# NNPDF 2.3

#### Parton Densities with LHC data

#### Valerio Bertone

Albert-Ludwigs-Universität Freiburg, Physikalisches Institut



#### **DIFFRACTION 2012**

September 11 - 15, 2012, Lanzarote, Canarie Islands





#### • The **NNPDF** methodology

#### • The **NNPDF 2.3** set:

- Dataset
- Results
- Phenomenology
- Conclusions



### **The NNPDF Methodology** *Main ingredients*

#### • **Monte Carlo** by importance sampling:

• construct a set of data replicas which reproduces the statistical features of the original dataset.

#### • **Neural networks** as interpolants:

• unbiased basis parametrized by a very large set of parameters.

#### • **Genetic Algorithm** for neural network training:

- suitable exploration of the space of parameters avoiding to fall into local minima.
- Determination of the best fit by **cross-validation**:
  - proper fitting avoiding overlearning.



#### **The NNPDF Methodology** *Monte Carlo Sampling*

• Generation of **artificial MC data** according to the distribution:

$$\mathcal{O}_i^{(art)(k)} = \left(1 + r_{norm}^{(k)}\sigma_{norm}\right) \left[\mathcal{O}_i^{(exp)} + r_{stat}^{(k)}\sigma_{stat} + \sum_{p=1}^{N_{sys}} r_{sys,p}^{(k)}\sigma_{sys,p}\right]$$

where  $r_{j}^{(k)}$  are univariate (normally distributed) random numbers.

• Validation of the MC replicas against data:



• **O(1000) replicas** to reproduce correlations at the percent accuracy.



#### **The NNPDF Methodology** Neural Networks

#### • 7 independent PDFs at the initial scale $Q_0 = \sqrt{2}$ GeV:



- Each PDF parametrized by a **Neural Network** having architecture 2-5-3-1 (37 free parameters).
- **Redundant** parametrization **to avoid biases** from the choice of the PDF functional form:  $\mathbb{E}^{10}$

5

- Polinomial form vs. Neural Network,
- stable under the change of architecture.



#### **Drawback:**



#### **Drawback:**





#### **Drawback:**





#### **Drawback:**





#### **Drawback:**



Need for a **dynamical stopping** criterion!

#### **Cross-validation** method:

- Divide data in two sets: **training** and **validation** (for each experiment).
- **Random division** for each replica (tipically  $f_t = f_v = 0.5$ ).
- **Minimization** performed only on the training set. Meantime, the validation  $\chi^2$  is monitored.
- When the training  $\chi^2$  still decreases while the validation  $\chi^2$  stops decreasing, **STOP the fit.**





#### The NNPDF Methodology ... to summarize

- Generate **Monte Carlo replicas** of the experimental data taking into account all experimental correlations.
- Fit to each replica a set of PDFs, parametrized at the initial scale Q<sub>0</sub> with Neural Networks using the Genetic Algorithm to minimize the χ<sup>2</sup> and the Cross-Validation method to stop the fit.
- **Expectation values** for observables are then given by:

$$\langle \mathcal{O}\{f\} \rangle = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[f_k] \text{ and } \delta \langle \mathcal{O}\{f\} \rangle = \sqrt{\langle \mathcal{O}^2\{f\} \rangle - \langle \mathcal{O}\{f\} \rangle^2}$$

... and corresponding formulae used to compute correlations.



### **NNPDF timeline** ... how we got here

|                             | NNPDF I.0 | NNPDF 1.2 | NNPDF 2.0            | NNPDF 2.1<br>NLO | NNPDF 2.1<br>LO & NNLO | NNPDF 2.3 |
|-----------------------------|-----------|-----------|----------------------|------------------|------------------------|-----------|
| DIS                         |           |           |                      |                  |                        |           |
| Drell-Yan                   | ×         | ×         | <ul> <li></li> </ul> | ~                |                        |           |
| Jets                        | ×         | ×         | ~                    | ~                | ~                      |           |
| LHC                         | ×         | ×         | ×                    | ×                | ×                      |           |
| Antistrange<br>indep. param | ×         |           |                      |                  |                        |           |
| Heavy quark<br>masses       | ×         | ×         | ×                    |                  |                        |           |
| NNLO                        | ×         | ×         | ×                    | ×                |                        |           |





# The **NNPDF 2.3** is the first PDF fit set at NLO and NNLO which **includes LHC data**.



#### 3501 data points (NNLO)

| Experiment              | Data |
|-------------------------|------|
| Fixed Target DIS        | 1952 |
| Fixed Target DY         | 318  |
| HERA DIS                | 834  |
| Tevatron W/Z            | 70   |
| Tevatron Jets           | 186  |
| <b>ATLAS incl. Jets</b> | 90   |
| ATLAS W/Z lept. rap.    | 30   |
| CMS W letp. asym.       | 11   |
| LHCb W rap.             | 10   |

Only the relevant LHC data for which the **full covariance matrix** is available are included.



