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Introduction

Inclusion of heavy quark mass effects is an important factor in modern studies
of parton distribution. In fact, working on a wide range of perturbative scales
Q?, precise results require the incorporation of heavy quark mass effects near
the threshold @Q? ~ m?, and the resummation of collinear logarithms at higher
scales. These two different kind of accuracy are obtained through two different
factorization schemes, called respectively massive and massless.

Depending on the scale of energy of the specific problem we are talking
about, it could be convenient to use one between the massive or massless schemes:
while the former is accurate near the threshold for heavy quark production,
the latter is better at higher energies. Performing computations in the mas-
sive scheme, the heavy quarks are treated as massive objects, therefore the full
mass dependence is retain. On the other hand, logarithmic terms of Q%/m? ex-
plicitly appear in the results, raising from the hard subprocesses where an heavy
quark and anti-quark are collineary emitted. In the case of massless quarks, these
divergent terms are usually factorized and included in the definition of parton dis-
tribution functions (PDF), so that the latter acquire a dependence from the scale
of the process, described by the Altarelli-Parisi equations (DGLAP equations).
By solving DGLAP equations, we find the exact expression for the PDFs, which
takes into account the logarithmic terms resummed to all orders.

Therefore, dealing with problems concerning heavy quarks we are allowed to
choose wether to consider them as massive or massless object: in the first case we
will retain the full mass dependence, but we will have unresummed logarithms
which could become large at higher energy, spoiling our results; in the second
case we will obtain results where the huge logarithms are resummed to all orders,
keeping a better precision at high energy, but we loose every mass correction
terms, which may well be important at lower energies.

Therefore it could be useful to find out a general method giving results which
are valid at a generic energy scale, retaining both the mass correction terms com-
ing from the massive scheme and the resummation of the collinear logarithms at
higher scale. There are several methods which allow to do this, including heavy
quark mass effect, one of which is the so-called FONLL scheme. It was first intro-
duced in the context of hadroproduction, but it has been applied to other QCD
processes involving heavy quarks, such as deep-inelastic lepton-hadron scattering,
Ref. [1], [2] and hadronic processes, as Higgs production in bottom quark fusion,
Ref. [6], [7]. The FONLL method relies on standard QQCD factorization, and its
implementation only required calculations in well defined factorization schemes,
where heavy quarks is either consider as massive or massless partons.



The FONLL method was first introduced with the assumption of perturba-
tive heavy quarks, namely assuming that the latter are generated by radiation
from light flavours, and not intrinsically contained in the proton, Ref. [1]. This
hypothesis has then been relaxed in Ref. [2], [5], where, in the context of deep in-
elastic scattering, a formalism including a possible contribution from an intrinsic
charm quark in the proton has been developed. This is useful because of several
reasons, of both principle and practical nature, and in the specific case of charm
quark it could be particularly interesting, because of arguments suggesting that
the proton contains a significant charm component. However, also for hadronic
processes involving heavy quarks different from the charm, such generalization of
the FONLL scheme may well be relevant. In fact in the standard massive scheme,
heavy flavours are not considered in the initial state, since they are supposed to
be of perturbative origin. Therefore, in the massive scheme, there aren’t PDFs
referred to them which instead do appear in the massless scheme, just as for the
light quarks. The heavy quark PDFs of the massless scheme are defined starting
from vanishing boundary condition at some non-perturbative scale mg, and their
general expression at an higher scale Q2 is worked out by solving DGLAP equa-
tions. In this approach we will obtain results generally dependent from the choice
of mg, and this dependence may well be source of bias and errors. Accounting for
an intrinsic heavy quark, even if the heavy quarks are indeed of perturbative ori-
gin, we would be able to reabsorb the dependence on mg in the initial condition,
which would be obtained by a fit just as the light flavour PDFs. In addition to
this, we wouldn’t have the uncertainty due to the fixed order matching between
massive and massless scheme, which is another possible source of bias in com-
putation at low orders. Furthermore, in processes where an intrinsic component
of heavy quark does exist, this formalism would allow to consider also the initial
parametrization for the massive quark content of the initial state.

The aim of the present work is to present and discuss a formalism which
generalizes FONLL scheme, including contributions due to intrinsic heavy quarks.
We will present first some general features of such method and then we will specify
the calculation to the case of Higgs production in bottom quark fusion, finding
out the relevant modifications to the results of Ref. [6].

In section 1, the basic formalism regarding the different factorization schemes
used for fixed and resummed results is described, and the FONLL method is
briefly introduced, as a possible way to match these two schemes. Then, in section
2, we present the application of the FONLL formalism to the computation of DIS
structure functions, working out explicit results up to order a,. We use this
example to highlight the main feature of the FONLL scheme, showing what is
required in order to fully implement it, Ref. [1]. In section 3, the FONLL scheme



applied to DIS is generalized in order to take into account intrinsic component of
heavy quark c in the proton, Ref. [2], [5]. Here we depict the general lines which
will then be followed in order to perform the analogue generalization for hadronic
processes. In section 4, we describe how the standard FONLL method can be
applied to an hadronic process, taking as example Higgs production in bottom-
quark fusion, Ref. [6]. Explicit results for this specific process are reported, and
we take them as starting point for our work.

In section 5, we discuss how the FONLL scheme applied to an hadronic
process could be modified in order to take into account massive quarks in the
initial state. We then specify the calculation to the case of Higgs production in
bottom-quark fusion, working out suitable corrections which have to be added to
the result of Ref. [6]. We give our results in terms of the specific partonic cross
section characterizing the process. We point out the main general features of
these outcomes and we compare them with those obtained in Ref. [2] and Ref. [5]
in the contest of deep-inelastic scattering. Finally we give the full analytical
expressions of our result, presenting outcomes for the calculations of the specific
partonic cross sections we are interested in, and showing step by step how to
compute them.



1 General formalism

In this section the basic formalism of massive and massless schemes is presented.
The FONLL method is then described in its general ideas. In the next section it
is then applied to DIS, using this concrete example to highlight its main features.

1.1 Massive and massless schemes

Perturbative processes in QCD involving heavy quarks can be treated within
different factorization schemes. By "heavy” and ”light” quarks we mean particles
whose masses are respectively higher and lower than 1 GeV', such that only in
the first case a perturbative treatment could be applicable. According to this
definition the up, down and strange quarks are light, while the charm, bottom
and top are heavy and can be described using perturbative theory. Precise results
for computations of cross sections over a range of perturbative scales ()2, require
the incorporation of heavy quarks mass effects close to threshold Q? ~ m?, and
the resummation of collinear logarithms at higher scales Q% > m?, where m is
the mass of the heavy quark we are considering. This is achieved by using the
two different schemes mentioned above.

In the first one the heavy quark is treated as a massless parton, there are
no differences between heavy and light objects. Both light and heavy flavours
participate in evolution QCD equations, through which collinear logarithms of
g—;, arising from heavy quarks emissions, are resummed to all orders. However,
corrections suppressed by power of g—j are neglected.

On the other hand, in the second scheme the heavy quark is considered as a
massive object which decouples from evolution equations and from the running
of ay, and the full dependence on m is retained order by order in perturbation
theory. In this scheme only the light quarks PDFs evolve with standard DGLAP
equations, as the factorization acts only on these flavours. The contributions
coming from heavy quarks are evaluated at fixed order in perturbation theory,
leaving explicitly unresummed collinear logarithms due to emissions of massive
quarks.

These schemes are called respectively "massless” and ”massive scheme”, or
alternatively "three” and "four flavour schemes”, where the numbers refer to
how many active flavours take part in the evolution equations. So, for example,
thinking at quark charm as the massive one, we will talk of three and four flavour
schemes, while we will have four and five flavour schemes when quark bottom is
referred to as the heavy parton.

The point is that, dealing with massive partons, the quark mass acts as an IR



regulator, so that radiative corrections involving massive quarks are finite, leading
to logarithmic contributions of f’i—; Depending on the scale of the problem we
are interested in, for massive quarks one may choose whether to factorize massive
collinear logarithms (obtaining the massless scheme) or not (obtaining massive
scheme). For massless quarks instead factorization is always necessary, since there
isn’t any mass acting as an IR regulator.

The massless scheme is more accurate for scale Q? > m? since here the
collinear logarithms can become large, spoiling the perturbative convergence of
the massive scheme. In this case, it is more appropriate to factorize and resum
collinear logarithms associated to the heavy quark we are considering. Conversely,
the massive scheme is more accurate close to threshold, where mass effects due to
the production of the heavy quarks could become important. If a computation in
the massive scheme is performed to high enough order in perturbation theory it
will reproduce the results of the massless scheme, while the converse is not true,
as in the massless scheme informations about mass effects due to heavy quarks
are not encoded at all.

1.2 Combining fixed order and resummation

In the previous section we have introduced massless and massive scheme: while
the first is accurate at high scales where corrections of O (m_j) are negligible, its
use is not legitimate al lower scales near the heavy quark mass, where the second
scheme is preferred. Therefore it is useful to combine these two schemes into
one which works at all scales, reproducing the massive scheme results near the
threshold and those of the massless scheme at higher scales.

In order to get a scheme which is valid to all scales, the power corrections
of O (%ﬁ) which are not included into the massless scheme, have to be taken
into account, at a chosen fixed order: namely, it is sufficient to add to the mass-
less scheme results the massive fixed order corrections which are encoded in the
massive scheme. In this way we obtain a result retaining the accuracy of both
massive and massless scheme: at a massive level we would have the fixed or-
der precision corresponding to the number of orders that have been included in
perturbation theory (FO, namely fixed order); on the other hand we would also
have the resummation of large logarithms, keeping the accuracy of the starting
massless scheme computation (NLL or subleading logarithms). This is the idea
the FONLL method is based on.

In order to obtain such a result, it is sufficient to add massive and massless
results and then subtract any double counted contributions. These correspond
basically to constant terms and to those large logarithms which, because of heavy



flavours factorization, are already resummed in the massless scheme but also
explicitly appear in the massive one.

One of the main advantages of the FONLL method is that it involves only
computations of physical quantities in well defined factorization schemes (massless
or massive) and it permits to write down expressions at any order in perturbation
theory in a straightforward way: first one evaluates the relevant massive diagrams
for the process considered in the massive scheme, and then combine them linearly
with the corresponding massless calculations. The double counted term can be
obtained as the massless limit of the massive results and it corresponds to the
fixed order expansion of the massless scheme.

To sum up, the FONLL method allows us to obtain results which are cor-
rect at high energy up to power suppressed terms (the power corrections of
m?2/Q?), and also in the threshold region up to subleading corrections (infact
when Q? ~ m? the logarithms are note large), performing calculations in well
defined factorization schemes.

In most applications FONLL was implemented first with the assumptions
that heavy quarks were generated perturbatively, so without an intrinsic com-
ponent of massive quarks in the initial state. In other words, according to this
assumption in the massive scheme heavy quarks never appear in the initial states.
Using this hypothesis, we will start showing explicit examples of usage of the
FONLL prescription in calculation regarding DIS. Through this example, we
highlight the main features of the method and we show what is required to its
full implementation. Then we will present a generalization of the FONLL scheme
which allows us to consider an intrinsic component of heavy quarks (the charm
quark in the case of DIS).

In the second part of the thesis we will do the same for an hadronic process,
showing the main differences between the latter and the DIS case.
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2 Heavy quarks in deep-inelastic scattering

2.1 General structure

In this section we will see explicitly how the FONLL method works on the specific
case of a generic deep-inelastic scattering structure function F (x,Q?). We will
see later how this general formulation works for hadronic cross sections as well.

We assume a number n; of light quarks ¢, with one massive quark h with
mass m. The expression of F'(z,Q?) in the massless scheme is given by

n,+1) :E Qz _ / dy Z an-i—l)( m+1 (Qz)> f(m+1 (y,Qz)
i=q,G,h,h,g 1
_ Z Ci(n,+1) (agn,+1) (Qz)) ® fi(m+1) (Qz) ’ ( )

i:q?qvhvﬁvg

where ¢ is any light quark, h is the heavy quark and n; + 1 is the total number
of active flavours. This expression is accurate at large scale Q? > m?, and using
this scheme all collinear logarithms due to the massive quark are factorized into
the definition of the PDF's and resummed through PDF evolution equations, just
as for the light partons. Therefore the massive quark is included as light parton
in the PDFs. These, together with a,ﬁ"lH), satisfy standard DGLAP evolution
equations and renormalization group equation respectively, both with n;+1 active
flavours.

The expression of F (z,@?) in the massive scheme is given by

F(nl (.Z‘ Q2 —l’/ dy Z C("l)( (nl) (QQ)) fi(nl) (y7Q2)

i=q,4,9
2

= % o (L (@2))®f,-<m> (@),

1=¢,q,9

where now the coefficient functions C; are calculated retaining the full mass de-
pendence but contain unresummed logarithms of fi—; This expression is accurate
near the threshold Q? ~ m?2, and fi("’) together with al™ obey respectively
DGLAP and renormalization group equations with n; active flavours.

The equations (2) and (1) are alternative expressions for the same structure
function, written in terms of different elements i.e. a, and PDFs in the two
schemes. In order to carry on the FONLL method we have to express the massive

(ni+1)

scheme structure function in terms of a and f"*Y | therefore we need to

know how the coupling constants and PDF's are related between the two schemes.
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This relation is given by equations of the form

—+00 .
" (Q%) = al™ (%) + 3 e (L) x (al™ (m?))' (3)
=2
10 @) = [0Sk (Ll (@) 1 (1. 2)
= Y i e Y (4)
= Y K (@) £ (@),
where )
L =log % (5)

The coefficients ¢; (L) are polynomials in L and can be obtained simply by the
solution of the renormalization group equation for a,. The functions Kj;; can be
expressed as an expansion in power of ay, with coefficients that are polynomials
in L. They are determined perturbatively, by requiring for example that the
massive and massless results of equations (2) and (1) respectively are equal order
by order in the same a,;. This computation is performed in Ref. [4]. Alternatively
these matching coefficients can be computed as a matching between two effective
theories of QCD, as done Ref. [§].

It is important to note how the index j of the coefficient K;; only refers to
a light quark or a gluon, not to the heavy flavour, as the heavy flavour PDFs
in the massive scheme is considered to be zero: this is the assumption we made
on the absence of an intrinsic heavy quark in the initial state. If we wanted
to generalized the FONLL scheme in order to consider an initial fitted heavy
quark PDF, as we will do later, we would have to consider additional coefficent
functions, accounting for the presence of a non zero PDF for the heavy quark also
in the massive scheme. For now, we consider only coefficients K,; with ¢ light
or heavy and j = g,q,q, which turn out to be non-zero only starting at O (a?),
order to which they have been fully computed in Ref. [4].

Therefore under the assumption that the heavy quark PDF is generated
perturbatively, the first 2n; + 1 equations in Eq. (4) express the relation between
the light quarks and gluon PDFs in the two schemes, while the last two give the
heavy quark perturbative PDF's of the massless scheme in terms of the PDF's of
the decoupled (massive) scheme.

In order to get an expression for the massive scheme in terms of ol and
f™+1) one can invert equations (3) and (4) obtaining from Eq. (2)

U dy r Q?
() 2) = = E/ (2 (m+1) (02) | plutD)
F (x,Q°) I/x Y i:mng (y,myozs’ (@ )) it (6)
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Furthermore, using the DGLAP evolution equations in the absence of intrinsic
heavy flavour, the heavy quark PDFs f;, f; of Eq. (1) can be written in terms
of the light-quark PDFs f{") with i # h,h at the scale m, convoluted with
coefficient functions expressed as power series of agn’), with coefficients that are
polynomials in L, or, alternatively, in terms of the gluon and light-quark parton
distribution fi("lﬂ) at the scale Q2 convoluted with coefficient function expressed
as a power series in ol (Q?), with coefficients that are again polynomials in
L. Thus the massless scheme expression Eq. (1) may be rewritten in terms of

light quark PDFs only:

L dy x
(2.Q%) == | = A S Lol (@) ) £ (0. @)

1=4,4,9
(7)
Expanding both Cl-("’ ) coefficients and heavy quarks PDF's of Eq. (1), the general
perturbative expression of the coefficients AE”I“) turns out to be:

N

Agnl+1) (z,L,Ozg”l“) (Qz)) _ (agm-i-l) (Qz))piz‘ﬁ?’k (2) (agmﬂ) (Qz) L)kv
k=0

p=0
(8)
where, since this is the massless scheme, we notice the presence of the logarithmic
terms oL resummed to all orders.
In order to match the two expressions of F', we expand also massive coeffi-
cient functions B; of eq.(6):

2 P a0\ 2
B (z, %7agnl+1) (Q2)> _ Z <ST(Q)> Bf’ (z, %) , 9)

p=0
where P is the perturbative order we want to reach. We define the massless limit
Bz»(o)’p (:L‘7 fﬁ—i) of BY <:1:, Qz>, so that

m

2 2
lim |B? xQ—Q — BO? a;Q—2 = 0. (10)
m—0 m m

As noticed before, the terms of eq.(9) which does not vanish when Q% > m? must
also be present in the massless scheme. Therefore Bz-(o)’p (ZL‘, %) must be equal
to the O (a®) factor of eq.(8)

Op [ QN = ki k
B (@5 =Y AU (@) Lk (11)

k=0
Therefore the terms contained in both massive and massless scheme can be ob-

tained either as massless limit of the massive scheme or as a fixed order expansion
in power of a; of the massless scheme.
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Giving the perturbative expansions above of both schemes, FONLL method
can be implemented as follows: the contributions of Eq. (8) to coefficients AE"ZH)
of Eq. (7) which have a corresponding term Bi(o)’p (if a certain contribution to
coefficient A has a corresponding B() or not depends on the perturbative order
to which coefficients B have been calculated) have to be replaced by the fully
from Eq. (9). Thus the result obtained after this

massive expression BY (
replacement includes all the mass suppressed effects that are not presented in

Z, mz
Eq. (1) but are known from eq. (2).

