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Abstract

It has been suggested that parton densities global analysis is insensitive to the in-
clusion of correlated systematics. In this work we discuss this statistical issue by
comparing two parton sets: the first is obtained including correlations; the sec-
ond is produced neglecting correlated uncertainties and simply adding in quadra-
ture all systematics. Both parton sets have been determined, from a set of purely
deep-inelastic scattering data, using the NNPDF method, based on a Monte Carlo
sampling and a neural network parametrization.
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Introduction

In view of the forthcoming experiments at LHC, the physics of strong interactions
has been turned into a precision science: a solid knowledge of the structure of nu-
cleons together with the ability to make accurate predictions about cross sections
for deep inelastic scattering are now mandatory.
In this context, the problem of a faithful determination of parton distribution
functions has been addressed by many collaborations (CTEQ, Alehkin, MSTW,
NNPDF).
In QCD, the cross section for deep inelastic scattering is expressed, thanks to fac-
torization theorem, as the convolution of perturbatively computable parton cross
sections, times parton densities: this way, the process is related to the underly-
ing scattering off the subconstituents of the nucleon. However, parton densities
cannot be determined from first principles yet, but need to be determined from
experimental data.
Various methods have been developed to this purpose. Here we are interested in
the NNPDF method: parton densities are parametrized by neural networks, so that
the parametrization bias is minimized. In order to give a statistically sound rep-
resentation of uncertainties, a Monte Carlo approach is employed: data points are
replicated so that, by fitting neural pdfs to each replica, a Monte Carlo ensemble of
pdfs is obtained and all statistical information about the original data is retained.
In this work, we concentrate on the treatment of correlated systematics. Some
groups of pdf determination properly include correlations in their parton global
analysis (CTEQ, Alehkin, NNPDF). In the NNPDF approach, information about
correlated uncertainties is included both at the level of Monte Carlo generation of
replicas and at the level of the fitting procedure. However, other groups believe
that results are the same whether correlations are treated properly or if they are
just added in quadrature.
The purpose of this work is to clarify this statistical issue. We have produced
two parton sets: the first is obtained using the standard settings of NNPDF parton
analysis, so that correlations are properly considered. For the second, we have ne-
glected correlations: at the level of Monte Carlo generation, we allow correlated
points to fluctuate independently; at the level of minimization, we use a diago-
nal error function, where systematics are added in quadrature. An analysis of the
impact of correlations is then made by comparing the two parton sets.
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1 Scattering and the Strong Interactions

The forthcoming experiments at LHC are based on proton-proton collision and
therefore require a solid understanding of the proton structure.

The proton is a finite sized object with a substructure made up of strong interact-
ing point-like particles, the quarks and the gluons, generically called partons.
The theoretical framework that explains the physics of quarks and gluons is called
quantum chromo-dynamics (QCD); it is a quantum field theory, based on a funda-
mental symmetry referred to as color charge (hence the name “chromo”).

Our knowledge of the nucleon structure comes primarily from experiments of
deep inelastic scattering (DIS) with lepton beams and nucleon targets; “deep”,
because the distances probed are comparable or smaller than those peculiar to the
nucleon; “inelastic”, because initial and final states are not the same.
The main observable of scattering is the differential cross section, i.e. the prob-
ability of finding a particle with a given energy within a fixed angle, after the
scattering process. From experimental data we can extract information about the
substructure of the target and the interactions taking place during the collision.
The cross section for DIS off nucleons is parametrized by the so-called structure
functions, whose shape can be determined using experimental data.

DIS off nucleons is determined by the underlying scattering processes between
lepton projectiles and partons. In QCD, structure functions are given by the con-
volution of a parton distribution function (pdf) and a hard cross section, up to
corrections suppressed by powers of the ratio of the nucleon scale to the large
energy scale of the scattering process. A parton distribution is a quantity that can
be roughly understood as the probability of finding a parton inside the nucleon
carrying a certain amount of the nucleon momentum; the hard cross section gives
the probability of a scattering off the parton.
This latter quantity can be calculated by means of perturbative QCD. On the con-
trary, pdfs can not be calculated perturbatively, and thus must be extracted from
experiments, for instance by assuming a parametrization and then tuning its pa-
rameters so that they fit the experimental data.
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1.1 Scattering

Scattering is the general phenomenon where some form of radiation or flux, e.g.
a beam of particles, deviates from its straight trajectory by interactions with one
or more objects (target) on its path.

By measuring the kinematical features of the initial and the final states, we may
learn about the properties of the scatterer.
The higher the momentum of the projectile the shorter the distances it probes:
when the De Broglie’s wavelength, λ = h/p, of the exchanged particle is smaller
or comparable to the target’s size, the internal structure of the latter becomes vis-
ible.

1.1.1 Kinematics

We will consider scattering experiments between relativistic particles, therefore
their kinematics is described by 4-vectors.
We call p and E the momentum and the energy of the beam particle, P the target’s
momentum; final states are labelled with prime letters.
If q = p − p′, energy and momentum conservation imply that

(P′)2 = (P + q)2 = M2 + 2Pq + q2 (1)

= M2 + 2Mν − Q2 , (2)

where the Lorentz invariant quantity ν =
Pq
M is the energy transfer E − E′ in

the frame of reference where the target is at rest. The positive definite quantity
Q2 = −q2 represents the momentum transfer.

Now elastic and inelastic scattering need be distinguished.

• In elastic scattering (a + b −→ a′ + b′) particles before and after the colli-
sion are identical up to energies and momentum; the invariant mass is un-
changed and the energy transfer is only due to recoil, i.e the target changes
just its kinetic energy. It is easy to see, using momentum conservation, that
if the beam energy and the scattering angle are known the energy and the
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momentum transfers are fixed too:

P′2 = M2 = M + 2Mν − Q2 (3)

=⇒ 2Mν − Q2 = 0 =⇒ ν = E − E′ =
Q2

2M
. (4)

• In inelastic scattering (a + b −→ a′ + X, where X is the generic state re-
sulting from the process) the transferred energy may excite the colliding
particles into different internal states, changing their nature, or break them
into a number of fragments.
Let W be the invariant mass of the resulting particle (or particles), then

P′2 = W2 = M + 2Mν − Q2 (5)

W > M =⇒ 2Mν − Q2 > 0 . (6)

As a result, inelastic scattering has a further degree of freedom: to determine
the momentum transfer Q2 we need to measure both the scattering angle and
the energy E′ of the scattered particle.

