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Facoltà di Scienze e Tecnologie
Corso di Laurea Triennale in Fisica

IMPACT OF THEORETICAL
UNCERTAINTIES ON PDFs ON HIGGS

CROSS SECTION

Relatore:
Stefano Forte

Candidato:
Andrea Isgrò
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Summary

The purpose of this thesis is to analyse the PDF (Parton Distribution Functions) dependence of
the Higgs cross section in gluon fusion, and in particular to investigate how theoretical uncer-
tainties on parton distributions affect the perturbative series for this process.

First, the Higgs boson is briefly introduced in Chapter 1, with specific reference to its pro-
duction at LHC. The computation of its cross section requires perturbative matrix elements and
PDFs.

Parton Distribution Functions, the momentum distribution functions of the partons within
the hadrons, are related to the Higgs cross section via the factorization theorems. In Chapter
2 it is shown how the PDFs can be extracted from experimental data and what are the main
ways to compute their uncertainties.

There is a source of uncertainty which arises from the neglect of higher order terms in QCD
perturbative computations. It shall be called Theoretical Uncertainty, in opposition to Statis-
tical Uncertainty (or simply PDF uncertainty), which follows from error propagations of the
experimental data used for the PDF determination.
Chapter 3 deals with the conventional method to estimate theoretical uncertainties in perturba-
tive series and presents the Cacciari-Houdeau model, which assigns a meaningful degree of belief
to those estimates [13].
Once made the assumption that PDFs which belong to different-order sets are, point by point,
a perturbative series in αS , theoretical C-H uncertainties on PDFs are computed and compared
with statistical uncertainties. The same exercise is repeated for Parton Luminosities, defined in
Section 3.5.

Finally, in Chapter 4, two codes (ggHiggs [16] and iHixs [17]) are used to obtain the Higgs
cross section, which depends on the PDF set considered. This dependence is exploited to estimate
the impact of theoretical uncertainties of PDFs themselves on Higgs cross section, which can be
compared to theoretical uncertainties on gluon-gluon luminosity.
The scaled parameter Cacciari-Houdeau model is used to compute theoretical uncertainties on
the Higgs production perturbative series (using the best PDF set available), and compared to
the standard methodology, based on scale variation.
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Chapter 1

The Higgs Boson

Geneva, 4th July 2012. At a seminar held at CERN, the ATLAS and CMS experiments presented
their latest preliminary results in the search for the long sought Higgs particle. Both experiments
observed a new particle in the mass region around 125-126 GeV.

On 8th October 2013 François Englert and Peter W. Higgs won the Nobel prize in physics
“for the theoretical discovery of a mechanism that contributes to our understanding of the origin
of mass of subatomic particles.”

This Chapter reviews the main properties of the Standard Model (SM) Higgs Boson and
illustrates its most common decay and production channels at LHC.

1.1 Properties

The SM of the electroweak and strong interactions crucially relies on the Higgs mechanism in
order to spontaneously break the electroweak symmetry and generate in a gauge invariant way
the masses of the elementary particles. In the minimal realization of electroweak symmetry
breaking, one complex Higgs doublet field is introduced which implies the existence of a single
neutral scalar particle, the Higgs boson H.
The Higgs is a scalar field (it does not transform under Lorentz transformations), i.e. it has spin
0. It is also its own antiparticle, CP-even, and has zero electric and colour charge. The Minimal
Standard Model does not predict the mass of the Higgs boson.

Its spin and parity have been successfully studied on the 125 GeV new particle. These tests
are performed by observing the Higgs boson decay products and comparing them with theoretical
expectations. This is the reason why more and more accurate calculations of Higgs production
and decay cross sections are required.

1.2 Decay channels and branching ratios

According to the Standard Model, the Higgs Boson has several possible decay processes [1], each
of which has its own probability. This probability is expressed as a branching ratio: the fraction
of particle which decay by an individual decay mode with respect to the total number of decays.
The SM predicts these branching ratios as a function of the Higgs mass (see Figure 1.1).

The most relevant decay channel are illustrated below, together with some branching ratio
values for a Higgs mass of 125 GeV (data refer to [2]).
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Figure 1.1: Decay branching ratios for Higgs at different ranges of MH .
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1.2.1 Fermion-antifermion

One of the most likely decay for the Higgs boson is into a ff̄ pair. Since the strenght of the
interaction between the Higgs and a fermion is proportional to the mass of the fermion, one
could expect the most common decay to be into a tt̄ pair.

However, as shown in the second plot of Figure 1.1, this decay is only possible (and become
dominant) for a Higgs mass of at least twice the mass of the top quark, i.e. ≈ 346 GeV. For the
observed Higgs mass, the most likely event is a decay into a bb̄ pair (56%). The second most
common fermion decay is into a τ τ̄ pair (6%).

1.2.2 Pair of massive bosons

The Higgs Boson can also decay into a pair of massive gauge bosons, such as WW or ZZ.
The former is more common, as it happens 23% of the time, but it is also the most difficult to
distinguish from the background. In fact, W often decays again into a quark-antiquark pair or
into a charged lepton and a neutrino, which makes it almost impossible to fully reconstruct the
event.

The decay into a pair of Z is instead easier to detect, as each of the bosons can subsequently
decay into a pair of charged leptons, but its occurrence is about 2.9%.

1.2.3 Pair of massless bosons

Finally, decay into gluons or photons is also possible, but it has to be mediated by a loop of
virtual heavy quarks or massive gauge bosons. The most common of this kind of processes
(8.5%) is the opposite of the gluon fusion which will be described in Section 1.3.1, namely the
decay into a pair of gluons through a loop of virtual heavy quarks, such as t or b.

Another option is to decay into a pair of photons mediated by a loop of W bosons or heavy
quarks. This process is rare (the pink line in Figure 1.1) but highly relevant, as the energy and
momentum of the photons can be measured very precisely, giving an accurate reconstruction of
the mass of the decaying particle.

1.3 Higgs production at LHC

The Standard Model predicts that the Higgs boson can be produced in a number of ways,
with probabilities depending on its mass value. In particular, we consider Higgs production for
the LHC proton-proton collider with

√
s = 8 TeV and 14 TeV. A high center of mass energy

is preferred because light bosons are copiously produced but suffer from severe backgrounds,
while heavier Higgs bosons have smaller production cross sections but with more manageable
backgrounds.

There are only a limited number of production mechanisms which give cross sections large
enough to be relevant at LHC, as illustrated in Figure 1.6 (data from [2]). Each of the most
relevant processes is described below, together with its Leading Order Feynman diagram.

1.3.1 Gluon-gluon fusion

The most relevant channel in Higgs production is gluon fusion pp → H, in which two gluons,
one from each proton, combine to form a loop of virtual quarks. In other words, the gluons do
not directly interact with each other, but rather with quarks and anti-quarks. Once again, the
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Higgs boson is more likely to interact with heavy particles, so only top and bottom quarks give
a significant contribution. Gluon fusion is the dominant contribution at the LHC, being about
ten times more common than any of the other processes.

1.3.2 WW , ZZ fusion

The second most likely event for Higgs production is WW or ZZ fusion pp → qqH, where two
quarks (or antiquarks) create two disturbances in the W (or Z) field. The two virtual bosons
then form a Higgs boson. The colliding quarks do not necessarily have to be of the same flavour.

1.3.3 Associated production with W , Z bosons

Other two channel for Higgs production, quite similar to each other, are associated production
with W and Z, respectively pp → WH and pp → ZH. In this process, an elementary fermion
within a proton collides with its antifermion coming from the other proton, to produce a W or
Z virtual boson. Then the virtual boson decays into a Higgs boson and a W or Z particle. The
reason why these two processes are considered separately in the plot in Figure 1.6 is that W and
Z particles can be distinguished experimentally. The process is also called Higgs Strahlung.

