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Abstract

The aim of this work is determining the strong coupling αs(M2
z ) and its

uncertainty due to both experimental and procedural errors. Almost all the
available hard-scattering data are used to perform global parton fits at next-
to-leading order by using the NNPDF approach. We find αs(M2

z )= 0.1197
± 0.0016stat ± 0.0013syst.
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Introduction

The analysis of scattering processes plays a fundamental role in the study of
the structure of matter. Just like they had led to the discovery of the inter-
nal structure of the atom, at the end of the sixties scattering experiments
made it possible to understand the substructure of nucleons. In the seventies
it became clear that only a quantum field theory (called Quantum Chromo-
dynamics) could properly describe the quantum-mechanical processes which
take place inside nucleons. The validity of this theory has been verified and
confirmed with great accuracy by scattering experiments at high energy,
and can now be used to analyse new results. In QCD, the features of the
nucleons are described in terms of those of their constituents. Therefore it is
possible to extract from high energy scattering data information on the dis-
tribution functions describing these constituents and, from the beginning of
the nineties up to now, there has been a steady improvement in the precision
and variety of these data. Global analyses of these data allow the structure
of the nucleons to be quantified with ever increasing accuracy. Analyses
are now possible at next-to-next-to-leading order (NNLO) in the running
coupling constant αs(Q2). The strong coupling αs(Q2) is the only free pa-
rameter of QCD in the high energy limit, in which one can neglect quark
masses. Its accurate determination is necessary for precise phenomenology.
In this work we determine the coupling and the uncertainty on it from a
fit to deep-inelastic scattering data. Uncertainties related to parton distri-
butions are kept into account using the method recently proposed by the
NNPDF collaboration.
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1 Chromodynamics and Deep-Inelastic
Scattering

1.1 Scattering experiments

Scattering experiments represent an important tool of nuclear and particle
physics, since they can provide information about details of the interaction
between different particles and about the internal structure of nuclei and
their constituents. What happens in a typical scattering experiment is that
the object to be studied (target) is bombarded with a beam of particles with
defined energy. Occasionally a reaction of the form:

a + b → x

occurs, where a and b denote the beam and target particles, while x denotes
a final state which may contain the same particles as the initial state, but
with different kinematics or different particles. By studying the final state
x, it is possible to learn about the properties both of the target and of the
interaction. At this point, let us distinguish between elastic and inelastic
scattering.

Elastic scattering. All processes belonging to this category may be
presented schematically by a reaction of the following kind:

a + b → a′ + b′.

The same particles are present both before and after the scattering. The
primes indicates that the particles in the initial and final state have different
energy and momenta.

Inelastic scattering. In inelastic reactions:

a + b → x,

where the final state x contains particles which are not the same as those
in the initial state. The set of allowed final states for a given initial state
is determined by the conservation laws of the interaction which governs the
process.

1.2 Deep Inelastic Scattering (DIS) and Structure Functions

In this thesis we will consider specifically deep inelastic scattering of leptons
on nucleons, mediated by the electromagnetic interaction, and used as a
probe of the strong interaction. The basic idea is to accelerate leptons to
very high energy , then allow them to interact with strongly interacting
particles (hadrons), and investigate what happens. This idea was born after
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the electron had proved able to “see” protons inside the nucleus; then the
following question arose spontaneously: “may the electron be able also to
reveal what is inside a proton itself?”. The question was answered in the
affirmative by elastic scattering experiments, which were able to show that
the proton is not point-like. By increasing further the energy, one reaches
the deep inelastic regime: “deep” because, at high energies, the wavelenghts
associated with the photon exchanged between the lepton and the struck
hadron are much smaller than the size of the target; hence leptons can probe
distances that are small compared to with the scale of the target, that is
“deep” within the particle. However, the high energies tend to disrupt the
target, so that it produces several new particles. This means the scattering
is inelastic since the target has been changed in the process. To describe
these states an invariant mass calculated in terms of the four-momenta of
the exchanged photon (q) and of the incoming target (P ) is used:

W 2 = P ′2 = (P + q)2 = M2 + 2Pq + q2 = M2 + 2Mν −Q2, (1)

where −q2 = Q2, and where we introduce the Lorentz-invariant quantity ν,
defined as:

ν =
Pq

M
. (2)

If the target proton is at rest in the laboratory system, then P = (M,0)
and q = ((E −E′),q). Therefore we obtain:

ν =
M(E − E′)

M
= E − E′, (3)

so that ν represents the energy transferred by the virtual photon (the me-
diator of the electromagnetic interaction) from the electron to the proton in
the laboratory frame.