In the experiments, we are able to set the energy E and the momentum p of the
beam particles and to measure the scattering angle θ and the energy E′ of the prod-
uct particles, together with the reaction rate within any fixed direction.

1.1.2 Cross Section

The main observable of scattering experiments is the differential cross section, the
probability that a particle is scattered through a given angle with a given energy.
It is a measurable quantity thanks to the following relation:

Ṅ(E, θ,∆Ω) = Φbeam
d2σ(E, E′, θ)

dΩdE′
∆Ω∆E′ (7)

where Ṅ is the rate of particles measured by a detector with cone of observation
∆Ω, collecting particles scattered through θ-direction with energy E′; Φbeam is the
flux of beam particles (i.e. the number of particles per unit area and unit time).
The total or integral cross section is defined as:

σtot =

∫ Emax

0

∫
4π

d2σ(E, E′, θ)
dΩdE′

dΩ dE′ (8)
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it is therefore a measure of the effective surface area seen by the beam particles,
and as such is expressed in units of area.

In quantum mechanics, the usual approach to scattering consists in considering
the particles before and after the collision, i.e. far from the interaction region,
as free particles (represented by plane waves). The matrix elements of the time
evolution operator S (T,−T ) between states in the distant past and distant future
provide the amplitude for a transition between them. Therefore the cross section
is

dσ = lim
T→∞

1
T

1

| ~Jinc|
|〈 f |S (T,−T )|i〉|2 dE′ dΩ, (9)

where Φbeam = | ~Jinc| is the flux of the incoming particles.

The cross section for scattering off a system of particles can be related to the
elementary cross section for scattering off individual particles through a suitable
function of the kinematic variables.
For elastic scattering, these functions are called form factors; they are the Fourier
transform of the space distribution of the point scatterers.
For deep inelastic scattering, these functions are called structure functions, and
depend on two kinematical variables.

1.2 Nucleon Structure

High energy scattering experiments are required in order to probe the structure of
nucleons, whose radius is about 0.8 Fm.
Elastic scattering off nucleons, from some hundreds MeV up to several GeV, re-
veals that nucleons are finite sized objects: in fact, the form factors decrease ex-
ponentially with the scale.
Further increasing the energy, the form factors eventually become scale-free to
a good approximation, as one would expect of scattering off free point-like con-
stituents. More detailed investigations reveal that these constituents carry the same
quantum numbers as quarks, which had been suggested as constituents of the nu-
cleons on the basis of spectroscopic arguments.

The Feynman parton model provided the first theoretical framework to explain
DIS: the nucleon is considered as a composite system of point-like objects, the
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partons, each carrying a fraction of the nucleon’s energy and momentum. The
scattering process involves individual partons, rather than the nucleon as a whole,
i.e. the outcome of DIS is the incoherent sum of elastic scattering off partons.
Over the short distances and time scales of the collision, the internal interactions
among partons can be neglected, so that the struck parton can be regarded as
effectively free.

QCD is now well established as the theory of strong interactions and it has been
developed to high accuracy. The parton model, which is consistent with QCD at
leading order, provides the basis for an intuitive understanding of the physics of
quarks and gluons at large scale.

1.2.1 Structure Functions

The cross section of DIS off nucleons is parametrized by the so-called structure
functions. As we have previously discussed, two kinematical variables are re-
quired. A common choice for these are the scale Q2 and the scaling variable

x :=
Q2

2Mν
, 0 < x ≤ 1, (10)

which is a measure of the inelasticity of the process (for elastic scattering x = 1)
as shown by eq. (6).

The scaling variable can be approximately understood as the fraction of nucleon
momentum carried by the parton involved in the scattering process. If we assume
that the momenta of partons are parallel (collinear) to that of the nucleon, and that
the parton initially carries a fraction z of the nucleon’s momentum, then p = zP;
since the lepton-parton scattering is elastic, its final momentum is given by:

(zP + q)2 = 0 (11)

z2P2 + 2Pqz + q2 = 0 (12)

⇒ z =
Q2

2Mν
= x. (13)

Therefore the scaling variable x coincides with the fraction of the nucleon mo-
mentum carried by the struck parton, up to mass corrections.
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For DIS off nucleons involving an electromagnetic interaction, two structure func-
tions are required to parametrize the cross section; it can be shown that

d2σ

dx dQ2 =
α2

4E2 sin4 θ
2

{1
ν

F2(x,Q2) cos2 θ

2
+

2
M

F1(x,Q2) sin2 θ

2

}
(14)

where α is the coupling constant of electromagnetic interaction.
F1 and F2 are assessed by measuring the cross section at different scattering angles
for fixed energy and momentum transfers.

1.2.2 Factorization

At least in principles, structure functions should be calculable. In practice, partons
have a strong-coupling and many-body dynamics, which makes calculations very
difficult.
However, a core property of QCD allows perturbation theory to be applied in
some kinematical regions: the strong coupling constant decreases at high scales,
and tends to zero as the scale tends to infinity. This phenomenon is referred to as
asymptotic freedom.
As a consequence, perturbation theory can be applied to QCD at large scales.

Thanks to factorization theorem, the structure functions, which parametrize a
physical cross section, are expressed as the convolution of perturbatively com-
putable parton cross sections (coefficient functions), times parton distribution func-
tions (pdfs); for example

F2(x,Q2) = x ·
(

fa ⊗ σ̂a

)
= x ·

∫ 1

x

dξ
ξ

∑
a

fa(ξ,Q2) · σ̂a

(
x
ξ
, αS (Q2)

)
(15)

where the index a is a parton label to be summed over all contributing quarks,
antiquarks and gluons; ⊗ is a convolution. The factors have the following mean-
ing:

• fa(ξ,Q2) is a parton distribution function (pdf) which can be roughly un-
derstood as the probability of finding a parton inside the nucleon target with
the momentum fraction x, at the scale Q2;

• σ̂a

(
x
ξ
, αS (Q2)

)
is the hard cross section, i.e. the probability of the elastic

scattering off the parton a.
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To first order approximation,

F2(x,Q2) ≈ x
∑

a

e2
a · fa(x,Q2) , (16)

the factorization formula is consistent with the parton model: the high energy
scattering process is interpreted as essentially classical and incoherent. In eq.(15)
this is found in the fact that the DIS cross section is computed by combining
probabilities, rather than amplitudes.