In order to apply this procedure in a systematic way we define

2
P @) = [ S B0 (7 et (@) £ @) 2

1=¢,4,9

where

Q2 P Q2
B (2 L0l (@) = (@) 507 (= L) a9

p=0

where P stands for the order in a{" " (?) to which the massive scheme expres-
sion has been determined. Therefore F™9 (2, Q?) contains the double counted
terms mentioned before, contained both in the massive and massless scheme,
which have to be subtracted from the final linear combination which gives FONLL
construction. As we have just done, they can be obtained as the sum of all the
contributions which do not vanish as the heavy quark mass tends to zero, namely
constant and collinear logarithmic terms of the form log & =, which are also con-
tained in the massless expression as a consequence of the perturbative evolution
of the PDFs. Alternatively they might be extracted from the massless result by
expanding the massive quark PDF's in power of the strong coupling.

Therefore the FONLL expression is given by

FFONLL (IL‘, QQ) _ F(m-l—l) ( QQ) 4+ F (ny) ( Q2> F(nl,O) (1’7 QQ)

— F(d) ($7Q2> T+ F (n1) (ZE,Q2) ’ (14)

with
F@ (z,Q%) = Flutd) (z,Q%) — F0) (z.Q%). (15)
We notice that, thanks to Eq. (10), when Q* > m? the FONLL expression
reproduced the massless scheme results, while for Q? ~ m? it differs from the
massive scheme through the difference term F(4 which is subleading in av,.
A final note regards the definition of perturbative ordering in FONLL: in

order to ensure that Eq. (15) works properly, we have to calculate F™+1) at order
in o™ which il at least as high as that of F™), so that in Eq. (15) we are

14



subtracting terms which are actually present in F(™*1). However we may also
compute F(™) with higher precision, and define F("-? retaining only those terms
which are also present in F(*1) Making this choice it would not be true that
for Q% > m? massless scheme results are reproduced, because F(™) and F0)
no longer cancel in this limit since in the latter some terms have been excluded.
However is still true that when Q? > m? FONLL reduces to massless results
up to mass suppressed terms and terms of higher order in g, coming from this
mismatch in accuracy. To sum up, an advantage of the FONLL method is that the
perturbative order at which heavy quark terms are included in F(™) and F(u+b
(fixed in the first case, logarithmically resummed in the second) can be chosen
freely. Keeping into account for this observation, we will consider in particular
three options for perturbative ordering in the FONLL prescription. Thinking
about DIS we have:

e FONLL-A: contributions to F(™) from heavy quark are computed at LO,
which is O () in DIS, while those to F(™*1 are computed at NLL which
is also O (a). There is no mismatch in accuracy between results of the two
schemes.

e FONLL-B: contributions to F™) from heavy quark are computed at NLO,
which is O (?) in DIS, while those to F™*1 are still computed at NLL
which is O (a;). In this case the massive expression exceeds in accuracy
the massless one when L is not large. Thus, as mentioned above, we define
F(:0) retaining only those terms which are also present in F(+1,

e FONLL-C: contributions to F™) from heavy quark are computed at NLO,
which is O (a?) in DIS, while those to F™*V are computed at NNLL which
is also O (a?). There is no mismatch in accuracy between results of the two
schemes.

Throughout the whole thesis we will use the notation N*LL to refer to the re-
summation of collinear logs of the heavy quark mass, namely by LL we mean a
computation in which (as log 8—;) is treated as order one. In other words, with
LL, NLL etc. we refer to the order at which DGLAP equations are solved, while
with LO, NLO, etc. we refer to the order at which hard massive cross section are
computed in perturbation theory. By ”leading order” we always mean the lowest
nontrivial order at which the process starts occurring. Therefore the generaliza-
tion to hadronic processes will require a relabeling of perturbative orders, since
the order at which massive scheme start being non-zero is process dependent.
In conclusion, in this subsection we have introduced the general formalism
concerning FONLL method, using as example the specific case of DIS structure

15



functions. Finally we have discussed and named some possible perturbative orders
to which FONLL method could be implemented.

2.2 Implementation of the FONLL method

In this subsection we will work out explicit FONLL results for structure functions
in DIS up to O («y). This is useful because of a variety of reasons: it allows to
see clearly how the FONLL prescription works, how matching conditions are
obtained at a generic scale, and to find out explicitly the pieces of the massive
scheme already contained in the massless one, giving a clear example of what
exactly happens. Furthermore in the next sections of this work we will follow the
general lines described in this subsection to work out the generalizations required
for hadronic processes.

Firstly, a detailed discussion of the change between scheme with n; flavours
and that with n; + 1 flavours is required. This is the key point on which all the
next generalizations of the FONLL scheme will be based on.

We start writing explicit expression for Eq. (3), using the solution of the
renormalization group equation for «g which in general reads

00 Q%) = o (m) — bylog Zya? (m) + 0 (o)

b — M "
07 1o
Therefore we have
) 3B—2(m+1), @
ag +1) (QQ) — a, (mz) . 127Tl log Woz? (mQ) +0 (a?)
33 — 2n 2 1@
=, (m?) - TZ log Waf (m?) + P log Waf (m®) 4+ O (a?)
" 27% L
=l (@) + T g0 (m) + 0 (a)).
(17)

from which we read that at scale Q? = m? the couplings in the two schemes differ
by terms of order O (o)

agnl+1) (mz) _ agnl) (mQ) +0 (ai) ) (18)

As for matching PDF's in the two schemes, we proceed in two stages: first
we match the two schemes at a scale Q? ~ m? then we evolve to a gencric scale
Q?, using DGLAP evolution equations. In the absence of intrinsic heavy quark

16



contributions, the matching conditions at scale m? are

f(nl+1) Z Kzg ® f(nz) ( )
J=49,9
/Wme/w%ﬂ
z
7=4,4,9
(n1) dz 2) ("l) (f 2) 3
= ;" (z,m?) / ZK z,m?) il + 0 (a?)

(19)

where 7,j = ¢,q, g. Evolving this expression to scale Q% we would return to the
general expression of Eq. (4). From the second to the third line of Eq. (19) the
coefficient K;; has been expanded as a power series of «;. Since the index i and j
are referred only to light flavour, as mentioned in previous sections K;; becomes
nontrivial starting at O (a?), and the function K (2), K, @ (z) and K @ (z) have
been fully computed in Ref. [4]. As for heavy quarks instead we have

(rma+1) (z,m?) = (mH) (z,m*) =0 (a2), (20)

S

as K,(j) (z) with i = ¢, q, g start at order O (a?).

As seen above, in order to implement the FONLL method we need to express
the massive scheme PDF's in terms of the massless scheme ones at a generic scale
Q?. In order to obtain explicit results for the FONLL scheme up to order O (),
matching condition at order O (ay) are enough. Therefore we evolve both fi(mﬂ)
and fi("’) in the respective schemes with n; 4+ 1 and n; active flavours, solving the
DGLAP equations. Thus from Eq. (19) evolving up to order O (c) we have

fi(nz-i-l) (x Qz) _ fz(nl) ($ Q2)
toul / dZZ P(nz+1)0 P(nz ( )] f](m) <§)Q2> —I—O(Oz§)7 (21)

where Pg are the leading order Altarelli-Parisi splitting functions in the two
schemes, and the sum runs over all light flavour (we are using the same definition
of splitting functions used in Ref. [11], but with an additional factor equal to 5-).
Using

2T;
plu+1)0 (2) — pl)0 (2) = —8,,0; R

ij ij ig ng

§(1—2), (22)

it follows that

fénH—l) (%Q2> — fg(m) (ZL’,Q ) _ asi%f("’ ( ,Qz) +0 (ag)

fi ) (@7 = £ (2, Q%) + 0( s)
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These are explicit expressions for the matching conditions connecting massless
and massive scheme PDFs up to order O ().

Now we have all the ingredients required to write explicitly FONLL results
for structure functions of DIS at order ;. In order to simplify the computation,
it is convenient to separate off the light and heavy contributions to a generic DIS
structure function and to its corresponding coefficient function. Thus we write

F(2,Q) = Fi (2,Q°) + Fh (2,Q)
Ci (2,0, (Q%)) = Cua (7,05 (@) + Cip (05 (@)

where Fj, and F; define respectively the contribution to F (z, Q?) which survives

(24)

if only the electric charge of the heavy quark is non-zero, or that which survives
if the electric charge of the heavy quark vanishes. In other words, the labels A
and [ stand for the quark to which the virtual photon couples, while ¢ denotes
the parton which enters the hard scattering process. In the following example we
will use results concerning coefficient functions which are true in the case of the
structure function Fy (x, Q?) in electromagnetic deep-inelastic scattering.

Equation (19) means that at scale Q* ~ m?, at order O («,) the gluon and
light quarks PDFs in the massive and massless schemes have to be equal, while
Eq. (20) tells that the non-intrinsic heavy quark PDFs should be taken to vanish.
The matching conditions at a generic scale Eq. (23) are used to determine the
coefficient function B; in terms of the original massive ones CZ-("Z). Light quark
coefficient functions start at O (a?), while the gluon ones at O (al) therefore,
since the correction at order O (as) is non zero only for the gluon PDF| it follows
that coefficient functions B; start being different from C; only at O (a?):

B, <Z g_ a(m—i—l) (QQ)) _ C?Z(nl) <Z %7a(nl+1) (Q2)> +0 (Ozf) ) (25)

Furthermore at this order all light coefficient functions C;; with @ = ¢, q, g are the
same in the massive and massless scheme

Ci(,TlLl) (z 227 (n+1) (Q2>) CZ(TH) (z 327 (ni+1) (QZ)) 4_0(0[3)7 (26)

since in order to have some differences we should consider diagrams of higher
orders. Therefore we have:

FFONLL (33 Qz) _ F(d) (x,QQ) + Fl(m) (%Q2)

_*TZ/ dy (nl—l—l)( a. (Qg)) oty (4, Q?)
o3 [ (@) £ (10 +0 (o)

i#hh
— Fl("ﬂrl (a:, QQ) + 0 (ag) ,

(27)
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i.e. the FONLL expression of F; reduces to the massless scheme one.

As for heavy coefficient function C;, for 7 corresponding to any light quark,
they also are the same in massless and massive schemes at O («y), since in both
schemes they vanish at this order. However, accounting for the first diagram in
Fig. (1), the gluon coefficient function is different

o (2 L (@) = =B opn (2 L) 0@, e

27

where

C L (z Q—Q) =0 (W? — 4m®) x

g9 ) mg
1
Tr[(=* + (1 — 2)? +4ez (1 —3z) — 8¢°2%) log : tv (29)
—v

+(82(1—2) — 1 —4ez (1 - 2)) 0],

with

[\

m 4dm

Q'

Figure 1: From left to right, rapresentative Feynman diagrams for LO contribu-
tion to the structure function in 4FS and 3FS

The coupling o, (Q?) in these expressions can equivalently be either "+

or ol ), since they differ by terms of order O («?). This is the explicit expression
for the coefficient function obtained from the massive scheme, which is accurate
when Q% ~ m? i.e. when W?2 ~ 4m?. In this range of scales %, the logarithmic

contribution contained in Eq. (29) is still finite. The massless limit of Eq. (29) is

2 2
(0),1 Q 0), Q
Bg,h <Z7 W) = 26}21057’61 O) 1 <Z, ﬁ)

g 21, (31)
OOt (z %) =Tg {(22 +(1—2) )log% +82(1—2)—1)
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Here we see explicitly the terms contained in both massive and massless scheme,
which have to be subtracted to avoid being double counted. The logarithmic
term of Eq. (31) is resummed at all orders in the massless scheme, while here it
appears explicitly. In the limit ?> = m? the massless scheme coefficient function
is reproduced

2
n as n
C (200 (@) = 2D aezcpmnont (2, 1), (52)

g

Therefore the FONLL result for the heavy component is
FFONIL (4. Q%) = B (2, Q) + F\¥ (2,Q%), (33)

with the contributions on the right hand side given by

A @)~ [ Lo (@) 0 ). e

and

F}Ed) (IE,QQ) _ JI/ (Z {C(m+1) < (Q2)> [f(nl+1) (y Q2) + f(nl-i-l) (y’QQ)]
(o) (2

Using the leading order results of QCD evolution equations
fu (v, Q%) = fi (v, Q)
%2(7?2) / Tr (22 4+ (1—2)) f, G,Q?) +0(a?)  (36)
=0, (Q*) LP © [, (@7,

and noting that

(35)

O (2,05 (Q%)) =6 (1 —2) + O (ay), (37)

this result can be checked in its entirety replacing Eq. (31), (32), (36) and (37) in

Eq. (35), verifying explicitly the difference term cancel up to order O (a?), as it
has to happen. Thus in the region where L is not large (i.e. in the region where
eq.(36) makes sense) the FONLL expression at O (a5) for the heavy contribution
coincides with the one in the massive scheme. Note that in this way we have
explicitly checked that the double counted terms can be obtained in two ways as
expressed by Eq. (11): either as the massless limit of the massive scheme or as
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the fixed order expansion in power of a; of the massless scheme. Namely we have
verify that

2 2
B!(]?,)l (%) ® f;nH—l) (@) = as (Q?) Bé?}i»l (%) ® f;nH—l) (@) + 0 (a2)

— lim Z C,i(:r;ll—i-l) ® fz‘(mH) (QQ) + C;TZH) Q fg(m+1) (QQ)

Q2—m? ‘
i=h,h

— lim [ Z (Ci(j;bﬁl),() toa, (QQ) Ci(Zerl),l) ® fi(m+1) (QQ) (39)

Q2—m? a
i=h,h

+ ay (Q2) nl+1 f(m—i-l) (QQ)]

_ as Qz Z CE;;H)O ® LP + C(nl-i-l) 1 ® fénl—i-l) (QQ) +0 (a?) :

i=h,h

where in the last line we have used eq.(36).

Therefore we can re-write eq.(33) as
FFONLL (3 ?) = Z (C'(ZZH) +a. (@) C! nH—l ) @ futD (@)
i=h,h
+ a, (QQ) C Tbl+1) 1 f(nl—i-l) (QQ)
2
vau (@) | e (%) - X el e Lry - oy

m2 2
i=h,h

@ £ (@) + 0 () (39)

_ Z ( m+1)o (QQ) nl+1) 1) ®f(m+1 (QQ)

i=h,h

2
i (6 (8)- Zeonn

i=h,h
@ f(Q%) + 0 (o)

In the next section we will use the results shown till now in the form of this
last equation. To sum up, in this section we have presented explicit result for
DIS structure function up to order O (ay), pointing out the main features of the
computation and showing the difference between massive and massless coefficient.
We have noticed how, in the massive scheme result, collinear logarithms due to
heavy quark emissions explicitly appear, which are instead resummed to all orders
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in massless computations. In the next section we will describe how this approach
can be generalized in order to account for a fitted heavy quark in the initial state.

22



3 Intrinsic heavy quark in deep-inelastic scat-

tering

In this section we will see how FONLL method previously introduced can be
generalized accounting for an intrinsic component of heavy quark in the initial
state. We depict the basic ideas of such a generalization and give results up to
O (as) for structure function in DIS, first obtained in Ref. [5]. We point out the
main lines which will be followed in doing the same generalization in an hadronic
process.

3.1 Motivations

The construction of FONLL method introduced in previous sections is made un-
der the assumption that the heavy quark content of colliding hadrons is generated
perturbatively, namely heavy quarks are generated from radiation by light par-
tons and are not originally contained in the initial state. This assumption could
be a limitation and possibly a source of bias. The reasons are both of principle
and practice. First the heavy quark PDF might have a non vanishing intrin-
sic origin, such that it does not vanish at scale lower than the threshold one.
This could be remarkable especially in the case of the charm quark, because of
arguments suggesting that the proton may contain a significant charm compo-
nent. Secondly, even if the heavy quark was generated perturbatively, and thus
its PDF vanishes below the physical threshold for production, it is not clear what
the values of this threshold should be. For sure it is a scale of non-perturbative
origin, so we don’t know its precise value: it could be the heavy quark mass, but
it may be also the mass of some bound state. Therefore we would have results
depending on some arbitrary starting scale Qg ~ m, not better defined, at which
the perturbative boundary conditions are imposed. It is the scale at which the
heavy quark is perturbative, and it really is an ambiguity, since it remains in all
the final results. Finally, when we match the massive and the massless schemes
through the matching conditions, we have to choose the scale where to perform
the initial matching. Depending on this choice, in the matching coefficient K,
different logarithmic terms will appear, which could indeed affect our final results
at low order. This dependence is due to the fact that the matching between
massive and massless scheme is performed at finite order. Despite in a matched
calculation it would disappear at high enough perturbative orders, at low order
it could be non negligible. These three problems can be solved by introducing a
fitted heavy quark PDF, which could describe a possible intrinsic component of
the PDF, and also reabsorb in the initial condition the dependence on the non-
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perturbative starting scale. In this way heavy quark PDF's would be parametrized
and determined along with gluon and light quark PDFs through an appropriate
fit. Thus the distinction between perturbative generated and intrinsic component
would become irrelevant, and whether or not the heavy quark PDF vanishes and
at what scale would be answered by the fit. From now on, we will refer to the
initial-state heavy quark in the massive scheme as intrinsic heavy quark, without
worrying if it is of perturbative or intrinsic origin.

3.2 General structure

In this subsection we will show how FONLL method of previous section can be
generalized in order to account for a fitted heavy quark PDF, for the specific
example of structure function in DIS. Throughout this section we will refer to the
massive scheme as three flavor scheme (3FS) and to the massless scheme as four
flavor scheme (4FS) as already mentioned before, while we will refer to charm
quark as the heavy parton.