### **NNPDF 2.3** *Methodological Improvements*

High order corrections **computationally intensive** 

- Combinantion of **FastKernel** with **FastNLO/APPLgrid**:
  - substatial **speed-up** in computation of observables during the fit.

#### • More **advanced minimization** procedure to fit PDFs:

- allowed by fast computation of observables,
- **retuning of the minimization** algorithm (genetic algorithm),
- retraining of replicas having  $\chi^2$  "too away" from the average (**outliers**).





- Addition of the **LHC data**,
- improved **minimization**,
- corrected error in the **di-muon cross-section**.



- Moderate but significant reduction in uncertainty,
- change in **strangeness.**



**NPDF** 

#### **NNPDF 2.3 Parton Distributions:** NNPDF vs. other collaborations

- Other NNLO PDF sets present on the market:
  - MSTW2008: global fit (DIS+DY+Jets+EW) **ABM11**: red. dataset (DIS+DY)
  - CT10: global fit (DIS+DY+Jets+EW)
    - $xg(x, Q^2 = 2.0 \text{ GeV}^2) \alpha_s = 0.119$  $xg(x, Q^2 = 2.0 \text{ GeV}^2) - \alpha_s = 0.119$ NNPDF2.3 NNLO NNPDF2.3 NNLO CT10 NNLO ABM11 NNLO  $\alpha_s = 0.1135$ HERAPDF1.5 NNLO MSTW2008 NNLO -2 10<sup>-3</sup> 10<sup>-5</sup> 10<sup>-3</sup> x 10<sup>-2</sup> x 10<sup>-2</sup> 10<sup>-5</sup> 10<sup>-4</sup> 10<sup>-1</sup> 10-4 10<sup>-1</sup>  $xg(x, Q^2 = 2.0 \text{ GeV}^2) - \alpha_s = 0.119$  $xg(x, Q^2 = 2.0 \text{ GeV}^2) - \alpha_s = 0.119$ 0.6 0.6 NNPDF2.3 NNLO NNPDF2.3 NNLO ABM11 NNLO  $\alpha_{s} = 0.1135$ CT10 NNLO 0.5 0.5 MSTW2008 NNLO HERAPDF1.5 NNLO 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$
- good agreement between global fits (NNPDF, MSTW and **CT**) all over the *x* range,
- larger **differences** between **NNPDF** and **ABM** at both large and small-*x* (different  $\alpha_s$ ?),
- **ABM**: unnatually small **uncertainty** at small-*x*,
- **HERAPDF** larger uncertainty at large-*x* (**no collider data**) but better agreement at small-*x*. **Underestimation** of the error in the **quark sector**.

HERAPDF1.5: red. dataset (HERA only)

#### **NNPDF 2.3** *Parton Distributions: NNPDF vs. other collaborations*

- Other NNLO PDF sets present on the market:
  - MSTW2008: global fit (DIS+DY+Jets+EW) ABM11: red. dataset (DIS+DY)
  - **CT10**: global fit (DIS+DY+Jets+EW)
- good agreement between global fits (NNPDF, MSTW and CT) all over the *x* range,
- larger differences between
   NNPDF and ABM at both large and small-*x* (different α<sub>s</sub>?),
- ABM: unnatually small uncertainty at small-x,
- HERAPDF larger uncertainty at large-*x* (no collider data) but better agreement at small-*x*.
   Underestimation of the error in the quark sector.
- $xg(x, Q^2 = 2.0 \text{ GeV}^2) \alpha_s = 0.119$  $xg(x, Q^2 = 2.0 \text{ GeV}^2) - \alpha_s = 0.119$ NNPDF2.3 NNLO NNPDF2.3 NNLO CT10 NNLO ABM11 NNLO  $\alpha_s = 0.1135$ MSTW2008 NNLO HERAPDF1.5 NNLO  $x\Sigma(x, Q^2 = 2.0 \text{ GeV}^2) - \alpha_s = 0.119$ NNPDF2.3 NNLO ABM11 NNLO  $\alpha_{s} = 0.1135$ 6 HERAPDF1.5 NNLO 10<sup>-5</sup> 10<sup>-2</sup>  $10^{-4}$ 10<sup>-1</sup>  $xg(x, Q^2 =$  $eV^{2}$ ) -  $\alpha_{s} = 0.119$ 0.6 NNPDF2.3 NNLO ABM11 NNLO  $\alpha_{s} = 0.1135$ 0.5 HERAPDF1.5 NNLO 0.4 0.3 10<sup>-5</sup> 10<sup>-3</sup> x 10<sup>-2</sup> 10-4 10<sup>-1</sup> 0.2  $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$  $0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$
- HERAPDF1.5: red. dataset (HERA only)