The hard cross sections, involving only short-distance interactions, can be calcu-
lated by means of perturbative QCD, provided Q2 is large enough, in the region
of asymptotic freedom.
All long distances interactions of the DIS structure functions, that cannot be pre-
dicted by QCD, are factorized into the pdfs. Therefore, in order to be able to use
the factorization equation to make prediction above high energetic processes we
need to determine the parton distribution functions.

1.2.3 Parton Densities

The dependence of pdfs on the scale is weak: it is only logaritmic, and it can be
understood as a consequence of the fact that quarks and gluons continuously in-
teract with each other, emitting or splitting into new quark-antiquark pairs, and so
the momentum distribution between the constituents of the nucleon is constantly
changing. At high resolution these next to leading orders phenomena need to be
taken into account: quarks and gluons turn out to be made of quarks and gluons
themselves and nucleons are densely filled with partons.

The scale dependence of pdfs can be calculated in perturbation theory. If the shape
of fa(ξ,Q2) is known at a given scale Q2

0, then it can be predicted with QCD for
all other values of Q2, by solving the evolution equation [11]:

Q2∂ fa(x,Q2)
∂Q2 =

αs

2π
Pb

a ⊗ fb =
αs

2π

∫ 1

x

dξ
ξ

∑
b

Pb
a(ξ, αS ) fb(

x
ξ
,Q2) (17)

where {Pb
a} are called splitting functions and can be perturbatively calculated order

by order.
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On the contrary, the x-dependence of pdfs cannot be predicted from first princi-
ples. They are determined by comparing experimental data (e.g. DIS cross sec-
tions) at a certain scale, to equation (15) or its analogue for other physical process.
Several methods have been developed to this goal. In the next chapter we shall
describe the approach proposed by the NNPDF collaboration.
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2 Determination of Parton Distributions:
the NNPDF Approach

During the last decades, the theory of strong interactions has evolved into preci-
sion physics, thanks to the wealth of experimental data coming especially from
HERA and Tevatron.

A quantitative understanding of the phenomenology of quarks and gluons is made
all the more necessary by the forthcoming experiments of proton-proton collisions
at LHC, which aim at searches for new physics and require a solid understanding
of the proton structure.

This involves both accurate perturbative computations at higher orders, and a pre-
cise determination of quantities, such as the parton distributions, which cannot
be computed from first principles, together with an accurate estimation of their
uncertainties.

Here we will concentrate on this second issue, considering the approach to pdf
determination proposed by the NNPDF collaboration.
The method, based on a Monte Carlo approach, with neural networks used as
universal unbiased interpolants, is designed to provide a faithful and statistically
sound representation of the uncertainty on pdfs.

2.1 The Problem of Pdf Uncertainties

Until the turn of the century, standard sets of pdfs did not include uncertainties.
However, pdfs were used to calculate observables that themselves had large theo-
retical uncertainties, and this shortcoming was not a problem. But with the need of
quantitative tests of QCD, the issue of pdf uncertainties could not be sidestepped
any longer: in fact, the uncertainty on the input pdfs is now found to be the leading
term of the theoretical error on the predicted cross section [4].

As a first attempt to overcome the problem, the spread between different sets
of pdfs was taken as an estimate of their uncertainty; an unreliable qualitative
method, because the many possible sources of systematical bias are likely to be
common to several parton determinations. It was abandoned when the accurate
estimation of uncertainties became mandatory.
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The first difficulty to be faced is that the problem of assessing pdfs is in fact math-
ematically ill-posed: we want to construct a probability measure on an infinite
space (of functions), relying upon the knowledge of a finite set of experimental
data.
The standard approach is that of projecting the infinite-dimensional problem onto
a finite-dimensional space of parameters. A parametrization for the pdfs is as-
sumed, based on some fixed functional form, and then parameters are tuned so
that the computed observables fit the data. So the uncertainties are essentially er-
ror ellipsoids in the finite space of parameters.
However, the choice of a functional form is clearly a potential source of theoretical
bias.

Another problem may be related to data incompatibilities. Indeed, many current
parton fits effectively rescale all experimental uncertainties by some suitable large
factor (tolerance); because this factor depends on the data set, a direct statisti-
cal interpretation of the results is lost. For example, benchmark studies [6] have
shown that reducing the data set leads to results which are not compatible with
those of a fit to the full data set.

In order to overcome these problems, a novel approach has been suggested by the
NNPDF collaboration.

2.2 The NNPDF Approach

The general underlying strategy is twofold:

• a MC ensemble of replicas of the experimental data is generated, which
can be interpreted as a sampling of the probability density on the space of
physical observables, at the discrete points where data exist.

• then, neural networks are used to interpolate between these points: neural
parton distributions are used to compute physical observables, which are
then compared with the data to tune the best fit form of the pdfs.

As a consequence, the space of physical observables is mapped onto the space of
pdfs: starting from the MC representation of the probability density at the points
where data do exist, neural networks reproduce a representation of the probability
density everywhere in the space of pdfs.
In other words, the pdfs with error that we obtain are themselves given as a MC
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sample, so that any statistical property can be straightforwardly derived, e.g the
average value of a function at some point is simply given by the average over the
replicas at that point, the uncertainty is the variance, and so forth.

The viability of this procedure has been demonstrated initially by providing a
determination of the proton and neutron structure functions [5]; then, in ref. [8]
it has been used for the first time to calculate a quantity that cannot directly be
measured, a non singlet parton distribution. The method has now been used to
determine a full parton set.

2.2.1 Outline of the Strategy

The strategy adopted involves many steps, as pictured in fig. 1.

Figure 1: Schematic representation of the NNPDF method [12].

The first stage is the generation of the pseudo-data from a set of Ndat experimental
data.
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For each point, Nrep replicas are produced via MC method, using a Gaussian dis-
tribution described by the covariance matrix provided by the experimental col-
laborations. The number of replicas is chosen so that the sample reproduces the
statistical features of the experiment, which can be checked using standard statis-
tical methods (“Test exp-art” in the picture).