Both 3FS and 4FS have to be changed. As for 4FS, in absence of an in-
trinsic heavy quark, the massless scheme PDFs are completely determined by
perturbative evolution from a vanishing boundary condition imposed at a scale
of the order of the charm mass. Considering this scale to be exactly equal to
the charm mass, we should have f{*) (x, m?) = f1'54) (z,m?) = 0 while £ (z,Q?)
and f]§4) (z,Q?) for Q? > m? satisfy perturbative evolution with 4 active flavours.
If we introduced a fitted heavy quark PDF we would simply have to relax the
vanishing boundary condition, imposing instead that f,§4) (z,m?) and f}—§4) (x,m?)
are given by some parametrization obtained by a proper fit. Apart from changing
the boundary conditions, the 4FS remains unchanged.

As regards 3FS, we have to account for the presence of charm quark at all
scales, therefore also when Q? < m? there are non vanishing heavy quark PDFs
f,(l?’) (x,m?), f}—(LB) (z,m?). Tt is important to notice that, since in this scheme the
heavy quark is treated as a massive object which decouples from QCD evolution
equations, these PDF's are scale independent. Thus in the expression of the 3FS
we have to introduce new contributions to the structure functions, accounting for
heavy quarks in the initial state.

Decomposing the structure function into an heavy and light component as
done in Eq. (24), the heavy component Fj now receive a new contribution from

,(13) and f7§3) which start at the parton model level, namely at O (a?) whose rep-
resentative Feynman diagrams are given in Fig. (2). The light structure functions
F} instead receive new contributions starting at order O (a?).

Thus we define a correction term AF which has to be added to the previous
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Figure 2: Feynman diagrams for the new contributions to Fj, (z, Q?) induced by
the presence of the heavy quark in the initial state. The fermion line represnts
the heavy quark, and from left to right LO and NLO real and virtual corrections
are shown.

expression of FONLL results in order to take into account the presence of an
intrinsic heavy quark component. As the 4FS expression does not change (apart
from the boundary conditions) in the correction term only the new contribution
raising from the 3FS appears. Therefore, as for the correction to the heavy
component of the structure function we have, up to O («;):

2 2
3) (Q 30) (@ 3
AR 0.@) = X |0 (ol @) - 6 (o0 @) 0 1
i=h,h

(40)
where, as explained above, f,E3) and f,—EB) are scale independent (from now on, we
will omit the ”h” index of C’Z(?,’l) and C’i(’?,’l), since in what follows we will refer only to
the heavy component of the coefficient functions). Thus the FONLL expression

FFLNR

of the previous section, denoted in the following equation, up to order

O («) is generalized to
FFONLL (CC, QZ) _ FFLNR (93, QQ) + AFh (27, Q2) ) (41)

Thus we have presented the general ideas the generalization of FONLL
method is based on. In the next section we will see how to implement it.

3.3 Implementation

In this subsection we report the main steps through which the FONLL method is
explicitly generalized to take account of a fitted heavy quark PDF, in the example
of a generic DIS structure function, up to order a.

Starting from Eq. (40), the FONLL expression is obtained by expressing the
3FS coupling and PDF's in terms of the massless ones, through suitable matching
conditions. As already discussed, this is done first by a matching at some fixed
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scale, for example at a scale Q* = m? and then evolving both the 3FS and 4FS
couplings and PDFs in their respective schemes with 3 and 4 active flavours.

While Eq. (17) still holds, Eq. (19) and (20) have now to be generalized, to
keep into account of the presence of new massive PDFs f,(f’) and f;(f). In Eq. (19)
the matching coefficients K;; (m?) = > aZKfJn) (m?) start receiving non-zero
contributions at O (a?), namely for 7,7 = ¢q,7,g we have K (O) = §;;, while the
Kp; (m?) functions with i = ¢, g, g start at O (a?), as seen in Eq (20).

The coefficient Ky, (m?), which in the previous case where irrelevant, have
now to be considered, due to the presence of heavy quark PDFs also in the
massive scheme. They can be calculated up to O (as) in the same way of the other
matching coefficients, using the known O («;) expression of the charm-initiated
massive coefficient functions of DIS, and they are first addresses in Ref. [5]. Their
explicit expressions at a generic scale Q% are given in the equation below:

K (Q%) = K (@)
—1+a, [Pq(q (2) (log:;Q— 1>L+O(O‘§)

2(1 - 2)2 (42)
N 1 (2) (0) Q? 2
Kgn (Q ) = K (Q ) = as Py, | log m222 -1 +O(O‘s)v
with , )
po) (o= Crlt 2 po_ Crlt (=2 (43)

or 11—z’ 94 o z

Thus we notice that K, (m?) already receives non-trivial contributions to
order O (), K, (m?) starts at order O () and finally Ky, (m?), not reported
here, starts at higher orders. Their explicit expression was originally obtained
considering the specific case of the DIS structure functions, but since they are
universal quantities which connect two different factorization schemes, they can
be used in computing whatever process requires initial-state heavy quarks. Fur-
thermore there is no dependence from the number of light quarks, which allows
us to use these results for connecting any n; + 1 flavour scheme to its corre-
sponding massive n; flavour scheme. Therefore we will use these same matching
coefficients in performing calculations for hadronic processes, with factorization
schemes characterized by five and four active flavours.

Thus matching conditions given in Eq. (19) and (20) have to be generalized
and re-expressed as

1 nz+1) Z Kw (m2) : (44)
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with 4,7 = ¢,q, g, h, h. Unlike the previous case they are already non-trivial at
O (a) due to the new components K;;, (m?) of the matching functions given in
eq.(42).

As already done before, Eq. (44) have to be evolved using both the massive
and massless schemes, in order to get matching condition at a generic scale Q*. In
particular, remembering that the 3FS heavy quark PDFs are scale independent
we can write the matching conditions at a generic scale Q? as

V=0 (Q) - P (@) Ky () © 7
—a (@) Pl £ (Q7)
—a (@) P L ® £ (@) + 0 ()
= 1@ = ol (@) [ (m?) + POL| @ £ (Q?)
— o (Q7) P L ® £ (Q%) + 0 (o),

where as usual L = ,% and Pi(]Q) are the leading order splitting functions. From

this last equation we notice that, even if f,§3) is scale independent, writing it in
terms of 4FS PDFs and expanding out Kjj, since we retain only terms up to
O (), we induce a subleading dependence on the scale Q2.

In order to find a simple expression for the term AF up to order O («) we
notice that we can relate the 3FS coefficient functions in the massless limit to the
4FS mass-independent ones. In fact, order by order in the same strong coupling,
the equation below has to be satisfied by definition

e = e Y (m?), (46)

with i = h, h. Thus using standard evolution equations to evolve from scale m?
to scale Q? together with eq.(44) we get

0% 0 ¥ = 0@ (£ + aukf)) (m?) @ 17 + . LPY) © £+ 0 (a2) )
(47)

from which we read

3,0),0 4),0
CE00 _ o

48
Pt = e e (i) () + L) "

27



Substituiting eq.(45) and (48) in eq.(40) we find

2
AFy, (x,QQ) — Z [Cz'(g)’o (%) B 054),0} ® fz‘(4) (QQ)

i=h,h

(@) X [053“ (Q—z) -0 - (K (m?) + P;?L)] ® 17(@)

i=h,h m
. 2
V@) Y o (L) -a| s erp e @) + o)
i=h,h

(49)

The final result for the heavy component of the structure function in DIS can
be obtained adding up Eq. (39) of the previous section and Eq. (49), obtaining,
after a certain amount of cancellations

B (@) = X 0 (L) 0 @)

i=h,h

o (@) {0?3)’1 (Q—Q) — P (Q—z) ® (K(” (m?) + P“”L)] @ 9 (Q?)
s v m2 @ m2 hh a9 i

i=h,h
o (@) |9 (L) - T e (L) o ppr| e 0 (@) +0 ().
(50)

We note that the result reduces to the expression obtained combining massless
PDFs fi(4), evolved in 4FS, with the massive coefficients C’Z»(S) and subtracting from
the latter the unresummed logarithms. This means that, since we are considering
PDFs also for the heavy flavour, we are resumming to all order the collinear
logarithms coming from heavy quarks emissions, and then we are removing the
logarithmic terms contained also in the 3F'S expressions, which have already been
resummed introducing heavy quark PDFs. This approach, which here is obtained
in the context of FONLL scheme, is known as ACOT scheme, Ref. [13], [14].

As previously done in the standard FONLL scheme, we can write the result
as a sum of the 3FS and a difference term, obtained by subtracting the massless
limit of the 3FS to the 4FS. We have seen in Eq. (35) as this difference term is
subleading in the region where L is not large, as regards the standard FONLL.
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Re-writing F; ,Ed) in the generalized FONLL method we find
F9 = Z (02(4»0 +a (Q?) q@%l) ® f@ (Q?)

i=h,h
—a{’ (@) Y M e L)@ £V (Q7) (51)
i=h,h
= (Cf?”o)’o 1 OB (Qz)) ® f©),
i=h,h
where the first two lines of the equation above are the difference term of the stan-
dard FONLL, while the last one is the new contribution coming from the presence
of an intrinsic charm PDF. While we have already verified that, when using the
expansion eq.(36), the first two lines of the expression above are subleading in
as, it turns out that in the actual case, using only the matching condition given
by Eq. (45), the term above vanishes identically without using the expansion
Eq. (36). The reason for that is Eq. (45), where re-expressing the 3FS PDFs
in terms of the 4FS ones, the difference in evolution is only compensated up to
O (as), so that the higher order collinear log which should appear in the equa-
tion above, at order ay, are subtracted off, leading to a not only subleading but
identically vanishing difference term.
Therefore, since the difference term vanishes, the final result for the gener-

alized FONLL up to O («) can be written in the simple form below:

FFONLL _ Z C,Z’(?)) <i_z > ® fi(3) (Qz) 4 Z Ci(?)) (%) ® fi(3)

i=q,q,9 Q2 i=h,h (52)
- T () et @)en” @)
0,5=¢,3,h,h,g

Thus we have presented explicit results up to O («;) for the generalization of
FONLL scheme in DIS, to account for the presence of a fitted charm PDF. We
find that the outcomes are the same we would obtain using the so-called ACOT
scheme, in other words the difference term is not only subleading but identically
zZero.

The results reported so far are only up O (ay), but the discussion can be
easily generalized to higher orders. In fact the general expression given in Eq. (41)
can be written as

F(2,Q% = c® (LN oo (&L K-1(0%) @ ™ (02
(@)= > |7 (%) - (5| oK @) e (@)

i.j=9:0:@,h,h h h
+ Y e (Y,
1,§=9,4.3,h,h

(53)
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where we have used the inverse K; '(@Q?) of the matching matrix of Eq. (45) to

express the massive PDF's fi(3) in terms of the massless ones fi(4) and where it
is understood that all the quantities are expanded to the desired order in power

), with the massless PDFs expressed in terms of a set of PDFs at

series of al’
a reference scale and then evolved through perturbative evolution to scale Q2.
We notice that, using the matching condition of Eq. (44) evolved till scale Q2
the second and third terms of eq.(53) cancel at each order in a§4)7 leading again
at eq.(52). This shows how the vanishing of the difference term is not only a
feature of the computations to order O («ay), but it regards also higher orders.
This feature is discussed further in Ref. [2], where also the phenomenological

implication of this outcome are addressed.

30



4 Heavy quarks in hadronic processes

In the previous sections, we have seen how to apply the FONLL method to
the calculation of structure functions in deep-inelastic scattering. First we have
assumed no intrinsic component for heavy quarks, then we have shown as FONLL
scheme can be generalized to account for a fitted heavy quark PDF. The aim of
this section is to present the application of FONLL method to a hadronic process,
taking as specific example the Higgs production in bottom-quark fusion, focusing
on the calculation of the total cross-section. In the first subsection we present
the general structure of the FONLL method in a generic hadronic process, while
explicit results for the Higgs production in bottom-quark fusion are obtained
in the second subsection. The results reported here have been first derived in

Ref. [6].

4.1 General structure

In this subsection we describe the general construction of the FONLL method in
a generic hadronic process, taking as assumption no intrinsic component of heavy
quark. The generalization to the case with a fitted heavy quark PDF will be done
in the next section.

The general expression for the hadronic cross section in the massless scheme
is
oMt = //dwldxz S (0, Q%) £ (22, Q7)
ij (54)
< 600 (2, 25,07 (QF))
where the sum runs over all quarks and antiquarks, both light and heavy. Since
this is the massless scheme, the heavy flavour is treated as a massless parton, and
it contributes to the running of a, and to the QCD evolution equations as well.

In the massive scheme the general expression for the hadronic cross section
1s

o) = //dl‘le'Q Zfi("l) (z1,Q7) fj(m) (22, Q%)

~(ng) Q2 2
X O-Z'jl <$175L’27W70{(§m) (Q )) )

where the sum runs only over the light flavours and the gluon. Heavy quarks de-

(55)

couple from the running of coupling constant and from DGLAP equations satisfied
by fi("’ ) (m2, Q?), but, since this is the massive scheme, the full dependence on m is

retained in the expression of the partonic cross section &g’ 1) (axl, Ta, ﬁ—z, ol (Q2)> .
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To carry on the FONLL method, we follow the same general line presented
in the context of DIS. We re-express the massive scheme cross section in terms of
the massless PDF's and the coupling oMty (Q?), using the matching condition
given in Eq. (4) and (3). This gives the expression

S //dxldasz f(n,+1) (thz) f](nz+1) (J,Q’QQ)
ij=9,4.:d (56)

(1) Q2 QD) (02
X BU T, Lo, — m27 Ay (Q ) )

where the coefficient functions B;; are such that replacing in Eq. (56) the match-
ing conditions Eq. (4), (3), one gets the starting expression Eq. (55). The Bj;

. . 41
coefficient functions can be expanded as power of oMt g

Bz(]nl) («rl; $27 7;@127 (nl+1 (QQ))

— Z (agm+1) (QQ))p Bz(gp) <x17x27 W) ’

where N is the order of expansion needed to reach the desired accuracy.

As already pointed out, using the DGLAP evolution equations the heavy
quark PDFs f*! and f"l+1 can be determined in terms of the gluon and the
light quark parton distributions convoluted with coefficient function expressed

. o (ni+1) o 1 : o
as power series in ag . This allows us to re-write the massless scheme cross

section as

g+l //dxldxz Z f(m-i-l) QZ) f(nz-l-l (x27Q2)

1j=9,4,q (58)
X AR (w1, Lol (Q7))

with, as before, L = log and where the perturbative expansion of A;; has the
general form

At (ml,xg, L, a(nl-i-l) (Qz))

a (59)

:Z (m-i-l) Qz ZA(p)( $1, )(agmﬂ) (Qz) L)k'

p=0

The terms contained in both massive and massless scheme are given by

2
BZ(jO) <'T17 T, QQ ’ a(nl+1)>
m

}N: 1) 2 BO-® Q*?
TL—‘r v
! Q ) ij (.’131,{1727 m2> )

p=0

(60)
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with Bg-) "®) broviding the massless limit of ng " in the sense that

lim B(p) X1, X Q—2 —_BOW® (4 & Q—2 =0 (61)
30 1y 42, m2 ij 1 27m2 .

According to eq.(11), the double counted terms can be written also as

Bi(](-))’(p) (a‘ Tg ) ZA(p k). (21, 29) L, (62)

namely starting from the massless scheme and expanding the heavy quark PDFs

(ni+1)

in power of a , using DGLAP equations. Finally we define the massless limit

of the massive scheme cross section as

/ / dridey Y [ (21, Q%) £ (22, Q)

1j=9,9,9 (63)

(0) % )
X By (xhxg, W,ag"’) (Q )) .

Thus the FONLL method can be expressed as follows: we replace in the

massless scheme expression eq.(58) all the massless terms Bg))’p which appear both
i» BEq. (59), and in the expansion of Bz(jO , Eq. (60),

with their full massive expression Bl(f ), Eq. (57). In this way the final result will

retain at the massless level the same logarithmic accuracy of the starting massless

scheme, and at the massive level the fixed order accuracy in almty corresponding

in the power expansion of A,

to the number of massive orders which have been included in the computation of
Bi;. Therefore we define

GFONLL _ () 4 (ut1) _ 5(m).(0) (64)

The procedure presented in this subsection may be applied to any hadronic
process, while the specific hard cross sections which appear the expression above
depend on the specific process we are considering. Therefore in the following
part of this section we will report explicit results for a specific hadronic process,
specifying our calculation to it.

4.2 FONLL applied at Higgs production in bottom-quark
fusion

In this subsection we will explicitly apply the FONLL method to the specific
hadronic process where Higgs boson is produced from bottom-quark fusion. There-
fore, we will refer to bottom quark as the massive parton, and we will talk about
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four and five flavour schemes (4FS and 5FS respectively). After a brief intro-
duction about this particular hadronic process, we will proceed with the explicit
implementation of the FONLL method introduced in the previous section.

Higgs boson production in bottom quark fusion, is an hadronic process which
has been extensively studied in the past. By the standard model, the Higgs boson
has a Yukawa coupling to fermions, which is proportional to m /v, where m is the
mass of the fermion coupled to the Higgs boson and v ~ 246 GeV is the vacuum-
expectation value of the Higgs field. Considering the bottom quark, the Yukawa
coupling is my /v, therefore the cross section for the production of Higgs boson in
association with bottom quarks is relatively small compared to other processes for
the production of Higgs boson. Despite this, one of the reasons why this process
has been studied is that there are models in which the bottom quark Yukawa
coupling is enhanced. Such a enhancement occurs, for example, in a two Higgs
doublet model, described in Ref. [10]. Here we will take this hadronic process as
a specific example of application of the FONLL method, without discussing any
of its specific phenomenological features.

