

Parton distributions with small-x resummation: unravelling BFKL dynamics at the LHeC

Juan Rojo VU Amsterdam & Theory group, Nikhef

LHeC small-x QCD Working Group CERN, 15/11/2017

Theory motivation: beyond DGLAP

- Perturbative fixed-order QCD calculations have been extremely successful in describing a wealth of data from proton-proton and electron-proton collisions
- There are theoretical reasons that eventually we need to go beyond DGLAP: at very small-x, **logarithmically enhanced terms in 1/x become dominant** and need to be resummed to all orders
- BFKL/high-energy/small-x resummation can be matched to the DGLAP collinear framework, and thus can be included into a standard PDF analysis

$$\begin{array}{l} \mathbf{DGLAP} \\ \mathbf{Evolution in } \mathbf{Q}^2 \end{array} \quad \mu^2 \frac{\partial}{\partial \mu^2} f_i(x,\mu^2) = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_s(\mu^2)\right) f_j(z,\mu^2), \\ \\ \mathbf{BFKL} \\ \mathbf{Evolution in } \mathbf{x} \end{array} \quad \left[-x \frac{d}{dx} f_+(x,\mu^2) = \int_0^\infty \frac{d\nu^2}{\nu^2} K\left(\frac{\mu^2}{\nu^2},\alpha_s\right) f_+(x,\nu^2) \right] \\ \end{array}$$

Within small-*x* resummation, the N^kLO fixed-order DGLAP splitting functions are complemented with the N^hLL*x* contributions from BKFL

ABF, CCSS, TW + others, 94-08

$$P_{ij}^{\mathrm{N}^{k}\mathrm{LO}+\mathrm{N}^{h}\mathrm{LL}x}(x) = P_{ij}^{\mathrm{N}^{k}\mathrm{LO}}(x) + \Delta_{k}P_{ij}^{\mathrm{N}^{h}\mathrm{LL}x}(x),$$

Juan Rojo

Experimental motivation: tensions in HERA data

- Several groups have reported that the fit quality to the legacy HERA inclusive data gets worse in the small-x and small-Q region
- Fypically this trend is **more marked at NNLO**
- Several explanations have been advocated, from higher twists (*i.e.* saturation), issues with the heavy quark schemes, experimental systematics, ...
- What happens if the **PDF fit includes NLL resummation?**

- Ultimately, the need for (or lack of) BKFL resummation in **ep and pp collider data** can only be assessed by performing a global PDF analysis based on (N)NLO+NLLx theory
- Frequencies and the second sec

LHeC small-x WG, CERN, 15/11/2017

Juan Rojo

 $\alpha_s = 0.20$, $n_f = 4$, $Q_0 \overline{MS}$

NNPDF3.1sx: Variant of **NNPDF3.1 global fits** using **NLO+NLLx and NNLO+NLLx theory**

Hadronic data treated at NNLO: impose cut to remove region **sensitive to small-x effects**

Juan Rojo

5

Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli, 17 LHeC small-x WG, CERN, 15/11/2017

NNPDF3.1sx: Variant of **NNPDF3.1 global fits** using **NLO+NLLx and NNLO+NLLx theory**

Using NNLO+NLL*x* theory **stabilises small-x gluon wrt perturbative order**

Juan Rojo

NNPDF3.1sx: Variant of **NNPDF3.1 global fits** using **NLO+NLLx and NNLO+NLLx theory**

