

Progress in the NNPDF global analysis

Juan Rojo

STFC Rutherford Fellow Rudolf Peierls Center for Theoretical Physics University of Oxford

> DIS2016 Workshop DESY, Hamburg, 12/04/2016

NPDF ... to the future!

Juan Rojo

Model-Independent Determination of the Charm Content of the Proton

The NNPDF Collaboration: R. D. Ball, V. Bertone, M. Bonvini, S. Carrazza, S. Forte, A. Guffanti, N. P. Hartland, JR and Luca Rottoli, arXiv:1604.aaaa

DIS2016, DESY Hamburg, 12/04/2016

Why fitted charm?

Fin a global analysis is **two-fold**:

- **Stabilise the dependence of LHC calculations** with respect to **value of the charm mass**
- **Or and Compare With Medels** Quantify the **non-perturbative charm component in the proton** and compare with models

A 30-years old conundrum of QCD!

FONLL with fitted charm

Solution In a global PDF analysis with fitted charm, not enough to add a new fitted PDF at the input scale

FFN and **GM-VFN** scheme calculations need to be modified to account for genuinely **new** contributions: massive charm-initiated processes

Solutions for NC and CC **charm-initiated contributions in the massive scheme** up to NLO have been computed (NNLO not available yet)

FONLL structure functions can be modified to account for massive charm-initiated contributions

Use of generalized GM-VFN scheme crucial for any reliable fit with charm PDFs

R. D. Ball, V. Bertone, M. Bonvini, S. Forte, P. Groth-Merrild A. Guffanti, JR and Luca Rottoli, arXiv:1510.00009 R. D. Ball, M. Bonvini and L. Rottoli, arXiv:1510.02491

more details in Luca Rottoli's talk

Juan Rojo

NNPDF3 fits with intrinsic charm

Fit settings based on the upcoming NNPDF3.1 global analysis

 $\stackrel{\circ}{\Rightarrow}$ PDF parametrization as in NNPDF3.0, now adding **c**⁺(**x**,**Q**₀) as additional Artificial Neural Network: **same number of free parameters** as all other light quark PDFs

Fitted dataset: same as in NNPDF3.0, with the HERA legacy combination and the EMC charm data

At low scales, **gluon PDF stable**, but **fitted charm** different from **perturbative charm** At large-x, a **BHPS-like bump is found**, although PDF uncertainties are still large

NNPDF3 fits with intrinsic charm

Fit settings based on the upcoming NNPDF3.1 global analysis

PDF parametrization as in NNPDF3.0, now adding $c^+(x,Q_0)$ as additional Artificial Neural Network: same number of free parameters as all other light quark PDFs

Fitted dataset: same as in NNPDF3.0, with the HERA legacy combination and the EMC charm data

At high scales, **gluon PDF also stable**, with moderate increase in PDF uncertainty Fitted and dynamical charm PDFs **agree within uncertainties** for the whole range of x

Fit quality

NNPDF3 NLO $m_c = 1.47 \text{ GeV} \text{ (pole mass)}$					
Experiment	$N_{\rm dat}$	$\chi^2/N_{ m dat}$	$\chi^2/N_{ m dat}$		
		fitted charm	dynamical charm		
NMC	325	1.36	1.34		
SLAC	67	1.21	1.32		
BCDMS	581	1.28	1.29		
CHORUS	832	1.07	1.11		
NuTeV	76	0.62	0.62		
EMC	16	1.09	- (32)		
HERA inclusive	1145	1.17	1.19		
HERA F_2^c	47	1.14	1.09		
DY E605	104	0.82	0.84		
DY E866	85	1.04	1.13		
CDF	105	1.07	1.07		
D0	28	0.64	0.61		
ATLAS	193	1.44	1.41		
\mathbf{CMS}	253	1.10	1.08		
LHCb	19	0.87	0.83		
$\sigma(tar{t})$	6	0.96	0.99		
Total	3866	1.159	1.176		

Fitted charm improves the data/theory agreement

From The most marked improvements in the fitted charm case are the HERA inclusive data and the CHORUS neutrino structure functions

For the LHC datasets the fit quality is unchanged when charm is fitted

The EMC charm data

Since more than 30 years, the EMC charm structure function data advocated as **evidence for intrinsic charm**

However, previous global PDF fits with fitted charm **unable to achieve satisfactory description** of this experiment

 \Rightarrow arXiv:1408.1708 (Jimenez-Delgado et al) finds χ^2/N_{dat} =4.4 in their FFN IC analysis

The EMC charm data

Satisfactory description of the EMC charm data when charm is fitted

Section EMC charm data essential to reduce the PDF uncertainties in the NNPDF fitted charm

Figure Improvements as compared to previous studies likely related to the more flexible charm PDF parametrization adopted here, not restricted to specific models

