PDFs with QED corrections

NNPDF2.3QED: Parton distributions with QED corrections

Stefano Carrazza

University & INFN Milan

La Thuile 2014 February 24, 2014

on behalf of the NNPDF and the APFEL collaborations arXiv:1308.0598 and arXiv:1310.1394

Stefano Carrazza (Unimi & INFN Milan)

NNPDF updates

Introduction to NNPDF2.3QED

- NNPDF2.3QED set is our latest release: [arXiv:1308.0598]
 - it includes the **photon PDF** $\gamma(x, Q)$, where
 - PDFs are LO/NLO/NNLO in QCD + LO in QED
- **QED corrections** to PDFs are unavoidable for the LHC phenomenology.
- The presence of the photon PDF γ(x, Q) allows for the inclusion of photon-induced processes in the computation of predictions.
- The photon PDF $\gamma(x, Q)$ in NNPDF2.3QED is:
 - parametrized by a 2-5-3-1 Neural Network and fitted to data
 - ★ no model assumption
 - determined from DIS and LHC data
 - * DIS: 2767 data points, e.g. $F_2^{\gamma,p}$, $F_2^{\gamma,d}$, dimuon CC cross-section
 - ★ LHC: 52 data points, W, Z rapidity and γ^*/Z high and low mass D

Technical aspects NNPDF2.3QED determination

- In order to achieve our goal we had to implement the following steps:
 - Modify PDF evolution (DGLAP)
 - * QCD (LO/NLO/NNLO) + QED (LO)
 - Rewrite observables by including the photon contribution
 - Perform a fit to DIS data with QED corrections
 - * NNPDF2.3QED DIS-only, N_{rep} = 500
 - Combine the photon PDF from DIS-only with quark and gluons from the global NNPDF2.3 set, replace DGLAP
 - * Construction of the NNPDF2.3QED prior
 - Sompute predictions for LHC $W, Z/\gamma^*$ production
 - * Reweight the NNPDF2.3QED prior
 - Unweight the reweighted PDF set:
 - * Final NNPDF2.3QED set with $N_{\rm rep} = 100$

Importance of LHC data

- LHC electroweak vector boson data is absolutely needed
 - reduces drastically the photon PDF uncertainties.
- Example: LHC predictions before including LHC data (DIS-only):

• Example: LHC predictions after including LHC data:

NNPDF2.3QED: the photon PDF

• Photon PDF comparison with MRST2004QED at 2 and 10⁴ GeV²:

- First determination of the photon PDF uncertainty.
- Good agreement with MRST2004QED model at large-x.
- The photon PDF momentum fraction is less than 1%.

NNPDF2.3QED phenomenology

• Potential large impact on the LHC High-mass Drell-Yan production due to lack of constrains on the photon PDF at large-*x*.

• Results obtained with HORACE [arXiv:0710.1722], show that the photon PDF can improve/change limits for BSM models, e.g. Z'.

NNPDF2.3QED phenomenology for precision physics

 Photon-induced processes have large impact on high-mass WW production. (results from T. Kasprzik [arXiv:1208.3147])

Conclusion The photon PDF opens new scenarios for phenomenology, but in parallel suggests new measurements in order to constrain and reduce its uncertainties.

NNPDF2.3QED: more LHC phenomenology

- Recent work about radiative corrections using high-mass Drell-Yan at the LHC shows more details about the impact of NNPDF2.3QED photon PDF at LHC [Boughezal, Li, Petriello, arXiv:1312.3972]
- Photon-induced processes introduce differences up to +30% at $M_{ll} \sim 3$ TeV.

 Isolating observables and regions where the photon PDF enhances the predictions: *p_T*, |η|, |Y| distributions.

