

Progress in the NNPDF global analysis

Juan Rojo

STFC Rutherford Fellow Rudolf Peierls Center for Theoretical Physics University of Oxford

> QCD@LHC2016 Zurich, 22/08/2016

Juan Rojo

QCD@LHC2016, Zurich, 22/08/2016

NPDF ... to the future!

NNPDF3 fits with intrinsic charm

NNPDF3.1 global analysis

NNPDF3.1QED fits

Updated determinations of alphas and m_c(m_c) from global PDF fit

PDF fits with small-x (BFKL) resummation

05/2016

Fall 2016

Model-Independent Determination of the Charm Content of the Proton

The NNPDF Collaboration: R. D. Ball, V. Bertone, M. Bonvini, S. Carrazza, S. Forte, A. Guffanti, N. P. Hartland, JR and Luca Rottoli, *arXiv:1605.06515*

Why fitted charm?

Fin a global analysis is **two-fold**:

- **Stabilise the dependence of LHC calculations** with respect to **value of the charm mass**
- **Or and Compare With Medels** Quantify the **non-perturbative charm component in the proton** and compare with models

A 30-years old conundrum of QCD!

FONLL with fitted charm

In a global PDF analysis with fitted charm, not enough to add a new fitted PDF at the input scale
 FFN and GM-VFN scheme calculations need to be modified to account for genuinely new contributions: massive charm-initiated processes

© Coefficient functions for NC and CC **charm-initiated contributions in the massive scheme** up to NLO have been computed (NNLO not available yet)

FONLL structure functions can be modified to account for **massive charm-initiated contributions**

R. D. Ball, V. Bertone, M. Bonvini, S. Forte, P. Groth-Merrild A. Guffanti, JR and Luca Rottoli, arXiv:1510.00009 R. D. Ball, M. Bonvini and L. Rottoli, arXiv:1510.02491

NNPDF3 fits with intrinsic charm

PDF parametrization as in NNPDF3.0, now adding $c^+(x,Q_0)$ as additional Artificial Neural Network: same number of free parameters as all other light quark PDFs

Fitted dataset: same as in NNPDF3.0, with the HERA legacy combination and the EMC charm data

At low scales, **gluon PDF stable**, but **fitted charm** different from **perturbative charm** At large-x, a **BHPS-like bump is found**, although PDF uncertainties are still large

NNPDF3 fits with intrinsic charm

PDF parametrization as in NNPDF3.0, now adding $c^+(x,Q_0)$ as additional Artificial Neural Network: same number of free parameters as all other light quark PDFs

Fitted dataset: same as in NNPDF3.0, with the HERA legacy combination and the EMC charm data

At high scales, **gluon PDF also stable**, with moderate increase in PDF uncertainty Fitted and dynamical charm PDFs **agree within uncertainties** for the whole range of x

Fit quality

NNPDF3 NLO $m_c = 1.47 \text{ GeV} \text{ (pole mass)}$							
Experiment	$N_{\rm dat}$	$\chi^2/N_{ m dat}$	$\chi^2/N_{\rm dat}$				
		fitted charm	dynamical charm				
NMC	325	1.36	1.34				
SLAC	67	1.21	1.32				
BCDMS	581	1.28	1.29				
CHORUS	832	1.07	1.11				
NuTeV	76	0.62	0.62				
EMC	16	1.09	- (32)				
HERA inclusive	1145	1.17	1.19				
HERA F_2^c	47	1.14	1.09				
DY E605	104	0.82	0.84				
DY E866	85	1.04	1.13				
CDF	105	1.07	1.07				
D0	28	0.64	0.61				
ATLAS	193	1.44	1.41				
\mathbf{CMS}	253	1.10	1.08				
LHCb	19	0.87	0.83				
$\sigma(tar{t})$	6	0.96	0.99				
Total	3866	1.159	1.176				

Fitted charm improves the data/theory agreement

Free most marked improvements in the fitted charm case are the HERA inclusive data and the CHORUS neutrino structure functions