#### **NNPDF 2.3** Parton Luminosity: 2.3 vs. 2.1

At hadron colliders observables depend on **parton luminosities**:

$$\Phi_{ij}(M_X^2) = \frac{1}{s} \int_{\tau}^{1} \frac{dx_1}{x_1} f_i(x_1, M_X^2) f_j(\tau/x_1, M_X^2)$$



• When going from NNPDF 2.1 to NNPDF 2.3, the **gluon-gluon** luminosity:

- stable in the Standard Model Higgs/Top region [ $M_X/\sqrt{s} \approx 1.5 2 \times 10^{-2}$ ]
- reduction of the uncertainty for larger final state invariant masses.



### **NNPDF 2.3** *Parton Luminosity: NNPDF vs. other collaborations*



- **Global fits in good agreement** all over the relevant range of invariant mass,
- **larger differences** between **NNPDF** and **ABM** even using the same value for  $\alpha_s$ ,
- **HERAPDF** in **general agreement** with **NNPDF** but larger uncertanty.



### **NNPDF 2.3** *Phenomenology: Differential Distributions*



| Dataset                         | NNPDF2.3 | MSTW08 | CT10 | ABM11 | HERAPDF1.5 |
|---------------------------------|----------|--------|------|-------|------------|
| $\overline{\text{ATLAS } W, Z}$ | 1.46     | 3.20   | 1.16 | 2.06  | 1.87       |
| CMS W el asy                    | 0.84     | 3.86   | 1.77 | 1.61  | 0.81       |
| LHCb $W, Z$                     | 0.89     | 1.09   | 0.98 | 2.04  | 0.80       |
| ATLAS jets                      | 1.41     | 1.47   | 1.54 | 1.52  | 1.61       |



### **NNPDF 2.3** *Phenomenology: Inclusive Cross-sections at 8 TeV*

#### • Theory predictions vs. first LHC measurements at 8 TeV:



General good agreement between all the global PDF sets and with data.



# **Conclusions and Outlook**

- The NNPDF 2.3 is the first PDF fit including LHC data,
- improvement in the fitting methodology allowed by a faster observable computation,
- impact of the LHC data small but **non-negligible**.
- Inclusion of more LHC data and new processes:
  - W + charm production for strangeness determination,
  - *top pair* production for the large-*x* gluon determination.

where also a **Mathematica** interface is provided.



All the NNPDF 2.3 sets are available from the LHAPDF interface and from the web site:  $\frac{http://nnpdf.hepforge.org}{}$ 

# **Backup Slides**

### **The NNPDF Methodology** *Main ingredients*

#### • Monte Carlo determination of **uncertainties**:

- **no** need to rely on **linear propagation** of errors,
- possibility to test the impact of **non-gaussian** uncertainties,
- possibility to test for **non-gaussian behaviour** of fitted PDFs.
- Parametrization of PDFs using **Neural Networks**:
  - provide an **unbiased parametrization**.
- Determine the **best fit** PDFs using **Cross-Validation**:
  - ensures **proper fitting** avoiding overlearning.

### **The NNPDF Methodology** Neural Networks

- 7 independent PDFs at the initial scale  $Q_0 = \sqrt{2}$  GeV.
- Each PDF parametrized by a **Neural Network** having architecture 2-5-3-1 (37 free parameters).
- **Redundant** parametrization **to avoid biases** from the choice of the PDF functional form:
  - Polinomial form vs. Neural Network:





#### **NNPDF 2.3** *The Dataset: The LHC data*

- The **NNPDF 2.3** is the first PDF fit set at NLO and NNLO which **includes LHC data**.
- The dataset includes the relevant LHC data for which the **full covariance matrix** is available:
  - **ATLAS** Inclusive Jets, 36 pb<sup>-1</sup> [arXiv:1112.6297]
  - **ATLAS** W/Z lepton rapidity distributions, 36 pb<sup>-1</sup> [arXiv:1109.5141]
  - **CMS** W lepton asymmetry, 840 pb<sup>-1</sup> [arXiv:1206.2598]
  - **LHCb** W rapidity distributions, 36 pb<sup>-1</sup> [arXiv:1204.1620]



### **NNPDF 2.3** *The Dataset: no LHC fit*



#### 3360 data points (NNLO)

... to assess the impact of the LHC data



### **NNPDF 2.3** *The Dataset: collider only fit*



#### 1231 data points (NNLO)

... to study the compatibility of the low energy data



### **NNPDF 2.3** *LHC data: Impact and consistency (NLO)*

Compare the quality of the fit to LHC data **before** and **after** the **inclusion** 

