

Discovering ``*new physics''* within QCD: evidence for BFKL dynamics in HERA data

Juan Rojo

VU Amsterdam & Theory group, Nikhef

National Seminar Theoretical High Energy Physics Nikhef, Amsterdam, 17/11/2017

Prologue: a short philosophical digression

What can we discover?

Discovering something **new** or **unexpected** is one of the main thrills of the scientific adventure (as we like to emphasise specially when writing grant applications)

People imply different things when talking about a **discovery** or **new physics**, *i.e.*

What can we discover?

Discovering something **new** or **unexpected** is one of the main thrills of the scientific adventure (as we like to emphasise specially when writing grant applications)

People imply different things when talking about a **discovery** or **new physics**, *i.e.*

What can we discover?

Except one adopts a extreme **reductionist** point of view, one can meaningfully talk of **discovery** and **new physics** in many other contexts, *i.e.*

Pushing the boundaries of QCD

Quantum Chromodynamics is a **extremely rich and complex theory** which keeps fascinating us > 40 years after its mathematical formulation as a non-abelian QFT

Pushing the boundaries of QCD

Quantum Chromodynamics is a **extremely rich and complex theory** which keeps fascinating us > 40 years after its mathematical formulation as a non-abelian QFT

A crash course on parton distributions

8

QCD in hadronic collisions

In high-energy **lepton colliders**, such as the **Large Electron-Positron Collider** (LEP) at CERN, the collisions involve **elementary particles** without substructure

Cross-sections in lepton colliders can be computed in perturbation theory using the **Feynman rules of the Standard Model Lagrangian**

QCD in hadronic collisions

In high-energy **hadron colliders**, such as the LHC, the collisions involve **composite particles** (protons) with internal structure (quarks and gluons)

QCD in hadronic collisions

In high-energy **hadron colliders**, such as the LHC, the collisions involve **composite particles** (protons) with internal structure (quarks and gluons)

Calculations of cross-sections in hadron collisions require the combination of **perturbative**, **quark/gluon-initiated processes**, and **non-perturbative**, **parton distributions**, information

Parton Distributions

Distribution of energy that **quarks and gluons carry inside proton** quantified by **Parton Distributions**

Extract from experimental data within a global analysis

Extract PDFs from lepton-proton collisions

Use PDFs to predict proton-proton cross-sections

Parton Distributions

Distribution of energy that quarks and gluons carry inside proton quantified by Parton Distributions

PDFs determined by **non-perturbative QCD dynamics** Extract from experimental data within a **global analysis**

Highly non-trivial validation of the **QCD factorisation framework**:

Including O(5000) data points ,
from O(40) experiments,
some of them with ≈1% errors,

yet still $\chi^2/N_{dat} \approx 1$!

The global PDF analysis

- Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from different processes and colliders, and a statistically robust fitting methodology
- Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in

Why precision PDFs?

Ultimate accuracy of LHC calculations limited by **knowledge of proton structure**

Solution Let us review how parton distributions acquire **scale dependence**

Fry to compute the **deep-inelastic lepton-proton scattering cross-section** at one-loop

Juan Rojo

Now let's include QCD corrections, starting from the **real emission off the incoming quark leg**

Collinear singularities do not cancel in the NLO partonic cross-section!

Juan Rojo

However initial-state collinear divergences are unphysical, and will be eventually screened by infrared dynamics such as finite quark masses and non-perturbative QCD effects

Free can be absorbed into a **redefinition of the proton's parton distributions**