1.3.4 Associated production with tt̄

Finally, the least likely event that is usually considered is associated production with tt̄, pp →
ttH, which is by two order of magnitude less probable than gluon fusion. This process involves
two colliding gluons, which each decay into a heavy quark-antiquark pair (e.g. tt̄). A top and
anti-top from each pair can then combine to form a Higgs particle.
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Chapter 2

Parton Distribution Functions

The computation of a cross section at a hadron collider requires the knowledge of the quark and
gluon substructure of the colliding hadrons. This is encoded in Parton Distribution Functions
(PDFs). It seems appropriate to introduce them, underlining what they represent, how they
can be deduced from the data and what are the tools which allow us to assign them uncertainty
bands.

2.1 PDF definition

Deep Inelastic Scattering experiments (DIS), in which leptons are scattered off nucleons, let us
investigate the inner structure of nucleons, revealing that hadrons are composed of a number
of point-like constituents, named partons. If the momentum transferred in the collision is high,
the momentum of the parton interacting with the lepton is almost collinear with the nucleon
momentum, so that the target can be seen as a stream of partons, each carrying a fraction x of
the longitudinal momentum.

The probability density for a parton of flavour i to carry a fraction x of the nucleon momen-
tum at a squared energy scale Q2 is expressed by Parton Distribution Functions fi(x,Q

2). At
high Q2, there is an increasing number of quark-antiquark pairs which carry a low momentum
fraction x: the sea quarks. A relevant discovery of the DIS experiments is that the quarks and
antiquarks only carry about half of the nucleon momentum, the remainder being carried by the
gluons.

Since parton distributions cannot be computed from first principles, they need to be de-
termined by comparing experimental data with predictions which are made using the PDFs
themselves. In fact, the factorization theorems allow us to express the cross section of a hard
process as a calculable parton interaction convoluted with the parton densities. QCD gives us the
Q2 dependence of the PDFs through the DGLAP equations (Gribov and Lipatov 1972, Altarelli
and Parisi 1977 and Dokshitzer 1977), in the domain where perturbative calculations can be
applied, that is in the limit where the running coupling constant of αS(Q2) is much smaller than
one (αS(Q2)� 1). The kernels which provide the rate of evolution in these equations (splitting
functions) can be computed as a perturbative expansion in the strong coupling αS(Q2), usually
called Leading Order (LO), Next to Leading Order (NLO), etc..
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2.2 PDF Sets

The determination of PDFs is currently performed by several groups, as discussed in more detail
in [3][4]. In this work only the first three of them will be considered, which are based on a wider
set of data.

• MSTW [5]

• CT10 [6]

• NNPDF [7]

• HERAPDF

• ABM

• GJR

The MSTW (Martin-Stirling-Thorne-Watt) PDFs are determined from a global analysis of
hard scattering data, based on the HERA DIS data as the main input for PDFs at low x, fixed
target DIS data in the high-x region, fixed target Drell-Yan (DY) data which help to constrain
high-x sea quarks, TEVATRON jet data contributing to high-x gluon PDF and W , Z data
which provide an access to the different quark contributions.

The CT10 PDFs are obtained by a global analysis of hard scattering data in the framework
of general mass perturbative QCD. This analysis is based on the same data mentioned above
(plus the combined HERA I data and more TEVATRON data).

The Neural Net PDF (NNPDF) group parametrize PDFs by training a neural network on
Monte Carlo replicas of the experimental data. With such a method NNPDFs are free of
assumptions made by other groups. It also includes all above mentioned experimental data and
LHC data in the fit. The functional form used for the PDF parametrization, based on neural
networks, has a very large number of parameters. Therefore, the best-fit is not determined as
an absolute minimum of a figure of merit (such as the χ2), which would involve also fitting
statistical noise, but rather by stopping the minimization before the noise starts being fitted,
through a suitable criterion.

PDF sets in LO, NLO and NNLO are available for all of the three sets mentioned above.

2.3 Determination of PDFs

We only provide a brief summary, for a detailed explanation of the current state of the art in
the determination of parton distributions, see [8].

Factorization for hadroproduction lets us express the cross section of a process which depends
on a single scale M2

X as

σX(s,M2
X) =

∑
a,b

∫ 1

τ
dx1 dx2 fa/h1(x1,M

2
X) fb/h2(x2,M

2
X) σ̂ab→X(ŝ,M2

X) , (2.3.1)

where s is the center-of-mass energy of the hadronic collision, fa/hi(xi,M
2
X) is the PDF of the

quark with flavour a in the ith incoming adron, σ̂ab→X is the partonic cross section for the
production of the final state X, and τ ≡M2

X/s is the scaling variable of the hadronic process.
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Partonic cross sections are computed in perturbation theory, using the quark and gluon
degrees of freedom of the QCD Lagrangian. They do not depend either on the incoming hadron
or on PDFs, therefore they are universal, i.e., independent of the specific process.

As a result, it is possible to compare experimental data with theoretical predictions at some
given perturbative order. The outcome of this comparison, together with a good choice of mea-
surable processes in order to maximize the information, enables the determination of PDFs.
Finally, thanks to universality, it is possible to determine PDFs using the experimental infor-
mation on a particular set of processes, and then use them to obtain predictions for different
processes.

Equation (2.3.1) can be rewritten as follows:

σX(s,M2
X) =

∑
a,b

σ0
ab

∫ 1

τ

dx1

x1

∫ 1

τ/x1

dx2

x2
fa/h1(x1,M

2
X) fb/h2(x2,M

2
X)Cab

(
τ

x1 x2
, αS(M2

x)

)
,

(2.3.2)
where the hard coefficient function Cab

(
z, αS(M2

x)
)

is a function of the scale M2
X and the di-

mensionless ratio

z =
M2
X

ŝ
=

τ

x1 x2
, τ ≡

M2
X

s
. (2.3.3)

Equation (2.3.1) expresses the inclusive cross section in terms of PDFs at the same scale, M2
X ,

at which the cross section is evaluated. However, PDFs at different scales are related by the
DGLAP integro-differential equations.

Consequently, the accuracy of the PDFs is limited by the perturbative order both of the
coefficient function in equation (2.3.2) and of the splitting functions which enter the evolution
equations. Leading order means that both are computed to the lowest nonvanishing order, so
for instance, in Higgs production via gluon fusion, splitting functions to order αS and coefficient
functions to order α2

S .

2.3.1 Goodness of fit

Parton distributions are determined by comparing theoretical predictions like equation (2.3.1)
with experimental data. A confidence interval in the space of PDFs is then determined by
minimizing a suitable measure of goodness-of-fit. Since the PDFs space is an infinite-dimensional
space of functions, it is necessary to introduce a finite PDF parametrization, for which several
choices are possible.

A goodness-of-fit measure can be defined as

χ2 =

Ndat∑
i,j

(di − d̄i)V −1
ij (dj − d̄j) , (2.3.4)

d̄i are data, di theoretical predictions, Ndat is the number of data points and Vij is the experi-
mental covariance matrix.

2.3.2 Parton parametrization

Apart from the functional form and the number of parameters employed, all existing parametriza-
tions differ in the choice of individual linear combinations of PDFs which are parametrized. Once



2.4. Computation of Statistical Uncertainties 12

a suitable set of basis PDFs has been chosen, a standard choice for the functional form, adopted
by most PDF fitting groups, is to assume that at some reference scale Q2

0

fi(x,Q
2
0) = N xαi (1− x)βi gi(x) , (2.3.5)

where gi(x) tends to a constant for x → 0 and x → 1 and usually is a polynomial or the ex-
ponential of a polynomial in x or

√
x. Typical contemporary PDF sets based on this choice of

functional form are parametrized by about 20–30 parameters.

A completely different choice is to parametrize PDFs with a general functional form which
does not incorporate any theoretical prejudice, like neural networks. NNPDF uses multilayer
feed-forward neural networks for PDF parametrization, one for each PDF and all with a fixed
number of parameters (200–300). The form of the parametrization is

fi(x,Q
2
0) = ci(x)NN i(x) , (2.3.6)

where NN i(x) is a neural network, and ci(x) is is a preprocessing function. The fit parameters
are the ones which determine the shape of the NN. The preprocessing function is not fitted, but
rather chosen randomly in a space of functions of the general form (2.3.5) within some acceptable
range of the parameters αi and βi, and with gi = 1.

