introduced the traditional evolution equations of per-
turbative QCD, namely the DGLAP and the BFKL equations. We have shown
their utility and their limits. Then we have shown how one can improve these
equations. First we have considered perturbative resummations, which enable us
to deal with two large scales. Second, we have unitarized the BFKL equation by
considering a generalization to multiple scattering of the standard BFKL theory.
This has led us to the non linear BK equation. Finally we have shown how geo-
metric scaling arises from the non linear evolution. The last chapter was devoted
to an intensive study of geometric scaling. First we performed an analytical study
of the linear equations and we showed that also in the linear regime we can have
asymptotic geometric scaling. This implies that geometric scaling is not directly
related to saturation. However, the saturation and the linear predictions for the
parameters of the scaling behaviour (that is for the geometric slope λ) are dif-
ferent, hence a careful analysis of the phenomenology can give us an information
about the true evolution. Hence in the last section of the thesis we have tested
our theories with data. We focused on the deep inelastic scattering data, which
are traditionally considered one of the most striking proofs of geometric scaling.
In fact, we have shown that the geometric scaling observed at HERA has little
to do with non linear effects (i.e. with saturation): it is nothing but a “masked”
manifestation of the traditional double scaling behaviour of the structure function
F2. However, in the region of very large rapidities data may be compatible with
a BK evolution. Unfortunately in this region we have very few data points, hence
our affirmations can’t be definitive. Moreover, this is a region characterised by
small values of Q2, hence all the perturbative approach is dubious.

We conclude this thesis by realizing that there is still a lot of work to do in
order to achieve a deep understanding of the small x and large Q2 region. First of
all, a true running coupling version of the BK equation is sorely needed. Moreover,
it is interesting to see the effects of non linearities on perturbative resummations.
Furthermore, one may investigate the impact of next to leading order terms in
the framework of the BK theory. Once a next to leading theory is available, one
could perform a NL HERA data analysis, in order to check the accuracy of our
LO results.



Of course the phenomenological implications of high energy QCD aren’t limited to
deep inelastic scattering. Other interesting applications include heavy ions physics
and also astrophysics. The theory can be fruitfully applied also to hadron-hadron
scattering. Hence we expect that the future LHC results will lead to a deep insight
of the small-x perturbative QCD.



Appendix A:

The large Nc QCD expansion

In this Appendix we will sketch the main features of the large-Nc QCD expansion.
We will limit ourselves to derive the result that we use in the text. For a complete
exposition we refer to the existing literature, for example to [41] and references
therein.

The main idea of the large Nc limit, first introduced by ’t Hooft [20], is to
consider the limit Nc → ∞ with αsNc held fixed. The small parameter of the
theory is then 1/Nc. In QCD Nc = 3, so one may think that this is a bad
approximation. To see that this is not a valid objection, consider QED: e2/4π =
1/137 → e = 0.3. Thus we can hope that the large Nc limit can give some
interesting results.

Consider the general Lagrangian of a SU(N) theory, written in the form

L =
N

g2

[

ψ̄a

(

i∂µ +Aa
µb

)

γµψb −mψ̄aψ
a − 1

4
F a
µνbF

µνb
a

]

. (A.1)

Than the propagators of our theory are

〈

ψa(x)ψ̄b(y)
〉

=
1

N
δabS(x− y) (A.2)

〈

Aa
µb(x)A

c
νd(y)

〉

=
1

N

(

δadδ
c
b −

1

N
δab δ

c
d

)

Dµν(x− y) (A.3)

if S and Dµν are the propagators of respectively a single Dirac and gauge field.
Since we are interested in the large N limit, we can drop the term proportional to
1/N2 in the gluon propagator. This way we can easily follow indices along a line
in a Feynman graph: along a quark line the index doesn’t change, while along a
gluon line the pair at the beginning is the same as the pair at the end.

We can use this observation to derive an alternative way of drawing Feynman
graphs, the ’t Hooft double-line representation. We simply draw one line for each
index rather than one line for each virtual particle. Hence quark lines will be
represented by a single line, while gluon lines by a double line. The standard
Feynman rules in the double-line representation are shown in Fig. A.1. The
correspondence between traditional and double-line graphs is not one to one: to

A.1



Figure A.1: Double-line representation of Feynman rules

one traditional graphs can correspond several double-line graphs, each for every
possible different way of assigning index. The power of 1/N carried by a graph
is very difficult to calculate for a traditional graph, while it becomes trivial for a
double-line graph.