We now turn to the implementation of the FONLL method to Higgs pro-
duction from bottom quark fusion. First we need to relabel the perturbative
orders at which FONLL results can be computed. Concerning the application of
the FONLL method to DIS, we have previously seen three different possibilities.
The simplest one, called FONLL-A, is obtained by computing both massive and
massless results at the same lowest possible order in a,, which, in the case of DIS,
is of course O (). In fact the mismatch between LO diagrams of the massive
and massless scheme is of one order, as we see from the Feynman diagrams in
Fig. (1). With FONLL-B we have defined the situation in which the massive
scheme is computed with a precision one order higher than the massless one, so
we have a massive calculation up to O (a?) versus a massless accuracy of only
as. Finally by FONLL-C we have addressed the case in which both massive and
massless scheme are computed with the same accuracy, one order higher than the
one of FONLL-A. Namely, in the case of DIS, FONLL-A corresponds to NLL-
LO, FONLL-B to NLL-NLO, FONLL-C to NNLL-NLO, where by "leading” we
always mean the first order at which the results does not vanish.

In the case of Higgs production in bottom-quark fusion, looking at diagrams

in Fig. (3) and (4), we see that the mismatch between leading orders in 4FS and
2

5FS is now by two orders: the leading order in 4FS is O (a2) while the one of
the 5FS is O (a?). Therefore, the simplest non trivial case corresponding to the
previous defined FONLL-A is now NNLL-LO. In the same way we define FONLL-
B as NNLL-NLO and FONLL-C as NNNLL-NLO. Currently, in the 5FS results

are known up to NNLO, therefore we could get a NNLL accuracy by combining

34



with NNLO PDFs, while in the 4FS they are known up to NLO. Therefore the
current knowledges allow computations of FONLL-A and FONLL-B.

ETTTTE——>——b FE880660 y—>—b
N
\\ A
A \H — — — — H
_ A
QLY Sf——D \ 299999 f—<—]
b q b
j:::'mm~<‘~H >WVVV<‘H
b L b

b ———— T b———r---- H

Figure 4: From left to right, leading-order and next-to-leading contributions to
the five flavour scheme hard cross sections.

In the following we will work out explicit expressions for Eq. (64) for Higgs
production in bottom-quark fusion, in the simplest case FONLL-A. In the 5FS,
in order to get a NNLL accuracy, the partonic cross sections have to be computed
up to O (a?), therefore we have to consider the following subprocesses:

e O(a%) = bb— h;

e O(al) = bb — h with 1-loop corrections, real gluon emissions bb — hg and
processes with a gluon in the initial state bg — bh at tree level,

e O(a?) = bb — h with 2-loop corrections, real gluon emissions bb — hg and
processes with a gluon in the initial state bg — bh with 1-loop corrections,
tree level processes bq — hbq, gg — hbb, bb — hbb and qq — hbb.
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Thus the relevant perturbative orders in each parton channel are given by

6 (w1, 72,07 (Q%))
o 1,22) + ol (@) 0 on,ma) + (0l (@) 30 (1,m2) + 0 (o)

63y (21,79, (Q%))
= o (@) &1(72) 2y, 1) + (af) (@ )) Aéz) (z1,22) + O (o)

61y (w1.72,087 (%)) = (o? (@) 615 (1. 72) + O (o)
637 (w1.22,08 (%)) = (a? (@) 65 (w1,22) + O (o)
o1 (w1.22,08 (Q%)) = (o7 (Q*))" 1 (1.22) + O (o)

A(5) (xhx% (Q2)) (a(s (Q2)) 5) (z1,22) + O (a?) .
(65)

Concerning 4FS, in FONLL-A scheme results are included up to the first non

trivial order, namely O( 2). Therefore in 4FS expression we can simply replace

the 4FS parameters o and f with the corresponding 5FS quantities o and

fi ) as their difference is higher order in a. Therefore we have

) @ Lon) sw @ 0 3
Bij xl,wz,mQ,as(Q) =6, xl,wz,m2,as(Q) +0 (). (66)

We now work out the massless limit of the massive scheme. Since this limit
starts at order O (a?), using the general expression given by Eq. (62) we have

BZ(;)) (xlv T2, L7 Qs (Q2))
= (043)2 B@’(Q) (x1,29, L) + O (a3) (67)
= (045)2 <A(2) (0) (1, m2) + A(l (xl, x9) L + Az(-?)’@) (1, x2) Lz) + 0 (ai)

We find the general form of Ag’ M8) coefficients starting from the 5FS expression
and expanding the bottom quark PDF in powers of ag, as already discussed.
Recalling Eq. (36)

A @) =a @)t [ Lr,0n(Rae) o). o)

xT
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where
Py (y) = gR [y +(1—y)], (69)

and keeping in mind the relevant perturbative orders of Eq. (65) we can write

Z / / dzy dzs f( ) QQ) f(5) ( ,Q ) 51 (azl,xg,a(5) (QQ))

1,j=q,q,b,b,g

@) [ [ drians (19 (00) 17 (22.@%) + (1 60 )] o192 22
0 JO

+ (af) (QQ))2/1 /1 dxy dwy [ff) (%;QQ) fg(5) (1’2,Q2) + (21 ¢ 1‘2)} 5(,2) (71, 79)
0 Jo

1 1
(af (%)) / / dovdey |f17 (21, Q%) £ (22, Q%) + (@1 0 22)| 61" (a1,22)
(b—b)

/ / dl’l dl’g QQ) 5(5) (1’2, QQ) + (1'1 < 1'2)] 5'1(7;)70 (33‘1, 1’2) N
(70)

from which we get, using Eq. (36)
1
@0 @) [ [ drvdos [50 (1@ 17 (02.@) + 01 60 20)] 0% (01,22
T (@ (@) / / Ay iy [f9) (21,Q%) 119 (12, Q%) + (21 > 22)] 692 (1, 2)

/ / dz; das [fq 21,0 )/Tz dquq( ) £, (%,CY) +(371<—>x2)]

x 6 (1, x2) (b—>b

b
(5) Q2 L2/ / d(El d$2 [/ dyl qg yl <§7Q2>
1

d A
x / o Fag () 1, (f, cf) + (o1 6 2l (o1, 22).
o Y2 42

The third and fourth terms of the previous equation can be rewritten as

/0 /O dl’l dIQ fg (1‘1, QQ) fg (.’L‘Q, QQ)
/ dyPry (1) (60" (01, yw) 116" (yr.a)] + (0 ).
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/0 /O dl‘l dl‘g [fg (1‘1, QQ) fg (1‘2, QQ) + (1’1 < 1’2)}

1 1
/ / dyrdysPyy () Py (52) X 6% (4101, o)
0 0

(73)
1 1 1 1
= 2/ / dxq dxy [fg (xl, QQ) fq (xg, QQ)] / / dy1dyaPyg (Y1) Pyg (y2)
o Jo 0 Jo
x 5" (121, y22)

therefore from the relations above we read the non vanishing terms A(p ) (k).
O (21, 22) = 607 (21, 2) + (21 ¢ 2) (74)
A(z) O (21, 25) = 62 (21, 25) + (21 ¢> 22) (75)

1
A (1, 2) = / dyPyy () |55 (@1, 2) + ) (g1, 22)] (76)
(b—b)

Ay (1,2) / / dyrdysPyg (Y1) Pyq (y2) 0, (5) * (11, yo2) - (77)

In order to write down the explicit FONLL-A expression we have introduced
the formal expansion
GFONLL=A _ FONLL=A,0) 4 (Qz) FONLL—A,(1)

+ (Oéb (Q2))2 FONLL=-A,(2) | O( )
In doing this expansion only the coefficients BY B(O) and A;; ©) of Egs. (57), (60)

ij

and (59) respectively are expanded, but not the heavy quark PDFS. Namely the

(78)

perturbative orders of Eq.(78) concerns only the partonic cross sections, not the
heavy quark PDFs. Therefore, the contribution of order O (a?) in Eq. (78) really
starts at O (@?) once one uses the heavy quark PDFs expansion of Eq. (68), as it
has to be done for matching the 4FS. Using Eq. (64) we have

FONLL A,(0) //dﬂfldl‘g[ Q2) 13(5) (1'2,@2)

+ (1 & 932)] [7;—:’)’(0) (x1,m2);

GFONLL=A(1) _
//dxldxz [ 1;(5) ($17Q2) 5(5) (1’2,Q2) + (v ¢ )] 5oL )(371;$2)

+ //dandaza [ff’) (z1,Q%) fl—f5) (22, Q%) + (w1 ¢ 22) + (b — 5)] &;‘2)’(1) (w1, 22) .
(80)
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The O (a?) and O () contributions of Eq. (79) and (80) coincide with the mass-
less expressions, since as for partonic cross sections the massive expressions start
being non-zero only at O (a?). As for the O (a?) contribution it can be written

as
GFONLL=A,2) _ (4. | ;(d).2) (81)

where
g @:2) — ;6),(2) _ 0(4)7(0)7(2)7 (82)

and o)) ig written in terms of the quantities previously computed

5.0, (2>_//dx1dx2 S5 (20,Q) £ (22, Q%) BOD (21,20, L)

1j=4q,9
(83)
Therefore we get

= //dxld:tg
[fb(5) (21.Q?) 1_7(5) (22, Q?) + (21 & 962)] &ég),z
07 (@ @) 17 (2,Q7) 63
+ [fés) (SL‘1, Q2) flfS) (372, QQ) + (21 < xg)] ;b (b - b)
#1700, 17 (02.Q) + (@1 0 )] 6+ (b= Ba 1)

1
- L/ dyPyy (y) [01(72) (21, y22) + ‘3152)’1 (yz1,22) + (b — 5)] f.«§5) (21. Q%) fé5) (22, Q%)

- 2L2/0 /0 dyrdys Pag (1) Pyg (y2) f§) (21, Q%) £ (22, Q%) 6(()2),0 (Y121, Yoa) -
(84)

Finally, in conclusion of this section, we observe that, as expected, the dif-
fernce term, whose explicit expression is given by

@ = @O Lo (Q%) oW 1 (a; (Qz))%w),(z)’ (85)

using the expansion of the heavy quark PDFs, Eq. (68), is O (a?), namely sub-
leading with respect to the LO computation in the 4FS.

To sum up, in this section we have seen how to apply the FONLL method
first to a generic hadronic process, then we have specialized the computation in
order to address Higgs production in bottom quark fusion. After relabelling the
previously defined perturbative orders at which FONLL could be implemented,
we have worked out the specific results of Ref. [6], observing that, as for the
terms of order O (a?) and O (a!) they coincide with the 5FS results. Therefore,
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the difference term obtained from the difference between the 5FS and the massless
limit of the 4FS, starts being different from the 5FS result only at O (a?), and,
as for the case of DIS, when Q? ~ m? it is subleading. In the next sections of
this work we will show how to generalize these results in order to account the
presence of initial state heavy quarks also in the massive scheme.
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5 Initial-state heavy quarks in hadronic processes

In the previous section we have shown how to consistently match the four- and
five- flavor scheme computations regarding the total cross section for a generic
hadronic process. We assumed the absence of an intrinsic heavy quark component,
namely we assumed that in the 4FS, heavy quarks do not appear in the initial
states. We have then specialized the results to the case of Higgs production
in bottom-quark fusion. The aim of this section is to generalize these results
accounting for the presence of a heavy quark in the initial state also in the massive
scheme. First we address the general problem, providing equations written in
term of partonic cross sections. Then, we explicitly work out analytical expression
for them, considering the specific case of Higgs production in bottom-quark fusion.

5.1 General problem

In this subsection we first recall some of the motivations of this work, and then
we depict the general lines of the problem, working out the analytical expressions
for our results.

As already discussed studying the analogue generalization in the case of
deep inelastic scattering, there are several motivations for this. Firstly an in-
trinsic heavy quark component may well be non-zero, and this is particularly
interesting in the case of processes involving charm quark. However, even if the
intrinsic heavy quark is definitely zero, having a formalism which allows us to
take into account an heavy quark in the initial state is still useful. In fact in the
massless scheme the heavy quark is assigned a parton distribution, which is gener-
ated perturbatively starting from some vanishing boundary condition. Therefore
the general result will depend on the arbitrary choice of the scale at which this
perturbative boundary is imposed. Introducing a formalism which takes into ac-
count a fitted heavy quark in the initial state would allow us to reabsorb, in the
initial condition, the dependence on the arbitrary starting scale of the pertur-
bative component. In addition to this, with a fitted heavy quark initial state
we wouldn’t have the uncertainty coming from finite order matching condition,
which may be relevant in computation at low orders. These are the main rea-
son for the following generalization, since in the example we are going to address,
Higgs production in bottom quark fusion, an intrinsic bottom component is likely
to be quite small.

We proceed to generalize the FONLL scheme, following the guidelines in-
troduced in the case of DIS. As for 5FS, we have to change only the boundary
conditions: while in the standard FONLL the massless PDFs were determined

41



starting from a vanishing boundary condition, now we take as initial condition a
fitted PDF at a scale m2. Then, for Q* > m? the PDF’s satisfy DGLAP equations
with 5 active flavours. Therefore, in the 5FS the cross section is given by

o® — /dx1d$22f¢(5) (thQ) f](S) ( QQ) (1- X9, a(5) (Q2)) (86)
]

with i,7 = ¢,q,b,b, g and fb(‘:’) (11,Q?), 55) (79, Q?) worked out by evolution equa-
tions with 5 active flavour starting from an appropriate fit performed at a some

initial scale m2.

As already discussed, it does not really matter if these PDF's
are of perturbative or intrinsic origin. In the former case they will be obtained
evolving first the gluon and light quark PDF's fitted at some initial scale u to a
chosen energy in 4FS, and then up to Q? in the 5FS; in the latter case we will also
have an explicit parametrization for an intrinsic component. In the example of
the Higgs production in bottom quark fusion, they are likely to be of perturbative
origin.

Concerning 4FS; it does change, since we have to introduce heavy quark
PDFs at all scale: therefore, for scales Q? < m?, we define f* (m?) and f5(4) (m?)
as the bottom quark PDFs in the 4FS. Since in this range of energies the heavy
quark is treated as a massive object, it decouples from DGLAP equations to
which only four flavours contribute, so this PDF is scale independent. Therefore
in the 4FS new contributions to the cross section arise, due to the presence of
heavy quarks also in the initial state. In the massive scheme the cross section is

2
o@ = /dxldxg Z f(4 ($1,Q2) f( )( Qz) 05 <$1,3327Q_270‘£4) (QQ))

7] b

~ [antrs ¥ 1 (00, @) 10 (0 ) o) (mrmn Lol (@)

4,J=4,3,9 b

/dxldxg Z Z [ ($27Q2)
k=bb 1=4,0,9
+ (l‘l — 372):| a-](j) (xlv T, Q_27 0{5»4) (QQ))
my,
2
/dﬂ?ldl‘g Z (4) (4) (xg)a,(i) <:1:1,x2, %,o&) (Q2)> ,

h,k=b,b b
(87)

where the 4FS PDFs for b and b quarks do not depend on the scale Q2. We define
a correction term Ao which has to be added to standard FONLL in order to ob-
tained the desired generalization. Therefore the generalized FONLL prescription
reads
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O'FONLL = O'FNRL + Z AO’(ij)J + Z Z AU(}CZ’),Q (88)

i,j=b,b k=bb 1=4¢,q,9

FNRL

where o is the result of the previous section and

Aoy = [ daidas £ (@) £ (22) [58) 6
A2 = / duvdzy [ £ (2) £V (22, Q) + (w1 23)] o)) = o(1”)]

Since the 5F'S remains unaffected by the introduction of initial-state heavy quarks
in the 4FS, only the massive partonic cross sections 6¥ and their massless limits
@0 appear in the correction terms Ao. Eq. (89) is for hadronic processes the
analogue of Eq. (40) for DIS.

In this subsection we have presented the general structure through which
the FONLL scheme could be modified in treating an hadronic process with initial
state heavy quark in the massive scheme. The above correction terms have then
to be computed at the desired perturbative order.

5.2 Order ag

After giving the general structure of the method, we now work out explicitly its
analytical expression up O (ay). This accuracy refers to the perturbative order
to which the partonic cross section are computed, without expanding also the
PDFs, as done writing eq.(78) in the previous section. We will first identify
the relevant subprocesses we have to consider up to this order, then, in order
to express correction terms Ao in term of 5FS quantities, we will work out the
matching condition needed in this case. Finally, as done in eq.(48) for DIS, we
will find general relations between the massless scheme partonic cross sections
and the massless limit of the massive ones, which allow us to find some general
results, presented at the end of this section.