1.2.1 Scaling in DIS

When Q2 >> M2, many strongly interacting particles are produced. The
dynamics of such production processes may be described in a similar way
to that used for elastic scattering. In this latter case, the main tool was
represented by form factors. DIS processes are instead expressed in terms
of structure functions, which are the analogous of form factors for the in-
elastic case. The biggest difference in the kinematics of elastic and inelastic
scattering is that , at a given beam energy E, the former can be interely rep-
resented by only one free parameter, since kinematics requires all the other
parameters to depend on the free one; the description of the latter, instead
involves two free parameters, since the excitation energy of the target adds
a further degree of freedom. All these considerations are translated into the
following mathematical expression, characterising the two scattering classes:

5



Figure 1: A graphic representation of particles production from electron-
proton deep-inelastic scattering

• in the elastic case the relation W = M holds, so that eq.1 yields
2Mν = Q2;

• in the inelastic case, since the target aquires some excitation energy,
it will necessarily follow that W > M , and consequently from eq.1
2Mν > Q2.

Starting with the first deep inelastic scattering experiments, which consisted
of monitoring spectra of an electron scattering off hydrogen at a fixed scat-
tering angle, carried out in the late sixties, a surprising result was found:
in DIS, the structure functions F1 and F2 are to a good approximation in-
dependent of the scale Q2. For scattering on a system characterized by a
typical lenghtscale r, they should depend on the dimensionless combination
r2Q2. Their scale independence (scaling property) thus suggests that scat-
tering occurs on point-like constituents. To better discuss this result, a new
Lorentz-invariant variable is introduced, the Bjorken scaling variable.

x :=
Q2

2Pq
=

Q2

2Mν
. (4)

It is a dimensionless quantity and it represents a measure of the inelasticity
of the process, since :

• in case of elastic scattering W = M , and consequently x = 1;

• whereas for inelastic scattering W > M , so x is constrained by the
inequality 0 < x < 1.
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Dimensionless structure functions F1(x) and F2(x) have to be determined
from DIS experiments, by measuring the cross-section:

(
d2σ

dq2dν
) =

4πα2

q4

Ef

EiM
[
M

ν
F2(Q2, x) cos2

θ

2
+ F1(Q2, x) sin2 θ

2
]. (5)

The independence of the structure functions of Q2 suggests that electrons are
scattered off a free point charge. Since nucleons are composite objects, this
suggests that: nucleons have a sub-structure made up of effectively point-like
constituents.

1.2.2 Structure functions interpretation within Parton Model

Parton model is the name given to a specific model, proposed by Feynman
and Bjorken, which , on the basis of the ideas presented in the previous
section, explains the scaling property of the structure functions in terms of
scattering off point-like free constituents, called partons. Partons bearing
an electrical charge are called quarks, whereas electrically neutral partons
are called gluons. The model is based on one essential assumption: the scat-
tering occurs on constituents which have momenta collinear to that of the
nucleon. As a matter of fact, if one looks at the proton in a fast moving sys-
tem, then transverse momenta and the rest mass of the proton constituents
can be neglected, so that the proton momentum can be expressed as the
sum of momenta parallel to it, i.e. those of its partons. On top of that, we
introduce the impulse approximation: having decomposed the nucleon into
an ensemble of freely moving partons, the interaction with it is assumed
to be the incoherent sum of interactions with the individual partons; if we
finally assume that the typical time-scale of the photon-parton interaction
is so short that the interactions between the partons can be neglected, the
photon-parton scattering is elastic. In this case, the Bjorken scaling variable
x = Q2/2Mν coincides with the proton four-momentum P fraction which
is carried by struck parton, i.e. that parton which interacts with the ex-
changed photon.

We can easily compute Structure Functions within the Parton Model by
introducing the distribution functions of the quark momenta qf (x), where
qf (x)dx is the expectation value of the number of quarks of type f in the
nucleon, whose momentum fraction lies within the interval [x, x + dx]. A
straightforward computation then leads to:

F2(x) = x
∑

f

z2
f (qf (x) + q̄f (x)), (6)

where the sum is over all types of quarks and antiquarks, and zf is the electric
charge of the f -th quark. For spin 1/2 particles the following Callan-Gross
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relation is implied:
2xF1(x) = F2(x) (7)

If this ratio is plotted as a function of x at different values of Q2, it can be
easily seen that the ratio is, within experimental error, consistent with unity;
therefore the first piece of information we get about point-like constituents
of nucleons is they have spin 1/2.

1.3 QCD, asymptotic freedom and scaling violations

Quantum chromodynamics (QCD) is the quantum field of the strong inter-
action. It was proposed in the seventies as a description of the behaviour of
the quarks inside the proton and it can be considered as an application of
the ideas of gauge field theory developed in the 1960s. It is modelled upon
quantum electrodynamics (QED), in that:

• the basic idea is to use a new charge called colour as the source of
the interquarks forces (chromodinamic or strong forces), just as elec-
tric charge is the source of electromagnetic forces between charged
particles;

• both the considered fundamental interactions take place via the ex-
change of a massless vector boson field, i.e. a particle with negative
parity and spin 1.