DIS2016, DESY Hamburg, 12/04/2016

Charm contribution to proton momentum

PDF set	Q	C(Q)
NNPDF3 dynamical charm		$(0.239 \pm 0.003)\%$
NNPDF3 fitted charm	$1.65~{ m GeV}$	$(0.7\pm0.3)\%$
NNPDF3 fitted charm (no EMC)		$(1.6 \pm 1.2)\%$
CT14 BHPS1		0.7%~(1.3%)
CT14 BHPS2	$1.3 { m GeV} (1.65 { m GeV})$	2.0% (2.6%)
CT14 SEA1		0.6%~(1.31%)
CT14 SEA2		1.6%~(2.2%)

At Q=1.65 GeV, charm can carry up to 1% of the proton's momentum at the 68% CL (but consistent also with zero within PDF uncertainties)

Overall consistency between perturbative and fitted charm for all Q

From The large momentum fractions carried by the **CT14IC** BHPS2 and SEA2 models are strongly disfavoured

Stability with charm mass variations

Fitted Charm

Dynamical charm

Study fit stability by **varying the charm mass by** +- **5 sigma** with respect to the PDG value, using the **oneloop pole** -> **running mass conversion**

Figure If charm is fitted: all PDFs, in particular **charm and gluon**, vary by **less than 1**% in the region relevant for precision phenomenology at the LHC

FDF sensitivity to m_c larger is **charm is generated dynamically**

15

Stability with charm mass variations

$$P_q(x, Q^2) \equiv \frac{\left[q(x, Q^2, m_c = 1.61 \text{ GeV}) - q(x, Q^2, m_c = 1.33 \text{ GeV})\right]}{\sigma_q(x, Q^2, m_c = 1.47 \text{ GeV})}$$

Down quark

Anti-Up quark

,

The improved stability also benefits **flavours not directly linked to the charm mass**, such as the down quark or the anti-up quark

Stability with charm mass variations

Similar improved stability wrt the charm mass at the level of LHC cross-sections

N3LO Higgs cross-section in gluon-fusion varies by less than **0.5%**, small compared to the PDF uncertainty, even for a **large variation in m**_c

Electroweak cross-sections (W, Z) in particular benefit of the enhanced stability: implications for precision measurements such as the **W mass**

Similar stability observed in the fits with **running heavy quark masses**

Phenomenological implications @ LHC

Free differences between **fitted charm** and **perturbative charm** can be explored using a variety of LHC observables such as **D meson production and Z+charm** production

 $\frac{1}{2}$ The more forward and larger p_T the measurement, the more sensitive to the large-x charm PDF, and thus to the differences between fitted and dynamical charm

Phenomenological implications @ LHC

Free differences between **fitted charm** and **perturbative charm** can be explored using a variety of LHC observables such as **D meson production and Z+charm** production

 $\frac{1}{2}$ The more forward and larger p_T the measurement, the more sensitive to the large-x charm PDF, and thus to the differences between fitted and dynamical charm

Towards a new global analysis: NNPDF3.1

The NNPDF Collaboration, in preparation

DIS2016, DESY Hamburg, 12/04/2016

Juan Rojo

Towards NNPDF3.1

NNPDF3.1 is the next update of the NNPDF global analyses

Several **new additional datasets included**: the **legacy HERA data**, the final Tevatron *W* asymmetries, ATLAS 2011 inclusive jets, new W,Z data from ATLAS, CMS and LHCb, differential top quark pair rapidity distributions, the Z p_T from ATLAS and CMS,

All theory calculations now based on the public **x-space code APFEL**

Pole and running heavy quark mass fits, for a wide range of **charm and bottom masses**

General Charm PDF treated on equal footing as the light quark flavors

Extended positivity constraints, more robust estimate of large-*x* PDF errors

$$\alpha_{f_i}(x,Q^2) \equiv \frac{\partial \ln[x f_i(x,Q^2)]}{\partial \ln x}, \qquad \beta_{f_i}(x,Q^2) \equiv \frac{\partial \ln[x f_i(x,Q^2)]}{\partial \ln(1-x)}$$

see also arXiv:1604.00024 and Emanuele Nocera's talk

,

New datasets in NNPDF3.1

Measurement	Data taking	Motivation
LHCb W,Z rapidity dists 7,8 TeV	2011+2012	small-x and large-x quarks
D0 legacy W asymmetries	Run II	quark flavor separation
ATLAS inclusive jets 7 TeV	2011	large- <i>x</i> gluon
ATLAS low-mass Drell-Yan 7 TeV	2010+2011	small- <i>x</i> quarks
ATLAS Z pT 7,8 TeV	2011+2012	medium- <i>x</i> gluon and quarks
ATLAS and CMS tt differential 8 TeV	2012	large- <i>x</i> gluon
CMS Z pT,y 2D xsecs 8 TeV	2012	medium- <i>x</i> gluon and quarks
CMS Drell-Yan low+high mass 8 TeV	2012	small- <i>x</i> and large- <i>x</i> quarks
CMS W asymmetry 8 TeV	2012	quark flavor separation
CMS 8 TeV and 2.76 TeV jets	2012	medium and large- <i>x</i> gluon