Up to order O (ay) the relevant subprocesses are
e O(a))=bb—h

e O(al) = bb— h with 1-loop corrections, real gluon emissions bb — hg and
processes with a gluon in the initial state bg — bh, bg — bh at tree level
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whose relevant perturbative orders are given by

~(4) Q2 (4) 2 A M,0 Q2 2
O-b(’] $17x27m27a5 (Q ) _O-bls $17$2am27(Q )
b

b
+0y" ("” . %v (cf)) ol (Q%) + (90)
b
#o? (a2 (@) (0 (@) + 0 (a)
b

and

. (4) Q* (4) (2 ~(4),1 Q? 2 ) (02
Obg (151»952, —5, & (Q )) = Opy" (xlvx?v 20 (Q )) R (Q )+
m my

b

o) (s £ (@) 0 @) 0 )

b

(91)

Thus the new contributions at the massive scheme up to order O («;) are given
by

i 2
/dazldxg 6(4) (x1) 5(4) (x2) + (z1 — $2)i| 51()%1) <x1,$2, %, oz§4) (Q2)>
- b
[ o(4) (4) 2 ~(4) Q “) (02
+ [ dridzy | fy (21) fg ($27Q ) + (21 — 552)] Opg | 21,22, W»% (Q )
- b
e 0 2 (1) Q* w2
+ | dxidzsy fz, (xl)fg (2327@ ) + (331 — 962)] Tpg T, T2, W’% (Q ) .
- b
(92)
The Feynman diagrams for these new contributions are shown in Fig. (5).
Therefore at order o, the generalized FONLL prescription reads
oFONLL _ (FNRL | A, (93)

where VR is the result of the standard FONLL method given in the previous
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Figure 5: From left to right, leading-order and next-to-leading new contributions
to the four flavour scheme hard cross sections. They are the same diagrams of
Fig. (4), but the computation has now to be performed retaining the complete
mass dependence.

section and

Ao = Aoy + Aoy + Aog,

Aoy = /dwldxg [fb(4) (1) 5(4) (z2) + (21 ¢ 352)] [&ég) - Ul(ag O)]
Doy = [ doidzs [£7 (22) £7 (22.Q%) + (o1 0 )] [51) - 543°)
Aoy = /dxldm [fz;(4) (1) £V (22, Q%) + (a1 & xz)] [&TS) B &15370)] '

(94)

In order to complete the construction of the FONLL method, we have to express
both al? and fi(4) in terms of o and fZ@. As already seen in the previous
sections, this is achieved through suitable matching conditions between the two
schemes at a certain initial scale m?, and then through evolution up to a generic
scale Q* through DGLAP equations. As for matching conditions for the strong
coupling, Eq. (17) still holds,

O Q) = al? (@) + 2 o () + 0 (a3)

However, concerning matching PDF's, since we are considering the presence of
heavy quarks in the initial state we have to use the conditions already discussed
in the contest of DIS with intrinsic charm. These include new coefficients K, and
K

2

7 starting at O (ay), given in Eq. (42). The matching functions at the initial
scale m? therefore read, omitting explicit 2 dependence

£ (m ZKU @ [ (m?),

with i,j = ¢,q,9,b,b and K;; (m?) =Y, a?Ki(f). Evolving them up to O («s)
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and remembering that the heavy quark PDFs in the 4FS do not evolve, we get
K =7(Q%) - o (@) Ky @ £y
25) (Qz) (@ 0 fb5) (QQ)
g5) (QZ) P(O)L ® fg(5) (QQ)

(95)
= 77(@) - o (@) [ + PI] @ 17 (@)
ol (@) YL (@)
In the same way, for the PDF of b
f,;(4) _ fz‘ES) (QQ) (Qz) [ p O)L] 2 f5(5) (Qz) .

@) P L f;7 (@)

In all the PDF's of the equations above the x dependence is understood. In the
contest of generalized FONLL applied to DIS the gluon PDF doesn’t appear
in the corrections terms. However in the hadronic case the correction terms of
Eq. (94) do contain the gluon PDF, so we have to work out its expression in terms
of 5FS quantities. Eq. (23) does not hold anymore, because of the presence of
new coefficients of order a,. The general expression for the matching condition
of the gluon PDF at a initial scale m? now is given by

f(5) (z,mj) =
F9 (2,my) +as/1 d > Ky () £ (E,mg) +0 (a3)
! o v T, "\y 97)
= 9 (zm) + 0,y K@ £ (m}) + 0 (a?).
i=b,b

Evolving this equation with Altarelli Parisi up to scale Q? we get, performing the
same calculations done in getting eq.(23) and omitting the explicit dependence
from x,

fg(4) (QZ) . a§4) (Qz) Pg(zfl),(O)L Q fi(4) (QQ)
~al (@) PP OL w10 (@)

_ ff) (Qz) (5 (QQ) 5) 07 fi(B) (Qz)
e (@) ng L@ f7(Q)
4) (Qz) Kézla) ® fb(4)‘
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Therefore, at order oy, we have, reintroducing the explicit dependence on x

f§4) (%Q2) f(s) (x QQ) +a(5 (Qz) [ 5EZ)(O) (0)] f(5) (x Qz)
2

Q%) L [P0 — PO @ f 5>(a: Q)
—a&” (@) K @ 7 = (99)
(5) 2 2 2T 1@ _ (5)({ 2)
19 (2@ + o (@) Ly [ Psa-n i (L0

V(@) Ky © Sy (2,Q7)
where in the last passagge we used

2Tx

PP () = PO (2) = by a0 (1= 2 (100)
So finally we obtain
(4) 2 (5) 2 (5) 2 2Tg (5) 2
@) = £ (@) 4ol (@) Bgl 0 )

Q) Ky @ 17 (#.Q°) + 0 (a2)

Substituting Eq. (95) and (101) in Eq. (94) we get (for simplicity we omit
the dependency from x1, x5, my, which will be reinserted in the final result)

Aoy =/da:1dx2
{A7(@) —al (@) |+ POL| @ 7 (@) = ol Q1) Py L 1 (@) ]
{17(Q%) = (@) [K) + PPL] @ 17 (@%) = ol (@1 PP Lo 117 (@) ]
(5 Ugm) o0 @)

+
\

drydry {(z1 ¢ 22)} { (21 > 22)}

@0 ~(4,0),0 L)1 (@401 (4) (2
[(%B T % ) * <0b5 — Oy ) ol (@ )]

/dxld:rg {Aago) + Aﬁll) Qg (QQ) +0 ( )} )
(102)
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with

sz§0):= [ ;5)((92) 55)(622) V(o o xz)] [ §§)0 5égﬂ)ﬂ]

Aot! = [fb(S) (@) 5(5) (Q%) + (z1 552)] [&ég)’l - 5,5;;1’0)’1]

(103)
(- (0 Ppr) o 17 @) - P £ (@) 17 (@)

+ (b — B, Ty <> [L‘Z) + (gjl AN xz) } [&ég),o o (5'15;70)70] 7

Aoy = / dx dxs
{#7(@) =l (@) |K) + P }@ﬁ(¢)<ﬁwwﬂﬁm®ﬁ@@ﬂ}
{1 @) -0 @)1 QTRf@ (@)= ol (@) K o 10 (@)}

(a7 = 620" o (@¥)]

+ /dmldxg {(@1 ¢ ) (21 ¢ 22)} [(Ul(;) ! éjO)?l) al’ (QQ)]

_ / dudry [17(Q%) 19 (@%) + (01 6 )| [o00" = 6120 0 (@2).
(104)

In the same way we get

Doy = [dndey [17(@) 19 (@) + (o1 w0 62"~ 657 a® ().

(105)

Thus we have obtained expressions for the correction terms written as func-

tion of the 5FS PDFs, the massive partonic cross sections, their massless limits

and the matching coefficients. We notice that, unlike the standard FONLL case

where the results started being different from the 5FS only at order O (a?), con-

sidering initial-state heavy quarks also in the 4FS, the FONLL scheme differs
from 5FS already at order . In fact we have

gFONLL—A,(0) /d:[:ldxg [fb (9:1,@2) fb(5) (x%QQ) + (v & :Ez)]

()0 | (4,0 _ ~(4,0.0
X[UbB T 0w T Ok ]7

(106)
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O_FOiVLL—Av(l) — /dxldl'Q

19 (00,@%) 7 (22, Q%) + (01 6 2)| 0"

(107)
+ [f(5) (:rl, QQ) () (ZL’Q, QQ) + (1’1 — .TQ)] 5’;2)1 + (b — Z_))
+ AO‘ + AO-Q =+ AO‘g,
thus using explicit expressions above we get
O_FONLL A1) _ /dl‘1d$2
G () ) v 2] [o 1 507 — 5001]
- { J o+ POL) @ £ (22, Q%) - POL fg<5> (22, @) 17 (21, Q)
+ (b b,xy &> 32) + (21 ¢ :EQ)} [ IE:) ‘31();;1’0)’0}
+ [f ) (21, Q%) O (22, Q) + (21 ¢ :1:2)] [&;5;)’1 + ot — &é‘;o)’l] +(b—D),
(108)

where we have used the results of the previous section. To avoid confusion7 note
that in the equation above, by, for example, the expression Pq(q L® f (:1:, Q?)
we mean fo %Pq(g) <§> . (y, Q?).

In Eq. (106) and (108) are present both massive partonic cross sections o
and their massless limit o(*%. In order to obtain simpler expressions which allow
to highlight some general features of the results, it could be useful to express the
massless limit of the 4FS cross sections in terms of the 5FS ones, as previously
done in the case of DIS in Eq. (48). Therefore we will now work out relations
between massless limit of the 4FS and the 5FS cross sections, in order to simplify
the expressions above. We start from equation at scale m?

/d:vldxg fb(4) (1) f13(4) (72) 61%’0) (xl,:vg,mz, a§4) (mZ))

(109)
= /dl’ldxz flfS) (z1,m )fb (w9, m?) Al()lg)) (1,22, 0" (m?))

which has to be satisfied order by order in the same coupling (as already observed
several times, this expresses the fact that the double counted term in FONLL
can be obtained both as massless limit of the massive scheme and as fixed order
expansion of the massless scheme). Evolving the previous equation to scale Q*
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the PDFs on left hand side remains the same, while on the right hand side we
used Eq. (95) so we get

2

/ dwydzy £V (:cl)fl;“) (z2) 0, (4 0 <$1,$2,§

= /d:cld:v2

[f(4) (z1) + a£5) (21) [K(l) + p(O)L] ® fb(4) (1) + Oé£4) (QZ) p(O)L ® f(4) (xl)QQ)i|
[£><>+d@@ﬂ[(”+P@4®ﬁ9@> W(Q) POL® £ (22,7
{607 (21,223,009 (Q%)) + aff) (Q%) 62" (a1 72,0 (%) + 0 (a2) }.

o (@2))

(110)
from which we read, omitting the dependence on the scale of the process
aég 0):0 (x1,29) = ég) (21, 29), (111)
and
/dﬂhdiﬂz f1§4) (331) 1;(4) (xz) 5;();;1 o (951, 1’2)
_ / drrdzaf® (21) £ (22) 69 (21, 22)
+/d;c1dx2f§4>( DY (@ )/ dy [K (y )+P0>L]
(112)

~(5),0

X [51(,5)’0 (z1,y22) + 0, (3137173?2)]

1
+/dl’1d$2fgf4) (5'32)f_¢§4) (3517@2) L/ dyp(O) (y) 5152)’0 (yx1, 29)
—ﬂ/wd@ﬁgwﬂﬁ“@%Q)t/dM”W)()(mwm%

where in both right and left side of Eq. (112) we can replace fi(4) with fi(5), since
their difference is at least of order «, and the equality is between quantities which
are already multiplied by a.

Similarly, starting from

/dmldxg flf4) (1) fé4) (1‘2,7’”2) &l(:;,()) (21, 22)

(113)
= /d$1d562 fb(5) (z1,m?) f(S) (22, m?) 55(,2) (w1, 22)
evolving to a scale 2, we get
GO (21, 25) = 6 (w1, 22) . (114)
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Replacing Eq. (111), (112) and (114) in Eq. (106) and (108) we get the final
expression for the generalized FONLL up to order ay, expressed in terms of only
the massive partonic cross sections. As already noticed, the power expansion is
referred to the perturbative series of the partonic cross section.

GFONLL=A,0) _ / dxidxy

(115)
19 (00, @) 7 (22,Q%) + (o1 00 22)] 680° (1 2)

GFONLL=A(1) _ /dxld:rg

[ 5(5) (:z:l, QZ) 17(5) (ilfz,Qz) + (1 & xg)} &(‘_1)’1

LA (01,Q2) 1) (22, Q%) + (1 ) + (b = )] o

(- (K0 + PRL) 0 £ (0,08 - PPL 0 19 (02.0)) 57 (00,2

+ (b bay & 3) + (21 & xg)}6§§)’0.
(116)

This is our main result. A more explicit form of Eq. (116) is given by
GFONLL=A(1) _ /d(Elde

[fl—f5) (z1,Q%) flfS) (22, Q%) + (71 ¢ SL’Q)] 65);)’1 (w1, x9)

+ [fb(S) (21, Q%) £ (22,Q%) + (w1 > 22) + (b — b)] Ubg Yz, 1)

_ / dydzs { £ (21, Q2) £9 (22, Q?) /0 1 dy [K,f;) (y) +Pq<g>L] + (o o x2)}

X [615?70 (z1,yz2) + 652)’0 (Y1, xz)]

/dxldxg{ (J)( Q2) ff) (ml,QQ) L/ dyP (y) + (21 < xg)}&lg:)’o (yz1,x2)

- / dydas {fﬁ (21, Q%) £ (22, Q) L / P () + (1 x2>} 3 (1, yma)
0

(117)

We notice that Egs. (115) and (116) are expressions for the total cross section
obtained using the massless 5FS PDFs convoluted with massive cross section,
from which we subtract terms containing the unresummed collinear logarithms,
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which are terms proportional to Py L ® f$” (Q?) and P L ® f ®)(Q?), coming
from

f (2,Q) = (Q?) /’@P Gﬁﬂxw@%
+a, (Q?) /’dyP (f)i@@nQ%-

In addition to this, the new coefficient KW ,; appears, accounting for the presence
of initial-state heavy quarks also in the 4F'S. Therefore Eq. (116) can be rewritten
as

O_FONLL—A,(I) _ /d$1d$2
[ 1‘7(5) (:LlvaQ) 17(5) ($27Q2) + (331 A x?)i| ~(§:)1
LA (@01,Q2) £ (02, Q%) + (01 w2) + (b= B)| 537

+ {— (Ké;) ® f5(5) (:(;2,622)> O (21,Q%) + (b4 b,y 5 @) + (11 ¢ «Tz)}6l§§)’0
(119)

(118)

where 02@),1 and 3,5;1)’1 are the massive 4F'S cross sections from which the large
logarithms due to the collinear emissions of heavy quark have been removed.
This fact can be stated also by saying that the difference terms defined in the
previous section ¢(® is such that (@0 ¢(9:! vanish identically, without expanding
heavy quark PDF's, just as in the DIS case. This can be explicitly seen by writing

the difference terms at order O (a?) and O (ay):

a(d)’o = /dZL’ldlL‘g [f(-)(5) (5517 QQ) fl§5) ($27 Qz) + (%’1 © ZL’Q)] &IE?’O

(120)
—/MMaMWmﬁWm+uﬁmﬂgwﬂ
g @1 — /dxld%{[ 5(5) ($1,Q2) b(5) (@7@2) + (21 & $2)] Ul()g)l
+ [fz;B) (1,Q%) 155) (22, Q%) + (21 — 962)] 5(5) 1} + (b— D)
(121)

—/dxldxz{[fb (x )f4)(172)+($1<—>:v2)] g();m)

+ [f;l) (21, Q%) £ (w2) + (21 > Z’z)} &ﬁ’o)’l} —(b—10).

Using matching conditions Eq. (95) and(101) together with Eq. (111), (112) and
(114), we find that these terms identically vanish, without expanding the bottom
quark PDFs.
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These same results, here derived in the contest of the FONLL method, were
obtained through a different procedure in Ref. [9]. In Section 2 of Ref. [9], it is
suggested that, in order to obtain accurate results on the total cross section for
Higgs production in bottom quarks fusion, one should consider a theoretically-
defined heavy-quark distribution function, just as it is usually done in the massless
scheme, and use the DGLAP equations to sum all the collinear logarithms. The
PDF set obtained in this way should then be convoluted with the massive partonic
cross sections. The latter will contain unresummed large logarithms coming from
the region in which a gluon splits in a nearly collinear h, h pair, but these terms
have already been summed into the heavy quark PDF, and therefore have to
be subtracted. This is exactly what we have just verified using FONLL scheme.
Eq. (3), (4) and (15) of Ref. [9] give the total cross section up to order a, obtained
following these considerations, and comparing them with Eq. (115) and (116)
we find out they are exactly the same. Particularly we have that Eq. (115)
corresponds to Eq. (3) of Ref. [9], while the Eq. (116) correspond to the sum
between Eq. (4) and eq.(15) of Ref. [9]. The only difference is that in our results
the new term K 551 ) appears, which takes into account the presence of initial state
heavy quarks also in the 4FS. Therefore we have obtained through the generalized
FONLL scheme the same results of Ref. [9].

A final observation regarding the results of this subsection is that, even if we
consider fb(5) (z,m}) = fl—)@ (x,m?) = 0, the correction terms of Eq. (94), though
subleading, do not vanish when Q? > m?2. They only vanish for Q* = m2. This
same observation may well be done for the case of DIS, and the reason is that,
when we re-express f¢(4) in term of fi(‘r’) at scale Q2 through evolved matching
conditions, only terms up to O (as) are kept. Therefore, in other words, even if
we consider the intrinsic heavy quark to be zero, we don’t find exactly the same
results we would get using standard FONLL. The first thing we will have to check
studying the phenomenology is that this difference is indeed negligible, as already
checked for the case of DIS in Ref. [5].

To sum up, in this subsection we have derived results for FONLL method
up to order ay, accounting for initial state heavy quarks also in the 4F'S. We have
found that our results coincide with those described by Ref.[9]. However, while in
Ref. [9] the results were not obtained in the context of a well-defined factorization
scheme, here we have obtained results through the generalized FONLL method,
working in well-defined factorization schemes and giving a general and solid theory
of the topic. In addition to this our formalism allow to explicitly account for
initial-state heavy quarks also in the massive scheme
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5.3 Order o?

In this subsection we discuss the main steps which have to be followed in order
to obtain the generalized FONLL scheme up to order O (a?), which is required to
fully generalized the results of the previous section. In order to do this, we will
first have to identify the relevant subprocesses, which are more than the previous
case, since we have to consider also partonic processes starting at O (a?). Then
matching conditions up to O (a?) are required. As a final cross-check, we should
also express the massless limit of 4FS cross section in term of 5FS cross section,
in order to verify if the same general results of the previous subsection still work
at higher order, but this is not done here.