In the case of QCD, these vector bosons are called gluons. They carry si-
multaneously colour and anti-colour (for example red and anti-green): in
this respect QCD greatly differs from QED, where photons have no elec-
trical charge and, consequently can’t couple with each other. Gluons can
couple with all colour charged particles, that is quarks, but also the gluons
themselves.
From an historical point of view, colour was originally introduced as a new
quantum number which would distinguish otherwise identical quarks and so
satisfy the demands of the Pauli exclusion principle, since, soon after the
proposal of the quark model, it had been realised that the suggested quark
content of some particles clashed with the Pauli principle.

1.3.1 Hadrons as colour-neutral objects

Having introduced the colour charge one question arises immediately: if
quarks are provided with this new charge and if they form hadrons, hadrons
might be expecteded to exist in a multitude of versions differing only for
total net colour, which would depend on their constituent quarks colours.
But, actually, this is not the case, since only one type of each hadron is
observed. This means that only particles with no net colour can exist as free
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particles, consequently explaining why quarks have never been observed by
themselves, as free isolated particles. Therefore, the introduction of colour
provides a formal method of categorising which combinations of quarks and
antiquarks are allowed to exist.

1.3.2 Strong coupling αs, confinement and asymptotic freedom

In DIS experiments a remarkable effect is noticed: when the quarks are close
together, the chromodynamics forces between them are weak; as the distance
between them increases, so too do the forces. The term coined to denote
this behaviour is asymptotic freedom, to indicate the fact that when the in-
terquark distances probed become asymptotically small (that is, when the
momentum of the deep inelastic probe becomes asymptotically high), then
the chromodynamic forces disappear and the quarks become, effectively, free
particles. On the other hand, no free quark has ever been oberved, so over
long distances, the force between quarks becomes increasingly strong; this
latter behaviour is called confinement. The existence of these two different
behaviour leeds to the following considerations. The coupling constant de-
pends on Q2, like all couplings in quantum field theory. But, while in the
electromagnetic interaction this dependence is weak at the nucleon scale, in
the strong interaction it is very strong. A first-order QCD calculation yields:

αs =
12π

(33− 2nf )(ln(Q2/Λ2)
, (8)

where nf denotes the number the number of quark types involved in pair
production and depends on Q2, because a heavy quark-antiquark pair can
only be resolved at very high value of Q2, so that nf ≈3-6. Λ is the only
free parameter of QCD, to be determined from comparison between theo-
retical predictions and experimental data. Currently it is estimated to be
Λ ≈ 250 MeV/c2. Then, for very small distances among quarks, i.e. for very
large values of Q2, αs decreases, so that interquark coupling gets weaker and
weaker: in the limit Q2 → ∞ , αs → 0. On the contrary, when distances
increase, the coupling constant increase as well and with it also interquark
coupling, so that quarks can’t escape. Finally, eq.8 also explains why it is so
difficult to carry out reliable theoretical calculations in QCD. As a matter
of fact, the application of perturbative expansion procedures is valid only
if αs << 1. In QCD, the strenght of the chromodynamic forces, may re-
quire the quark-gluon and gluon-gluon couplings to be large (greater than
one), meaning that the complicated high order processes become increas-
ingly important. In this case, it is impossible to use the same mathematical
techniques of perturbation theory to calculate quantities of physical interest.
The method of perturbation theory, can then be used only in the asymptot-
ically free regime of QCD, where the forces are weak.
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1.3.3 Scaling Violations of the Structure Functions

It was previously said that structure functions are almost independent on
Q2. However this is only partly true, since high precision measurements show
that to a small degree, F2 does depend on Q2. It is visible from fig.2 that

Figure 2: Structure function as a function of Q2 at different values of x on
a logarithmic scale

the structure function increases with Q2 at small values of x, and decreases
with increasing Q2 at large values of x. This behaviour, called Bjorken
scaling violation, means that as the momentum of the probe increases, it
becomes more likely to hit a quark carrying a small fraction of the total
proton momentum and less likely to hit a quark carrying a large fraction.

Now, if there are no interquark forces, then each quark in the proton
will carry a well defined and constant fraction of the momentum of the pro-
ton, namely one third of this momentum, since in this simplified and static
picture, the proton can be seen as made up of three quarks. However, to
confine quarks inside the proton, there must be some interquark forces, even
if they do weaken in effect as the distance resolved by the probe decreases
to less than the proton diameter. We have already said that in QCD, forces
are mediated by the exchange of gluons between the quarks. This continual
exchange transfers momentum between the quarks, so that, the momentum
distribution among the constituents of the nucleon is continually changing.
As the momentum of the probe increases and the distance it resolves de-
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creases, it begins to see the detailed quantum-mechanical sub-processes of
QCD in the environment of the struck quark: if the virtual photon ex-
changed in a deep-inelastic scattering transfers little energy, i.e. Q2 = Q2