For the LHC datasets the fit quality is unchanged when charm is fitted

The EMC charm data

Satisfactory description of the EMC charm data when charm is fitted

EMC charm data essential to reduce the PDF uncertainties in the NNPDF fitted charm

Figure Improvements as compared to previous studies likely related to the more flexible charm PDF parametrization adopted here, not restricted to specific models

EMC charm structure functions

QCD@LHC2016, Zurich, 22/08/2016

Charm contribution to proton momentum

PDF set	Q	C(Q)		
NNPDF3 dynamical charm		$(0.239 \pm 0.003)\%$		
NNPDF3 fitted charm	$1.65~{ m GeV}$	$(0.7\pm0.3)\%$		
NNPDF3 fitted charm (no EMC)		$(1.6\pm1.2)\%$		
CT14 BHPS1		0.7%~(1.3%)		
CT14 BHPS2	$1.2 C_{\rm eV} (1.65 C_{\rm eV})$	2.0%~(2.6%)		
CT14 SEA1	1.5 Gev (1.05 Gev)	0.6%~(1.31%)		
CT14 SEA2		1.6%~(2.2%)		

NNPDF3 NLO

At Q=1.65 GeV, charm can carry up to 1% of the proton's momentum at the 68% CL (but consistent also with zero within PDF uncertainties)

Overall consistency between perturbative and fitted charm for all Q

From The large momentum fractions carried by the **CT14IC** BHPS2 and SEA2 models are strongly disfavoured

Stability with charm mass variations

Fitted Charm

NNPDF3 NLO Fitted Charm, Q=100 GeV

Dynamical charm

Study fit stability by varying the charm mass by +- 5 sigma with respect to the PDG value, using the oneloop pole -> running mass conversion

If charm is fitted: all PDFs, in particular **charm and gluon**, vary by **less than 1**% in the region relevant for precision phenomenology at the LHC

 $\stackrel{\text{\tiny Q}}{=}$ PDF sensitivity to m_c larger is **charm is generated dynamically**

Stability with charm mass variations

Similar improved stability with the charm mass at the level of LHC cross-sections

Figgs cross-section in gluon-fusion varies by less than 0.5%, small compared to the PDF uncertainty, even for a large variation in m_c

Electroweak cross-sections (W, Z) in particular benefit of the enhanced stability: implications for precision measurements such as the **W mass**

Similar stability observed in the fits with **running heavy quark masses**

Phenomenological implications @ LHC

The differences between **fitted charm** and **perturbative charm** can be explored using a variety of LHC observables such as **D meson production and Z+charm** production

For more forward and larger p_T the measurement, the more sensitive to the large-x charm PDF, and thus to the differences between fitted and dynamical charm

Phenomenological implications @ LHC

Free differences between **fitted charm** and **perturbative charm** can be explored using a variety of LHC observables such as **D meson production and Z+charm** production

For more forward and larger p_T the measurement, the more sensitive to the large-x charm PDF, and thus to the differences between fitted and dynamical charm

Juan Rojo

NNPDF3IC recently compared with CMS data at8 TeV in CMS-PAS-15-009

Need high-stats 13 TeV data to probe the region where fitted and perturbative charm differ most

Towards a new global analysis: NNPDF3.1

The NNPDF Collaboration, in preparation

Juan Rojo

QCD@LHC2016, Zurich, 22/08/2016

New datasets in NNPDF3.1

Measurement	Data taking	Motivation
LHCb W,Z rapidity dists 7,8 TeV	2011+2012	small-x and large-x quarks
D0 legacy W asymmetries	Run II	quark flavor separation
ATLAS inclusive jets 7 TeV	2011	large- <i>x</i> gluon
ATLAS low-mass Drell-Yan 7 TeV	2010+2011	small- <i>x</i> quarks
ATLAS Z pT 7,8 TeV	2011+2012	medium- <i>x</i> gluon and quarks
ATLAS and CMS tt differential 8 TeV	2012	large- <i>x</i> gluon
CMS Z (pT,y) 2D xsecs 8 TeV	2012	medium- <i>x</i> gluon and quarks
CMS Drell-Yan low+high mass 8 TeV	2012	small- <i>x</i> and large- <i>x</i> quarks
CMS W asymmetry 8 TeV	2012	quark flavor separation
CMS 8 TeV and 2.76 TeV jets Ratio	2012	medium and large- <i>x</i> gluon