Firstly we start writing down the relevant partonic subprocesses up to order
a?. These are the same we wrote for the 5FS, but now the full mass dependence
has to be retained. Therefore we have the subprocesses:

e up to two loops: bb — h fig.(5)
e up to one loop: bb — hg, bg — bh fig.(5)

e at tree level: bb — ggh, bb — qgh, bb — bbh, bg — bgh, bg — hbg, bb — hbb,
qq — hbb, gg — hbb fig.(3), (6)

and the relevant orders are

~(4) Q° 5) (NH2) ) _ aD.0 Q* () (H2) 241 Q*?
Owh $1,l’2,ﬁ,% (Q) =0 371@27@ + oy (Q)Ubl-, 561,33‘2,@

(122)
~(4) g @ (N2\\ _ @) (2 ~4)1 Q_2

Opy | T1: %2, —5, & (Q) = a, (Q )abg T1, T2, o)
) 123

o (@) 01 (0. 55 ) + 0 ().

2 2

&l(:;) (m,xz,g , QU (QQ)) _ ( (4) (Q2))2 &1(73)’2 (xl,azg, %) + O (ai’) , (124)
49 (mrma 0 (@) = (@9 @) 019% (102 L) + 0 a2) . (129)
Pase) (x x Q2 (Q2)> = ( “) (Q2)) A(4 (a: T Q—2> +O(a3) (126)

bb 1 27m 1 27m2 s/
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5 (xl,atg,gb—Q Ne (Qz))—( ) (Q2)) 502 (xl,@, Q2)+o( 5 (12n)

The diagrams in Fig. (5) up to order a? take 2-loops and 1-loops corrections
respectively, while the new tree-level processes we have to consider are depicted
in the diagrams of Fig. (6).

b ——— T b q b a4 b
\\ \\\
- - - --H q H
bl 20000/ b—— - H b —b
T —>—>b b ~ b b hN
- - - --H “H H
b———4 00000/ b b f q

Figure 6: Next-to-next-to-leading contributions at 4FS; only representative dia-
grams are shown.

Therefore, in order to obtain all the contribution up to order o, in addition
to the terms given in Eq. (92), we have to consider those coming from subprocesses
starting at O (a?) with initial-state heavy quarks, shown in Fig. (6). Therefore
we have the new O (a?) correction term:

2

AG = /dl'1d932 fz§4) (z1) fzf4) ($2)5z§g) (‘Blvfﬁ?v %

b

w&m@%)

+/dl‘1dl‘2 |:fb(4) (1;1) f(4) (Z'Q,Q ) + (xl — xQ)] OA-IE;L) <IL'1,ZL'2, Q_Q,OZSL) (Q2)> )
my,
(128)

and, since all these subprocesses start at order a?, we can replace f and alh
with f® and ol?). Therefore the new correction terms deriving from these new
subprocesses have the form

8o = (2 (@)" [ doudea 17 (1) 17 (w2) [042 — ]

+ (af) (QQ))Q/dxldfcz [ 5(5) (l'l)féS) (xz,QQ) +(x; — 332)} [al();m 6,();1’0)’2] )
(129)

As for the terms of Eq. (92), they now have to be included up to order a?.
Therefore we need to farther extend the matching condition Eq. (95), (96) and
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(101) up to the second order, finding new contributions: from the change in run-
ning coupling, from the second iteration of the leading—order splitting functions
P(O) and from the next-to-leading-order splitting functions P Y The correction
telms previously computed become (for simplicity we omit the terms obtained
by exchanging x; <> xo, and the dependence from z;, 9 is understood)

Aoy :/dxlda;g
17(Q%) + 0@ (@%) G + (o7 (@%)” Cra
@) 0 (@) Cou + (o (@) Cra

ol (4)70 jal (470)0 (4) 1 jal (470)71 4 2 (4) 2 ~ (470)72 4 2 2
<0bl3 T ) + <0b5 T ) ol (@%) + <0b5 % ) (ol (@%)) } ,
(130)

{
{
|

from which we obtain, accounting also for the coupling constant through Eq. (17):
5) (H2y £05) (H2 (4,0 _ ~(4.0),0
@) £2(@) (6 = o)
5 5 4 ~(4,0), 5 4 ~(4,0),0
{ 9(Q2) 17 (%) (5 = 650 + 19 (@) G (50 = 5400)

0 (@) i ()" = 577) ol (@)

(4),0  ~(4,0),0 (5) 2 ~(4),0  +(4,0),0

bb bb ) +f (Q ) Ch.2 (UbB — Oy >

D1 (4,001 5 L (4),1 4,0),1
+ 1" (QQ) Cia (83" =" )+fzf)(Q2) Coa (Uz(,z) — 6" )

+ GG (50" 4™ o (@)
(131)

In order to find the coefficient C,; and Cjo we expand Eq. (95) to one more
order:

O A0 (@) ol (@) K 0 1Y~ (ol (@) K @ £
—al 5) (QQ) p(o 07 f(5) (Q2)
—al (@) PPl e £7 (@) 152
—@@)T X B (@)

i=q,4,9,b,b
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and using Egs. (17) and (95) we get

Cpi =~ [K;;> - LPq(f)’O] Q%) — LE9 @ £ (@?)
2T
3(2m)

Cho — { KV g (K(” PO oL) LEY

5), 5),1 2 5
e @) g

(1) 0 (5),1 (2) 2
+ [LKbb ®Pq(§) B LPbg - Kbg 1 ®f£§5) (Q )
[ wn ] o0 @)
1=¢,q

In the same way replacing b — b we obtain Cp1 and Gy 5.

Concerning the correction terms Aoy and Aoz to order o2, in order to find
them we don’t need to write the matching condition for the gluon at higher order
than a4 as done in Eq. (101), since the partonic processes involving a gluon in
the initial state start at order a,. Therefore, from Eq. (104) we get

Agy = / dxld:cz{ (@) £7(@) (a1 = oy ) ol (@)
n (fb(s) (Qz) Con + ff) (Qz) Om) (5.1();1),1 B &éz,o),1> (af’) (QQ))z (134)
+ I(@) 1@ (a1 = 1y"?) () (@2>>2},

where
ZTR
( m)"Y

Replacing b — b we get Aos.

Co1 = f(5 (Qz) gb ®fb5) (33 Qz) (135)

In order to check if also at this order the difference term vanishes, we should
derive the general expression of the massless limit of the 4FS in term of 5FS
cross sections, as done at order «ay in the previous section. This is not done here
explicitly. However the general lines to follow are those previously depicted, and
starting from the result of this subsection, one may checked this also numerically.

5.4 Higher orders

The discussion provided so far shows how the results found by generalizing the
FONLL method in the case of DIS are true also for the hadronic processes:
namely the difference term vanishes and we find a total cross section obtained
by a convolution between massless PDFs and massive partonic cross sections.
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We may question if, as previously done in the DIS case, we can generalize the
discussion to higher orders.

Once we account for the presence of initial state heavy quarks also in the
4FS, the general FONLL result would be

oFONLL _

i»j:quJLJ_":g l»"n:(quLJ_L)g

2 2 (136)
{a-z(;l) (l‘lv Zg, %7 a/(:l) (QQ)) - a.z(;LO) (gjlv T, %7 a(:l) (QQ)) }
+ Z /d171d$2 fi(B) (1717Q2) fJ@ ($2»Q2) 55;) (551,1727049) (QQ))
i=q,G,h,h,g

where we use the inverse of eq.(44) evolved at scale Q? to express f) in term of
f©®). Requiring that the massless limit of the massive scheme total cross section is
equal order by order in the same strong coupling to the massive scheme expression,
we have that the second and third term in the equation above cancel order by
order in perturbation theory, leaving

SFONLL _ Z Z /dxlda:2

i,j=¢,3,h,h,g  1,m=q,G,h,h,g (137)
_ - ) Q°
it e 10 (@) Rt £ (@) {6 (e L0l (@)}

Thus we find that the difference term, which has been explicitly verified to
vanish at order a? and «; in the previous subsection, vanishes identically also at
higher orders.
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6 Massive partonic cross section

In this section we provide results about the computation of the hadronic cross
(4

sections 61)13) and 61(73), which are required in order to obtain a full analytic ex-
pression of Eqs. (115) and (116). This computation, in addition to completing
the analytical expression of the problem, allows one to see the specific features of
the 4FS, finding out the collinear divergences coming from the emissions of heavy
quarks which explicitly appears in the massive results. Depending on the kind of
regularization we choose to deal with these singularities, partonic cross sections
can be calculated in two different ways: we can choose whether to use dimensional
regularization or to introduce an explicit heavy quark mass which acts as an in-
frared regulator, leading to the large logarithms of Q*/m3;. After defining the
kinematics in the proper way, we will first present results concerning calculations
using dimensional regularization, reporting results obtained in Ref. [9], and using
them in order to obtain the final analytical expression of Eqgs. (115) and (116).
We will then perform full computations of the partonic cross sections using the
heavy quark mass to regularized the collinear divergences, pointing out the main
features of the calculation step by step and highlighting its main features. This
is interesting because of different reasons: first, despite in Ref. [9] explicit results
are reported, this computation was done only once many years ago, therefore, for
sure, it is useful to check it. Secondly, in Ref. [9] the results are shown without
any intermediate calculations, which are required in order to fully understand
the main feature of the addressed processes. Finally, computations performed us-
ing dimensional regularization, despite giving very simple analytical expressions
, do not allow one to see explicitly what is happening, namely the large collinear
logarithms arising thanks to heavy quark emissions do not appear explicitly. Be-
cause of these motivations it is useful to fully check this computation using an
explicit heavy quark mass to regularize the collinear divergences. These results
should be checked numerically, to ensure they are equivalent to those obtained
by dimensional regularization of Ref. [9].

6.1 Kinematics

In this subsection we define the proper kinematics of the problem, in such a way
that it works for both massless and massive particles as well. In the standard
deep inelastic scattering the cinematic of the problem is defined by an invari-
ant quantity given by a suitable combination of dimensional parameters of the
problem: the Bjorken variable
QQ
2p-q

: (138)

59



where p is the 4-momentum of the hadron. We then introduce the corresponding
partonic variable # replacing the hadron momentum p with the partonic one p
and we define the variable z as

T =zx. (139)

Giving these definitions, perturbative factorization applies with respect to the
variable z. These definitions are usually given in the massless case but they still
work with massive partons.

We would like to do the same in a generic hadronic process, considering
at a parton level two massive quarks in the initial state. We have to define in a
covariant way two variables x1, x5 with respect to which perturbative factorization
applies. Thus we will be able to write the hadronic cinematic in terms of the
partonic one through the standard convolution

/df”ldl“z f(@) f2(22) 6 (21,25, 7) = /%L(yw G)

140
tw= [ 26 (%) Re o
= —fil= 2).
) S ) )2
We start defining the invariant quantity for our process
2
r= "4 (141)
s
which in the partonic system is given by
2
7= H (142)
3
We define the product x5 with
§ = x1198. (143)

In order to define the single variables x;, and x5 we have to specify the boost
which brings from the hadronic centre-of-mass frame of reference to the partonic
one. The collision is collinear, so there exists a partonic centre of mass frame in
which ps + pg = 0, which is a boost of the hadronic one. So we define

1 = /et

144
Lo = \/;6_y ( )
where y is the rapidity of the system given by
1 145
=21 145
y=gles—3 (145)
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and f defines the boost from the hadronic centre of mass frame of reference to
the partonic one. Dealing with massless particles the rapidity coincides with the
pseudorapidity, and we find the standard definitions of the kinematics of hadronic
collisions involving massless partons. For a process with energy in the centre of
mass frame given by /7s the rapidity is limited by | y |< —% log 7, so that =1, x2
are contained in (0,1) .

We will now work out explicit expressions for the energy and the momentum
of the partons entering the hard collision, in terms of the scaling variables z; and
xo. Let us consider two partons A, B in a collinear collision. In the partonic
centre of mass frame we have

ﬁA = (EA> 07 O7ﬁA)

ﬁB - (EBa 07 O)ﬁB) = <EA7 07 07 _ZA)A) ’

E, = /| pi | +m?. (147)

Using the definition of the product x;z5 we find

(146)

with

. N2
§=(pa+pp) = (EA + EB> = 2125 (pa + pp)° = 4oy, 2. (148)

Substituiting eq.(147) in eq.(148) and solving respect to | pa | we find

8 (2129)° B — 8x129m% — 8z129m% + (M4 — m%)?

162129 E%

[ pa|* = (149)

Thus the partonic quantities expressed in terms of the variable zy, x5 and of the
colliding protons energy are

Ey =/ pi | +m2 i— A B
2 (150)

a \/8 (.%'1372)2 E} — 8x119m? — 8x1m9m% + (m? — m%)
A= .

16z129E%

In order to obtain these quantities in the hadronic frame we apply the boost 3

EA'Z’Y<EA+525A), EB'Z’Y<EB—5153>,
) ) (151)
pa’ =7 (Pa+ BEa). b’ =7 (—ps+ 8Es) |
with
1 — X9
— ) 152
P 1+ o ( )
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In our example of hadronic process we are interested in the hard collisions between
a bottom quark and its antiparticle or between a bottom quark/antiquark and a
gluon. In these particular cases we have

myg = Mmp = My,

and
ma =my, mp =0,

respectively, and Eq. (150) becomes in the first case

EIA = EB = \/5171.’172Ep

(153)
| Da |= /2122 B — mi,

§>(2my)° —  mxeEL —m? >0, (154)

with

while in the second one

2 2
- dryxo By + my)

B =
A 4«/1’1332Ep
Ep =|pa| (155)

| pba |_ 4\/1'1332E%3
with
§> (my)? = AdzyzaEL —m? > 0. (156)

To sum up, in this subsection we have introduced general definitions for the
kinematics of the problem, taking into account the presence of massive partons
in the initial state, defining the variable x; and x5 which allow us to write the
hadronic cinematic in terms of the partonic one. Then we have worked out the
explicit expressions of the partonic quantities in terms of x; and x,.

6.2 Dimensional regularization

In this subsection we report the results of Ref. [9] regarding the partonic cross

sections 61(3) and 6153) at NLO, computed using dimensional regularization. Even-

tually, using these results, we will give our final expression of Eqs. (115) and
(116).

To NLO the 4FS partonic cross section has to be computed up to order
ay, therefore the total cross section receives contributions from the following
subprocesses:
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e O(l)=bb— H
e O(a,) = bb— H(1-loop), bg — Hb, bg — Hb, bb — Hg

The spin and color averaged cross section for the leading order subprocess
bb — H, shown in the first diagram of Fig. (7) is
— 2 1
@o _ T (W) o 1 g

50(1—2), (157)

o
bb 6 2 m2

where we have defined

r=7= A (158)

The calculation is performed in N = 4 — 2¢ dimensions, y is the so-called Hooft
mass, introduced so that the renormalized Yukawa coupling is dimensionless in
N dimension.

After calculating the leading order term, we have to consider the O (ay)

interference of the 1-loop vertex correction with the three diagram of Fig. (7).
We find

_ 9 € B
~(4),1 zm (M),U,2€15<1 - Z) [CF% 2e ( dm ) F(]' 6)

Tohtt TG 2 § or ! m2 ) T (1—2¢)

(159)

where Cp = 4/3.

In writing the expressions above we have to take into account an additional
feature which does not appear in other similar calculations, such as the Drell-Yan
process: the ultraviolet renormalization of the Yukawa coupling. In fact the heavy
quark mass has to be renormalized, and we denote by m (i) the renormalized
heavy quark mass obtained subtracting the ultraviolet divergence with the MS
scheme. Therefore we have new counterterm

) (1-—§23)z£f{ (160)
v m
where 5 |
Tm = Cp%i’) <— -7+ 10g47r> . (161)
m A \ €

We notice this cross section displays both a collinear and an infrared di-

vergence, given respectively by the (%) and (}2) terms. The divergence that
produces the (%) term concerns heavy quarks collinear emissions, which, if heavy
quark mass was used as regulator would appear as the large logarithm which
are resummed to all orders in the 5FS but which explicitly appears in the 4FS.
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Furthermore, the IR divergence (e%) will disappear after adding the contribution
coming from real emissions.

As for the emission of a real gluon, for which Feynman diagrams are shown
in Fig. (10), the regularized cross section is found to be

()1 O‘q 2577—12(“)1 Ar \“T(1-¢)
bb—=Hg 12 v? s \m% ) T(1-—2e)
2 2 1+2° log 2z
aly S S N AR Y
|:62 ( ?) e(l—=2), ( +z)1—z (162)
log (1 —
+4 (14 22) (M> +2(1—z)},
1—=2 "

with the plus prescription defined as

/OdZ[f(Z)]+h(2)=/ dzf (2)[h(z) = h(1)]. (163)

0

Again, we notice how the result contains both collinear and IR divergences. In
order to obtain the full expression of Eq. (116), we now have to add up the cross
sections for real and virtual emissions and, as seen in Eq. (116), the terms referred
to the collinear divergences, which explicitly appear in the 4F'S cross sections, have
to be removed. In order to do this we have to consider the analogue of Eq. (118)
in dimensional regularization, which is

fo (2,Q%) = — o, (@Q%) / dyP ( )fg(y Q%) (——fy—i-logélw)

— 0. (Q?) / Wp < )fb(y Q%) (——7+log47r>

where we see how the collinear divergences appear as a factor (%) rather than as

(164)

a logarithm L = log gl—z Therefore, as for the process bb — H, summing the cor-
rections due to real and virtual emissions and removing the collinear divergences,
whose contribution is written as d.4 in the equation below , we get

=~ 2
sl @l w1 . T () s
Tpp bbstig ¥ Oppspy — Ocd = 6 2 3
2
m
x{ qu(z)logQ—I;
1 27?2 m?
Cr— 24+ — —31 o (1 —
+ F27T|:< + 3 OgQ) ( z)
lo log (1 — 2
-2(1+ 27 gZ+4(1 ) log(1—2) +2(1—2)] ¢
1 1—2 n
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This is the sum of Eq. (162) and (159), where the term proportional to (1/e — v + log 47)
has been remove by renormalization, and where the limit e — 0 has been taken.