Cut-off date for new data to be included in NNPDF3.1: end of April

APFEL and APFELcomb

Up to NNPDF3.0, PDF evolution and DIS structure functions were based on a (private) N-space code, **FKgenerator**

From NNPDF3.1 we will adopt the public code **APFEL** for all theory calculations

Extensive benchmarking between the two codes performed, as well ad with other codes like **HOPPET and OpenQCDrad**

For hadronic observables, **APPLgrid** and **FastNLO** grids are pre-convoluted with PDF evolution kernels to optimise fit performance using a new tool, **APFELcomb** (to be publicly released)

Observable	APPLGRID	APFELcomb
W^+ production	$1.03 \mathrm{\ ms}$	0.41 ms (2.5 x)
Inclusive jet production	$2.45 \mathrm{\ ms}$	$20.1 \ \mu s \ (120x)$

more on APFEL in Valerio Bertone's talk

DIS2016, DESY Hamburg, 12/04/2016

Juan Rojo

Fits with differential top quark pair data

For the recent availability of exact NNLO results (*Czakon, Heines, Mitov, arxiv:1511.00549*) makes possible the inclusion of top quark differential distributions into the NNLO global analysis

Exploit the most recent 8 TeV data from ATLAS and CMS to constrain the large-*x* gluon PDF

Figure These datasets will be integral part of NNPDF3.1: complementary constraints to jet production

M. Czakon, N. P. Hartland, A. Mitov, E. R. Nocera, JR, in preparation

24

DIS2016, DESY Hamburg, 12/04/2016

Fits with differential top quark pair data

For the recent availability of exact NNLO results (*Czakon, Heines, Mitov, arxiv:1511.00549*) makes possible the inclusion of top quark differential distributions into the NNLO global analysis

Exploit the most recent 8 TeV data from ATLAS and CMS to constrain the large-*x* gluon PDF

Figure These datasets will be integral part of NNPDF3.1: complementary constraints to jet production

M. Czakon, N. P. Hartland, A. Mitov, E. R. Nocera, JR, in preparation

DIS2016, DESY Hamburg, 12/04/2016

PDFs: preliminary results

Still early for any quantitative comparisons

Preliminary results indicate **qualitatively** good stability with respect to NNPDF3.0 in the LHC precision physics region

PDF uncertainties somewhat larger in **extrapolation regions** from methodological improvements

26

LHC phenomenology

PDF set	ggH N3LO	W+ NLO
NNPDF3.0 NNLO	46.6 +- 1.1 pb	6.56 +- 0.15 nb
NNPDF3.1(PRELIM) NNLO	46.7 +- 1.0 pb	6.65 +- 0.16 nb

Higgs cross-sections in gluon-fusion computed at N3LO using ggHiggs

- The **ggH cross-section is very stable** between NNPDF3.0 and NNPDF3.1prelim
- **W cross-sections** computed at NLO using MCFM
- Moderate upwards shift, well within PDF uncertainties

Similar stability observed for other cross-sections (also in PDF luminosities)

27

Summary and outlook

First determination of fitted charm in the NNPDF global analysis framework

Solution LHAPDF6 grids to be made available from the NNPDF HepForge website, for a range of charm mass (pole and running) values

Both PDF sets with fitted charm and the corresponding baselines with dynamical charm

Follow-up: pheno studies of LHC measurements to constrain non-perturbative charm

Towards a new global analysis: NNPDF3.1

Several new datasets included, from the HERA and Tevatron legacy data to precision LHC electroweak production measurements at top quark production differential distributions

Provided for a wide range of (pole and running) heavy quark masses

Preliminary results indicate good stability with respect to NNPDF3.0

Summary and outlook

First determination of fitted charm in the NNPDF global analysis framework

LHAPDF6 grids to be made available from the NNPDF HepForge website, for a range of charm mass (pole and running) values

- Both PDF sets with fitted charm and the corresponding baselines with dynamical charm
- ve charm Follow-up: pheno studies of LHC measurements to constrain r

Towards a new global analysis: NNPD

Thanks for your attention Several new da TERA and Tevatron legacy data to precision LHC electroweak produ ments at top quark production differential distributions

Provided for a wide range of (pole and running) heavy quark masses

Preliminary results indicate good stability with respect to NNPDF3.1

Additional Material

The EMC charm data

The EMC charm data

DIS2016, DESY Hamburg, 12/04/2016

Disentangling non-perturbative charm

DIS2016, DESY Hamburg, 12/04/2016

Disentangling non-perturbative charm

Comparison with CT14IC