Consider first a vacuum-to-vacuum graph, that is a graph in which every line
must close to make an index loop. We can think of every loop as the perimeter of
a polygon. We can assign an orientation to each polygon by the direction of the
arrows around its perimeter and the right hand rule. Now, if two adjacent edges
(of two different polygons) lie on the same double line (i.e. on the same gluon
propagator), we ”glue” them together. This way we have constructed an oriented
surface. The power of N associated to this surface is easily calculated. Each face
is a loop integral, thus it carries a N factor from the sum over all the possible
values of the index. Every vertex is a Feynman vertex, thus it carries a N factor
(see (A.1)). Every edge is a quark or gluon propagator, so it carries a factor 1/N
(be careful not do double count the glued edges). Thus the graph is proportional
to

NF+V−E ≡ Nχ, (A.4)

where χ is the Euler characteristic of the surface.

Every oriented surface is topologically equivalent to the sphere S2 with some
numbers of holes and some number of handle. If H is the number of handles and

A.2



B the number of holes, it can be shown that the Euler characteristic is

χ = 2− 2H −B. (A.5)

Thus the leading vacuum-to-vacuum diagrams are proportional to N2 and are
those topologically equivalent to a sphere. Consider first a diagram with only
gluons. The simplest one is the gluon loop, Fig. A.2: the two faces (oppositely
oriented) with glued perimeters can be assembled to form the sphere S2. As can be

Figure A.2: Gluon loop

easily seen this is the case of all planar graphs made up only of gluons. Conversely,
remove a generic face from a spherical surface with no holes and no handles. The
result will be a spherical surface with one hole, that is a surface topologically
equivalent to a plane, that is a planar graph. Thus we obtained that the leading
large Nc graphs are planar graphs made up only of gluons. Since they have no
holes and no handles, they behave like N2.

Consider now a quark loop. Since it is a single (unpaired) line, it corresponds
to a hole. The leading quark graphs then have one hole and no handles. As we
noted before, a spherical surface with one hole is equivalent to a plane. Thus the
leading graphs are planar graphs. The only difference with the previous situation
is that now the outer boundary of the resultant planar graph is the quark loop.
Thus when quarks are involved the leading graphs are planar graphs with only one

quark loop forming the boundary of the graph. Since these graphs have one hole,
they behave like N .

These analysis can be easily generalized to graphs with external lines. Note
that we obtained these results using the equivalence (A.4), valid only if in the
Lagrangian (A.1) the prefactor is Nc/g

2. In other words, the ”correct” large Nc

expansion is with αsNc held fixed. If we for example hold αsN
2
c fixed, no interesting

result can be found.
In Fig. A.3 several graphs relevant for the dipole picture are reported. Even

though they are not vacuum-to-vacuum graphs, our previous analysis is unaltered.
Consider indeed the graph (a). Its vacuum-to-vacuum equivalent should be a
closed quark loop, that is a O(N) graph. Here we don’t have loops, but we have
N possible different quark-antiquark pairs, so this graph too behaves like N . This
argument can be easily generalized to all onium-to-onium graphs. Using our results
we then expect that in the large Nc limit only (a), (b) and (c) are relevant, since
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Figure A.3: Double-line onium graphs

they are planar graphs with the quark loop on the boundary. Let us check out if
this is the case. First consider (a). We have N different quark-antiquark pairs, so
this graph is O(N) as expected. In (b) we have two faces, three edges and two
vertices, so this too behaves like N . In (c) we have three faces, six edges and four
vertices, hence χ = 1. (d) is not a planar graph. It has one hole and one handle,
so we expect it being proportional to N−1. In fact it has only one loop index, four
vertices and six propagators, that is it is O(N−1). (e) is planar, but the boundary
is not the quark loop. Hence it has one hole and one handle, so it is O(N−1).
Indeed it has one colour loop, four vertices and six propagators. (f) should be

A.4



suppressed: having two holes it should be O(1). That is the case: we have two
colour loops, four vertices and six propagators. But in QCD there are more than
one flavour, so this graph is enhanced by a power of nf . This is a delicate point
in the large-N expansion. However, for our purposes we can simply neglect this
complication and act as if there were only one flavour.
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