We notice that the IR divergence cancels between real and virtual emissions,
leaving a result which is finite both in the UV and IR limits. Since Eq. (165)

is obtained removing both IR and UV divergences, it depends on two different
scale. The first one, p, is that introduced by UV renormalization of the heavy
quark mass which appears in the Yukawa coupling. In fact after renormalization

the heavy quark mass satisfies a running equation of the form

m (u) = m (ko) (%(M)>%,

Qs (/LO)
(166)
(/.L) _ g (/-LO)
’ 14 Bo [ovs (po) /7] log 12/ g’
which at NLO is )
2 () = 1 (1) [1 0223108 Z—] , (167)

and therefore it depends on a renormalization scale p. As for the second scale
which appears in Eq. (165), Q?, it is the one referred to the factorization, associ-
ated to the parton distribution functions.

We now consider the subprocesses bg — bH and bg — bH, whose cross
sections are equal and whose Feynman diagrams are shown in Fig. (11). Using
result of Ref. [9], the spin and color average cross section is

Sy e () 01 1T(1—¢ m%{(l_z)Q
oy = o 2 E{qu (2) [—Em + log <Ef>] .
—i—%(l—z)(?z—?))},

where the collinear divergence due to the heavy quark emission is the term propor-
tional to (). Following Eq. (116) we subtract the collinear divergence, obtaining

21 _ a,m? (12) 1 [qu (=) log (ﬁ@) + % (1—2)(72=3)| (169)

o T 12 2§ Q2

To sum up, we have presented explicit result for the massive cross sections
which appears in Egs. (115) and (116), obtained using dimensional regularization
to treat the collinear divergences due to heavy quark emissions. The final analytic
result up to order O (ay) for the total cross section of Higgs production from
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bottom quarks fusion in the generalized FONLL scheme is therefore given by
Egs. (115), (119), (157), (165) and (169) which are reported below:

O_FONLL—A,(O) :/dﬂfldﬂfg

(170)
[ 5(5) (thz) fb(5) (m’QQ) + (21 < 372)] &IS—?’O (21, 229),
with _ 9 ( ) 1
~(4), TS () o
Gl AL "

O_FONLL—A,(I) :/dl'ldxg

10 (20.Q2) 17 (0. 07) + (01 )] 50

A7 (@0,Q%) 17 (22, Q) + (01 0 1) + (b= B) | 51,

+ {_ <K1§;) ® £ (x27Q2)) O (21, Q%) + (b4 b,y 5 @) + (21 ¢ xg)}&ég)’o

(172)
with
=5 {00 S e
2 2
+CF;—;K—2+7—310g%>5(1—2) (173)
—2(142%) 2 (14 2?) (10g1(1_zz)> +2(1—z)”,
+
and
_ 2
3;2),1 _ %mi)(zu?)é [qu (2)log (Tg_%[ (1 —ZZ) ) + i (1—2) (72— 3)} . (174)

6.3 Massive regularization

In the previous section we worked out the full analytic results for the FONLL
method with initial-state heavy quarks, using the expression for partonic cross
section at NLO calculated in dimensional regularization in Ref. [9]. The same
computation of the partonic cross sections may be performed using an explicit
heavy quark mass as IR regulator to treat the collinear divergence coming from
the emission of a massive parton. The aim of this section is to perform full
calculation of massive partonic cross sections up to NLO, using the heavy quark
mass to regularized the collinear singularities. This allows us to check the results
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of Ref. [9], using a different kind of regularization. Despite the results used in the
previous subsection are simpler and easier to use, we use this part to highlight
the main features of the computations, following each step, and finding explicitly
the features of the massive scheme computations. The results should be checked
numerically, to ensure they are equivalent to those of the previous subsection.

6.4 The leading order subprocess bb — H

We now work out the LO contribution to the process bb — H, whose Feynman
diagram is the first shown in Fig. (7).

Figure 7: Leading-order and next-to-leading-order contributions to the four
flavour scheme.

From standard Feynman QCD rules, the amplitude for the process shown
in Fig. (7) is given by

ﬁW=®”@ﬁC%%%u“@) (175)

We take the square amplitude and average over the initial polarizations and colors
of the two quarks

S S IM P = S 5 )t () () v ()

2232 T 1202
51,82 colors 51,52
1
= ST [+ o) (F = m)] (176)
1m?
= gv—zb [(p'P/) —mzﬂ .
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Adding the flux factor and the phase space we get

(4) %% 281 S2 Ecolors | M |

g =0 b = 1
W/ (p-1)
_mp (p-p)—mi]  dpy
v? 12 / (p-pf)° — md (27)% 2F;
(2m)" 0 (p +p' —ps) dp o (p} —miy) (177)

mip wl(p-p)-—mi] 1 1

2
v 6 /(pp,)?_mngme

0(1—7)

2 2\ 3
_my T 4dmj \ 2 1 1 .
= 1— 0(1—7).
v? 6 ( m%) 2(E+ E')m3, (1-%)

6.5 The next-to-leading order subprocess bb — H(1-loop)

We proceed to calculate the virtual correction of order ay to the subprocess
bb — H, corresponding to the second Feynman diagram in Fig. (7). We define

m=my

178
F— gk (178)

Using Feynamn rules we obtain the amplitude

d*k —ig _ i(— F +m)
iA] = L5 (p) (—igthy”) =
' /(27r)4(/<—p)2—|—i6 ¥) (=i Fy)k:’z—m2+z’e

( i@> kz(k;m) (—z’gtA’yp) u(p)

m? + ie

oy Ay [ dYE v (p) 7" (= ¥ +m) (F+m)vu(p)
(=97 (') /(27?)4 ((k—p)2+z'e) (K — m?2 + i) (k2 —m?2 +ie)
(179)



In order to simplify this expression we introduce three Feynman parameters x, y
and z
1

((k — p)* +ie) (K — m2 + ie) (k2 — m2 + ic)

! 20(x+y+2—1
— / dxdydz ( 5 Y ) 3 (180)
0 [ (k2 —m?) +y (K* —m) + 2z (k —p)” + i]
! 20 —1
:/dxdydz (z+ytz ) —.
0 (k% — 2k - (yq + zp) + yg* + zp* — (v + y) m? + ie]
We define the variable
l=k—yq— 2p, (181)

and we rewrite numerator and denominator in terms of [. For the denominator
we have

kK =2k - (yg + 2p) + y@* + 2p° — (& +y) m* + ie

=(k—yqg—2p)" =y’ — 2P — 2z q - p+yd + 2p* — (1 — 2)m® + ie
=Py (1—y) —m* (1—2)" —2yzq-p+ie

=P =m’(1-2)°+y[¢* (1 —y)—22p-q] (182)
=P —m?(1—2)% 4 ayg® + ie

=P -A+ie=D,

with
A=—zyi* +m*(1—2), (183)

and where we have used the identity ¢* (1 —y) — 22 p - ¢ = xq* based on

¢ —=2p-q=0

For the nominator we find
v (p) " (= ¥ +m) (F+m)yu(p)
v (p) [—4(k' k) +2m(f— K+ 4m2} u(p
0(p) [P =4y (1 —y)¢® —4z (1 = 2y) (¢ - p) + 4m®2°
+2m (1= 2y) (p+ #) — 4mz g+ 4m*Ju (p)

(184)

() [AP =4y (1 —y) ¢ — 22 (1 = 2y) ¢* + 4m>z (2 = 1) + 4m*| u (p) ,
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where we have used

v(p) ¥ =-mov(p)
pu (p) = mu (p) (185)
¢ —2p-q=0,

and we have dropped odd terms of [. We finally get

iAy =i AUV i AR =

) m ! d*l 812 L
(—g?) (') ;/0 drdydz 6 (x+y+ 2z — 1)/ 2 B AT v (p")u(p)
+ (—gz) (tAtA) m /1 drdydz o (x +y+ 2z —1)
v Jo
d* [AmPz (z — 1) +4m? —dy(y— 1) > —22(1 —2y)¢?*| _, ,
2 [ s AT 5 (p)up).
(186)

Therefore we note that the amplitude for the 1-loop correction to the process
bb — H is splitted into one part which is UV divergent, iAY", and a second part
IR divergent, i A%

6.6 Field strength renormalization

In the calculation of the previous section we did not take into account the effect
of the field-strength renormalization, which is required in the calculation of NLO
corrections. In fact we have to insert a factor v/Z for each quark, therefore,
defining as Z, the field strength renormalization at order a and as A the total
amplitude for the process bb — H, we have

ZyA = (14062Z) (Ag+ A1) = Ao+ A1 + Ay (622) . (187)

Figure 8: Feynman diagram for quark self energy at order as

In the following calculations mg will be the bare mass of the bottom quark
while p a fictitious mass of the gluon that we introduce in order to regularize
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the calculation. We start writing down the amplitude associated to the Feynman
diagram in Fig. (8) which represents the quark self energy

. d'k i (f 4+ mo) —ig
— %, (p) = —igttH) s (—igtty” =
i¥2 (p) /(%)4( W919") 7 e (19 7)(p_k;)2—u2+z'e

2\ (1A d'k Y (K +mo) v,
= (—9°) (t" )/(2w)4(k2_mg+i€)((p_k)z_u2+i€)

= (—¢%) (") /0 i / (d4l —2z Y+ dmo

om)* 12 — A +ie)”’

(188)
with
l=k—x
P ) (189)
A=—-x(1-2)p"+ap”+ (1 —x)mg,
where in the last step we have introduced a Feynman parameter and used
1
k2 —m2 +ie) ((p— k)* — p2 + ic

1
1
:/d:c 2
o [k2—=2zk-p+ap?—ap?—(1—x)md+if

This results has to be regularized: we have adopted dimensional regularization.
We first perform a Wick rotation by letting Iy — il so that [2 becomes a Euclidean
product and we can perform the integral in spherical coordinates. We get

-2 4 -2 4
/dl4 A ,’”2%/“4 z P+ Amo (191)
(2m)" [I12 — A + ie] (2m)"  [I2+ A
and repeating the calculatione above in N dimensions we get
42 4 Nl —(N -2 N
z/ dl4 TP+ 2m0—>z'/ le ( ):E]é:- mo (192)
(2m)"  [I2+ A] (27) 12+ A
The integral can be computed using
N1  T(2-Y) /1\**
z/ - s =—— e-3) (—) (193)
(2m)" 124 A (4m)* T'(2) A
which in the M S scheme becomes
i F(2—§)<1>2‘% i < A)
— - —— | —log— | . 194
(4r)> T(2) \A (4)° SVE (194)
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So going back to 4 dimensions we finally get
g2 (tAtA) 1 ]\42
— dz log 5 5 5
(47) 0 —x(l—z)p* +ap®+ (1 —x)md (195)
(dmg — 2z §).

Yo (p) =

We finally obtain

2 (1ALA 1
57, = [dz? _M/ dz
0

d?fL&m_ (4mr)?

M? 4—2 2

- L or(1—a) A= 2)m )
(1 —2)"m?+ xp? (1 —2)"m?+ zp?

(196)

<—2x log

In this subsection we have calculated the field strength renormalization,
required to perform cross section computations at NLO.

6.7 Order o, IR divergent contribution to the total cross
section

We now have all the elements needed in order to find the total IR divergent
contribution to the total cross section for the process bb — H up to order a.

First we write the O () IR divergent contribution to the amplitude. The
IR divergent part of the amplitude previously calculated is given by

1
AR = (=g?) (1444 / drdydzo ey 2=
0

d*l [AmPz(z — 1) +4m? —dy(y— 1) —22(1—-2y)¢* _, ,
2 4[ ) ( ; ;3 ( ) ]v(p)U(p)-
(2m) (12— A+ i€
(197)
Performing a Wick rotation we get
/ d*l 1 . i /d4l 1
em)* 2 —A+id®  (=1)°(2n)* 12+ A
i 11 (198)
= ia

so that we obtain

1
AR =g (t11) %/ drdydz o0 (x+y+2z—1)

[4m?z (2 — 1) +4m* —dy (y — 1) ¢* — 2z (1 — 2y) ¢°] (199)

m? (1 — 2)* — wyg?
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In order to get the total O (ay) contribution to the amplitude coming from
the bb — H subprocess that we have to calculate, we find for the IR divergent
part

2 tAtA
AL+ (622) Ao = A s = M@ v (p)u(p)
(4m)” v
! Am?z (z — 1) +4m? — 4y (y — 1) ¢* — 22 (1 — 2y) ¢
{/ dxdydzd(HerZ_l)[mZ(z ) +4m 2y(y )¢ =22 (1 = 2y) ¢%
0 m? (1 —2)" — zyq® + p?z

! M? 4 — 2z)m?
—/ dx <—2:z:log 5 +2z (1 —x) ( 5 z)m )},
0 (1—2)"m?+axp? (1—2)"m?+ ap?

(200)

where we have introduces a gluon mass u to regularize the results. We now use
the identity

02y = M/Oldx (—2xlog (1—x)M2 +2z(1—2) (4 —27)m? )

(4m)° *m? + zp? (1 —2)*m? + zp
G M? 1—4z+ 2%)m?
:—M/ dxdydzé(x—i—y—l—z—l)Qllog - ( 2”)’" }
(4m) 0 (I—=2)"m2+ 2z (1 —2)"m2+ zp?
92 (tAtA)

! M? 1— 4z + 2%) m?
(4m) 0 (I—2ym?2+zu2  (1—2)"m?+ zp?
(201)

The second line of this last equation is the one we will insert in Eq. (200) in
the next step, while from the third line we see that when g — 0 the logarithmic
term is not a leading one because lim,_, 10% = 0. Substituting in Eq. (200) and
taking only the dominant part in the limit 4 — 0 we find

o _ g m

virtual — (471')2 ? v (p ) u (p)

1
{/ drdydzd (x +y+2z—1)
0

(1 —4z+2*)m? }
(1—2Pm2+ 22

[Am?z (z — 1) +4m? — 4y (y — 1) ¢* — 22 (1 — 2y) ¢%]
m? (1= 2)" — wyq? + p22

+ 2

(202)

We are interested in the divergent part of this expression. The divergence occurs
when the Feynman parameters are z ~ 1, x ~ y ~ 0 so in this region we can
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set z =1, x = y = 0 in the numerator and z = 1 also in the y? terms in the
denominator getting

2 (1AL A
(1) _g(tt)ﬂ,_ N
virtual — (47T)2 v U(p)u'(p)
1 4 2_22 4 2
/da:dydzé(:c+y+z—1)[ m2 ¢ — 2m ]
0 m? (1 —z)" —ayg® + p* (1—2)"m? + 2
g (tAtA / " / { 4m? — 2¢°
(4m)? v m?(1—2)" =y (1l —y—2) ¢+ 12
4m? ]
(1—2)"m? + p?
2 (1ALA 1 1 2 2 2
g (%t )m _ —4m* + 2q —4m
=L e [ [ a0 [ i ]
2(4m)” v 0 0 m? —¢*> (1 — )| w?+p w?m? + p
2 (1ALA 1 2 2 2 2 2
@ (A m / [ —4m? + 2 m?® — ¢*y (1 =) m}
=—-— 7 U d lo +log — |,
2 (4m)* v #)u(p) 0 v m (1 d) e &2
(203)
where we have defined
—=(1—
y=(10-2)¢ (204)
’lU:(].—Z),

and in the arguments of the logarithms we have dropped the terms of order 1
which are irrelevant in the limit g — 0. We notice that in this limit

m? — ¢ (1 —¢) m’
log 5 ~ log —,
jz 1Y
so that we obtain
1
Afnlmm =
2 (1A A 1 2 ¢ 2
g (t 4 ) m _ ., / m° — m
AT u(p)4 d — 1] log —
s v e ey T )
a (t4Y) m m?

=5, 7 (') u(p) frr (¢°) log 2
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2
where we have used o, = i—w and we have defined

2 _ &
m P

fm(q):/O s cp (206)

Now that we have worked out the total IR divergent contribution to the am-

plitude, we are ready to determine the corresponding total cross section. Starting
with
A= Ag+ AL+ (075) Ag = Ag + AV + AIR 1+ (62,) Ay (207)

we will have

AP = (A0 + A7 440, (A + A7 +A,,,)

virtual virtual

) i A (208)
= | AO | + 2 (AlUVAO) + 2 (Av'i,rtualAO) .

Therefore, as for the contribution coming from IR divergent part we have, aver-
aging on the initial polarization and colors and adding the flux factor and phase
space integral

2

i% 222 (Afi-imlﬁo) =~ %Uofm (¢*) log % (209)

colors pol

6.8 Order a; UV divergent contribution to the total cross
section

We will now determine the contribution to the total cross section up to order ag
coming from the UV divergent part of the amplitude for the process bb — H.
One particular feature of this section is that we have to renormalize the Yukawa
coupling, adding therefore a new counterterm. This is not necessary in other
similar calculations, such as the Drell-Yan process, due to a Ward identity which
cancels the ultraviolet divergences.

The UV divergent part of the 1-loop amplitude of Fig. (7) is given by
1
iAYY = —¢* (t17) (%) / drdydzd (x +y+ 2z — 1)
0

d'l 82
/ ) - Atid () u(p).