2.4 Computation of Statistical Uncertainties

Due to the different choices of parametrizations and determination procedures performed by the
various groups, there are many ways to compute Statistical Uncertainties, of which the most
relevant two will be analysed below. The first, the Hessian approach, is based on the standard
least-squares method, while the second is the Monte Carlo approach, whereby the probability
distribution of PDFs is given by assigning a Monte Carlo sample of Nrep PDF replicas.

2.4.1 The Hessian approach

This approach is mostly applied when the parametrization has a small number of parameters.
It makes the assumption that the probability distribution in the space of parton distributions is
a multi-Gaussian in the space of parameters.

Starting with a parametrized function of the form of equation (2.3.5), the best fit is the point
in parameter space at which χ2 is minimum, while PDF uncertainties are found by diagonalizing
the Hessian matrix of second derivatives of the χ2 at the minimum and then determining the
range of each orthonormal eigenvector which corresponds to a prescribed increase of the χ2

function with respect to the minimum. For Gaussian uncertainties, the 68% (or 1σ) confidence
level corresponds to the volume enclosed by the χ2 = χ2

min + 1 surface.
This is called the Hessian method, because the confidence level is entirely determined by the

covariance matrix in parameter space, which is the inverse of the (Hessian) matrix of second
derivatives of the χ2 with respect to the parameters, evaluated at the minimum.

In general, the variation of the χ2 which corresponds to a 68% confidence (one sigma) should
be ∆χ2 = 1. However, a larger variation ∆χ2 = T 2, with T > 1 a tolerance parameter, is
sometimes used for more realistic error estimates for fits containing a wide variety of input data.

PDF uncertainties on any observable that depends on the PDFs (and on the PDFs them-
selves), are then simply found by adding in quadrature the variation by a fixed amount along
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the direction of each eigenvector. So in a Hessian approach one delivers a central set of PDFs
S0, and Npar 1σ error sets Si, corresponding to the variation of each eigenvector in turn.

Therefore the best value of any quantity F (S) which depends on the PDF set, and its 1σ
uncertainty, are respectively1

F0 = F (S0) , (2.4.1)

σF =

√√√√Npar∑
i=1

[F (Si)− F (S0)]2 . (2.4.2)

The most significant drawback of this whole procedure is that Hessian diagonalization may run
out of hand as the number of parameters grows.

2.4.2 The Monte Carlo approach

Within the Monte Carlo approach, the probability distribution of PDFs is given by determining
a Monte Carlo sample of Nrep PDF replicas Sk. Any feature of the probability distribution can
be determined from the sample. Thus, the best value of any function of the PDF set F (S) is
now computed as the mean over the replica sample and the 1σ interval as a standard deviation:

F0 =
1

Nrep

Nrep∑
k=1

F (Sk) , (2.4.3)

σF =

√√√√Npar∑
i=1

1

Nrep − 1
[F (Si)− F (S0)]2 . (2.4.4)

The main advantages of the Monte Carlo method are the possibility to handle a large number
of parameters in the parametrization and the lack of a priori assumptions on the form of the
probability distribution in parameter space, which is not required to be a Gaussian as in the
Hessian approach.

Among the multiple possible ways of building a sample, one may choose to construct a Monte
Carlo representation of the starting data sample. In other words the sample is constructed in
such a way that, in the limit Nrep → ∞, the central value of the i-th data point 〈di〉 is equal
to the mean over the Nrep values that the i-th point takes in each replica dki , the uncertainty of
the same point is equal to the variance over the replicas, and the correlations between any two
original data points is equal to their covariance over the replicas, namely

〈di〉 ≡
1

Nrep

Nrep∑
k=1

dki , (2.4.5)

covij ≡
1

Nrep − 1

Nrep∑
i=1

Nrep∑
j=1

(
dki − 〈di〉

)(
dkj − 〈dj〉

)
. (2.4.6)

From each data replica, a parton distribution is constructed by minimizing a χ2 function. PDF
central values, uncertainties and correlations are then computed by taking means, variances and
covariances over this replica sample.

1Actually, the formula which is often used is somewhat more complex in order to account for asymmetric
uncertainties.



Chapter 3

Theoretical Uncertainties

Whenever performing an experiment, such as at LHC, we compare measurements to theoretical
calculations and try to find out if they match or not. If they do, we also need to determine
with what degree of confidence this statement can be made. If the theory was exact, an interval
would be provided around the true theoretical value inside which there is a certain probability
(e.g. 68%, 95,4%, 99.7%) for data to be observed. One could then check whether or not the
experimental value would lie within that interval.

However, in practice the theory is perturbative in most cases (as Quantum Chromodynamics),
which means that theoretical predictions are perturbative series of which only the first terms are
known. In this case, a full control of the uncertainty of these predictions becomes of paramount
importance, as both the experiment and the theory need to be provided with a meaningful
degree of uncertainty in order to determine their agreement. In QCD the issue of theoretical
accuracy is pressing, due to the large size of the coupling αS and therefore its slow perturbative
convergence.

Theoretical predictions in QCD contain multiple inputs that must be ultimately extracted
from experimental data, like PDFs and the value of αS , each of which brings an unavoidable
source of uncertainty (the Statistical Uncertainty). This kind of uncertainty has been studied
in detail during the past several years. A separate issue is the meaning of the Theoretical
Uncertainty, given by unknown higher orders in perturbation theory.

3.1 Perturbative Series in QCD

For definiteness, consider the perturbative calculation for the cross section of a process taking
place at a hard scale Q1:

σ(Q) =

∞∑
n=0

cn(Q,µ)αnS(µ) , (3.1.1)

where µ is an unphysical momentum scale, and the coupling αS(µ) evolves according to the
DGLAP equations. When no dependence is given explicitly, the coefficients and the coupling
will be considered at a scale µ = Q:

σ(Q) =
∞∑
n=0

cn(Q,Q)αnS(Q) =
∞∑
n=0

cnα
n
S . (3.1.2)

1QCD series are not convergent but simply asymptotic. However, since the asymptotic behaviour is supposed
to kick in at high perturbative order, the place of true sum of the series can be taken by its asymptotic value,
calculated with an appropriate prescription.
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Given cn ≡ cn(Q,Q), it is always possible to reinstate the full µ dependence and determine
cn(Q,µ) ([13] appendix A).
Since theoretical calculations for QCD cross section are known up to a perturbative order k, it
is useful to define the partial sum as

σk(Q,µ) ≡
k∑

n=0

cn(Q,µ)αnS(µ) , (3.1.3)

(or σk ≡
∑k

n=0 cnα
n
S for µ = Q) and the remainder of the series as

∆k ≡
∞∑

n=k+1

cnα
n
S . (3.1.4)

3.2 Scale variation

The most common way to estimate the effects of the unknown higher order contributions in QCD
perturbative series is the scale variation method, which consists in studying the variation of the
series with unphysical momentum scales. This variation usually involves the renormalisation
scale µR, on which the strong coupling constant αS depends, and the factorisation scale µF , at
which one performs the matching between the perturbative calculation of the matrix elements
and the non-perturbative part which resides in the parton distribution functions.

As already remarked above, the dependence on these scales is not physical: when all orders
of the perturbative series are summed, the observables are scale independent. The reason why
cross sections or distributions do depend on the scale is that they are truncated, as only their
few first orders are evaluated in practice. This dependence can thus serve as a guess for the
impact of the higher order contributions.

The start point for the momentum scale Q is usually considered as the most natural scale of
the process, for instance the Higgs mass mH in the case of Higgs production cross section. The
current convention is to vary the two scales within the range (as discussed in [12])

Q

κ
≤ µR, µF ≤ κQ , (3.2.1)

with the constant factor κ to be determined. Then the deviation δk of a cross section σ(µR, µF )
from the central value evaluated at scales µR = µF = Q is computed:

σ+
k = max

(µR,µF )
σk(Q,µR, µF ) , (3.2.2)

σ−k = min
(µR,µF )

σk(Q,µR, µF ) , (3.2.3)

δk = σ+
k − σ

−
k . (3.2.4)

The choice of the parameter κ is rather subjective, but it has become quite customary to fix
κ = 2, even if much larger values are sometimes adopted, depending on the rate of convergence
of the series.