 λ : infrared regulator

^ω Introduction the **factorisation scale** μ that separates **low-scale from high-scale dynamics**

$$\hat{\sigma}^{\text{NLO}} = \left(\mathbb{1} + \frac{\alpha_s C_F}{2\pi} \ln \frac{\mu^2}{\lambda^2} P_{qq}\right) \otimes \left(\mathbb{1} + \frac{\alpha_s C_F}{2\pi} \ln \frac{Q^2}{\mu^2} P_{qq}\right) \sigma^{(0)}(\hat{p})$$
Encodes IR sensitivity
no dependance on IR physics
$$\sigma^{\text{DIS}}(p) = f_q \hat{\sigma}^{\text{NLO}}(\hat{p}) \equiv \tilde{f}_q(\mu)\tilde{\sigma}(p,\mu)$$
 $\tilde{f}(\mu) \equiv f \otimes \left(\mathbb{1} + \frac{\alpha_s C_F}{2\pi} \ln \frac{\mu^2}{\lambda^2} P_{qq}\right)$

$$\tilde{\sigma}(p,\mu) \equiv \left(\mathbb{1} + \frac{\alpha_s C_F}{2\pi} \ln \frac{Q^2}{\mu^2} P_{qq}\right) \hat{\sigma}^{(0)}(\hat{p})$$

The DIS NLO cross-section is now finite!

All IR sensitivity absorbed into the PDFs, which are determined from data anyway

Juan Rojo

Free NLO cross-section **cannot depend** on the unphysical factorization scale (up to NNLO terms)

Fhis restriction fully specifies the scale dependence of the PDFs: the DGLAP evolution equations

$$\mu^2 \frac{\partial f_q(x,\mu^2)}{\partial \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \int_x^1 \frac{dz}{z} P_{qq}(z) f_q\left(\frac{x}{z},\mu^2\right)$$

Loops and more loops

First results on the 4-loop QCD splitting functions computed by Jos Vermaseren and collaborations

Moch et al 17

Towards PDF evolution with per-mille theoretical uncertainties

Unravelling BFKL dynamics from HERA data

NNPDF3.1sx, HERA NC inclusive data

Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli 17

Perturbative fixed-order QCD calculations have been extremely successful in describing a wealth of data from proton-proton and electron-proton collisions

There are theoretical reasons that eventually we need to go beyond DGLAP: at very small-x, logarithmically enhanced terms in 1/x become dominant and need to be resummed to all orders

$$P_{gg} \sim \frac{1}{x} \sum_{n} \alpha_s^n \ln^{n-1} \frac{1}{x}$$

BFKL/high-energy/small-x resummation can be matched to the DGLAP collinear framework, and thus can be included into a standard PDF analysis

DGLAP
Evolution in Q2
$$\mu^2 \frac{\partial}{\partial \mu^2} f_i(x,\mu^2) = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_s(\mu^2)\right) f_j(z,\mu^2),$$
BFKL
Evolution in x $-x \frac{d}{dx} f_+(x,\mu^2) = \int_0^\infty \frac{d\nu^2}{\nu^2} K\left(\frac{\mu^2}{\nu^2},\alpha_s\right) f_+(x,\nu^2)$

Within small-*x* resummation, the N^kLO fixed-order DGLAP splitting functions are complemented with the N^hLL*x* contributions from BKFL

ABF, CCSS, TW + *others,* **94-0**8

$$P_{ij}^{\mathbf{N}^{k}\mathbf{LO}+\mathbf{N}^{h}\mathbf{LL}x}(x) = P_{ij}^{\mathbf{N}^{k}\mathbf{LO}}(x) + \Delta_{k}P_{ij}^{\mathbf{N}^{h}\mathbf{LL}x}(x),$$

Juan Rojo

Juan Rojo

23

Juan Rojo

NSTHEP, Nikhef, 17/11/2017

24

Experimental motivation: tensions in HERA data

FIERA was the first (and only) **lepton-proton collider**, operating in DESY between 1992 and 2007

HERA measurements provide the **backbone of all global PDF analyses**

Evidence for BFKL (small-x) dynamics **searched for > 25 years**, without success

Experimental motivation: tensions in HERA data

- Several groups have reported that the **fit quality to the legacy HERA inclusive data** gets worse in the **small-***x* **and small-***Q* **region**
- Fypically this trend is **more marked at NNLO**
- Several explanations have been advocated, from higher twists (*i.e.* saturation), issues with the heavy quark schemes, experimental systematics, ...
- What happens if the PDF fit includes NLLx resummation?