APFEL and APFELcomb

Up to NNPDF3.0, PDF evolution and DIS structure functions were based on a (private) N-space code, **FKgenerator**

From NNPDF3.1 we will adopt the public code **APFEL** for all theory calculations

Extensive benchmarking between the two codes performed, as well ad with other codes like **HOPPET and OpenQCDrad**

For hadronic observables, **APPLgrid** and **FastNLO** grids are pre-convoluted with PDF evolution kernels to optimise fit performance using a new tool, **APFELcomb** (to be publicly released)

Observable	APPLGRID	APFELcomb
W^+ production	$1.03 \mathrm{\ ms}$	0.41 ms (2.5 x)
Inclusive jet production	$2.45 \mathrm{\ ms}$	$20.1 \ \mu s \ (120 x)$

APFEL: Bertone, Carrazza, Rojo, *arXiv:1310.06515* APFELcomb: Bertone, Carrazza, Harland, *arXiv:1605.02070*

QCD@LHC2016, Zurich, 22/08/2016

LHCb Run I combination (muons)

LHCb has provided their combination of all Run I measurements on W -> μ v and Z -> μ μ
 Reasonable description at NLO for NNPDF3.1, significant reduction of PDF uncertainties at large-x
 NNLO/NLO K-factors can be large - compute them with FEWZ and MCFM@NNLO
 LHCb 8 TeV electron data also very recently available

Juan Rojo

QCD@LHC2016, Zurich, 22/08/2016

Tevatron legacy W asymmetries

Fine legacy Tevatron measurements on W asymmetries based on the full dataset now available

Gonsider only data at the **lepton level from D0** (exclude reconstructed W data from CDF)

Good agreement with NNPDF3.1 NLO, substantial reduction of PDF uncertainties: **improved flavor separation**

Tevatron legacy W asymmetries

Final Figure Tevatron measurements on W asymmetries based on the full dataset now available

Gonsider only data at the **lepton level from D0** (exclude reconstructed W data from CDF)

Good agreement with NNPDF3.1 NLO, substantial reduction of PDF uncertainties: **improved flavor separation**

The recent availability of **exact NNLO results** (*Czakon, Heines, Mitov, arxiv:1511.00549*) makes possible the inclusion of **top quark differential distributions** into the NNLO global analysis

Exploit the most recent 8 TeV data from ATLAS and CMS to constrain the large-*x* gluon PDF

Figure 3 These datasets will be **integral part of NNPDF3.1**: complementary constraints to jet production

Some **tension** between the ATLAS and CMS data observed: under investigation

M. Czakon, N. P. Hartland, A. Mitov, E. R. Nocera, JR, in preparation

+ Emanuele's talk

The recent availability of **exact NNLO results** (*Czakon, Heines, Mitov, arxiv:1511.00549*) makes possible the inclusion of **top quark differential distributions** into the NNLO global analysis

Exploit the most recent 8 TeV data from ATLAS and CMS to constrain the large-*x* gluon PDF