Furthermore, there are several ways to treat the variation of the scales in the range of
Equation (3.2.1). For example, µR and µF can be considered as independently varying in this
domain, with possibly some constraints such as 1/κ ≤ µR/µF ≤ κ in order not to generate
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artificially large logarithms. Otherwise, one of the two scales can be kept fixed, say to Q, let-
ting the other scale vary in the chosen domain. Another possibility is to equate the two scales,
Q/κ ≤ µR = µF ≤ κQ.

The reason why this simple procedure can often work is that, under certain circumstances,
the size of δk can be similar to the size of ∆k. One can indeed show that ([13] appendix A)

δk =

∣∣∣∣ dσ

d lnµ2
R

∣∣∣∣
µR=Q

[ln(κQ)2 − ln(Q/κ)2] +O(ln2Q2) ' 4 lnκ kβ0α
k+1
S |ck| . (3.2.5)

Equality (3.2.5) is obtained by making the assumption that all the coefficients in the series
share the same magnitude and that αS is reasonably small. Under these same hypotheses (and
therefore |ck+1| ' |ck|), the remainder of the series ∆k can be approximated by the first unknown
term, and hence δk:

|∆k| ' αk+1
S |ck+1| ∼ δk . (3.2.6)

Tests with partially known perturbative calculations in QCD have shown that this kind of
estimate for the theoretical uncertainty is reasonably successful in predicting the range in which
a higher order result will fall. In spite of that, the limitation of this conventional approach is
that, even if the hypothesis |ck+1| ' |ck| is correct and therefore δk correctly describes the size
of the remainder of the series2, there is no way of determining with how much confidence it does
so.

3.3 The Cacciari-Houdeau Method

The main shortcoming of the scale variation is that it does not provide the degree of belief of the
resulting uncertainty bands. In other words, it does not associate a value to the probability that
the uncertainty band contains the true sum of the series. This lack of a proper characterization
makes it also difficult to combine theoretical uncertainties with other sources of uncertainties,
like the value of αS and the statistical uncertainty on PDFs discussed in Section 2.4. As a result,
it appears to be impossible to rigorously assess the degree of belief that an experimental result
may agree or not with theory and hence to confidently guess the discovery of new physics.
The Cacciari-Houdeau Method [13] aims to provide theoretical uncertainty with a well defined
credibility measure, so that the degree of belief of a given interval can be explicitly calculated.

To achieve this goal, the method makes use of the Bayesian probability (also called subjective
probability or degree of belief or credibility), which needs to be distinguished from the frequentist
probability. The two concepts share the same mathematical formalism, but are nonetheless dis-
tinct. Bayesian probability is not linked to an infinite number of realizations of an experiment.
It deals with a particular question, which may or may not be about the result of one particular
realization of a given experiment, and the consequences of the information one considers about
its possible answer. This information is not necessarily rigorous or “true” in any way, but its
treatment, once translated mathematically into the so called priors and likelihoods, is.

A distribution of frequentist probability (or, for instance, its variance) gives a measure of
the reproducibility of an experiment. Conversely, a credibility distribution conveys information
about the uncertainty of the answer to a question, such as the result of one particular realization

2As argued in Chapter 4, this approximation turns out to be inappropriate in the case of Higgs cross section.
A possible solution to that is given in Section 4.4.
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of an experiment, prior to its execution. The variables appearing in a frequentist probability
distribution are commonly denoted as random variables, since they take different values in dif-
ferent realizations of the experiment. We call instead uncertain variables the ones in a credibility
distribution, to better make the distinction with the former ones: their values are not random
(each of them being a single number), but simply unknown.

Clearly, the uncertainties can only be interpreted in the latter sense: the true value is unique,
and not random.

3.3.1 Model hypotheses

For what concerns a generic perturbative series, the uncertain variables are the a priori unknown
coefficients c0, c1, . . . . A density function f(c0, c1, . . . ) is then defined over the space of the
coefficients, whose constraints are normalization and the possibility of extracting one or more
parameters: ∫

f(c0, c1, . . . ) dc0 dc1 · · · = 1 , (3.3.1)

f(c0, . . . , ci−1, ci+1, . . . ) =

∫
f(c0, . . . , ci−1, ci, ci+1, . . . ) dci , (3.3.2)

f(c0, c1, . . . , ck) =

∫
f(c0, c1, . . . ) dck+1 dck+2 . . . . (3.3.3)

Since the final target is to get information on the unknown remainder of the series ∆k, given
the first k known coefficients f(∆k|c0, . . . , ck), a conditional density needs to be introduced. For
example, the density over the still unknown coefficient ck+1, according to the standard rule,
would read

f(ck+1|c0, . . . , ck) =
f(ck+1, c0, . . . , ck)

f(c0, . . . , ck)
. (3.3.4)

The model rests then on the following four hypotheses:

Upper bound

The first assumption, coherent with the observations made for the scale variation in Section 3.2,
is that successive perturbative coefficients of a series have similar magnitudes, so that they can
all share some sort of upper bound c̄ > 0 to their absolute values, specific to the physical process
studied. The known coefficients will then give an estimate of c̄, restricting the possible values for
the unknown coefficients cn for n > k. Therefore, the set of uncertain variables that constitute
the space on which the credibility measure is defined is made of this parameter c̄ and all of the
unknown coefficients

Residual uncertainty

Another assumption is that, knowing the parameter c̄ in advance, the residual density for the
value of an unknown coefficient is a uniform distribution,

f(cn|c̄) =
1

2c̄
χ|cn|≤c̄ , (3.3.5)

where χA is the characteristic function of a set A. It might be more appropriate to choose
a density function that does not vanish anywhere, like a Gaussian distribution of mean zero
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and standard deviation c̄, but it can be shown that the general behaviour of the results is not
significantly modified by this choice.

Shared information and independence

The parameter c̄ is required to be the only one that models information which is shared by all
coefficients. As a result, as soon as c̄ is known, the residual uncertainties on the values of two
coefficients cn and cm are totally independent, so that for a set of coefficients {ci} the joint
density is simply the product of the marginal densities:

f({ci}, i ∈ I|c̄) =
∏
i∈I

f(ci|c̄) . (3.3.6)

The value of c̄ corresponds to the maximal knowledge that can be extracted from the known
coefficients c0, . . . , ck in order to predict the possible values of the unknown ones.

Hidden parameter

The value of c̄ is “hidden” in the knowledge of the cn: as long as none of the coefficients has been
calculated, the only assumption we can make is that it is a positive real number, and that all
values for its order of magnitude are equally probable. To implement this in practice a density
for its logarithm is defined as the limit of a uniform distribution between | ln ε| and −| ln ε| for
ε→ 0:

fε(ln c̄) =
1

2| ln ε|
χ| ln c̄|≤| ln ε| ⇔ fε(c̄) =

1

2| ln ε|
1

c̄
χε≤c̄≤1/ε . (3.3.7)

All the calculations which lead to the results in section 3.3.2 will be performed keeping ε 6= 0
until the end, computing the limit ε → 0 afterwards. The vanishing of a density in this limit
would mean that we do not have enough information to make any guess about the result.

These four hypotheses define completely the credibility measure over the whole space of a priori
uncertain variables {c0, c1, . . . }. They also define every possible inherited measure on a subspace
associated with a physical process whose the first k coefficients are known.

3.3.2 Model Outcomes

Let us consider now a perturbative series starting at n = l. Using the four hypotheses in
Section 3.3.1, and defining c̄(k) ≡ max(|cl|, . . . , |ck|), the conditional density for the remainder
∆k can be finally obtained (see [13] for a complete derivation):

f(∆k|cl, . . . , ck) =

∫ [
δ

(
∆k −

∞∑
n=k+1

αnScn

)]
f(ck+1, ck+2, . . . |cl, . . . , ck) dck+1 dck+2 . . . .

