

News from Mar PDF

Juan Rojo STFC Rutherford Fellow Rudolf Peierls Center for Theoretical Physics University of Oxford

PDF4LHC Working Group Meeting CERN, 27/10/2015

Recent NNPDF studies (and related work)

Since the last PDF4LHC meeting

- Inclusion of the legacy HERA combined dataset JR, arXiv:1508.07731, ICHEP15 proceedings
- Inclusion of new measurements from ATLAS, CMS and LHCb NNPDF, in preparation
- NNPDF3.0 fits with intrinsic charm, and associated theory calculations
 NNPDF, in preparation + Ball, Bertone, Bonvini, Forte, Groth-Merrild, JR, Rottoli, arXiv:1510.00009
- NNPDF3.0 fits with threshold resummation , and implications for high-mass SUSY xsecs Bonvini, Marzani, JR, Rottoli, Ubiali, Ball, Bertone, Carrazza, Hartland, arXiv:1507.01006

Donvini, Marzani, JN, Kotton, Oblan, Dan, Dertone, Carrazza, frantianu, arxiv.1507.01000

- Impact of LHCb charm data in small-x gluon, and implications for neutrino astronomy Gauld, JR, Rottoli, Talbert, arXiv:1506.08025, + Sarkar, in preparation
- Parton Distributions in a **doped VFN scheme**

Bertone, Carrazza, JR, arXiv:1509.04022

Specialised Minimal PDF sets

Carrazza, Forte, Kassabov, JR, in preparation

Recent NNPDF studies (and related work)

Since the last PDF4LHC meeting

Inclusion of the legacy HERA combined dataset JR, arXiv:1508.07731, ICHEP15 proceedings	This talk	
Inclusion of new measurements from ATLAS, CMS and LHCb NNPDF, in preparation		
WNPDF3.0 fits with intrinsic charm, and associated theory calculations		
NNPDF, in preparation + Ball, Bertone, Bonvini, Forte, Groth-Merrild, JR, Rottoli, arXiv:1510.00009		
NNPDF3.0 fits with threshold resummation ,and implications for high-mass SUSY xsecs		
Bonvini, Marzani, JR, Rottoli, Ubiali, Ball, Bertone, Carrazza, Hartland, arXiv:1507.01006 JR, Later today		
Figure 2 Impact of LHCb charm data in small-x gluon, and implications for neutrino astronomy		
Gauld, JR, Rottoli, Talbert, arXiv:1506.08025, + Sarkar, in preparation		
Parton Distributions in a doped VFN scheme		
Bertone, Carrazza, JR, arXiv:1509.04022		
Specialised Minimal PDF sets	Zahari's talk in the afternoon	
Carrazza, Forte, Kassabov, JR, in preparation		

Towards NNPDF3.1: New experimental data

New LHC experimental data

ATLASLOMASSDY11	ATLAS low mass Drell-Yan dilepton production 7 TeV, 1.6 fb ⁻¹	ATLAS low mass DY data: Implemented
ATLASPHT11	ATLAS isolated photon production 7 TeV, 4.6 fb ⁻¹	
ATLASZPT47FB	ATLAS Z pt distribution 7 TeV, 4.7 fb ⁻¹	ATLAS Z pt: Implemented
ATLAS1JET11	ATLAS inclusive jet production 7 TeV, 5 fb ⁻¹	NNLO calculation now available
ATLASTTB11	ATLAS ttbar differential distributions, 7 TeV, 4.6 fb ⁻¹	ATLAS 2011 jets: Implemented
ATLASWPCTOT11	ATLAS W+charm production 7 TeV, 4.6 fb ⁻¹	Covariance matrix definition?
CMSDY2D12	CMS Drell-Yan double-differential distribution 2012 dataset, 8 TeV	Work in progress in various degrees of progress
CMSTTB12	CMS ttbar differential distributions, 8 TeV	for all experiments in this list
CMSZDIFF12	CMS pt and rap differential distributions 2012 dataset, 8 TeV	
HERACOMB	Combined HERA I+II inclusive dataset	Legacy HERA data: Implemented
DOWMASY	D0 W muon asymmetry final results	Legacy Tevatron electroweak measurements
DOWEASY	D0 W electron asymmetry final results	Impact studied in recent HERAfitter analysis Implementation in progress
LHCBWMURAP11	LHCb W-> mu nu rapidity distributions from 2011	
LHCBZERAP11	LHCb Z -> e+e- rapidity distributions 2011, 8 TeV	New LHCb forward DY data: Implemented
LHCBZMURAP11	LHC Z-> mu mu rapidity distribution 2011, 7 TeV	PDF4LHC, CERN, 27/10/2015