The second stage is the construction of the parton sets, and it involves several
sub-steps.

First of all, a parton set contains a number Npdf (1 ≤ Npdf ≤ 13) of pdfs, one
for each contributing quarks and anti-quarks (12 at most) and one for the gluon
distribution; in ref. [12] five pdfs have been used, for the up and down pairs of
quarks and anti-quarks and for the gluon; in ref. [13], independent parametrization
of the strange and anti-strange distributions has also been included.

Each pdf is parametrized using a neural network with a size and an architecture
much larger than what would suffice: with a redundant parametrization, the fit is
made independent of any assumption on the functional form.

The neural pdfs are expressed as functions of x, at a given scale Q0. They are then
evolved to the scale at which data are available, by means of perturbative QCD.
Finally they are convoluted with the hard cross sections and used to reproduce the
physical observables, to be compared with the experimental data.

The fitting procedure enters at this step: the set of computed observables is com-
pared with each data replica, so that Nrep parton sets are eventually obtained. The
fitting itself is performed with a genetic algorithm, a standard method in the con-
text of neural networks. The figure of merit to be minimized is the χ2 of the
experimental points, computed by fully including the covariance matrix of the
correlated experimental uncertainties.

Determining the optimal fit has posed a non trivial problem, because one would
like to estimate the best fit without fitting statistical fluctuations of the data. The
procedure implemented is the so-called cross validation method, well established
in the context of neural networks: the idea is that the quality of the fit to data
which have been used in the fitting procedure must be the same as the quality of
the fit to data which have not been included in the fit.

At the end of the minimization, a MC sample of parton sets is obtained: for each
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pdf, Nrep replicas provide the corresponding probability density, so that uncertain-
ties and averages can be assessed directly, by means of standard statistical tools
(“test net-net”). The reliability of the results can be checked by the comparison of
the final fit prediction with the original data (“test net-exp”).

In the next section, we are going to delve deeper into some of the steps overviewed
above. Specifically, we will concentrate on the Monte Carlo method and on the
neural networks and their training.

2.2.2 Monte Carlo method

As mentioned above, a major problem for faithfully determining pdfs is that of
computing the probability measure in the functional space of possible functions
describing parton distributions.
In the NNPDF approach this measure is provided by a MC ensemble: first, an en-
semble of artificial data is generated, in order to reproduce the statistical features
of the experimental data. Then, a fit to each data replica is performed, so that a
MC ensemble of pdfs is obtained, and the original probability density is mapped
into the functional space of pdfs.

Let us describe in some detail the pseudo-data generation process. Artificial repli-
cas of data points are distributed among a multi-Gaussian distribution centered on
each data point; specifically, given a data point Fexp

p , Nrep artificial points F(art)(k)
p

are generated as follows

F(art)(k)
p = S p,N Fexp

p

(
1 +

Nc∑
l=1

r(k)
p,lσp,l + r(k)

p σ
stat
p

)
(18)

and

S (k)
p,N =

Na∏
n=1

(
1 + r(k)

p,nσp,n

) Nr∏
n=1

√
1 + r(k)

p,nσp,n . (19)

where σp,l are the correlated uncertainties, σp,n are the normalization uncertainties
and σstat

p is the statistical error of the experimental point. The variables r(k)
p,l , r(k)

p

and r(k)
p,n are univariate Gaussian random numbers that generate fluctuations of the

pseudo-data around the central value of experimental data.
Whereas two points p and p′ have correlated systematic uncertainties, the fluctu-
ations that they generate are imposed to be the same, i.e. r(k)

p,l = r(k)
p′,l.
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2.2.3 Neural Networks

While current parton sets are obtained using a set of a priori selected functions,
parametrized by a small number of physically motivated parameters, the NNPDF
approach to parametrization of parton densities is novel, based on the use of an
unbiased basis of functions, described by a large number of parameters. On the
one hand, this choice guarantees the lack of theoretical bias that plagues other
methods; on the other, it poses practical problems in the fitting procedure: first
of all the minimum has to be found in a very large space of parameters, and then
a redundant parametrization runs the risk of accommodating not only the smooth
shape of the true pdfs but also the random fluctuations of the data about them.
The first problem is solved by using a genetic algorithm for minimization, the
second problem is solved by the choice of a stopping criterion based on cross-
validation.

Neural networks parametrization Artificial neural networks provide a partic-
ularly convenient set of interpolating functions, able to well approximate incom-
plete and noisy data; in the limit of infinite size they can reproduce any continuous
function.
A neural network is a set of interconnected units, the neurons. Each neuron ξi is
a real number, determined as a function (activation) of the neurons connected to
it:

ξi = g
(∑

j

ωi jξ j − θi

)
(20)

where ωi j ∈ R is the weight describing the connection (synapsis) between a pair
of neurons, and θi is referred to as threshold.
The activation function g is in general non-linear, in order to enable neural net-
works to reproduce nontrivial functions; a common choice for the activation func-
tion is the sigmoid:

g(x) ≡
1

1 + e−βx (21)

Here we consider in particular the multilayer feed-forward neural networks (de-
picted in fig. 2): these are organized in ordered layers whose neurons only receive
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Figure 2: schematic picture of multilayer feed-forward neural networks [8].

input from the previous layer. The following recursive relation holds:

ξl
i = g

( nl−1∑
j=1

ω(l−1)
i j ξl−1

j − θ
(l)
i

)
i = 1, ..., nl; l = 2, ..., L (22)

for L layers with n1, ..., nL neurons respectively.
We can say that a multilayer neural network is a non-linear map Rn1 −→ RnL ,
parametrized by weights, thresholds and the activation function.

In the limit of infinite size, a neural network can be trained to reproduce any
function, by tuning its parameters. In practice, the reason why neural networks
can be considered as unbiased universal approximants lies in the fact that they
can be built to be redundant: one may check that, for a given problem, adding or
removing a neuron has little or no effect on the final output. The architecture used
by NNPDF is 2-5-3-1: it turns out that using x and ln x as simultaneous inputs
improves the efficiency of the minimization, with respect to the option of having
more neurons in the hidden layers.