(3.3.8)
This expression is too complicated to be handled analytically, even in the case of the simple
choice of density in Equation (3.3.5) for the coefficients. However, making the approximation of
Equation (3.2.6) which was valid for the scale variation method,

|∆k| ' αk+1
S |ck+1| , (3.3.9)
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and introducing the number of known coefficients nc = k + 1− l, one can obtain

f(∆k|cl, . . . , ck) '
(

nc
nc + 1

)
1

2αk+1
S c̄(k)


1 if |∆k| ≤ αk+1

S c̄(k)

1
(|∆k|/(αk+1

S c̄(k)))
nc+1

if |∆k| > αk+1
S c̄(k)

. (3.3.10)

This result depends on the entire set of the calculated coefficients via the parameter c̄(k) =
max(|cl|, . . . , |ck|). The knowledge of f(∆k|cl, . . . , ck) allows one to calculate the smallest p-

credible interval for ∆k. Since it is centred at zero, it will be denoted by [−d(p)
k , d

(p)
k ]. It is

defined implicitly by

p =

∫ d
(p)
k

−d(p)k

f(∆k|cl, . . . , ck)d∆k . (3.3.11)

Finally, using the analytical approximation in Equation (3.3.10), it can be shown that

d
(p)
k =

 αk+1
S c̄(k)

nc+1
nc

p if p ≤ nc
nc+1

αk+1
S c̄(k) [(nc + 1)(1− p)]−1/nc if p > nc

nc+1

, (3.3.12)

where, of course, p ≡ P/100 and P is a number between 0 and 100.

3.4 Example: PDFs

Now that we have a tool that allows us to assign a meaningful degree of belief to theoreti-
cal uncertainty estimates, we may want to try it on Parton Distribution Functions defined in
Chapter 2. To do so, we make the assumption that PDFs are perturbative series in αS :

fLO(x) = c0(x) , (3.4.1)

fNLO(x) = fLO(x) + c1(x)αS , (3.4.2)

fNNLO(x) = fNLO(x) + c2(x)α2
S , (3.4.3)

where f(x) is a generic PDF. Since the lhapdf interface provides parton distributions to any
order for each flavour, once the coefficients c0, c1, c2 are computed, Equation 3.3.12 can be used
to derive the p credible uncertainty interval around the k order value. In the next plots Cacciari-
Houdeau 1σ (68.27%) relative uncertainties (i.e. divided by the PDF values) are plotted, together
with the relative statistical uncertainties and, when possible, with the relative difference between
the next-order and the current-order exact value. All flavours have been studied at Q = 100
GeV and for αS(MZ) = 0.118. The Gluon PDF in particular, obtained with NNPDF 2.3 and
MSTW2008, is shown and discussed in more detail, as an example for all the other flavours.
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Figure 3.1: LO uncertainties on gluon PDF.

3.4.1 Leading Order

At LO the theoretical uncertainty can only be fixed, as c̄(k)(x) ≡ c0(x), and from Equation

in 3.3.12 we can see that dividing by fLO(x) = c̄(k)(x) it ends up being proportional to αS ,
which is constant because Q = 100 GeV. Even if computing the Cacciari-Houdeau theoretical
uncertainty with only one known coefficient might not seem a sensible way to proceed, the
next-order (NLO) lies within the LO uncertainty band for most of the x interval considered.
Theoretical uncertainty is at this level much higher than statistical uncertainty, meaning that
the error which comes from error propagation during the PDF extraction can be neglected in
comparison to the uncertainty arising from higher terms in the perturbative series.
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Figure 3.2: NLO uncertainties on gluon PDF.

3.4.2 Next to Leading Order

With two coefficients available, the NLO theoretical uncertainty is not flat anymore. The NNLO
PDF stays completely inside the C-H interval, as the red line in Figure 3.2 lies almost always
below the blue one. Furthermore, theoretical and statistical uncertainties are now of the same
size, as one might have expected.

In fact, there is no reason for the relative statistical uncertainty to significantly change with
the perturbative order, since its computation, as described in Section 2.4, only reflects error
propagation of experimental data. Theoretical uncertainty, instead, varies with the order, and
in particular it should decrease with increasing perturbative orders if the perturbative expansion
converges (strictly or asymptotically)
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Figure 3.3: NNLO uncertainties on gluon PDF.

3.4.3 Next to Next to Leading Order

As anticipated in Section 3.4.2, the theoretical uncertainty decreases as the perturbative order
increases, until at NNLO it becomes much smaller than the statistical uncertainty. Since N3LO
PFDs do not exist, there is no way of checking their compatibility with the 1σ C-H NNLO
uncertainty interval. However, if all the assumptions made in Section 3.3.1 are sensible, it is
possible now to quantify how much would PDFs change if there was a N3LO PDF set: up to a
maximum of ∼ 0.1% for reasonable values of x. For completeness, in Figure 3.4 and 3.5 NLO
plots are delivered for all flavours (top excluded because too heavy for Q = 100 GeV) in both
logarithmic and linear scale.
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Figure 3.4: NLO uncertainties on PDFs (NNPDF 2.3) of all flavours in logarithmic scale.
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Figure 3.5: NLO uncertainties on PDFs (NNPDF 2.3) of all flavours in linear scale.
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3.4.4 Choice of the expansion parameter αS

In Equations 3.4.2 and 3.4.3, as well as in the Cacciari-Houdeau final formula 3.3.12, we make
use of the strong coupling αS . Actually, αS is not a constant, but rather it depends on the
energy Q and it evolves through the DGLAP perturbative equations.

There are several possible choices for alphaS(Q) evolution: one could decide, for example, to
let the strong coupling evolve at the same order as the PDF considered, so that the computation
of theoretical uncertainty and of the cn coefficients would be performed with an αS which evolves
consistently with PDFs and with the way PDF themselves are determined.

However, in this work the decision is made to let always αS evolve according to the NNLO
DGLAP equations. By considering the highest known perturbative order of the DGLAP equa-
tion, it is as if we were always taking the “best” value for αS . This choice will also be made in
Section 3.5 and in Chapter 4

3.4.5 Impact of Statistical Uncertainty

Except for the gluon PDF, which seems to behave very well, the quark PDFs in Figure 3.4 have
a |NNLO − NLO| shift that is, at low x, larger than the theoretical uncertainty bands. The
straightforward explanation is that, especially for quarks, the region where most of the data for
PDF determination are available is around from ∼ 10−2 to ∼ 0.5. Within this range, the NNLO
PDFs do stay inside the NLO + 1σ bands in almost every case. Away from this region, though,
statistical uncertainties become so large that the mean can fluctuate wildly, so that the NNLO
PDF can be extremely different from the NLO due to statistical fluctuations.

3.5 Example: Parton Luminosities

The results of Section 3.4 give a first indication, but they are not sufficient for a study of the
impact of PDF uncertainty onto the Higgs Cross Section. In fact, the relation between a parton
distribution and a hard cross section is slightly more complicated.

3.5.1 Definition

Starting from equation (2.3.2), one can write

σX(s,M2
X) =

∑
a,b

σ0
ab

∫ 1

τ

dx

x
Lab

(
M2
X

)
Cab

(τ
x
, αS(M2

X)
)
, (3.5.1)

where a parton luminosity Lab(M2
X) between two PDFs of quarks a, b is defined as the following

convolution integral, with τ defined in Equation (2.3.3):

Lab(M2
X) ≡ 1

s

∫ 1

τ

dx

x
fa/h1

(
x,M2

X

)
fb/h2

(τ
x
,M2

X

)
. (3.5.2)

Now, the parton luminosity depends solely on two PDFs, while the hard coefficient functions
Cab depend on the partonic cross sections specific of the process considered. Consequently,
studying theoretical uncertainties on luminosities is a first step towards the isolation of the PDF
dependence of an inclusive cross section. However, a QCD cross section, for instance Higgs
production at LHC, usually depends on more than one luminosity. In our case, gluon fusion is
by far the dominant channel, so that we are mostly interested in the gluon-gluon luminosity.
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3.5.2 Perturbative series

Once again, we have to clarify in what sense parton luminosities are perturbative series in αS .
We assume that the perturbative order of a luminosity corresponds to that of the PDFs of which
it is made of3:

LLO
ab = fLO

a ⊗ fLO
b , (3.5.3)

LNLO
ab = fNLO

a ⊗ fNLO
b , (3.5.4)

LNNLO
ab = fNNLO

a ⊗ fNNLO
b , (3.5.5)

where we denoted with ⊗ the convolution integral of Equation (3.5.2).
With this expression of the luminosity, we are including some interference terms, i.e. higher

order terms such as c1,a c1,b α
2
S at NLO and c1,a c2,b α

3
S + c2,a c1,b α

3
S + c2,a c2,b α

4
S at NNLO.

However, these terms are perturbatively subleading.