Final HERA legacy dataset

- Figure The legacy HERA inclusive combination has been added to NNPDF3.0 in various ways
- NNPDF3.0 already included all published HERA-II measurements from H1 and ZEUS,
- When replacing individual HERA-II data with **combined dataset**, we find **very minor impact on PDFs**

Final HERA legacy dataset

Figure The legacy HERA inclusive combination has been added to NNPDF3.0 in various ways

Figure a NNPDF3.0 fit without **any HERA-II data** with the corresponding fit with the legacy combination, find good consistency and a moderate reduction of PDF uncertainties

Including HERA-II measurements useful to **reduce PDF uncertainties** in various flavours Results consistent with the corresponding MMHT study **arXiv:1508.0661**

Juan Rojo

Final HERA legacy dataset

Free **legacy HERA inclusive combination** has been added to NNPDF3.0 in various ways

Figure a NNPDF **HERA-I-only fit** with the **HERA-I+II-only fit**, the reduction of PDF uncertainties is even more marked (same conclusions as in the **HERAPDF2.0 analysis**)

Including HERA-II measurements useful to reduce PDF uncertainties in various flavours

Tension at small-x?

- Fit quality somewhat improves if **low-x**, **low-Q**² **data removed**, specially at NNLO
- Related to **BFKL-like effects at small-x**? To investigate using **small-x** (high-energy) resummed fits

Including the ATLAS 2011 jet data

ATLAS inclusive jet production from 2011 recently available from HepForge

Solution NLOjet++/APPLgrid, with p_T^{jet} as central scale

Information about how to treat systematic errors not available: explore two assumptions about **the experimental covariance matrix**: treat all systematics either as fully correlated or as fully uncorrelated

 $\stackrel{\scriptscriptstyle {\mathbb Z}}{
ightarrow}$ Non-perturbative and electroweak corrections included in the theory calculation

ATLAS1JET11	all systemation	c uncertainties	uncorrelated
-------------	-----------------	-----------------	--------------

ATLAS		333	1.13781
	ATLASWZRAP36PB	30	1.17809
	ATLASR04JETS36PB	90	1.01606
	ATLASR04JETS2P76TEV	59	1.36090
	ATLASZHIGHMASS49FB	5	1.97278
	ATLASWPT31PB	9	1.17594
	ATLAS1JET11	140	0.57488

The **theory/data comparison** depends strongly on assumptions in the **construction of experimental covariance matrix**

ATLAS1JET11 all systematic uncertainties fully correlated

•	0	0	
ATLAS		333	2.17935
	ATLASWZRAP36PB	30	1.18827
	ATLASR04JETS36PB	90	1.01396
	ATLASR04JETS2P76TEV	59	1.37073
	ATLASZHIGHMASS49FB	5	2.00097
	ATLASWPT31PB	9	1.17049
	ATLAS1JET11	140	3.02404

ATLAS 2011 jets lead to reduction on large-x gluon PDF uncertainties, but need input about correct treatment of systematics

PDF4LHC, CERN, 27/10/2015

Juan Rojo

|0|

Including the ATLAS 2011 jet data

Section ATLAS inclusive jet production from 2011 recently available from HepForge

Solution NLOjet++/APPLgrid, with p_T^{jet} as central scale

Information about how to treat systematic errors not available: explore two assumptions about **the experimental covariance matrix**: treat all systematics either as fully correlated or as fully uncorrelated

 $\stackrel{\scriptstyle \leftarrow}{\scriptstyle \rightarrow}$ Non-perturbative and electroweak corrections included in the theory calculation

The theory/data comparison depends strongly on assumptions in the construction of experimental covariance matrix

ATLAS 2011 jets lead to reduction on large-x gluon PDF uncertainties, but need input about correct treatment of systematics

27/10/2015

NNPDF fits with intrinsic charm

Ball, Bertone, Bonvini, Forte, Groth-Merrild, JR, Rottoli, arXiv:1510.01009 Ball, Bonvini, Rottoli, arXiv:1510.02491 NNPDF, in preparation

FONLL with a fitted charm PDF

- First Work Forder First Forder Forder
 - **Mathematical Stabilise the dependence of GM-VFN calculations** with respect to **value of the charm mass**
 - **Or any antify the possible non-perturbative charm component in the proton**
- Not enough to only add **a new fitted PDF at the input scale**: FFN and GM-VFN scheme calculations need to be modified to account for genuinely **new contributions**: massive charm-initiated processes