0

is small, then its spatial resolution will be low, so that quarks and emitted
gluons cannot be distinguished and a certain quark momentum distribution
q(x,Q2

0) is measured. At larger Q2 and higher resolution emission splitting
processes are visible to the photon,thus the number of partons seen to share
the global momentum increases. Therefore the quark distribution q(x,Q2)
measured in this case at small momentum fraction x is larger than q(x,Q2

0);
obviously the effect is reversed for large x. This is the origin of the increase
of the structure function with Q2 at small x and its decrease at large x.
Whereas the change in the structure functions with Q2 can be calculated, it
has so far proven impossible to predict their x-dependence in theory; it can
be known only from the experiments.
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2 About NNPDF

2.1 A little history of parton distribution determination

The determination of parton distribution has undergone a constant process
of evolution. Initially, parton distribution were determined through a mix
of model assumptions and experimental data, with the aim of comparing
observed scaling violations with those predicted by perturbative QCD, thus
testing the partonic interpretation of hard processes.
As the accuracy of the data increased, first parton sets , based on consistent
global fits were determined at leading order , since it was accurate enough
for these sets to be used in the following decade.
Then, QCD gradually entered the field of precision phyics, thanks to a sec-
ond generation of high-precision deep-inelastic scattering and hadron collider
experiments, and this led to the following requirements:
- determination of parton distribution at next-to-leading order (to control
perturbative uncertainties);
- determination of parton distribution based on wide global sets of data
coming from different experiments . Parton sets produced by different col-
laborations differe from each other in many technical details, but they all
have a common root: a parton parametrization is originally assumed and its
parameters are tuned so that the computed observables fit the experimental
data.
Uncertainties are determined using standard error propagation from the co-
variance matrix of parameters. The choice of a functional form can be a
source of theoretical bias.

In order to overcome this problem and other issues related to error prop-
agation and data combination, a new approach to PDF determination was
proposed by the NNPDF collaboration.

2.2 A brief exposition of NNPDF approach

NNPDF, which stands for “Neural Network Parton Distribution Function”
is based upon two essential ingredients: Monte Carlo method, and neural
network used as unbiased interpolants.
h The procedure consist of:

1. Generation of Monte Carlo ensemble of Nrep replicas of the original
ensemble of Ndat data points:
this ensemble is created following the probability distribution of the
experimental data and it is large enough that the statistical properties
of these data are repoduced. This means, first of all, that each replica
contains as many data points as are contained in the original data
set. Secondly, that the number of generated replica is such that, by
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performing on the Monte Carlo ensemble statistical operations, all the
original experimental information can be extracted from it: the Nrep

ensemble of Ndat points are distributed around the original points in
such a way that their mean value be the experimental central value and
that error and covariance be equal to the correspondent experimental
quantities. Because the distribution (which can be any one) of the
experimental data coincides with the probability distribution of the
value of the measured physical observables, the Monte Carlo set of
replicas can be viewed as a sampling of the probability measure on
the space of these observables. Therefore, considered one of these
observables, which we indicate with the generic symbol F , the Monte
Carlo generation, will produce:

F
(art)(k)
i ; k = 1, ...., Nrep, i = 1, ...., Ndat, (9)

values,where F
(art)(k)
i indicates one individual measurement of F . In

this case the Monte Carlo set gives a sampling of the probability dis-
tribution of the value of the structure function at the points where
it has been measured, since, as it was said before, the distribution of
the experimental data coincides with this probability measure. The
experimental data in general consist of the determination of several
physical observable in distinct experiments, each of which provides
the measurement of the relevant quantity at a discrete set of values
of the kinematic variables. In general there will be a non trivial set
of correlations between determination of different quantities, that is
between different observables at different points. Furthermore exper-
imental data are possibly affected by errors which don’t necessarily
follow a gaussian distributions. Together with the existence of a non-
trivial error propagation, all these facts represents the reasons why a
Monte Carlo method is used, given that it is proved that to face prop-
erly this difficulties in the data treatment, it is extremely helpful to use
a representation where central values are obtained from a Monte Carlo
sample as averages and uncertainties as standard deviations, etc...)

2. Construction of parton distribution functions: from each data replica
a set of PDF is generated by using neural networks. Given that the
thoery doesn’t provide a well-established functional form for PDFs,
any attempt to produce a PDFs set based upon fitting a precise func-
tional form is doomed to remain influenced by a strong theoretical
prejudice which resides in this very primal choice of the functional
form. The use of neural networks , which represent a form of artifical
intelligence, aims at minimizing this effect. Neural networks ability
to “learn” is exploited as follows: it is possible, in fact to construct
a neural network with a functional form containing a huge number of
parameters, and then to “train” this computational system to obtain
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a final function whose form is determined by those few parameters
which usually appear in a parton distribution function. This initial
redundant parametrization is the only way to protect from the inter-
ference of the theoretical bias, and only neural networks are up to this
specific task.