- Including LHC data in the fit improves the quality of their description
   without deteriorating the quality of the fit to other datasets.
- Moderate impact of the LHC data, supporting the **consistency** of the global fit framework.
- Fit quality is comparable at NLO and NNLO, though the former is marginally better.

| NLO             | NNPDF2.3noLHC | NNPDF2.3 |
|-----------------|---------------|----------|
| Total           | 1.101         | 1.121    |
| NMCpd           | 0,93          | 0,93     |
| NMC             | 1,59          | 1,61     |
| SLAC            | 1,28          | 1,26     |
| BCDMS           | 1,20          | 1,19     |
| HERA-I          | 1,01          | 1,00     |
| CHORUS          | 1,09          | 1,10     |
| NuTeV           | 0,42          | 0,45     |
| DYE605          | 0,85          | 0,88     |
| DYE866          | 1,24          | 1,28     |
| CDFWASY         | 1,45          | 1,54     |
| CDFZRAP         | 1,77          | 1,79     |
| D0ZRAP          | 0,57          | 0,57     |
| ATLAS-WZ        | 1,37          | 1,27     |
| CMS-WEASY       | 1,50          | 1,04     |
| LHCb-WZ         | 1,24          | 1,21     |
| CDFR2KT         | 0,60          | 0,61     |
| D0R2CON         | 0,84          | 0,84     |
| ATLAS-JETS-2010 | 1,57          | 1,55     |



### **NNPDF 2.3** *LHC data: Impact and consistency (NNLO)*

Compare the quality of the fit to LHC data **before** and **after** the **inclusion** 

- Including LHC data in the fit improves the quality of their description
   without deteriorating the quality of the fit to other datasets.
- Moderate impact of the LHC data, supporting the **consistency** of the global fit framework.
- Fit quality is comparable at NLO and NNLO, though the former is marginally better.

| NNLO            | NNPDF2.3noLHC | NNPDF2.3 |
|-----------------|---------------|----------|
| Total           | 1.147         | 1.153    |
| NMCpd           | 0,94          | 0,94     |
| NMC             | 1,56          | 1,57     |
| SLAC            | 1,04          | 1,02     |
| BCDMS           | 1,28          | 1,29     |
| HERA-I          | 1,03          | 1,01     |
| CHORUS          | 1,07          | 1,06     |
| NuTeV           | 0,48          | 0,55     |
| DYE605          | 1,07          | 1,02     |
| DYE866          | 1,61          | 1,62     |
| CDFWASY         | 1,66          | 1,70     |
| CDFZRAP         | 2,15          | 2,12     |
| D0ZRAP          | 0,64          | 0,63     |
| ATLAS-WZ        | 1,94          | 1,46     |
| CMS-WEASY       | 1,37          | 0,96     |
| LHCb-WZ         | 1,33          | 1,22     |
| CDFR2KT         | 0,67          | 0,67     |
| D0R2CON         | 0,94          | 0,93     |
| ATLAS-JETS-2010 | 1,45          | 1,42     |



#### **NNPDF 2.3** *LHC data: Parton distributions*

- More accurate light quark **flavor decomposition**:
  - due to the **LHC electroweak boson production** data.
- Reduction of the uncertainty in the **large** *x* **gluon**:
  - due to the **ATLAS jet** data.









### **NNPDF 2.3** LHC data: Observables

Predictions for the LHC data already acceptable before including them in the fit.

- Quite good description of the LHC data **after** the inclusion in the fit.
- Substantial reduction of the uncertainty on the observable predictions.





Electron Pseudorapidity  $|\eta|$ 

ATLAS W<sup>+</sup> lepton pseudorapidity distribution





- Only PDF uncertainties shown,
- W and Z production mostly sensitive to the **quark-antiquark** luminosity,
- predictions with NNPDF 2.1 and NNPDF 2.3 **always compatible**,
- the **accuracy increases** when going from NNPDF 2.1 to 2.3:
  - partly due to the improved methodology (NNPDF 2.1 vs. NNPDF 2.3 noLHC),
  - partly due to the inclusion of the LHC data (NNPDF 2.3 vs. NNPDF 2.3 noLHC).



#### **NNPDF 2.3** *Phenomenology: Top & Higgs production*



- Only PDF uncertainties shown,
- *Top* and *Higgs* production mostly sensitive to the **gluon-gluon** luminosity,
- predictions with NNPDF 2.1 and NNPDF 2.3 **always compatible**.





- Addition of the **LHC data**,
- improved **minimization**,
- corrected error in the **di-muon cross-section**.



- Marked improvement of the fit quality at NLO,
- changes at the **half sigma** level for all PDFs,
- consequence of the **improved minimization**.