Figure 3.1: For the set of the se

Some **tension** between the ATLAS and CMS data observed: under investigation

M. Czakon, N. P. Hartland, A. Mitov, E. R. Nocera, JR, in preparation

+ Emanuele's talk

Data set	Fit ID									
	1	2	3	4	5	6	7	8	9	10
ATLAS $d\sigma/dp_T^t$	2.12	2.13	1.97	2.08	2.07	2.20	1.98	2.15	2.17	2.11
ATLAS $d\sigma/dy_t$	0.68	0.64	0.61	0.72	0.55	0.63	0.74	0.60	0.62	0.69
ATLAS $d\sigma/dy_{tar{t}}$	0.56	0.55	0.52	0.90	0.31	0.47	1.01	0.36	0.25	0.44
ATLAS $d\sigma/dm_{tar{t}}$	0.71	1.08	0.95	0.91	0.97	1.03	0.89	1.11	1.22	1.15
ATLAS $(1/\sigma)d\sigma/dp_T^t$	4.06	7.38	4.28	6.06	5.22	6.37	4.10	6.97	6.52	7.38
ATLAS $(1/\sigma)d\sigma/dy_t$	3.09	1.89	1.79	3.25	1.54	1.82	3.19	1.71	1.49	1.74
ATLAS $(1/\sigma)d\sigma/dy_{t\bar{t}}$	2.04	1.34	1.27	3.15	0.66	1.53	3.85	1.01	0.37	1.71
ATLAS $(1/\sigma)d\sigma/dm_{t\bar{t}}$	1.80	3.16	2.83	2.38	2.79	3.30	2.49	3.35	4.20	3.57
ATLAS $\sigma_{t\bar{t}}$	3.29	1.46	1.93	2.74	2.84	2.82	1.70	1.64	1.57	1.58
CMS $d\sigma/dp_T^t$	12.0	7.85	2.98	9.51	8.32	9.84	5.53	7.35	5.51	6.73
CMS $d\sigma/dy_t$	3.59	3.65	3.97	3.07	4.48	4.16	3.24	3.90	4.93	4.12
${ m CMS}~d\sigma/dy_{tar{t}}$	1.10	0.88	0.88	0.98	1.03	1.06	0.90	0.99	1.16	1.09
CMS $d\sigma/dm_{t\bar{t}}$	5.91	4.02	4.42	4.73	4.42	4.07	4.67	3.93	3.44	3.72
CMS $(1/\sigma)d\sigma/dp_T^t$	3.30	3.94	2.84	3.67	3.08	3.44	2.94	3.60	2.98	3.67
CMS $(1/\sigma)d\sigma/dy_t$	3.65	4.47	4.53	3.52	5.02	4.68	3.53	4.67	5.98	5.05
${ m CMS}~(1/\sigma)d\sigma/dy_{tar{t}}$	1.18	1.23	1.20	1.37	1.20	1.29	1.54	1.32	1.40	1.46
CMS $(1/\sigma)d\sigma/dm_{t\bar{t}}$	9.94	7.31	7.86	8.60	7.89	7.23	8.47	7.12	6.16	6.82
${ m CMS}~\sigma_{ m tar t}$	4.15	0.50	1.38	1.49	1.60	1.99	1.39	0.77	0.56	0.60

 χ^2/N_{dat} for various combinations of top quark differential distributions added to the NNPDF3 global analysis

Some difficultly in fitting the CMS distributions at the same time as the ATLAS ones

Poor description of the top transverse momentum distributions, both ATLAS and CMS

26

QCD@LHC2016, Zurich, 22/08/2016

Since only one distribution per experiment can be added at the same time in the global fit, need to determine the consistent choice which maximizes the constrains on the large-x gluon

Significant constraints on **large-x gluon** from **global fit** without inclusive jet data (not available at NNLO) **Normalized distributions**, supplemented by total inclusive cross-sections, exhibit more constraining power

NNPDF3.1 vs NNPDF3.0

- Preliminary results indicate **qualitatively good stability** with respect to NNPDF3.0
- All PDFs exhibit reduced PDF uncertainties at large-x region
- 🗳 Gluon reasonably stable
- **Improved light quark flavor separation** from all the new electroweak data from Tevatron and LHC

NNPDF3.1 vs NNPDF3.0

Gluon-induced PDF luminosities stable between 3.0 and 3.1, with reduced PDF errors in the latter

- **Quark-antiquark luminosities increase by few percent** in region relevant for precision *W* and **Z** production data at the LHC: improves agreement between NNLO and data
- Fighlights importance of recent collider data for an **improved quark flavor separation**

The $Z p_T$ distribution

High-precision, theoretically very clean process

Comparison between NNLO calculations and LHC data with NNPDF3.0

Some tension for the unnormalized distributions even at NNLO - it is a PDF issue?