Each PDF is then parameterized at a given scale (“initial scale”) by
an individual neural network. More precisely Nrep ensemble of neural
networks are constructed, where each one of them contains Npdf neural
networks, one for each PDF we want to determine.
The number Npdf depends on the particular set of data used (at the
most it can be 13, 6 for the quarks, 6 for the antiquarks and 1 for
the gluon). The best fit set of PDFs is then determined for each data
replica using the standard method of any parton fit, namely:

• the set of Npdf functions obtained, which represents a possible
candidate for this set at the initial scale, is evolved by using
standard QCD evolution equations, at the scale at which data
are available;

• physical observables are computed by convoluting the evolved
parton distributions with hard partonic cross sections;

• the best fit is finally determined by comparing the theoretical
computation of the observables for a given PDF set candidate
with their replica experimental values.

The use of neural networks however requires a suitable choice of min-
imization algorithm, in order to deal with the large number of pa-
rameters and the nonlinear dependence on them. Of course the best
fit PDFs will be different for each replica, so the ensemble of these
Nrep best fit PDFs is the result of the fitting procedure. The Nrep

replicas of each parton distribution provide the corresponding proba-
bility density: for example, the mean value of the parton distribution
at the starting scale for a given value of x is found by averaging over
the replicas, and the uncertainty over this value is the variance of the
values given by the replicas.

Because neural networks are a very general functional form, their best fit to
a set of data can have a very low reduced χ2, meaning that the fit can be
made to go through central data points, or almost so. This can not happen
in standard data fits because of the less general functional form and it is not
desirable, because one expects on statistical grounds χ2 ≈1: if a much lower
value is obtained, the fit is reproducing statistical fluctuations (overlearn-
ing). Therefore, even though the best fit is determined by minimizing the
χ2, it does not correspond to the absolute minimum of the χ2. Rather, it
is obtained by the cross-validation method. The procedure is the following:
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given a replica, its data are divided randomly into two sets, one called train-
ing set and the other called validation set. At each step, during the fitting
loop, two χ2 are calculated, one for the training set data , and one for the
validation set data. The χ2 of the training set data is then minimized. The
fit is stopped when the second χ2 stops decreasing.

2.3 The importance of PDFs at LHC

The physics of parton distributions, especially within the context of DIS, has
been an active subject of detailed theoretical and experimental investigations
since the origins of perturbative QCD. A good knowledge of PDFs has always
been vital to make predictions for both the Standard Model and beyond the
Standard Model processes at hadronic colliders but now more than ever,
with advent of the Large Hadron Collider (LHC) at CERN, PDFs must be
known as precisely as possible, in order to maximize the discovery potential
for new physics at the LHC. Conversely, of course, LHC data will lead to an
improvement in the knowledge of PDFs. Since, at the LHC, proton-proton
collisions will be studied, it will necessary to separate information on the
proton from that on other new potential particles. This separation is possible
thanks to the so-called QCD factorization, which at the first perturbative
order, corresponds to the Parton Model. Cross-section factorization is a
fundamental feature of QCD, valid at any perturbative order, and it states
that the cross-section for a hadronic process can always be written as:

σ(P1, P2) =
∑

i,j

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(p1, p2, αs(µ2),

Q2

µ2
), (10)

where P1 and P2 are the hadron momenta, pi = xiPi are the momenta of
the partons partecipating to the scattering, and fi,j(x, µ2) are their parton
distributions. They are defined at a scale µ, called factorization scale, which
is typically equal to the scale Q characteristic of the process. The param-
eter µ determines the scale at which long range physics and short range
physics are separated: if a parton is emitted with a moment lower than
µ, it is considered part of the hadronic structure and then absorbed in the
parton distribution, whereas, a parton emitted with a moment larger or of
order of than µ will be seen as part of the short-distance cross-section σ̂.
As long as the strong coupling αs is small, the short-distance cross-section
σ̂ for the scattering of two partons i and j can be determined using pertur-
bative calculations and, on top of that, it does not depend on the features
of the hadronic wave function, which is encoded i he parton distributions.
Therefore it is clear that, in order to obtain σ(P1, P2) at high precision, it
is necessary not only to determine σ̂i,j at high perturbative order, but also
to know parton distribution and their uncertainties with great accuracy.
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3 Determination of the strong interaction
coupling constant αs

3.1 Motivation

The coupling constant of strong interactions (QCD) αs is one of the fun-
damental parameters of the standard model (SM) of particle physics, and
thus its accurate measurement is very important for precision of the SM and
tests of physics beyond the SM, for instance via unification of the couplings.
The value of αs can be determined from different physical processes, as fig.
3 shows. One possible process to determine αs is Deep-Inelastic Scattering,

Figure 3: Summary of the value of αs(Mz) from various processes. The
error shown is the total error, including theoretical uncertinties.The average
which comes from these measurements is also shown.(From ref.[4])

but this requires to determine simultaneously both the value of αs and the
PDFs. Therefore, an accurate determination of PDF uncertainties is neces-
sary in order to obtain a reliable determination of αs from DIS. The NNPDF
methodology is thus suitable for this task. A summary of current determi-
nations of αs is shown in fig.3. As discussed in the previous section, αs

depends on the scale, and each determination will correspond to a different
scale or range of scales. However, because the dependence of αs is universal
and known, all these determinations can be evolved to a common scale. By
convention, the value of αs at the scale Q2 = M2

z is usually quoted.