Genetic algorithm minimization The state of each neural network is deter-
mined by the values of its weights ωi j and thresholds θi, which can be arranged in
a vector of Npar parameters ω = (ω1, ...., ωNpar) (weight vector); the task of fitting
the data consists of simultaneously tuning the weight vectors of Npdf neural net-
works, by minimizing a suitable figure of merit. The following error function is
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used:

E(k)[ω] =
1

Ndat

Ndat∑
i, j=1

(
F(art)(k)

i − F(net)(k)
i

)(
(cov(k))−1

)
i j

(
F(art)(k)

j − F(net)(k)
j

)
(23)

where F(net)
i is the physical observable, computed from neural pdfs, corresponding

to the i-th data point.

The minimization of the error function E(k)[ω] leads to one replica of the parton
set, whereas the quality of the global fit can be estimated by the χ2 computed from
the average over the whole final sample of parton sets:

χ2 =
1

Ndat

Ndat∑
i, j=1

(
F(exp)

i − 〈F(net)
i 〉rep

)(
(cov)−1

)
i j

(
F(exp)

j − 〈F(net)
j 〉rep

)
. (24)

Regarding the minimization technique, a genetic algorithm is used, which turns
out to be convenient when seeking a minimum in a wide space with potentially
several local minima: in fact, it explores simultaneously many regions of the pa-
rameters space, handling a population of solutions rather than traversing a path
in the space of solutions, thereby eluding the danger of being trapped in local
minima.

For each replica, Nmut copies of the Npdf weight vectors are generated, forming
an initial set; the following steps are then performed repeatedly, each new cycle
referred to as generation:

1. the initial set is replicated into Ncop copies;

2. (mutation) for each copy, Nmut×Npdf mutations are performed: one ran-
domly chosen element of each weight vector is replaced by the new value

ω(i, j)
n = ω(i, j)

n + ηi j

(
r −

1
2

)
i = 1, ...,Npdf; j = 1, ...,Nmut (25)

where r is a random number between 0 and 1, and ηi j are the reaction rates,
free parameters of the minimization, tuned to optimize the efficiency of the
procedure; namely, they are adjusted dynamically along the fit, decreasing
as the minimum is being approached;

3. (selection) the copy whith the lowest value of the error function is selected
and used to replace the initial set of weight vectors.
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The whole process is iterated until the weight vectors which yields to the low-
est value of the error function (in each generation) meet a suitable criterion of
convergence, that we are now going to discuss.

Cross validation method As we have briefly mentioned before, because of the
flexibility of the neural network parametrization it is possible for it to fit random
statistical fluctuations of the data (overlearning). Suppose, for example, to have
data for the same quantity at two different but very close values of x: a fit that goes
through the central values of both measurements is possible, but, assuming that
the data are taken at infinitesimally close x, this would potentially lead to a dis-
continuous behavior of the observable, which is certainly unphysical. This would
be found if one stopped at the absolute minimum of the figure of merit.

The best fit should be the weighted average of the infinitesimally close measure-
ments. A way of determining the best fit which is free of this problem is based on
the cross validation method.
The procedure consists in randomly dividing each set of replicas into two subsets
of Ndat /2 data, a fitting set and a validating set; while training the neural networks,
two error functions are calculated by comparing the theoretical observables sepa-
rately with each one of the subsets.
The fit is stopped when the error function of the validation set stops decreasing;
if the χ2 of the fitting set can be further minimized it means that the overlearning
regime has been entered.
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3 The Treatment of Correlated Uncertainties
in s global pdf analysis

The systematic errors arising within each data set are often highly correlated.
Some groups of pdf fitting, such as NNPDF, CTEQ, Alekhin, treat correlated un-
certainties properly, by fully including the covariance matrixes of the experiments;
other groups do not (MSTW).

In the NNPDF approach, correlations appear twice: first, at the level of Monte
Carlo generation of data replicas, then at the level of the χ2-minimization in the
fitting procedure.

In ref. [10], it is argued that results on global pdf analysis are essentially un-
changed whether one treats the systematic correlated uncertainties properly or if
one just neglects correlations between experimental data points.

In practice, this means that instead of minimizing the error function defined in
eq. (23),

E(k)
cme[ω] =

1
Ndat

Ndat∑
i, j=1

(
F(art)(k)

i − F(net)(k)
i

)(
(cov(k))−1

)
i j

(
F(art)(k)

j − F(net)(k)
j

)
one is minimizing a diagonal error function, in which correlations are neglected
and uncertainties are simply added in quadrature:

E(k)
diag[ω] =

1
Ndat

Ndat∑
i=1

(
F(exp)

i − F(net)
i

)2

σ(stat),2
i + σ

(sys),2
i

. (26)

In order to clarify this statistical issue, we have varied some of the default settings
of the NNPDF parton analysis, and studied their impact on the pdfs.

After a brief description of the experimental data used in this analysis, we shall
present our results.

The Data Set We refer to the data set used in the NNPDF global analysis pre-
sented in ref. [14] (NNPDF1.2). It is a comprehensive set of experimental data
coming from DIS with various lepton beams and nucleon targets. The kinemat-
ical coverage and the main statistical features of data are summarized in table. 1
and fig. 3.
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Experiments Set Points σstat (%) σsys (%) σtot (%)
NMC-pd 260 2 0.4 2.1

NMC 288 3.7 2.3 5
SLAC

SLACp 211 2.7 0 3.6
SLACd 211 2.5 0 3.2

BCDMS
BCDMSp 351 3.2 2 5.5
BCDMSd 254 4.5 2.3 6.6

ZEUS
Z97lowQ2 80 2.8 3 4.9

Z97NC 160 6.2 3.1 7.7
Z97CC 29 33.6 5.5 34.2
Z02NC 92 12.7 2.3 13.2
Z02CC 26 39.6 6.3 40.2
Z03NC 90 7.7 3.3 9.1
Z03CC 30 29.9 6.7 31

H1
H197mb 67 3.8 2.1 4.9

H197lowQ2 80 2.7 2.5 4.2
H197NC 130 12.5 3.2 13.3
H197CC 25 29.3 4.5 29.8
H199NC 126 14.9 2.8 15.5
H199CC 28 27.1 3.8 27.6

H199NChy 13 8.7 1.9 9.2
H100NC 147 9.4 3.2 10.4
H100CC 28 21.3 3.8 21.8

CHORUS
CHORUSnu 607 4.2 6.4 11.2
CHORUSnb 607 13.8 7.8 18.7

FLH108 8 48.8 48.6 69.2
NTVDMN

NTVnuDMN 45 17.2 1 17.7
NTVnbDMN 45 26.5 0 26.5

ZEUS-H2
Z06NC 90 4.1 3.7 6.6
Z06CC 37 25.3 14.1 31.6

Table 1: main features of the data set. Data are divided into experiments and sets;
different sets within the same experiment present correlated systematics. The table
shows the number of data points and the averaged uncertainties, pointing out the
contribution of the statistical and systematic uncertainties.
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Figure 3: kinematical coverage of the data set employed in this work ([14]); Q2 is
plotted versus x on a logaritmic scale.