3.5.3 Results for MX

Considerations on theoretical uncertainties on luminosities are exactly the same for PDFs, with
the only difference that luminosities are more conveniently expressed as functions of M2

X or,
better,

√
ŝ, the center of mass energy of the partonic collision, instead of the Bjorken scaling

x. Accordingly, they are point by point a perturbative series in αS(M2
X). That is the reason

why, for example, LO theoretical uncertainty is not a flat function. In Figure 3.6 gluon-gluon
luminosities at

√
s = 8 TeV for αS(MZ) = 0.118 are plotted.

Again, the theoretical Cacciari-Houdeau uncertainty is seen to generally decrease for increas-
ing perturbative order, whereas statistical uncertainty remains almost completely unchanged in
shape. The statistical uncertainty is computed4 according to equations (2.4.1), (2.4.2), (2.4.3)
and (2.4.4), being the luminosity a function of the PDFs.

The MSTW set seems to present an unrealistically small shift between NLO and NNLO.
This may be perhaps due to a bias in MSTW PDF determination, which causes NLO to be
almost equal to NNLO, and hence the relative shift to be close to zero.

A Monte Carlo set like NNPDF, instead, is able to reproduce the effect of the raising statis-
tical uncertainty at high

√
ŝ with a consistent increase the shift. The reason why this happens

is that MX is proportional to τ = MX/s, so that in the integral of Equation 3.5.2 higher x
contributions become dominant at large MX , making experimental uncertainties more relevant.

3.5.4 Results for MX = mH

A specific value of MX is taken into account for the gluon-gluon luminosity: the Higgs mass.
Figure 3.7 shows the trend of theoretical Cacciari-Houdeau 1σ uncertainties in gluon-gluon
luminosity at

√
ŝ = mH , while Tables 3.1 and 3.2 present numerical values (multiplied by 103)

together with percent errors and absolute errors.
Looking at the coefficients cn, it is also possible to verify a posteriori the validity of our first

hypothesis, namely that they share the same magnitude. The column Shift indicates the absolute
value of the difference between luminosity computed at successive orders, namely |L(k)−L(k+1)|.
If it is found to be smaller than the error band, it is marked with a 3 in the column Match.

3From now on the trivial M2
X dependence shall be neglected.

4Through a standalone code available on [15].
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Figure 3.6: Gluon-gluon luminosity at
√
s = 8 TeV for both NNPDF23 and MSTW2008.

So far, a new model for theoretical uncertainty estimates has been introduced and tested
on PDFs and on gluon-gluon luminosity. The next step involves studying the cross section
for Higgs production, analysing theoretical uncertainties and, possibly, separating the PDF
contribution from that of the cross section itself. According to Equation (2.3.1) we expect the
PDF contribution to have a similar trend to that of gluon-gluon luminosity, being gluon fusion
the dominant channel in Higgs production.
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Table 3.1: NNPDF2.3 αS(mZ) = 0.118 gluon-gluon luminosity at mH .

L Val cn Error(%) Error Shift Match

LO 8.45359 8.45359 17.735% 1.49924 0.250997 3

NLO 8.2026 -2.2301 1.33806% 0.109756 0.0916264 3

NNLO 8.11097 -7.23321 0.135259% 0.0109708

Table 3.2: MSTW2008 gluon-gluon luminosity at mH .

L Val cn Error(%) Error Shift Match

LO 7.66734 7.66734 17.6016% 1.34957 0.290847 3

NLO 7.95819 2.60375 1.23214% 0.0980557 0.00365731 3

NNLO 7.96185 0.293111 0.122177% 0.00972754

LO NLO NNLO

3
g

g
 L

u
m

in
o

s
it
y
 *

 1
0

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

NNPDF23 GluonGluon LuminosityNNPDF23 GluonGluon Luminosity

LO NLO NNLO

3
g

g
 L

u
m

in
o

s
it
y
 *

 1
0

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

MSTW2008 GluonGluon LuminosityMSTW2008 GluonGluon Luminosity

Figure 3.7: Gluon-Gluon luminosity series at MX = mH for both NNPDF 2.3 and MSTW2008.



Chapter 4

Theoretical Uncertainties on Higgs
Cross Section

Armed with a tool capable of assigning a meaningful degree of belief to theoretical uncertainty
estimates, we can now test it on the Higgs production cross section. Predictions for the series
are obtained through the use of two codes: ggHiggs [16] and iHixs [17], each of which performs
calculations on any required PDF set. After having checked that the two results are in good
agreement, either of them could be used in principle, but the former is preferred as it also
provides an approximate N3LO cross section.

The PDF impact on the cross section is then isolated and analysed. The reason why this is
important is that, although the exact N3LO Higgs cross section will soon be available, a N3LO
for splitting functions, and thus N3LO parton distributions are unlikely to be available in the
forthcoming future. So, a crucial issue is whether or not it is reasonable to use NNLO PDF sets
to compute N3LO cross section, and what could the effects be on the final result. If the PDF
contribution to the theoretical uncertainty at the highest known order is negligible, then a N3LO
PDF is not urgently required.

After that, the NNLO PDF set is selected and the perturbative cross section examined. The
pure Cacciari-Houdeau method turns out to be insufficient in order to estimate the remainder
of the series, as the most important model hypothesis is manifestly violated. So, a modified
version of the model is introduced where the expansion parameter does not necessarily have to
be αS . The choice of the new parameter will lead in Section 4.4 to interesting considerations on
the structure of the series itself.

Then, the outcomes of this new model are compared and contrasted to those of the standard
scale variation method, so as to provide another proof of the validity of the former.

Finally, in order to determine the effective PDF influence, its uncertainty needs to be com-
pared with the theoretical uncertainty which only arises from the perturbative nature of the
partonic cross sections, at a fixed PDF. This comparison will eventually determinate the impact
of theoretical uncertainties on PDFs on the Higgs cross section.

4.1 ggHiggs and iHixs

The two codes are able to compute the cross section for the inclusive Higgs production at hadron
colliders, with full top mass dependence.
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Figure 4.1: Comparison between ggHiggs and iHixs using the NNLO PDF.

• iHixs incorporates QCD corrections through NNLO, real and virtual electroweak correc-
tions, mixed QCD-electroweak corrections, quark-mass effects through NLO in QCD, and
finite width effects for the Higgs boson and heavy quarks [17].

• ggHiggs can compute the N3LO using an approximation based on a combination of opti-
mized soft-collinear and high-energy behaviours [16].

Before any consideration on theoretical uncertainties we check that, once we use the same PDF
set for both, results are consistent. Tests have been made for many sets at all orders and they
all indicate the same good agreement. Actually, iHixs cross section is always found to be slightly
larger than ggHiggs, but the differences compensate when computing the coefficients cn. The
plot in Figure 4.1 compares the cross sections obtained by the two programs using the NNLO
PDF1.

In order to avoid confusion, from now on k shall denote the order of a perturbative series σk
like that of Equation (3.1.2), while LO, NLO and NNLO will indicate the orders of the PDF set
used for its computation.