16



3.2 Description of procedure and results

In order to determine αs from the NNPDF global analysis, we repeat the
NNPDF fit for different values of αs. The complete procedure consists of:

1. performing the NNPDF global parton analysis for different values of
αs;

2. calculating the χ2 for each of these partonic fits;

3. making a plot “χ2 vs αs” with the values obtained in the previous
step;

4. checking if this ensemble of plotted points can be fitted with a curve
which presents a minimum, so that in the vicinity of the minimum the
χ2 is parabolic;

5. once the condition in the previous step is verified, carrying out the
parabolic fit and obtaining the minimum. This minimum will represent
the value for αs.

.

3.2.1 Check of the sensitivity to αs of NNPDF fit

At first we check whether or not there is some sensitivity at all to αs. To
this purpose we start performing the fits by taking into consideration only
three different values of the constant.
The current global average is (from ref.[4])

αs(M2
z ) = 0.119± 0.02, (11)

then, the first three values chosen for αs are:

αs = 0.110, 0.119, 0.130, (12)

so that the whole range of variability of αs, within its error, is reached.
The fit is performed to essentially all existing DIS data of (anti)electron,
(anti)muons and neutrinos beams off proton and neutron targets. In this
initial phase, we choose Nrep=100, whereas during the whole analysis a
single Monte Carlo sampling of data will be used, to reduce fluctuations.
Parton fits are based on the NNPDF1.2 parton set, which uses the NNPDF
methodology and code [[5], and the data shown in fig.4. The subsequent
part of the work, which involves the treatment of the global χ2s previously
obtained, is based on a large extent on the use of Root (based on C++
interpreter CINT), and, partly, on the use of C++ programs written for the
purpose.
Let us display the results obtained at this initial level.
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Figure 4: Experimental data representation in the (x,Q2)

αs=0.110 αs=0.119 αs=0.130 Best-fit αs value
TOT(all exp) 4640.59 4401.51 4436.57 0.123
NMC-pd 237.82 208.38 182.00 0.152
NMC 452.80 416.80 396.71 0.133
SLAC 149.25 118.47 157.53 0.119
BCDMS 908.33 901.43 954.81 0.116
ZEUS 566.71 541.13 562.95 0.120
H1 687.43 648.80 649.55 0.124
CHORUS 1378.87 1292.04 1207.90 0.163
FLH108 14.50 13.21 12.11 0.148
NTVDMN 48.76 56.37 60.58 0.133
XF3GZ 12.47 12.14 13.60 0.117
ZEUS-H2 183.64 192.73 238.82 0.111

Table 1: χ2 of parton fits as a function of αs value (first row on the top)
and of the considered experimental set (first colum on the left).

Fig.5 clearly shows a sensitivity of the figure of merit of the fit to αs

value. The result of a parabolic fit to the total χ2, as well as to the χ2 of
each experiment determined at these points, are collected in tab.1. The 68%
CL is obtained from ∆χ2 = 1 and it gives:

αs(M2
z ) = 0.123± 0.0008. (13)

Considered the data contained in tab.1, this uncertainty results unrealisti-
cally small, because:
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Figure 5: The parabolic fit to the total χ2 values of tab.1.

• single experiments χ2 are very different between each other;

• there is great variability in the best-fit αs value of single experiments.

3.2.2 Determination of αs(M2
z ) and its error

We repeat the procedure but this time with a greater number of possible
values for αs, in order to cover satisfactorily the range of variabilityof the
constant. Remembering that this range was established based on the error
attributed to the reference value, i.e. 0.119 ± 0.02, the following values are
chosen:

αs = 0.110, 0.113, 0.116, 0.119, 0.121, 0.123, 0.125, 0.128, 0.130, 0.135, 0.140.
(14)

In order to get a complete survey on what happens between the extreme
limits 0.110 and 0.130, the most obvious choice would have been taking 20
points equally spaced out one from another at a distance of 0.01, in order to
span systematically the entire interval. Since this is computationally very
intensive,we choose instead 9 points inside the cited interval (extreme limits
included), plus 2 points, 0.135 and 0.140, outside it. The outer points were
added because some experiments showed a minimum appreciably shifted on
values greater than 0.119.