The covariance matrix for each experiment can be computed from knowledge of
statistical, systematic and normalization uncertainties:

covi j =

( NC∑
l=1

σi,lσ j,l +

Na∑
n=1

σi,nσ j,n +

Nr∑
m=1

σi,mσ j,m + δi jσ
2
i,S

)
FiF j (27)

where i and j label the experimental points, σi,l are the correlated uncertainties,
σi,n and σi,m are respectively the absolute and relative normalization uncertainties
and σi,S are the statistical uncertainties.
The total uncertainty for the i-th point is defined as

σi,(tot) =

√
σ2

i,S + σ2
i,C + σ2

i,N (28)

with σi,C and σi,N are the sum of all correlated and all normalization uncertainties
respectively.
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3.1 Procedure and Results

Our analysis is based upon samples of 100 replicas, which is a sufficient number
in order to reproduce central values and uncertainties to an accuracy of about 1%
([12]).

We have produced two different parton sets, one that reproduces NNPDF global
analysis, the other which is close to the treatment of systematic uncertainties of
the MSTW group, namely neglecting correlations and adding all errors in quadra-
ture. In fact, MSTW do include correlated systematics for HERA experiments
and some other, but neglects them for all fixed target experiments.

The first, referred to as CME set, was obtained using standard NNPDF settings, so
that correlations are fully retained. The fit is compatible with that of ref. [13], i.e.
distances between the two sets are of order 1 (the distance is defined in eq. (31) in
sec. 3.1.2).

On the contrary, correlations have been completely neglected in producing the
second set, referred to as diagonal set, both at the level of MC generation and in
the minimization.
The Monte Carlo sample was produced using, instead of eq. (18), the simplified
formula:

F(art)(k)
p = S p,N Fexp

p

(
1 + r(k)

p σp,tot

)
, (29)

for the k-th replica of point Fexp
p ; σp,tot is defined in (28). Turning off correlations

at this level means that we allow data to fluctuate within the same interval as be-
fore, in terms of absolute values, but each point independently with all the others.
Similarly, at the level of χ2-minimization, we have used eq. (26), where systemat-
ics are simply added in quadrature.

Let us note that if we only changed the settings of the MC generation, retaining
correlations during the minimization, we would expect the central values of the
pdfs to be the same of the cme pdfs, but with different uncertainties. On the
contrary, if we performed a diagonal-χ2-minimization over the same set of replicas
that we use to produce the cme parton set, we would then expect different central
values, but the same uncertainties.
Unfortunately this second analysis cannot be successfully carried out, because, as
we will show, the difference between the uncertainties of the pdfs are too small to
be distinguished from the statistical fluctuations of data.
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3.1.1 Comparison of the Fits

The comparison of the fits has been made using two statistical estimators, the
χ2

cmegiven in eq. (24), and the χ2
diag, defined as

χ2
diag =

1
Ndat

Ndat∑
i=1

(
F(exp)

i − 〈F(net)
i 〉rep

)2

σ(stat),2
i + σ

(sys),2
i

. (30)

The values of these χ2s, for each experiment and each set, are shown in table 2,
together with a comparison, whenever possible, with the MSTW08 fit ([10]).

Let us consider the two fits that we have performed.
First of all, comparing the χ2s for the full set of data, we notice that the quality
of the two fits is essentially unchanged if one considers the χ2

cme; on the contrary
the values of the χ2

diag are significantly different. This suggests that minimizing
a diagonal χ2 artificially gives larger weight to experiments with smaller system-
atics: indeed, if large systematics are added in quadrature, they causes the χ2 to
decrease. However, this does not lead to differences of the χ2

cme, because the fit to
experiments with larger systematics deteriorates.

In fact, we see that for experiments with significant systematics (NMC, BCDMS,
CHORUS) we can make the same comment: the χ2

cme is basically unchanged,
while the χ2

diag is quite different for the two fits.
In general, we see that for these data sets the value of the χ2

diag is rather smaller
than that of χ2

cme, within the same fit; this is because adding large systematics in
quadrature cuases the χ2 to decrease. This phenomenon is very significant for
FLH108 and Z06CC which have the largest systematics.

For some of the experiments with negligible systematics (NMC-pd, NTVDMN)
we see that the χ2s within the same fit are comparable, but the values are very
different if one looks at the two fits. On the one hand, correlations are small and
their inclusion doesn’t change the quality of the fit when measured with the two
different estimators. On the other hand, the qualities of the two fits are different
because the global fit has been significantly modified: we notice that NMC-pd and
NTVDMN explore the same kinematical region as NMC, BCDMS and CHORUS,
for which, we have seen, the inclusion of systematics does make a difference;
neglecting correlations for these experiments causes the global fit to change so
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NNPDF method MSTW08
CME fit Diagonal fit

Experiment Set χ2
diag χ2

cme χ2
diag χ2

cme χ2
diag (corresponding label)

TOT (all exp) 0.988 1.323 0.844 1.321 0.942 TOT (all exp)
NMC-pd 1.965 1.457 1.167 1.155 0.878 NMC µn/µp

NMC 1.006 1.659 1.078 1.76 0.984 NMC µpF2

SLAC 0.836 1.185 1.008 1.406
SLACp 1.018 1.307 1.132 1.525 0.811 SLAC ep F2

SLACd 0.651 0.912 0.882 1.275 0.684 SLAC ed F2

BCDMS 0.777 1.646 0.552 1.604
BCDMSp 0.873 1.808 0.617 1.703 1.117 BCDMS µpF2

BCDMSd 0.648 1.296 0.465 1.23 1.258 BCDMS µdF2

ZEUS 0.770 1.055 0.742 1.048
Z97lowQ2 0.474 1.294 0.434 1.367 0.597 ZEUS 96-97 e+ pNC