4.2 Fixed Cross Section

In Section 3.5 it was claimed that theoretical uncertainties on gluon-gluon luminosity at mH

should represent a good estimate of the impact of theoretical uncertainties on PDFs on Higgs
cross section. However, gluon-gluon, though dominant, is not the only luminosity involved in
the perturbative calculations. In order to completely isolate the PDF dependence, a possible

1From now on only the NNPDF 2.3 αS = 0.118 shall be used.
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Table 4.1: Results at fixed Cross Section for 0 ≤ k ≤ 3.

k = 0

PDF Val cn Error(%) Error Shift Match

LO 6.39913 6.39913 17.735% 1.13488 0.189493 3

NLO 6.20964 -1.68364 1.33796% 0.0830822 0.069221 3

NNLO 6.14041 -5.46447 0.135245% 0.00830458

k = 1

PDF Val cn Error(%) Error Shift Match

LO 14.6134 14.6134 17.735% 2.59169 0.514332 3

NLO 14.0991 -4.56981 1.3457% 0.189731 0.154298 3

NNLO 13.9448 -12.1807 0.135999% 0.0189648

k = 2

PDF Val cn Error(%) Error Shift Match

LO 19.9084 19.9084 17.735% 3.53076 0.791253 3

NLO 19.1172 -7.03025 1.35207% 0.258478 0.198223 3

NNLO 18.919 -15.6482 0.136564% 0.0258365

k = 3

PDF Val cn Error(%) Error Shift Match

LO 23.2317 23.2317 17.735% 4.12013 0.944764 3

NLO 22.2869 -8.39419 1.35337% 0.301625 0.214529 3

NNLO 22.0724 -16.9354 0.136593% 0.0301493
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Figure 4.2: Fixed Cross Section for 0 ≤ k ≤ 3.
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way to proceed is to look at how the cross section at a fixed k changes with the order of the
PDF set.

This way, since the partonic cross section σ̂ at a given k is constant, the three terms obtained
by varying the PDF order only differ due to the effects of the PDF sets, see Equation (2.3.1).
If these terms are now viewed as a perturbative series in αS starting at l = 0, theoretical
uncertainties on this series represent without any doubt the isolated impact of the PDFs on the
Higgs cross section. In practice, we define

σLO|k=cost = c0 , (4.2.1)

σNLO|k=cost = c0 + c1 αS , (4.2.2)

σNNLO|k=cost = c0 + c1 αS + c2 α
2
S , (4.2.3)

where, as discussed in Section 3.4.4, αS is always assumed to evolve at NNLO.
The computation of theoretical uncertainties is again performed using Equation (3.3.12), and

the results for the NNPDF 2.3 set are plotted in Figure 4.2. As expected, the global shape is
observed not to change much with k, as it reflects the influence of the PDF, which is independent
of the cross section order. Furthermore, the plot is similar to that of the gluon-gluon luminosity
in Figure 3.7, meaning that our assumption at the very end of Chapter 3 was well founded. In
Table 4.1 numerical results are given, proving that the model prediction on known orders are
well satisfied.

Looking at the results, the question raised at the beginning of this Chapter might be better
understood, namely if and how it is wise to compute N3LO cross sections with NNLO PDF set.
As a matter of fact, the PDF contribution to the Higgs cross section theoretical uncertainty at
the last known PDF order is ≈ 0.1366%. This is the uncertainty that needs to be taken into
account when performing such a computation. This is a small correction, however the relevant
question is how small it is in comparison to the uncertainty on the cross section itself.

4.3 Fixed PDF

Now that the PDF impact has been computed, we can focus on the proper Higgs production cross
section: a PDF set is chosen and theoretical uncertainties on σk are determined. Unfortunately,
by naively applying the Cacciari-Houdeau formula (3.3.12) one gets an undesirable result. As
shown in Figure 4.3, C-H intervals do not include the following order and, a fortiori, they are
not capable of reliably predict the remainder of the series ∆k.

Jumping to hasty conclusions, one may think that this proves that the model is inefficient or
not suitable for this kind of perturbative series. Nevertheless, the reason of this apparent failure
is soon explained when looking at Table 4.2. We have seen in Section 3.3.1 that the hypothesis
on which the whole approach relies is that the coefficients cn are all more or less of the same
size, but for the Higgs production cross section this is evidently false, as the coefficients seem
to gain a factor of almost 10 at each order. If we rejected that hypothesis in the first place,
however, Equation (3.2.6) would not stand anymore, the remainder of the series ∆k could not
be approximated to the first unknown term ck+1 α

k+1
S and the density (3.3.4) would be of little

help. However, we may question on the choice of the perturbative parameter.
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Table 4.2: Fixed PDF results for l = 0, expansion parameter αS .

LO PDF

k Val cn Error(%) Error Shift Match

0 6.39913 6.39913 17.735% 1.13488 8.2143 7

1 14.6134 72.9837 6.48426% 0.947573 5.29501 7

2 19.9084 418.001 2.72481% 0.542467 3.32322 7

3 23.2317 2330.91 1.37391% 0.319182

NLO PDF

k Val cn Error(%) Error Shift Match

0 6.20964 6.20964 17.735% 1.10128 7.88946 7

1 14.0991 70.0975 6.45503% 0.910101 5.01809 7

2 19.1172 396.14 2.68919% 0.514097 3.16971 7

3 22.2869 2223.23 1.36599% 0.304437

NNLO PDF

k Val cn Error(%) Error Shift Match

0 6.14041 6.14041 17.735% 1.089 7.80439 7

1 13.9448 69.3416 6.45607% 0.900287 4.97416 7

2 18.919 392.672 2.69358% 0.509597 3.15341 7

3 22.0724 2211.8 1.37217% 0.302871

k = 0 k = 1 k = 2 k = 3

In
c
lu

s
iv

e
 C

ro
s
s
 S

e
c
ti
o

n

4

6

8

10

12

14

16

18

20

22

24

Fixed PDFs (NNLO)  l = 0Fixed PDFs (NNLO)  l = 0

Figure 4.3: Cross Section with NNLO PDF for l = 0, expansion parameter αS .
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4.4 The parameter λ

So far, every perturbative series has been treated assuming the expansion parameter to be αS ,
the natural parameter in QCD calculations. Still, we may rewrite Equation (3.1.2) as

σk =
k∑
n=l

cn α
n
S =

k∑
n=l

cn
λn

(λαS)n , (4.4.1)

where l is again the starting order. This corresponds to a redefinition of the coefficients cn into

c′n =
cn
λn

. (4.4.2)

But how do we choose λ? In principle, there may be theoretical arguments which suggest that
the natural parameter differs from αS by a constant, such as αS

2π . Lacking such an argument, we
determine λ by the requirement that we will eventually get coefficients c′n all of the same size.

The easiest way to do so is a fit to a distribution where c′n = κ ∀n, with κ constant.
Specifically, a two parameter fit is performed with root in order to extract κ and λ from the
known cn of Equation (3.1.2), by demanding that

cn = κλn . (4.4.3)

The λ thus obtained is then substituted into Equation (4.4.2), in order to determine the coef-
ficients c′n, because, even if they were all supposed to be = κ, it is reasonable to expect some
fluctuations due to errors within the fitting procedure.

Figure 4.4 shows a logarithmic plot of the coefficients cn together with the best fit function,
while Table 4.3 displays numerical results for λ, their uncertainty due to the fit, and the goodness-
of-fit χ2, for all the PDF sets. Surprisingly, the fit is found to be extremely accurate, as if the
cn were originally distributed according to Equation (4.4.3). In spite of that, the errors on λ are
almost ten times larger than λ. As it can be seen from the plot, this is due to the fact that c0

is quite different from the value predicted by the fit.
The λ extracted from the fit can be now used to compute theoretical uncertainties by placing

λαS instead of αS in Equation (3.3.12). The results, shown in Table 4.5 and Figure 4.3, are
encouraging, since the shift is actually of the same size as the uncertainty band, which is found
to be ≈ 7.75% for k = 3 and NNLO PDF, about 50 times larger than the contribution coming
from PDF theoretical uncertainties.