With resummation, the NNLO gluon at low scales **is not negative anymore**

Positivity of physical observables, such as F_L(x,Q), automatically guaranteed

Juan Rojo

	χ^2	$/N_{\rm dat}$	$\Delta \chi^2$		$\chi^2/N_{\rm dat}$	$\Delta \chi^2$
	NLO	NLO+NLLx		NNLO	NNLO+NLLx	
NMC	1.35	1.35	+1	1.30	1.33	+9
SLAC	1.16	1.14	-1	0.92	0.95	+2
BCDMS	1.13	1.15	+12	1.18	1.18	+3
CHORUS	1.07	1.10	+20	1.07	1.07	-2
NuTeV dimuon	0.90	0.84	-5	0.97	0.88	-7
HERA I+II incl. NC	1.12	1.12	-2	1.17	1.11	-62
HERA I+II incl. CC	1.24	1.24	-	1.25	1.24	-1
HERA $\sigma_c^{\rm NC}$	1.21	1.19	-1	2.33	1.14	-56
HERA F_2^b	1.07	1.16	+3	1.11	1.17	+2
DY E866 $\sigma_{\rm DY}^d / \sigma_{\rm DY}^p$	0.37	0.37	-	0.32	0.30	-
DY E886 σ^p	1.06	1.10	+3	1.31	1.32	-
DY E605 σ^p	0.89	0.92	+3	1.10	1.10	-
CDF Z rap	1.28	1.30	-	1.24	1.23	-
CDF Run II k_t jets	0.89	0.87	-2	0.85	0.80	-4
D0 Z rap	0.54	0.53	-	0.54	0.53	-
D0 $W \to e\nu$ asy	1.45	1.47	-	3.00	3.10	+1
D0 $W \to \mu \nu$ asy	1.46	1.42	-	1.59	1.56	-
ATLAS total	1.18	1.16	-7	0.99	0.98	-2
ATLAS W, Z 7 TeV 2010	1.52	1.47	-	1.36	1.21	-1
ATLAS HM DY 7 TeV	2.02	1.99	-	1.70	1.70	-
ATLAS W, Z 7 TeV 2011	3.80	3.73	-1	1.43	1.29	-1
ATLAS jets 2010 7 TeV	0.92	0.87	-4	0.86	0.83	$^{-2}$
ATLAS jets 2.76 TeV	1.07	0.96	-6	0.96	0.96	-
ATLAS jets 2011 7 TeV	1.17	1.18	-	1.10	1.09	-1
ATLAS $Z p_T 8 \text{ TeV } (p_T^{ll}, M_{ll})$	1.21	1.24	+2	0.94	0.98	+2
ATLAS $Z p_T 8 \text{ TeV } (p_T^{ll}, y_{ll})$	3.89	4.26	+2	0.79	1.07	+2
ATLAS σ_{tt}^{tot}	2.11	2.79	+2	0.85	1.15	+1
ATLAS $t\bar{t}$ rap	1.48	1.49	-	1.61	1.64	-
CMS total	0.97	0.92	-13	0.86	0.85	-3
CMS Drell-Yan 2D 2011	0.77	0.77	-	0.58	0.57	-
CMS jets 7 TeV 2011	0.88	0.82	-9	0.84	0.81	-3
CMS jets 2.76 TeV	1.07	0.98	-7	1.00	1.00	-
CMS Z p_T 8 TeV (p_T^{ll}, y_{ll})	1.49	1.57	+1	0.73	0.77	-
CMS σ_{tt}^{tot}	0.74	1.28	+2	0.23	0.24	-
CMS $t\bar{t}$ rap	1.16	1.19	-	1.08	1.10	-
Total	1.117	1.120	+11	1.130	1.100	-121

~~~~~~

Juan Rojo

LHeC small-x WG, CERN, 15/11/2017

In order to assess the impact of small-x resummation for the description of the small-*x* and  $Q^2$  HERA data, compute the  $\chi^2$  removing data points in the region where resummation effects are expected



Using NNLO+NLL*x* theory, the NNLO instability of the  $\chi^2$  disappears

Excellent fit quality to **inclusive and charm HERA** data achieved in the **entire (x,Q<sup>2</sup>) region** 



Juan Rojo

10

Using NNLO+NLL*x* theory, the NNLO instability of the  $\chi^2$  disappears

Results stable with respect to the specific treatment of hadronic data: genuine DIS small-x phenomenon



LHeC small-x WG, CERN, 15/11/2017

### Comparison with HERA data



NNPDF3.1sx 0.8 0.6 ě 1.8e-2 0.4  $F_L(x,Q^2)$ 0.2 0.0 NNLO -0.2NNLO+NLLx H1 -0.4 $10^{1}$  $10^{2}$ 10<sup>3</sup>  $Q^2$  [GeV<sup>2</sup>]

Using **NNLO+NLL***x* **theory**, improved description of the **small-x NC cross-sections**, in particular of the **change of slope** (related to differences in F<sub>L</sub>)

Also **improved description of**  $F_{L}$ , which moreover remains markedly **positive** down to the smallest values of *x* and *Q* probed

# Implications for fixed-order fits

Do these results imply at existing NNLO fits are **biased?** What are implications for LHC pheno?

Study **stability of NNLO fits** as the HERA data at small *x* and *Q* is cut away



#### Implications for fixed-order fits



Juan Rojo

LHeC small-x WG, CERN, 15/11/2017

14



Good stability at medium and large-x: NNLO global fits perfectly fine for LHC applications

# What next?

Aim to a **consistent NNLO+NLLx global analysis**: need to implement as well resummation of hadronic cross-sections, to being with **Drell-Yan** 

A first estimate of expected impact provided by comparing xsecs with **resummation only in PDFs**, not in the partonic matrix elements



NB none of these exps included in NNPDF3.1sx

Small-x resummed PDFs might be needed to push the boundaries of precision LHC phenomenology

#### BFKL resummation at the LHeC

Small-x resummation will be key aspect of the physics program of **future electron-proton colliders** 