© Coefficient functions for NC and CC **charm-initiated contributions in the massive scheme** up to NLO have been computed, but NNLO not available yet

Hoffmann and Moore 83 Kretzer and Schienbein 98

FONLL with a fitted charm PDF

Figure For the provided the structure functions can be modified to account for **massive charm-initiated contributions**

$$F(x,Q^2) = F^{\text{FLNR}}(x,Q^2) + \Delta F(x,Q^2)$$

The new piece to be added to the **FONLL charm structure functions** is

14

$$\Delta F_h(x,Q^2) = \sum_{i=h,\bar{h}} \left\{ \left[\left(C_i^{(3),0} \left(\frac{Q^2}{m_h^2} \right) - C_i^{(4),0} \right) + \alpha_s^{(4)}(Q^2) \left(C_i^{(3),1} \left(\frac{Q^2}{m_h^2} \right) - C_i^{(4),1} \right) \right] - \alpha_s^{(4)}(Q^2) C_i^{(3),0} \left(\frac{Q^2}{m_h^2} \right) \otimes \left(K_{hh}^{(1)}(m_h^2) + P_{qq}^{(0)}L \right) \right\} \otimes f_i^{(4)}(Q^2) - \alpha_s^{(4)}(Q^2) \sum_{i=h,\bar{h}} \left(C_i^{(3),0} \left(\frac{Q^2}{m_h^2} \right) - C_i^{(4),0} \right) \otimes P_{qg}^{(0)}L \otimes f_g^{(4)}(Q^2) + \mathcal{O}(\alpha_s^2) \right\}$$

Finite This correction vanishes at large Q² (since massless scheme unaffected by new contributions) and is numerically tiny for a perturbative generated charm (use equations of motion)

$$f_h^{(3)} = f_h^{(4)}(Q^2) - \alpha_s^{(4)}(Q^2) \left(K_{hh}^{(1)}(m_h^2) + P_{qq}^{(0)}L \right) \otimes f_h^{(4)}(Q^2) - \alpha_s^{(4)}(Q^2) L P_{qg}^{(0)} \otimes g^{(4)}(Q^2) + \mathcal{O}(\alpha_s^2),$$

FONLL with a fitted charm PDF

 $F(x, Q^2) = F^{\text{FLNR}}(x, Q^2) + \Delta F(x, Q^2)$

``This work" ``FLNR"

Perturbatively generated charm PDF

Charm PDF from BHPS model, 0.5% mom fract

For a dynamically generated charm, the new contributions have tiny numerical effects
 For BHPS-like fitted charm, substantial differences close to threshold at low scales

Use of generalized GM-VFN scheme crucial for any realistic fit with charm PDFs

Juan Rojo

Previous global PDF fits with IC

Fitted charm with **standard S-ACOT structure functions**, without massive charm-initiated terms

Sizable charm still allowed in global fit, though results depend on the **specific choice of model for fitted charm**, as well as **value of tolerance**, $\Delta \chi^2$ =100

Fitted charm in the **FFN scheme**, with massive charm-initiated terms

Solution Claims very stringent bounds on IC, also depends on choice of tolerance (in this case $\Delta \chi^2=1$)

16

NNPDF3.0 fits with intrinsic charm

 $\stackrel{\scriptstyle{\cup}}{=}$ Currently exploring how **NNPDF3.0 fits** are modified if **c**⁺(**x**,**Q**₀) is also fitted

Finitial exploratory study: use **FLNR FONLL expressions** for the DIS structure functions but also fit a charm PDF (as done in the **CTEQ-IC fits**)

Solution Very preliminary results for fitted charm indicate that there might be room in the global fit for a **relatively large charm contribution**, though with sizeable dependence on the **choice of fitted dataset**

<xc⁺> = (2.6 +- 1.3)% <xc⁺> = (1.3 +- 1.4)%

For any robust conclusion, need to implement **modified FONLL structure functions** with **massive charm-initiated contributions**

Work in progress

17

Summary and outlook

Working in different directions to improve the NNPDF global analysis:

Included the legacy HERA combined dataset

✤ Included new measurements from ATLAS, CMS and LHCb, and studied their constraints on NNPDF3.0

NNPDF3.0 fits with **intrinsic charm** should become available very soon. Study their implications for **LHC phenomenology**

 $\frac{1}{2}$ Not discussed here: NNPDF fits with **running heavy quark masses**, and the associated determination of $m_c(m_c)$

Also, ongoing work towards NNPDF fits with **high energy resummation**. Relation with the tension with the **low-Q² HERA combined data**?