4.5 Series starting at l = 1

The parameter λ extracted in Section 4.4 provides satisfactory estimates for theoretical uncer-
tainties. However, we have seen that the hypothesis that all coefficients follow Equation (4.4.3)
is not well satisfied by c0. We may thus make the weaker assumption that

σk = σ0(1 + σ̃k), σ̃k =

k∑
n=1

dn α
n
S =

k∑
n=1

d′n (λαS)n , (4.5.1)

where all dn are of similar order, but not of order 1.
This hypothesis is much better satisfied: the value of λ does not change much from Table 4.3,

but the error decreases by a factor of ∼ 104 and the χ2 is about ten times smaller. One may
wonder how this behaviour of the coefficients depends on µR. It turns out that if one plots
the χ2 of the coefficient fit at different µR, it has a manifest minimum at ≈ 0.995mH , Fig 4.6.
Table 4.6 and Figure 4.7 show theoretical uncertainty estimates for σ̃k when λ = 1.
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Table 4.3: λ values for σk, l = 0.

PDF λ Error χ2

LO 5.59287 51.8111 0.0649917
NLO 5.62215 40.2395 0.0607445
NNLO 5.64197 38.5645 0.0602181

Table 4.4: λ values for σ̃k, l = 1.

PDF λ Error χ2

LO 5.58483 0.084437 0.0238018
NLO 5.61446 0.00546015 0.00622921
NNLO 5.63439 0.00324891 0.00481135
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Figure 4.4: Coefficients cn fitted as κλn.
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Table 4.5: Fixed PDF results for l = 0, expansion parameter λαS .

LO PDF

k Val c′n Error(%) Error Shift Match

0 6.39913 6.39913 99.1894% 6.34726 8.2143 7

1 14.6134 13.0494 36.2657% 5.29966 5.29501 3

2 19.9084 13.3631 15.2395% 3.03395 3.32322 7

3 23.2317 13.3235 7.70689% 1.79044

NLO PDF

k Val c′n Error(%) Error Shift Match

0 6.20964 6.20964 99.7087% 6.19155 7.88946 7

1 14.0991 12.4681 36.2912% 5.11673 5.01809 3

2 19.1172 12.5326 15.119% 2.89033 3.16971 7

3 22.2869 12.5106 7.69338% 1.71462

NNLO PDF

k Val c′n Error(%) Error Shift Match

0 6.14041 6.14041 100.06% 6.14411 7.80439 7

1 13.9448 12.2903 36.425% 5.07939 4.97416 3

2 18.919 12.3358 15.1971% 2.87513 3.15341 7

3 22.0724 12.3155 7.75452% 1.71161
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Figure 4.5: Cross Section with NNLO PDF for l = 0, expansion parameter λαS .
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Figure 4.6: µR/mH dependence of χ2.
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Table 4.6: Fixed PDF results for l = 1, expansion parameter λαS .

LO PDF

k Val d′n Error(%) Error Shift Match

1 1.28366 2.04218 99.0469% 1.27142 0.827458 3

2 2.11112 2.09428 25.2514% 0.533087 0.519324 3

3 2.63044 2.09109 11.3133% 0.29759

NLO PDF

k Val d′n Error(%) Error Shift Match

1 1.27052 2.01061 99.5724% 1.26509 0.808113 3

2 2.07863 2.02379 25.1794% 0.523386 0.510451 3

3 2.58908 2.02299 11.3447% 0.293725

NNLO PDF

k Val d′n Error(%) Error Shift Match

1 1.27099 2.00424 99.9257% 1.27004 0.810069 3

2 2.08106 2.01437 25.3004% 0.526515 0.51355 3

3 2.59461 2.01376 11.4287% 0.296529
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Figure 4.7: Cross Section with NNLO PDF for l = 1, expansion parameter λαS .
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Figure 4.8: Comparison between the Cacciari-Houdeau and the scale variation method.

4.6 Comparison with scale variation

Among the advantages of the Cacciari-Houdeau model respect to the scale variation, besides
the possibility of assigning a credibility interval to uncertainty estimates, there is its generality:
the method can be applied to any kind of perturbative series. The application of the scale
variation is instead limited to hard processes, where the cross section naturally depends on the
renormalization scale. It would be harder to use it on the PDF or the luminosity series, which
depend on the scale only indirectly.

However, a comparison between the two methods is still possible when the PDF set is kept
fixed, say at NNLO, and uncertainty on σk are considered. In Figure 4.8, the scale variation and
the Cacciari-Houdeau uncertainties are compared, showing good agreement from k = 1 onward.
At k = 0, the Cacciari-Houdeau uncertainty is much larger, even though the next order is still
outside the uncertainty band.

4.7 PDF impact

After having determined the PDF influence and the contribution coming exclusively from the
Higgs production process, it is possible now to determine the impact of PDF theoretical uncer-
tainties on the cross section, namely its ratio to the global uncertainty. Consider a perturbative
series (“mixed”) in which the first term is σ0 computed with LO PDF, then σ1 with NLO PDF
and σ2, σ3 with NNLO PDF. This is the series that is actually used for physical predictions.
Figure 4.9 plots the Higgs cross section with the following uncertainty bands:

• Fixed PDF: k = 0→ Fixed PDF LO, k = 1→ Fixed PDF NLO, k = 2, k = 3→ Fixed
PDF NNLO
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Table 4.7: PDF uncertainty impact.

k Fixed PDF Fixed XS Mixed XS/PDF

0 99.1894% 17.735% 102.951% 0.178799
1 36.2912% 1.3457% 36.5713% 0.0370806
2 15.1971% 0.136564% 15.8141% 0.00898621
3 7.75452% 0.136593% 8.30255% 0.0176146

k = 0 k = 1 k = 2 k = 3

In
c
lu

s
iv

e
 C

ro
s
s
 S

e
c
ti
o

n

0

5

10

15

20

25

PDF Impact

Fixed PDF

Fixed XS

Mixed PDFXS

Figure 4.9: Impact of theoretical uncertainties on PDFs on Higgs cross section.

• Fixed XS: fixed cross section for each k

• Mixed PDF-XS: mixed series

where Fixed PDF contains the uncertainties coming from three different perturbative series,
and is therefore substantially different from Mixed, which is treated as a single one. Table 4.7
collects numerical results and the ratio between Fixed XS and Fixed PDF uncertainty. This
ratio represents therefore, for each k, the PDF contribution to the global uncertainty or, in other
words, the effective Impact of Theoretical Uncertainties of PDFs on the Higgs Cross Section.
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4.8 Concluding remarks

The main goal of this thesis was to analyse the impact of PDF uncertainties on the Higgs cross
section. We have used the Cacciari-Houdeau method: a Bayesian approach which allows one to
characterise the theoretical uncertainty of a perturbative calculation in terms of intervals of a
given degree of belief.

First, we have considered the PDF and the gluon-gluon luminosity viewed as a perturbative
series in αS . The reliability of the method has been verified by studying theoretical uncertainty
intervals on known terms, and comparing them to the subsequent orders. Then, we have com-
puted theoretical uncertainties on the last known perturbative order, NNLO, which are smaller
than 0.1%. Theoretical uncertainties on luminosity at at MX = mH have been found to be of a
similar size.

After computing the cross section for Higgs production in gluon fusion, we have isolated the
PDF dependence by fixing the matrix element and letting the PDF vary. We have found that
relative theoretical uncertainties depend weakly on the order of the matrix element and, as one
might have expected, they are very similar to those of the luminosity series: for the fixed N3LO
cross section, they are 0.1%.

In order to determine the size of this correction in comparison to the uncertainty on the cross
section itself, we have fixed the order of the PDF. In order to obtain perturbative coefficients
roughly of the same size, we have rescaled the expansion parameter of this series from αS to
αS λ, with λ extracted from a fit. In good agreement with the scale variation method, theoretical
uncertainties have been found to be 8%. Their ratio to the uncertainty arising from the PDF
has been found to be, at N3LO, 0.02.

We conclude that the impact of theoretical uncertainties on PDFs on the Higgs cross section
is negligible. Therefore a N3LO set of PDFs is not urgently required for this process, as the
theoretical uncertainties of matrix element are by two order of magnitudes larger those on the
PDFs.
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