To perform the parton fits, we used Nrep=500. The results are collected
in tab.2. A parabolic fit to the values of the total χ2 is displayed in fig.6.
Parabolic fits to the χ2 of each experiment are shown in fig.18.
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αs 0.110 0.113 0.116 0.119 0.121 0.123
TOT(all
exp)

4660.83 4595.03 4468.42 4401.74 4383.71 4384.80

NMC-pd 254.83 236.43 230.37 221.22 216.15 214.39
NMC 458.79 445.87 429.86 415.04 410.85 406.38
SLAC 152.28 134.48 122.72 117.71 118.15 124.32
BCDMS 921.49 919.20 905.39 900.63 913.88 913.51
ZEUS 569.74 573.58 549.52 543.05 539.97 540.04
H1 681.64 678.77 659.99 648.65 641.21 635.70
CHORUS 1359.41 1340.33 1306.50 1285.60 1265.64 1265.12
FLH108 14.52 14.33 13.79 13.37 12.99 12.72
NTVDMN 52.49 52.37 51.08 51.22 53.66 54.33
XF3GZ 12.44 12.25 12.25 12.30 12.36 12.55
ZEUS-H2 183.19 187.42 187.17 192.96 198.83 205.73
αs 0.125 0.128 0.130 0.135 0.140 αsmin

TOT(all
exp)

4400.62 4469.98 4562.84 5398.86 6738.84 0.120

NMC-pd 199.76 190.03 175.02 235.33 272.28 0.125
NMC 401.20 391.44 387.89 397.32 426.65 0.129
SLAC 131.99 138.85 133.88 141.08 173.16 0.122
BCDMS 921.43 974.65 1035.47 1335.34 1605.13 0.118
ZEUS 547.65 559.88 567.80 633.07 818.8 0.120
H1 640.16 644.19 667.91 793.74 1187.57 0.120
CHORUS 1262.73 1252.54 1261.37 1450.66 1735.84 0.122
FLH108 12.54 12.24 12.36 13.20 14.58 0.126
NTVDMN 55.68 59.55 61.10 88.62 117.98 0.118
XF3GZ 12.72 13.26 13.68 15.40 18.61 0.117
ZEUS-H2 214.78 233.35 246.46 295.11 368.06 0.115

Table 2: χ2 of parton fits based on 500 replica as a function of αs value and
of the considered sperimental set. Best-fit αs value.

The latter plot shows that each experiment has a minimum but that
these minima can sensibly differ between each other. This great variability
is due both to the fact that these experiments probe different processes in
different kinematic regions and to statistical fluctuations. On top of these,
there is a procedural uncertainty due to the fact that we are using a finite
number of replicas. This procedural uncertainty is reflected in the quality
of the parabolic fit of fig.6, which is quite poor. Based on the expected
size of these uncertainties, as one may estimate it due to the fluctuations
of values between experiments and the quality of the global fit, it is clear
that the uncertainty obtained from the standard ∆χ2=1 condition, shown
in tab.3 is unrealistically small. In fact, the range of variation of αs obtained
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# pt
αsmin ∆χ2 = 1 ∆χ2 = 100

TOT (all exp) 0.120 ±0.0004 ±0.004 3382
NMC-pd 0.125 ±0.002 ±0.019 153
NMC 0.129 ±0.002 ±0.023 245
SLAC 0.125 ±0.003 ±0.026 93
BCDMS 0.118 ±0.001 ±0.008 581
ZEUS 0.120 ±0.001 ±0.012 507
H1 0.120 ±0.001 ±0.009 632
CHORUS 0.122 ±0.001 ±0.009 942
FLH108 0.127 ±0.010 ±0.104 8
NTVDMN 0.118 ±0.003 ±0.027 84
XF3GZ 0.117 ±0.009 ±0.091 8
ZEUS-H2 0.115 ±0.002 ±0.018 127

Table 3: Values of αs and its 68% CL uncertainty obtained from the
parabolic fit displayed in fig.18. The range of αs obtained from ∆χ2 = 100
is also shown. The last column shows the number of data points for each
experiment.

Figure 6: Parabolic fit to the global χ2 values in the case of 500 MonteCarlo
replicas.
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Figure 7: NMCpd
αsmin= 0.125

Figure 8: NMC
αsmin= 0.129

Figure 9: SLAC
αsmin= 0.122

Figure 10: BDCMS
αsmin= 0.118

Figure 11: ZEUS
αsmin= 0.120

Figure 12: H1 αsmin=
0.120

Figure 13: CHORUS
αsmin= 0.122

Figure 14: NTVDMN
αsmin= 0.118

Figure 15: FLH108
αsmin= 0.126

Figure 16: XF3GZ
αsmin= 0.117

Figure 17: ZEUSH2
αsmin= 0.115

Figure 18: Parabolic fit based on the χ2 for each experiment from tab.2.
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allowing ∆χ2=100 (also shown in tab.3) seems a more realistic estimate of
the uncertainty. We may obtain a more reliable determination of αs by using
the available points to construct an ensemble of determinations of αs. The
we can determine best-fit αs and its uncertainty by performing statistics on
this ensemble, thereby controlling fluctuations as follows:

1. we have determined all the possible subsets of three elements, picking
them up from the original ensemble containing the eleven chosen αs

values (0.110, 0.113, etc...) and their corresponding global fit χ2 ;

2. for each one of these subsets (165 in all, as they correspond to the
combination of 11 objects taken 3 at a time), we have made a parabolic
fit;

3. for each parabolic fit we have determined the minimum and the half-
width at a distance equal to 1 (∆χ2=1 rule) from the minimum;

4. we have calculated the averages of these three quantities, which, from
now on, will be denoted as:
〈αs500〉= average of the 165 values of αs;
〈∆χ2 = 1500〉 = average of the 165 half-widthes obtained from ∆χ2=1
rule;
we have also determined the standard deviation of the 165 ∆χ2=1
values obtained; this quantity will be denoted by the symbol σ∆χ2=1500

.

The results are listed below:

〈αs500〉 0.1197
〈∆χ2 = 1500〉 0.0016

σ∆χ2=1500
0.0013

This procedure is conceptually very close to the MonteCarlo technique,
where the place of replicas has been taken by subsets: we have eleven original
data points, providing for αs a single unstable measure 0,120 ± 0.0016; we
thus consider all possible three points subsets, each one with its αs best-
value; since each one of these values can be regarded as an independent
“measure” for αs, their average will be the best estimation we can obtain.
Therefore results in table 3.2.2 can be interpreted as follows:

• 〈αs500〉 is our best-fit value of αs;

• 〈∆χ2 = 1500〉 is our best estimate for the 68% CL;

• σ∆χ2=1500
is the uncertainty on αs due to statistical fluctuations; it

then represents the uncertainty given by the procedural limitations.
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This interpretation is confirmed by the results, displayed below, obtained
by performing this procedure with a sensibly smaller number of replicas,
namely 100 replicas: As a matter of fact, by switching from 100 to 500 repli-

〈αs100〉 0.1110
〈∆χ2 = 1100〉 0.0018

σ∆χ2=1100
0.0016

cas, 〈αs100〉 shifts towards the conventionally accepted value αs(M2
z )=0.119

and at the same time, the uncertainty σ∆χ2=1100
, to which we attributed

the meaning of error intrinsic to the procedure, slightly decreases, thus con-
firming this interpretation.

Figure 19: In black the parabola obtained by simply fitting the eleven data
points and in red the ’average’ parabola, drawn by using the average values
(〈αs500〉 as point of minimum and 〈∆χ2 = 1500〉 as half-width at a distance
1 from the minimum).

From fig.19 we can directly see the great difference between the experi-
mental uncertainties (∆χ2 = 1)=0.0004 and σ∆χ2=1,100=0.0016, here repre-
sented by the widths of the parabolas, determined respectively with the first
and the second procedure described above. This provides further evidence
that the second procedure is appreciably better than the first one, since it
provides both an acceptable experimental uncertainty for αs and a procedu-
ral error, which we could not access with the first procedure. Fig.20 instead,
shows that the distribution of the 165 ∆χ2=1, i.e. of the errors of 165 ’vir-
tually independent’ measures of αs, is approximately gaussian. Therefore
we have the guarantee that we can properly consider 〈∆χ2 = 1500〉, i.e. the
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Figure 20: Histogram illustrating the distribution of the 165 ∆χ2=1 values
around their mean 0.0016

FWHM of this gaussian, as the uncertainty connected to this ensemble of
measures.

Conclusion

We have presented a determination of the strong coupling αs performed
by using the NNPDF methodology, starting from almost the totality of
DIS data available up to now. The determination has required some steps,
which have finally led, from a global parton analysis, to the result αs(M2

z ) =
0.1197± 0.0016stat ± 0.0013syst. On top of that, the parton analyses based
on data from single DIS experiments have shown that the coupling can be
determined separately from each one of them. The value of the coupling is
very close to the current global average; its uncertainties are of two different
kinds:
- 0.0016, denoted by statistical error, represents experimental uncertainties,
i.e. the fact that each experiment does not measure the exact value of the
considered physical quantity, but a different value on the basis of the prob-
ability distribution of errors. In this sense this statistical error is connected
to the statistical fluctuations which dominate experiments;
- 0.0013, denoted by systematic error, represents the uncertainties due to
the procedure used to determine αs. In particular this uncertainty is due to
the procedural limitation determined by the choice of the number of Mon-
teCarlo replicas used in the NNPDF parton fits. Therefore the result of
this analysis can’t be considered definitive. If we broaden the amount of
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experimental data and we increase the number of MonteCarlo replicas both
the statistical and the systematical error will get smaller.
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