

Established by the European D

VU Amsterdam & Theory group, Nikhef

International Committee for Future Accelerators (ICFA) 2017 Seminar Ottawa, 7th of November 2017

High-energy lepton colliders involve elementary particles without substructure

Clean initial state, well-behaved perturbative expansion ($\alpha_{QED} \gtrsim 0.01$)

Quantum Electrodynamics and lepton colliders are ideal for high-precision measurements

Juan Rojo

QED leads to high-precision predictions such as the **anomalous magnetic moment of the electron**

One of the most accurate predictions ever provided by any scientific theory!

This accuracy could be key for new discoveries!

i.e. muon g-2 experiment @ BNL and FNAL

Hadron colliders offer excellent energy reach, but also very messy environment:

initial state: non-perturbative proton's parton distributions

- initial state: non-perturbative
 proton's parton distributions
- quark-gluon hard-scattering:
 slow perturbative convergence

- initial state: non-perturbative
 proton's parton distributions
- quark-gluon hard-scattering:
 slow perturbative convergence
- parton showering and hadronization

- initial state: non-perturbative proton's parton distributions
- quark-gluon hard-scattering:
 slow perturbative convergence
- parton showering and hadronization
- plus lots of poorly understood non-perturbative effect:
 background noise such multiple parton intercations, pile-up....

Hadron colliders offer excellent energy reach, but also very messy environment:

- initial state: non-perturbative proton's parton distributions
- quark-gluon hard-scattering:
 slow perturbative convergence
- parton showering and hadronization
- plus lots of poorly understood non-perturbative effect:
 background noise such multiple parton interactions, pile-up....

Can we really aim for precision physics at LHC?

Hadron colliders offer excellent energy reach, but also very messy environment:

- initial state: non-perturbative proton's parton distributions
- quark-gluon hard-scattering:
 slow perturbative convergence
- parton showering and hadronization
- plus lots of poorly understood non-perturbative effect:
 background noise such multiple parton interactions, pile-up....

Can we really aim for precision physics at LHC?

Juan Rojo

Why precision at the LHC?

To enhance the discovery potential of new **Beyond the Standard Model physics!**

BSM physics could manifest as **subtle deviations** wrt to the Standard Model predictions

- Even for high-mass resonances, theory uncertainties **degrade or limit many BSM searches**
- Free Field Theory The robustness of global stress-tests of the SM (electroweak fit, SM Effective Field Theory analysis) relies crucially in high-precision theoretical calculations

BSM physics might very well hiding itself in the tails of distributions

Juan Rojo

ICFA 2017 Seminar, Ottawa, 07/11/2017

Perturbative calculations in QCD organised as a **series expansion in the strong coupling**

$$\frac{\sigma(pp \to X)}{\sigma_0} = 1$$
Leading Order (Born level)
Easy, textbook calculations

Perturbative calculations in QCD organised as a series expansion in the strong coupling

Juan Rojo

Perturbative calculations in QCD organised as a series expansion in the strong coupling

Perturbative calculations in QCD organised as a series expansion in the strong coupling

Case example: Higgs production in gluon fusion, dominant channel at the LHC

Until 2015, cross-section was known up to **two loops** (NNLO)

Calculation required O(1000) interference diagrams and O(47000) loop and phase space integrals

How difficult could it be to compute one more perturbative order, *i.e.*, N3LO?

NNLO: O(1000) interference diagrams and O(47000) loop and phase space integrals

N3LO: O(10⁵) interference diagrams and O(10⁸) loop and phase space integrals

Hopeless??

How difficult could it be to compute one more perturbative order, *i.e.*, N3LO?

NNLO: O(1000) interference diagrams and O(47000) loop and phase space integrals

N3LO: O(10⁵) interference diagrams and O(10⁸) loop and phase space integrals

Theory error reduced to few-percent: **boosting discovery potential of Higgs coupling measurements!**

Juan Rojo

Pushing the QCD precision frontier

Explosion of (N)NNLO QCD calculations in last years: NNLO is now the standard at the LHC

Pushing the QCD precision frontier

Higher order QCD calculations allow a much superior **exploitation of the LHC physics output**

LHC phenomenology at 1% precision is within reach!

20

Pushing the QCD precision frontier

Higher order QCD calculations allow a much superior **exploitation of the LHC physics output**

LHC phenomenology at 1% precision is within reach!

Juan Rojo

21

Initial state: Parton Distributions

Distribution of energy that **quarks and gluons carry inside proton** quantified by **Parton Distributions**

Extract PDFs from lepton-proton collisions

Use PDFs to predict proton-proton cross-sections

Initial state: Parton Distributions

Distribution of energy that quarks and gluons carry inside proton quantified by Parton Distributions

PDFs determined by **non-perturbative QCD dynamics** Extract from experimental data within a **global analysis**

Highly non-trivial validation of the **QCD factorisation framework**:

Including O(5000) data points ,
from O(40) experiments,
some of them with ≈1% errors,

yet still $\chi^2/N_{dat} \approx 1$!

Why precision PDFs?

Ultimate accuracy of LHC calculations limited by **knowledge of proton structure**

Progress in PDF determination

Many exciting **recent developments in global PDF analysis**: constraints from LHC measurements, statistical validation of PDF uncertainties, the strange and charm content of the proton

Progress in PDF determinations allows fully exploiting higher-order QCD calculations

LHeC: the ultimate proton microscope

HERA DIS structure function measurements provide backbone of modern PDF analyses

Precision QCD and ... neutrino astronomy?

Detection of ultra-high energy neutrinos represents the beginning of **neutrino astronomy**: new window to the Universe!

However, the dominant background, prompt neutrinos from charm decays, never been detected...

Juan Rojo

Precision QCD and ... neutrino astronomy?

QCD (and the LHC) to the rescue! Include *D* meson production data from LHCb into PDF fit to constrain small-*x* gluon: precise predictions for signal and background events at neutrino telescopes

in UHE cosmic rays and at the LHC

Juan Rojo

28

Precision QCD and ... neutrino astronomy?

QCD (and the LHC) to the rescue! Include *D* meson production data from LHCb into PDF fit to constrain small-*x* gluon: precise predictions for signal and background events at neutrino telescopes

Juan Rojo

29

Machine Learning to Discover New Physics

QCD calculations supplemented by **advanced Machine Learning algorithms** lead to enhanced efficiency for a number of crucial tasks such as signal over background discrimination

Consider **Higgs pair production in the 4b final state**: unique sensitivity to the (unknown!) **Higgs boson self-coupling**, but need to deal with an **overwhelming QCD background** ≈ **10**⁷ **times larger**

Juan Rojo

Machine Learning to Discover New Physics

Juan Rojo

ICFA 2017 Seminar, Ottawa, 07/11/2017

Precision QCD at the LHC

M Recent progress with **theoretical QCD calculation** have realised the dream of turning the **LHC into a high-precision experiment**

Two-loop QCD calculations and beyond are now the standard for LHC processes

M Detailed mapping of the proton structure: **few-percent errors in most PDFs in relevant LHC range**, including gluon and photon

M Implications beyond colliders: also for **astroparticle**, **nuclear**, and **hadronic physics**

M Rich interplay with **high-performance computing** and **machine learning algorithms**

Orectified and a set of a set

Fascinating times to explore the high-energy frontier!

equipped with our high-precision QCD toolbox!

Juan Rojo

ICFA 2017 Seminar, Ottawa, 07/11/2017

Fascinating times to explore the high-energy frontier!

equipped with our high-precision QCD toolbox!

Juan Rojo

ICFA 2017 Seminar, Ottawa, 07/11/2017