Z97NC 0.718 1.125 0.669 1.106
Z97CC 0.912 0.800 1.021 0.894
Z02NC 0.798 0.767 0.763 0.733
Z02CC 0.619 0.592 0.593 0.569
Z03NC 0.975 1.104 0.907 1.012
Z03CC 1.131 1.001 1.259 1.115

H1 1.020 1.053 0.997 1.028
H197mb 0.861 1.298 0.877 1.33 0.656 H1MB97e+ pNC

H197lwQ2 0.666 0.948 0.774 0.97 0.500 H197lowQ2 96-97 e+ pNC
H197NC 1.071 0.903 0.986 0.852
H197CC 0.758 0.764 0.831 0.824
H199NC 1.229 1.109 1.171 1.068 0.968 H1 highQ2 98-99 e−pNC
H199CC 0.621 0.646 0.644 0.668

H199NChy 0.333 0.361 0.326 0.353
H100NC 1.208 1.172 1.120 1.102 0.891 H1 highQ2 99-00 e+ pNC
H100CC 1.122 1.013 1.311 1.146 1.036 H1 99-00 e+ pCC

CHORUS 1.018 1.380 0.745 1.392
CHORUSnu 1.082 1.449 0.628 1.403
CHORUSnb 0.954 1.178 0.861 1.254

FLH108 0.984 1.729 0.946 1.7
NTVDMN 0.869 0.692 1.094 0.984

NTVnuDMN 1.061 0.763 0.445 0.421
NTVnbDMN 0.667 0.660 1.774 1.618

ZEUS-H2 1.392 1.509 1.373 1.512
Z06NC 1.691 1.495 1.667 1.472
Z06CC 0.664 1.230 0.659 1.252

Table 2: comparison of the quality of the NNPDF fits and the MSTW08 fit. The
values of the χ2s for MSTW08 com from ref. [10].
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much that NMC-pd and NTVDMN, despite not being affected by systematics
themselves, are not fitted the same way.

HERA and ZEUS, which are collider experiments (the others are fixed-target ex-
periments), have systematics that are negligeble if compared to the statistical un-
certainty. In this case, we see that the difference between the χ2s within the same
fit are quite similar, and so are the qualities of the two fits. In this case, correla-
tions have really a negligible effect, because HERA and ZEUS cover a kinematical
region that is not controlled by any other data.
An exception is in the low Q2 sets of both ZEUS and H1 (Z97lowQ2, H197mb,
H107lowQ2), for the values of the χ2

diag and of the χ2
cme are very different and the

same comment of the global set can be made.

Similarly, let us compare the global quality of the NNPDF fits and of the MSTW08
fit. For the three fits, we have calculated the total χ2

diag restricted to the data sets
that we compare:

CME fit diagonal fit MSTW08 fit
χ2

diag 0.994 0.851 0.903

We see that the NNPDF fit quality is comparable to MSTW08 if we compute the
χ2

diag, and actually rather better if the χ2
diag is minimized instead of the default χ2

cme
used in all published NNPDF fit. This is to be expected given that NNPDF data
set is a subset of purely DIS data, while MSTW analysis is made on a wider data
set.

3.1.2 Comparison between the CME and the diagonal Parton Sets

Up to now we have discussed the fits, and we have seen that, on average, the
quality of the two fits compared is similar. However, note that, even when the χ2

is similar, this doesn’t imply that the fitted pdfs are the same.

In order to quantify this statement, we have calculated the distances between the
pdfs coming from the CME fit and the diagonal fit.

The statistical estimator that we have used for this analysis, the distance, is defined
as the difference in values between two different predictions for some quantity q
obtained from two different ensembles of pdfs, measured in units of the sum in
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quadrature of their uncertainties [12]:

〈d[q]〉 =

√√√√〈 (
〈qi〉(1) − 〈qi〉(2)

)2

σ2[q(1)
i ] + σ2[q(2)

i ]

〉
dat

, (31)

where

〈qi〉(n) =
1

N(n)
rep

N(n)
rep∑

k=1

q(n)
ik (32)

and

σ2[q(n)
i ] =

1

N(n)
rep(N(n)

rep − 1)

N(n)
rep∑

k=1

(
q(n)

ik − 〈qi〉(n)

)
(33)

is the standard deviation. The analogue estimator for the uncertainty, 〈d[σ]〉, is
obtained from eq. (31) substituting to qi the uncertainty

σ(net)
i =

√
Nn

N(n) − 1

(
〈q2

i 〉(n) − 〈qi〉
2
(n)

)
. (34)

If two determinations of q have a distance d, it means that their difference is equal
to the sum in quadrature of their respective uncertainties.
It should be noticed that averages over Nrep replicas have a standard deviation that
is smaller, by a factor

√
Nrep, than the standard deviation of each replica. The

distance between two sets of Nrep pdfs refers to an average, which means that the
central values of these pdfs differ by 1/

√
Nrep of the sum in quadrature of their

standard deviations.

The distances between pdfs of the CME set and of the diagonal set are shown in
table 3. They have been calculated twice, in the kinematical region where data are
abundant and pdfs are mostly controlled by data (“Data”), and in the kinematical
region where pdfs have been mostly extrapolated (“Extrapolation”).

These results are also shown in the plots of the pdfs that we provide below: the
CME pdfs, obtained retaining correlations, are superimposed to those obtained
adding uncertainties in quadrature, the diagonal pdfs.