- Ultimately, the need for (or lack of) BKFL resummation in **ep and pp collider data** can only be assessed by performing a global PDF analysis based on (N)NLO+NLLx theory
- Frequencies Frequencies and the second secon

 $\alpha_s = 0.20$, $n_f = 4$, $Q_0 \overline{MS}$

NSTHEP, Nikhef, 17/11/2017

28

https://apfel.hepforge.org/

Juan Rojo

NNPDF3.1sx: Variant of **NNPDF3.1 global fits** using **NLO+NLLx and NNLO+NLLx theory**

Hadronic data treated at NNLO: impose cut to remove region sensitive to small-x effects

Juan Rojo

29

NNPDF3.1sx: Variant of **NNPDF3.1 global fits** using **NLO+NLLx and NNLO+NLLx theory**

Using NNLO+NLL*x* theory **stabilises small-x gluon wrt perturbative order**

Juan Rojo

NSTHEP, Nikhef, 17/11/2017

30

NNPDF3.1sx: Variant of **NNPDF3.1 global fits** using **NLO+NLLx and NNLO+NLLx theory**

With resummation, the NNLO gluon at low scales **is not negative anymore**

Positivity of physical observables, such as F_L(x,Q), automatically guaranteed

	$\chi^2/N_{ m dat}$		$\Delta \chi^2$	$\chi^2/N_{\rm dat}$		$\Delta \chi^2$
	NLO	NLO+NLLx		NNLO	NNLO+NLLx	
NMC	1.35	1.35	+1	1.30	1.33	+9
SLAC	1.16	1.14	-1	0.92	0.95	+2
BCDMS	1.13	1.15	+12	1.18	1.18	+3
CHORUS	1.07	1.10	+20	1.07	1.07	$^{-2}$
NuTeV dimuon	0.90	0.84	-5	0.97	0.88	-7
HERA I+II incl. NC	1.12	1.12	-2	1.17	1.11	-62
HERA I+II incl. CC	1.24	1.24	-	1.25	1.24	-1
HERA $\sigma_c^{\rm NC}$	1.21	1.19	-1	2.33	1.14	-56
HERA F_2^b	1.07	1.16	+3	1.11	1.17	+2
DY E866 $\sigma_{\rm DY}^d / \sigma_{\rm DY}^p$	0.37	0.37	-	0.32	0.30	-
DY E886 σ^p	1.06	1.10	+3	1.31	1.32	-
DY E605 σ^p	0.89	0.92	+3	1.10	1.10	-
CDF Z rap	1.28	1.30	-	1.24	1.23	-
CDF Run II k_t jets	0.89	0.87	-2	0.85	0.80	-4
D0 Z rap	0.54	0.53	-	0.54	0.53	-
D0 $W \to e\nu$ asy	1.45	1.47	-	3.00	3.10	+1
D0 $W \to \mu \nu$ asy	1.46	1.42	-	1.59	1.56	-
ATLAS total	1.18	1.16	-7	0.99	0.98	-2
ATLAS W, Z 7 TeV 2010	1.52	1.47	-	1.36	1.21	-1
ATLAS HM DY 7 TeV	2.02	1.99	-	1.70	1.70	-
ATLAS W, Z 7 TeV 2011	3.80	3.73	-1	1.43	1.29	-1
ATLAS jets 2010 7 TeV	0.92	0.87	-4	0.86	0.83	-2
ATLAS jets 2.76 TeV	1.07	0.96	-6	0.96	0.96	-
ATLAS jets 2011 7 TeV	1.17	1.18	-	1.10	1.09	-1
ATLAS Z p_T 8 TeV (p_T^{ll}, M_{ll})	1.21	1.24	+2	0.94	0.98	+2
ATLAS $Z p_T$ 8 TeV (p_T^{ll}, y_{ll})	3.89	4.26	+2	0.79	1.07	+2
ATLAS σ_{tt}^{tot}	2.11	2.79	+2	0.85	1.15	+1
ATLAS $t\bar{t}$ rap	1.48	1.49	-	1.61	1.64	-
CMS total	0.97	0.92	-13	0.86	0.85	-3
CMS Drell-Yan 2D 2011	0.77	0.77	-	0.58	0.57	-
CMS jets 7 TeV 2011	0.88	0.82	-9	0.84	0.81	-3
CMS jets 2.76 TeV	1.07	0.98	-7	1.00	1.00	-
CMS $Z p_T$ 8 TeV (p_T^{ll}, y_{ll})	1.49	1.57	+1	0.73	0.77	-
CMS σ_{tt}^{tot}	0.74	1.28	+2	0.23	0.24	-
$CMS \ t\bar{t} \ rap$	1.16	1.19	-	1.08	1.10	-
Total	1.117	1.120	+11	1.130	1.100	-121