We proceed using dimensional regularization. Shifting in N dimensions and per-

(210)

forming a Wick rotation we have in general

/ dN1 12 R z'/ dN1 12
2m)V (12 = A+ i€]" (2m)N 12+ A]”




Furthermore, calculating the numerator in N dimension we get
=K =y v+ my” o+ mPy
=—4(k-K)+@A—=N) k- F+2m (N —2) ' —2m (N —2) §+ Nm?
=—4k-(q—Fk)+ @ =N) k- (4= F) +2m (N =2) (4 ) (212)
—2m (N —2) f+ Nm?
=N(k-k)+

so that we obtain

1
APV = g2 (1) () / dudyd= 5 (z+y + 2 — 1)
v 0

oN T (2-1%) (1 )2—% (213)

Finally, in the M S scheme and restoring N = 4 we get
m 1
AV = g (tAtA) (1) / dedydzd (x +y+2—1)
0

oz (o) 10t

(214)
tAtAm [ m? (1 — 2)° — 2yq® _
I o ), S(x+y+z—1)log e v (p")u(p)
44 m
i rr— 2D © ,
s [2D] 5 (p') u (p)
with
m2(1 — 2 2
B RS
(215)

2(x+y)" — ayg?
/dx/ dy log = Ay}? va_

This is the renormalized UV divergent contribution to the amplitude. In order
to obtain the corresponding term for the total cross section, we have to work out
the interference term between the two diagrams of Fig. (7), as we have already
done to calculate the IR divergent part. Therefore we have

2% > iZA?VAO ——ao [D] (216)

colors pol

where D depends on the renormalization scale M?2.
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To sum up, the calculations done in the last subsections, which are summa-
rized in Fig. (9), lead to the total cross section

2
N Qg 2 m Qs
Ovirtual = 00 <1 - ?fIR (q )log —#2 - [D]> ) (217)

which is still IR divergent. We now have to calculate and to add to this result
the contribution of the same order coming from the real emissions.

(|
Ll

Figure 9: Feynman diagrams for the square amplitude up to order ay for the
process bb — H

6.9 Real emission

In this subsection we calculate the contribution to the total cross section coming
from the real emissions of a gluon, as shown in the Feynman diagrams of Fig. (10).

The amplitude for real emission of a gluon in the process bb — Hg is given
by

7



p p 2
fj — s H b ——0000 9
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Figure 10: Feynman diagrams for the square amplitude for the process bb — Hg

In order to simplify the equations above we use the identity
= (’Y“'Yypuev +my"e,)
= (p'ey + m7’e)
(2, — P'e, +mre,) (219)

($+m)7"e,

= (2pMey — V"Y'l + M "e,)
= (2p'eu +7"e (— B+m)),
thanks to which, using # (p) = mu (p)
(P+m)v"eu(p) = 2p"e u(p) . (220)
In the same way
(— # +m)v'e, = (=2p"eu + 7 e, (B +m)), (221)

from which using v (p') ¥ = —v (p') m

o (p) (= ¢ +m)ye, = =20 (p) pTe,. (222)
Therefore we have
. ) m B _p/;u pl/'
Areat = — tA — ' - ’ 22
i = =gt () 0w (- e o)

from which, taking the spin and color average result and multiplying for the flux
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factor

1L _ v 14
2.1 ZlAmﬂ' _QUOZG“EV( -k ppk> <( zf)-k_pp'k)

colors pol

e (2= omr
Y 0((—p’-k)(p'k’) (—p - k)’ (p'k)Z)

(224)

In order to get the cross section in the soft limit we provide the contribution of
the phase space of the soft gluon

o [k 1 2(=p'op) om* ow?
Oreal = 9 0/(27T)32|E|<(_p’-k;)(p-/{) (—p’-k)2 (p-k‘)z)

- 2 -
_ %, k[ d|k]d2 1 2(=p':p) _ om*  om
- 3 - 3 ~ ~ A\ 2 A\ 2
(2m) 2| k| (-P’-k’> (p'k) (—p’-k> (p-k:)
2920041/d|/5| ds 2(—p'p)  om® m’
LI\ G720 2 B P R AT
(225)
We now use the identities
o 1 1 /! 1 1 1
e o e Y ey
. -1 -
(+-7)
(226)
dQ 1 1 /! 1 1 1
Eﬁ:§ dcost o , 02:—/2:@,
(—p’~k) -1 (P —p'cost)” P
and
q=(p+p)— —2p-p =2m"— ¢
dQ 1 /1 d§) 1
/— - ~ = dw/— " ——z  (227)
4”(—p’-k)(p-k‘ 0 am —’-k)+(1—¢)k‘-p

/d’[ wp+ - /‘” Ty 1—w>q2’
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so that

T\ R R (rd) (pd) (229)

Finally we have

as 1 E? 2 Qs EJ2” 2
Oreal = 0oy (log F) 2f1r (¢°) = — 00 (IOgﬁ frr (4%), (229)

where E]% is some minimum energy down to which the gluons can be detected.

After computing both the virtual and real corrections up to order a; to the
subprocess bb — H, we can now write down the total cross section: the separate
virtual and real cross sections are divergent, but their sum is independent of ;2
and therefore finite. Adding the two previous results we obtain

~(4) _
UbB = Ovirtual + Oreal

2 E?
B Qg ) m o 7 9
= 00— 00— fir (¢°) log e [D] + — 00 <10g _'uz) frr (6%) (230)

Qs EZ  q
:%O+?ﬁﬂﬁb%$__wo'

We see that the IR divergences cancel between the real and virtual correction,
leaving a result which is both IR and UV finite. We notice the presence of the
large logarithm of EJ% /m?, which is the collinear divergence regularized by the
heavy quark mass. Despite the simplicity of this result, we have not retained the
full dependence on ¢?, so that we are not able to reconstruct the precise coefficient
of this logarithmic term, whose precise expression is given by the results computed
in dimensional regularization of the previous subsection.

6.10 The subprocess bg — Hb

In this subsection we calculate the cross section for the subprocess bg — bH,
whose diagrams are shown in Fig. (11), which is the other result needed for the
implementation of the generalized FONLL results of the previous section. As for
the subprocess bg — bH, its diagrams are topologically equivalent to those of
fig.(11), and therefore the corresponding cross sections are the same.

We define

¢ =pr—pi=ps—p1— @ =m>—2py py

" 2 2 (231)
¢ =p1+p=p3+ps—q =m" +2p-p
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p2 -

g "0000——— b

Figure 11: Feynman diagrams for the square amplitude for the process b — Hb

The amplitude for the process is given by the sum
M =My 4 iMsy, (232)
therefore the square amplitude is
| M " =| M, |"+| My | + 2Re (M, M) . (233)

Using the QCD Feynman rules we obtain

My = (pa) (—igthn") e, (po) LB P2 (-7)

(q’)2 —m?2 + e

m e (pa) (234)
—igt'— v (“2ps - 1) 5p ’ )_ U (pa) V' (Ba— P2 +m)u(p1)
My (p4) ( v ) ((q//)g o ie) 7 (p ) ( gty ) (p ) (235)

AT ) (B ) () ()
v 2(p1-p2)
From these expressions we get the color and spin average square amplitudes,
which are respectively

Sixint-—(3) (3)

colors pol _2p2 ’ p4) (236)

iﬂhwm+mwwm—m+mxm+mﬂm—m+mﬂ

Ziger-— () () a5

colors  pol D1+ pQ) (237)
Tr[(#s+m) (Bt B2 +m) " (P + m) v, (Bt 2+ m)],

where we have used

Zeue’; = —uw, (238)

pol
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while for the interference term we have

2Re ZiZMlMng (%)21 !

colors ™ pol 6 (p2 - pa) (P2 - 1) (239)
Tr((Ps+m)* (Ba— #2+m) (b + m) 3 (Bt b +m)].

Using the identities

V=4
VY = —29" (240)
VA Ay = 49"
we reduce the traces above to known traces of gamma matrix and eventually we
obtain

Tr [y (Pa +m) " (Ba— Po +m) (B +m) ($a— P2 +m)]
=16 [~ (ps - p2) (p2 - p1) + m* (ps - p1) — m* (p2 - p1) — m* (p2 - pa) + m*]

Tr [(#s +m) (Bt Yo +m)V" (P +m) v, (bt Po+m)]
=16 [— (pa - p2) (p1 - p2) + m’ (pa-p2) + m? (pa-p1) + m? (p2-p1) + m4]

(241)
Tr[(#s+m) V" (Pa— P2 +m) (P + m) v, (ot #1 +m))
==16{(p4-zn)(pz-p4)-(pz-zu)(pz-zn)-%(pl-1%)(p4-p1)
— (p1-p2)’ +m* (s 'M)} .
Therefore we get
SISV Mg (%> (@)2
colors 4 pol 3 v
l2(p4-pﬂ-—(pz-pﬂ-+7n2__Wﬂ(p4-pﬂ-—7n2ﬁh-pﬁ-+7n4 (242)
(p2 - pa) (P2 'P4)2
i 2(psa-p1) — (pa - p2) + 3m? " m? (ps - p2) +m” (]924 “p1) +m! _9l
(p1 - p2) (p1 - p2)

Now we have to add the phase space. Unlike in the previous case of real emission
of a gluon from b quark, now we 1have no IR divergences coming from the phase
space because Ey = (m3+ | p1 [*)2 #| pa | so that when | p; |— 0 we still have no
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divergences. We get
dby = d*py d’ps
(2m)° 2B, (27)° 2B,

11 o
= e iBE, (Bv+ By — B3 — Ey) | i [*d | 7 | 42 (243)

1 1 S(Ipal—1mlg), - o
- o |2d | pa | A,
(27?)24(E1 + By — Ey) By zi: Nz (| p_zl |(ﬂ):) | pild|pil

(27T)4 5@ (p1 + p2 — p3 — Da)

where
fUpil)=E+E,—Es—E,4
= By + By —Jmi+ | 52— \fmde | i 2

= Byt By — \Jm3+ | pi+ps— i P — \Jmi+ | pi 2

fF(plE) =0
(244)

1

— jE=—[c030 % | — | pi
| palp 1B L 5 (Ip2|—1p11)

+ (cos2e (195 | — | p1 )? =4 (B + Ey)* (4m? +1)

2‘|
The cross section is given by

) 5 |p4|—|p4|0)
M |°d E
Obg = p ) Z Z| | P2 = (p1 P2) 27T2 | f! |P4|0)|

colors pol +

9’ <4) (m)2 1 {2(p4'p1)—(pz'p1)+m ~mE(pa-pr) —mP (pe ) +m?

=

4(By + By)* (m5 —mi + (| i | — | 3 |)2)>

3 v/ 4F3F, (p2 - pa) (pz']?4)2
92 . . . 3 2 2 . 2 . 4
L 2(pap1) / (pf* p2) +3m”  m” (pa-pa) +'m (1924 Py m _2}|p~4 d | py | dQ.
([)1 '[)2) (pl 'p2)
(245)

Defining 6 as the angle between p; and p, the leading contribution to the cross
section comes from the limit § — 7 as we see by writing explicitly

P2 ps = EsEy —p5-pi = EsEy+ | p3 || pi | cosé

. . (246)
= p5 (E4+ | py | cosh)
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therefore in order to simplify the calculations we let cos# = —1 also in the phase
space, so that the dependence on # remains only in the square amplitude. We
now integrate with respect to d cos 6.

/@(m ) _ /dcose{ ol il (2E4E1
4 (pa - pa) | P2 |

2| p1 | 1 1
4+ ———EE -
| | 2 4)E2E4—|- |p4|C080}

2
=—2|:1|+<E4E1+ }E> ( 217 )

| 2| Es p E4—|p4 (47)
=—2|pj|+A<p1 p27p4)1g(1+ﬂ>

| p3 | Ey— | pi |

/@M:/@ EsEr— | 73 || 7 | cos@
A7 (py - pa)’* AT (E4Fo+ | pb || pa | cos0)?
= B (p1,p2,p4),

where B (p1, p2, ps) is explicitly found using

a+ bx b &+ 2¢d + d? cb dx
dp— 2T 2 g & 0T _o) 24
/ x(c+ dz?)?  2d? ® 2 2cd+ &2 * (a d) (¢ + dzx)? (248)
Then we use
/ ds? mz—(m']?l): —(p2-p )/ ds? 1 :mz—(m'pl)i
(47)  (py-pa)? | p3 2 (47) (py - pa)? | P22 m?
2 , 2 , 41
/ dQ) m (P2 Pl):m (]12 pl)/ dcos 0 1
(4m)  (p2 - pa) 2| ps | —1 Es+ | pa | cosd
2 . 91 2 ) - 12
_m q(pz _)pl) log (1 i |P4l ) ~ m H(Pz ﬁpl) log (4| p42| )7
2[p3 | pa| Ey— | pi | 21p2 | pa| m
(249)
and we define
/ df {2(294‘]91) — (pa - p2) + 3m?
(4m) (p1 - p2)
2 2 4 (250)
L (Pap2) 2 (py 1) +m _2} _ C(p1,p2,p4)
(Pl ‘p2)2 (pl 'p2)2

Finally integrating first in d cos @ and then in d | pj | (we can integrate in d | py |
in the interval [0, 4o00) eliminating ¢ since the function is regular in d | p; | in
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this range) we have

A |p4|—|p4|0)2(4)<m)2 1
o, = _ _
" T w; R IR AR

. L e
(4) {—4| o | + {2A (p1,p2, pa) + W} log (1 + |—p4l)

| p5 | 2| p3 || pa | Ey— | pi|
m? — P2 - P1 C (p1,p2, pa
—m®B (py1,pa2, pa) + E 5 )+ ( )} 1 1%d | pi |
| P2 | (p1-p2)°

1 , (4 rmy2 1
" 4(p1 ) (2m)° Zlf’ |p4 |0)|g (3)(1}) NN

m? — (py - 2 | p;
(4m) [ |p1 {QA P17P27P4 +M}log (14‘%)

2|P2||p4|0 T | pa
p2 pl) C(p17p27pz:1t) o 42
+ 2 | 410 -
(Pl'pz)

—m? (pl,pz,m)
(251)

Again we notice a logarithmic term, which is finite thanks to the presence of the
heavy quark mass (here denoted as the particle with momentum p,), and which
arises from the collinear emissions of heavy quarks.

Similarly to the results of the previous section, recognising in this result
the analytical form of the correct coefficient, which should multiply the logarith-
mic terms, is difficult. We should express our result in terms of the kinematics
variable 7 previously defined, and find the correct dependence from the splitting
functions Py, (7) and Py, (7), as we have observed for the computations performed
in dimensional regularization. The consistence of these computations with those
presented in the previous section and done by authors of Ref. [9] have still to be
checked numerically. However, the steps and the main features of the partonic
cross sections computation are those described in these last subsections.
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7 Outlook and conclusions

In this thesis we have discussed the generalization of the so-called FONLL method
to hadronic processes, in order to account for the presence of initial-state heavy
quarks also in the massive scheme. After revising the application of the standard
FONLL method to deep inelastic scattering, and the way it has to be generalized
in order to account for an intrinsic fitted charm, we have shown how the FONLL
prescription can be used also to study heavy quarks in an hadronic process,
specializing then the computations to the case of Higgs production in bottom
quark fusion. Explicit results for this problem have then been reported. We have
then discussed the general formalism which allows to consider heavy quarks in the
initial state of an hadronic process also in the massive scheme, and subsequently
we have derived explicit result for Higgs production in bottom quark fusion,
finding the appropriate corrections which have to be added to the previous results.

Concerning Higgs production in bottom quark fusion, we have seen how,
expanding the partonic cross section in power of the strong coupling, up to order
a the analytical expressions we get are equivalent to those obtained in Ref. [9],
apart from terms accounting for intrinsic heavy quark. The latter are a distinctive
features of our approach, and they allow us to also consider a possible intrinsic
heavy quark component. Another way to express these results is by noticing
that the difference term, namely the difference between the massless scheme and
the massless limit of the massive one, is identically zero up to order O (ay),
not only subleading as in the standard FONLL. Comparing these results with
those for the analogue FONLL generalization in DIS, we therefore see that up to
O (as) our discussion leads to the same conclusions: as for hadronic processes,
the FONLL scheme with initial-state heavy quark in the massive scheme gives
results obtained by a convolution between the massless PDFs and the massive
partonic cross sections, and the difference term vanishes without expanding the
heavy quark PDF's.

We have then described the guidelines to follow in order to obtain the cor-
rections to standard FONLL up to order O (a?), giving full analytical expression
for them in terms of massive partonic cross sections and their massless limits,
working out explicitly the proper matching condition between PDF's in massive
and massless scheme up to order O (o). We also make some considerations about
how this discussion could be extended at higher orders, following the analogue
considerations made for DIS. We suggest that the difference term could indeed
be identically zero also at higher order, but this possibility has to be checked
further.

Finally, using explicit analytical result for partonic cross sections of Ref. [9],
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we obtain the full analytical expression for our result, presented in Eqs. (115),
(119), (157), (165) and (169). In the final part of the work we have presented
step by step detailed calculations of the partonic cross sections, regularizing the
collinear divergences due to heavy quarks emissions with a finite heavy quark
mass. These cross sections should then be compared with those of Ref. [9], used
previously to get the final analytical expressions of our results.

In order to complete the work presented in this thesis, a first assessment
of the phenomenological impact of a possible non-vanishing fitted heavy-quark
should be performed. First we should verify that the modification to the FONLL
scheme, expressed by Eq. (94), is indeed negligible in the absence of an intrinsic
heavy quark, namely when, in our example, fb(B) (z,m?) = 5(5) (z,m?) = 0, as
already noticed before. Then we should consider a hadronic process in which
the heavy quark involved does have an intrinsic component, and study the phe-

nomenology, if necessary considering also some intrinsic heavy quarks models.
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