The pdfs compared are the seven independent pdfs included in the NNPDF global
analysis of ref. [14]. They are given by the following linear combinations:
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Data Extrapolation
Σ(x,Q2

0) 0.5 · 10−3 < x < 0.1 0.1 · 10−4 < x < 0.1 · 10−03

〈d[q]〉 4.62 ± 0.07 1.64 ± 0.08
〈d[σ]〉 1.44 ± 0.03 1.53 ± 0.08

g(x,Q2
0) 0.5 · 10−3 < x < 0.1 0.1 · 10−4 < x < 0.1 · 10−3

〈d[q]〉 1.06 ± 0.05 0.97 ± 0.05
〈d[σ]〉 1.71 ± 0.04 1.20 ± 0.06

T3(x,Q2
0) 0.5 · 10−1 < x < 0.75 0.1 · 10−2 < x < 0.1 · 10−1

〈d[q]〉 2.66 ± 0.07 1.17 ± 0.07
〈d[σ]〉 1.28 ± 0.05 0.77 ± 0.06

V(x,Q2
0) 0.1 < x < 0.6 0.3 · 10−2 < x < 0.3 · 10−1

〈d[q]〉 1.53 ± 0.09 1.62 ± 0.10
〈d[σ]〉 1.07 ± 0.05 0.92 ± 0.06

∆S (x,Q2
0) 0.1 < x < 0.6 0.3 · 10−2 < x < 0.3 · 10−1

〈d[q]〉 2.91 ± 0.11 1.65 ± 0.10
〈d[σ]〉 1.25 ± 0.06 1.31 ± 0.04

S P(x,Q2
0) 0.5 · 10−3 < x < 0.1 0.1 · 10−4 < x < 0.1 · 10−3

〈d[q]〉 4.19 ± 0.08 2.08 ± 0.09
〈d[σ]〉 1.58 ± 0.04 1.53 ± 0.10

S M(x,Q2
0) 0.1 < x < 0.6 0.3 · 10−2 < x < 0.3 · 10−1

〈d[q]〉 1.37 ± 0.05 1.79 ± 0.09
〈d[σ]〉 1.59 ± 0.06 2.28 ± 0.08

Table 3: distances between diagonal set and CME set, at the reference scale Q2
0 =

2GeV2, in two different kinematical regions.
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1. the singlet distribution, Σ(x) ≡ Σ
n f

i=1(qi(x) + q̄i(x)),

2. the gluon, g(x),

3. the total valence, V(x) ≡ Σ
n f

i=1(qi(x) − q̄i(x)),

4. the nonsinglet triplet, T3(x) ≡ (u(x) + ū(x)) − (d(x) − d̄(x)),

5. the sea asymmetry distribution, ∆S (x) ≡ d̄(x) − ū(x),

6. the strange plus, S P(x) ≡ s(x) + s̄(x),

7. the strange minus, S M(x) ≡ s(x) − s̄(x),

where n f = 6 is the number of flavors. The reference scale employed is Q2
0 =

2GeV2.

On average, the two parton sets are comparable within one σ. While distances
between central values in the data region range between 〈d[q]〉 = 1.06 for the
gluon distribution, and 〈d[q]〉 = 4.62 for the singlet distribution, we see that un-
certainties and central values in the extrapolation region generally show a good
agreement. Indeed, in the extrapolation region the size of uncertainties mostly re-
flects the lack of information and it is thus only loosely affected by the treatment
of uncertainties in the data region.

With the graphs, it is made more apparent that even if the general trend is that pdfs
do not differ for a remarkable amount, the averaged distances shown in table 3 may
hide local behaviors where pdfs in fact differ more significantly.

The largest differences are observed for pdfs in the valence region, consistent
with the observation that the treatment of systematics mostly affects the impact of
BCDMS, NMC, CHORUS and NTVDMN.
This is particularly pronouced for the singlet and strange plus distributions, for
which the diagonal pdf and the CME pdf differ for about half σ: central values
differ for almost one σ in the region between x = 0.1 and x = 0.3.

The nonsinglet triplet and the sea asymmetry distributions show a more stable
behavior.
For the nonsinglet triplet, we also notice that the diagonal pdf is underestimated,
while the general trend is that of diagonal pdfs being overestimated. Is it possible
that the effects of unretained systematics cancel out?
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Figure 4: the singlet distribution at the reference scale Q2
0 = 2GeV2, plotted versus
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Figure 9: the strange minus at the reference scale Q2
0 = 2GeV2, plotted versus x

on a linear (left) or a logaritmic scale (right).
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plotted versus x on a linear (left) or a logaritmic scale (right).
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The gluon distribution shows a marked stability, as data come predominantly from
HERA and ZEUS, which, as we have pointed out in sec. 3.1.1, have small sys-
tematic uncertainties. However, the distance is more pronounced in the region
between x = 10−5 and x = 8 · 10−4 (fig. 7), where data at low Q2 are predominant:
in this kinematical region, also ZEUS and HERA data have important correla-
tions, as table 2 shows.

We conclude that the impact of the inclusion of correlations on a pdf global analy-
sis is small, but not negligeble. Indeed, the averaged effect of correlations is small,
but we have seen that locally differences between pdfs can be significant.
It would be interesting to determine quantitatively this effect, by calculating some
observables for the LHC, e.g. the mass of the weak bosons W± and Z0 for which
the experimental accuracy is of about 1%. It is known that a very small difference
in pdf uncertainties can be the cause of a considerable change for some observ-
ables.

3.2 Conclusions

We have studied the effect of the inclusion of correlated uncertainties on a global
pdf analysis, by comparing a parton set obtained including correlations and a par-
ton set produced by completely neglecting them.
Testing both the quality of the fit and the difference between pdfs, we have noticed
that the inclusion of correlations do affect the pdf determination.
Namely, we see that, while the overall quality of the fit is essentially unchanged
if measured with a χ2 that contains the full covariance matrix, the purely diagonal
χ2 does change significantly. This is particularly noticeable for the subsets of data
coming from experiments with large systematics. This suggests that a diagonal-
χ2-minimization artificially alters the weights of the various subsets of data, so
that the experiments with large systematics are less important in the fit and vicev-
ersa. We conclude that the non-inclusion of correlations changes the fit, and not
just its quality, which is confirmed by the fact that for some data sets with small
systematics the quality of the two fits is very different.
Comparing the pdfs, we have noticed that the inclusion of correlations have a
larger effect for the pdfs in the valence region, where the information is mostly
controlled by the experiments with high systematics. The most significant differ-
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ence is observed for the singlet and strange plus distributions: in some kinematical
region it is of the order of the sum in quadrature of their standard deviations.
We conclude that, even if the effect of the inclusion of correlated systematics is
small, it is not negligible, and for some data sets, and consequently some kine-
matical regions, it is quite significant.
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