In order to quantify sensitivity to BFKL dynamics of LHeC/FCC-eh: redo the NNPDF3.1sx fits including LHeC/FCC-eh pseudo-data

17

### Pseudo-data fit settings

LHeC (FCC-eh) pseudo-data on 7 TeV + 60 GeV (50 TeV + 60 GeV) collisions used

Generate pseudo-data for the NC reduced cross-sections assuming NNPDF3.1 NNLO+NLLx as central value (``truth").

Sy construction,  $\chi^2/N_{dat} \approx 1$  if NNLO+NLLx theory used

Add all uncertainties in quadrature (can redo including correlations)

 $\frac{1}{2}$  Identical settings as in the NNPDF3.1sx DIS-only fits. Hadronic data irrelevant to study the small-*x* region

Perform fits with **various combinations of LHeC/FCC-eh pseudo-data:** LHeC only, FCC-eh only, and the two experiments at the same time ....

Redo same statistical tests than in the NNPDF3.1sx paper

For the show results of fit including **both** the LHeC and FCC-eh pseudo-data. Fits with other dataset combinations also available

Juan Rojo

LHeC small-x WG, CERN, 15/11/2017

18

# PDF uncertainty reduction at small-x

First of all compare results when **``correct'' NNLO+NNLx theory is used in the fit** That is, same theory as used to generate the central values of the pseudo-data



The PDF uncertainties on the gluon and singlet are reduced **down to a few percent even for x**  $\approx$  **10**-7

The gluon PDF is **extremely different** if the ``wrong'' theory (NNLO) is used in the fit (difference with the ``truth'' at the level of several sigmas in units of the PDF uncertainty)

### BFKL resummation at the LHeC

Then compare the results when the "wrong" theory (NNLO) is used in the first



**Marked distortion on the central values** of both the gluon and singlet, arising from the inconsistency between the theories used in the fit and to generate the pseudo-data

# Fit quality

|                                 | $N_{\mathrm{dat}}$ | x     | $\Delta \chi^2$ |      |
|---------------------------------|--------------------|-------|-----------------|------|
|                                 |                    | NNLO  | NNLO+NLLx       |      |
| HERA I+II incl. NC              | 922                | 1.22  | 1.07            | -138 |
| LHeC 7 TeV + 60 GeV NC incl.    | 148                | 1.71  | 1.22            | -73  |
| FCC-eh 50 TeV + 60 GeV NC incl. | 98                 | 2.72  | 1.34            | -135 |
| Total                           | 1168               | 1.407 | 1.110           | -346 |

It is not possible to satisfactory fit the LHeC/FCC-eh pseudo-data on inclusive cross-sections using NNLO theory assuming that NNLO+NLLx theory is the ``truth"

<sup>©</sup> The more marked differences are observed for the FCC-eh pseudo-data

Makes possible **detailed studies of BFKL dynamics** already at the inclusive cross-section level

In order to assess the impact of small-x resummation for the description of the small-*x* and  $Q^2$  HERA data, compute the  $\chi^2$  removing data points in the region where resummation effects are expected



# BFKL resummation at HERA

At HERA we have a **subtle but identifiable trend**: NNLO fits degrade as we include more small-x and small-Q data, NNLO+NLLx good fit quality in all kinematic plane



#### BFKL resummation at the LHeC

Same qualitative trend when including LHeC/FCC-eh pseudo-data Much more marked at the quantitative level: increased statistical significance NNPDF3.1sx, NC inclusive data



# BFKL dynamics at the LHeC

**NNLO+NLL***x* theory improves the perturbative expansion at small-*x*, curing the  $\chi^2$  instability, and allows a better description of the **inclusive and charm HERA data** 

**NNLO fits not affected:** medium and large-x behaviour of the PDFs unaffected by theory used to include the small-x HERA data in the fit

NNPDF3.1sx fits with LHeC/FCC-eh pseudo-data exhibit the same qualitative trend as the HERA data (by construction!) but with a **greatly increased statistical significance** 

LHeC/FCC-eh pseudo-data reduce the PDF errors at small-*x* down to few percent at  $x \approx 10^{-7}$ 