In order to assess the impact of small-x resummation for the description of the small-*x* and Q^2 HERA data, compute the χ^2 removing data points in the region where resummation effects are expected

Using NNLO+NLL*x* theory, the NNLO instability of the χ^2 disappears

Excellent fit quality to **inclusive and charm HERA** data achieved in the **entire (x,Q²) region**

Using NNLO+NLL*x* theory, the NNLO instability of the χ^2 disappears

Results stable with respect to the specific **treatment of hadronic data**: genuine DIS small-x phenomenon

Comparison with HERA data

Using **NNLO+NLL***x* **theory**, improved description of the **small-x NC cross-sections**, in particular of the **change of slope** (related to differences in F_L)

Also **improved description of** F_{L_r} which moreover remains markedly **positive** down to the smallest values of *x* and *Q* probed 10^{3}

Implications for fixed-order fits

Do these results imply at existing NNLO fits are **biased?** What are implications for LHC pheno?

Study **stability of NNLO fits** as the HERA data at small *x* and *Q* is cut away

Implications for fixed-order fits

NNPDF31sx NNLO global, Q = 100 GeV

Implications for fixed-order fits NNPDF31sx NNLO global, Q = 100 GeV

Good stability at medium and large-x: NNLO global fits perfectly fine for LHC applications

What next?

Aim to a **consistent NNLO+NLLx global analysis**: need to implement as well resummation of hadronic cross-sections, to being with **Drell-Yan**

A first estimate of expected impact provided by comparing xsecs with **resummation only in PDFs**, not in the partonic matrix elements

NB none of these exps included in NNPDF3.1sx

Small-x resummed PDFs might be needed to push the boundaries of precision LHC phenomenology

From the LHC to Neutrino Telescopes

BFKL resummation at the LHeC

Small-x resummation will be key aspect of the physics program of **future electron-proton colliders**

In order to quantify sensitivity to BFKL dynamics of LHeC/FCC-eh: redo the NNPDF3.1sx fits including LHeC/FCC-eh pseudo-data

Discovering new physics in QCD

Quantum Chromodynamics is a extremely rich and complex theory that keeps **delivering many exciting surprises**

The **QCD evolution equations** allow us to relate physics in different regimes: from low scales to high scales (DGLAP) and from large *x* to small **x** (BFKL)

Solution \mathbb{P}^2 NNLO+NLL*x* theory improves the **perturbative expansion at small**-*x*, curing the χ^2 instability, and allows a superior description of the **inclusive and charm HERA data**

After > 25 years of searching, we now have **convincing evidence for the onset of BFKL dynamics** in HERA structure function data

Solution Next step is assessing the implications for **high-precision LHC phenomenology**

Discovering new physics in QCD

Quantum Chromodynamics is a extremely rich and complex theory that keeps **delivering** many exciting surprises

The **QCD** evolution equations allow us to relate physics in different regimes: from low Ş scales to high scales (DGLAP) and from large *x* to small **x** (BFKL)

NNLO+NLL*x* theory improves the **perturb** instability, and allows a superior deer

+NLL*x* theory improves the **perturbet** and allows a superior decomposition of the the theory of the

Wext step is assessing the implications for high-precision LHC phenomenology

🗳 After 峟

dynamic