Agreement should improve once **NNPDF3.1 becomes available** thanks to updated flavor separation

QCD@LHC2016, Zurich, 22/08/2016

Fitted charm stability

Free additional datasets included in NNPDF3.1, in particular the new Tevatron and LHCb measurements, further constrain the charm PDF

Results are nicely consistent with those of the NNPDF3 IC paper, with reduced PDF uncertainties

Find the Impact of EMC data is now rather reduced when added on top of the NNPDF3.1 dataset

NLO, Q = 1.65 GeV

Fitted charm stability

Figure The additional datasets included in NNPDF3.1, in particular the new Tevatron and LHCb measurements, further constrain the charm PDF

Results are nicely consistent with those of the NNPDF3 IC paper, with reduced PDF uncertainties

Find the second second

NLO, $Q^2 = 10^4 \text{ GeV}^2$

QCD@LHC2016, Zurich, 22/08/2016

Summary and outlook

First determination of fitted charm in the NNPDF global analysis framework

LHAPDF6 grids available from the **NNPDF HepForge website**, for a range of charm mass (pole and running) values

Final answer concerning the **amount of non-perturbative charm allowed** can be determined by **LHC measurements at Run II**

Improved stability with respect to charm mass variations

Towards a new global analysis: NNPDF3.1

Several new datasets included, from the HERA and Tevatron legacy data to precision LHC electroweak production measurements at top quark production differential distributions

Preliminary results indicate in general good stability with respect to NNPDF3.0, with main differences being a reduction of the large-x PDF uncertainties and an improved flavor separation, specially relevant for precision electroweak production data at the LHC

Summary and outlook

First determination of fitted charm in the NNPDF global analysis framework

LHAPDF6 grids available from the **NNPDF HepForge website**, for a range of charm mass (pole and running) values

The final answer concerning the **amount of non-perturbative charm allowed** can be determined by LHC measurements at Run II

Towards a new global analysis: NNPDE

Thanks for your attention atron legacy data to precision LHC Several new dataset raark production differential distributions electroweak prod

Preliminary rest in general good stability with respect to NNPDF3.0, with main differences being reduction of the large-x PDF uncertainties and an improved flavor separation, specially relevant for precision electroweak production data at the LHC

NNPDF3.1 with fitted charm confirms and strengthens the conclusions of the NNPDF3 IC study

Additional Material

Impact of modified GM-VFN

The EMC charm data

The EMC charm data

NNPDF3 NLO Fitted Charm, Q=1.65 GeV

Disentangling non-perturbative charm

Disentangling non-perturbative charm

Comparison with CT14IC

Q=1.65 GeV

QCD@LHC2016, Zurich, 22/08/2016

Phenomenological implications @ LHC

The differences between **fitted charm** and **perturbative charm** can be explored using a variety of LHC observables such as **D meson production and Z+charm** production

 $\frac{1}{2}$ The more forward and larger p_T the measurement, the more sensitive to the large-x charm PDF, and thus to the differences between fitted and dynamical charm

The EMC charm data

Since more than 30 years, the EMC charm structure function data advocated as **evidence for intrinsic charm**

However, previous global PDF fits with fitted charm **unable to achieve satisfactory description** of this experiment

 $\frac{1}{2}$ arXiv:1408.1708 (Jimenez-Delgado et al) finds χ^2/N_{dat} =4.4 in their FFN IC analysis

Stability with charm mass variations

$$P_q(x,Q^2) \equiv \frac{\left[q(x,Q^2,m_c = 1.61 \text{ GeV}) - q(x,Q^2,m_c = 1.33 \text{ GeV})\right]}{\sigma_q(x,Q^2,m_c = 1.47 \text{ GeV})}$$

Down quark

•

The improved stability also benefits **flavours not directly linked to the charm mass**, such as the down quark or the anti-up quark