Introduction to APFEL

• APFEL is a public PDF evolution library with QED corrections developed by product of the NNPDF2.3QED sets. [V. Bertone, S.C., Juan Rojo, arXiv:1310.1394]

http://apfel.hepforge.org/

• APFEL is composed by three modules: DGLAP, DIS, GUI:

APFEL evolution features

- APFEL evolution features:
 - up to NNLO in QCD and LO in QED,
 - FFNS and VFNS solution in x-space,
 - Pole and MS heavy quark masses
- Technical features:
 - interface to LHAPDF5 (input/output)
 - ► interfaces in Fortran, C/C++ and Python, interactive console.

Benchmark against HOPPET, partonevolution, MRST2004QED [arXiv:1310.1394]

Stefano Carrazza (Unimi & INFN Milan)

APFEL DIS module

• The DIS module:

- Computation of DIS observables:
 - * all the **NC** and **CC** observables: F_2 , F_1 , F_3 and reduced cross sections
- Up to order α_s^2 (when possible)
- Schemes: FONLL, FFNS and ZM-VFNS,
- Interface to APFEL evolution and/or LHAPDF
- Benchmark of NC F2 against FONLLdis [arXiv:1001.2312]

APFEL Graphical User Interface

• Why a Graphical User Interface (GUI)?

APFEL GUI

- PDF plots: all LHAPDF grids
 - PDF error treatment
- Evolution performed by
 - ★ APFEL and/or LHAPDF
- Computation of Luminosities
- Computation of DIS observables

- APFEL GUI:
 - System requirements: ROOT, LHAPDF5, Qt4
 - http://apfel.hepforge.org/download.html
- Plots cross-checked against "PDF benchmarking 2012" [arXiv:1211.5142]

APFEL GUI

- Possibility to select and tune the evolution of every single PDF set.
 - takes as input PDFs from LHAPDF and/or the internal APFEL toy.
 - simple and intuitive customization of the PDF evolution.
- Functionalities:
 - compares multiple PDF sets
 - compares luminosities: gg, $q\bar{q}$, qg, $c\bar{c}$, $b\bar{b}$, cg, bg, qq, $\gamma\gamma$, γg .
 - compares DIS observables with different schemes.

Planning to release a online web application based on APFEL GUI.

- Summary:
 - NNPDF2.3QED is a modern PDF set with
 - * QED corrections
 - the photon PDF extracted from data with uncertainties
 - APFEL is a
 - * **PDF evolution library** with QCD+QED combination
 - * DIS observables code based on FONLL
 - * GUI: a complete PDF analysis tool
- Outlook (coming soon):
 - NNPDF3.0 release before summer
 - ★ inclusion of more LHC data, e.g. jets, double differential Drell-Yan
 - * updated methodology based on closure tests
 - APFEL
 - * possibility to modify/generate APPLgrid tables
 - web application interface to APFEL GUI
 - ★ small-x corrections

NNPDF2.3QED sets

- NNPDF2.3QED are available directly from LHAPDF5 and LHAPDF6.
- Sets are also available from our website: http://nnpdf.hepforge.org/

NNPDF2.3QED grids

Proton NLO grids	Neutron NLO grids
NNPDF23_nlo_as_0117_qed	NNPDF23_nlo_as_0117_qed_neutron
NNPDF23_nlo_as_0118_qed	NNPDF23_nlo_as_0118_qed_neutron
NNPDF23_nlo_as_0119_qed	NNPDF23_nlo_as_0119_qed_neutron

Proton NNLO grids	Neutron NNLO grids
NNPDF23_nnlo_as_0117_qed	NNPDF23_nnlo_as_0117_qed_neutron
NNPDF23_nnlo_as_0118_qed	NNPDF23_nnlo_as_0118_qed_neutron
NNPDF23_nnlo_as_0119_qed	NNPDF23_nnlo_as_0119_qed_neutron

 We provide special sets for Monte Carlo event generators, including Pythia8 and aMC@NLO through a stand-alone driver in Fortran and C++.

Special NNPDF2.3QED grids for MCs (positive defined):

 Proton LO grids
 Proton LO grids (only replica 0)

 NNPDF23_lo_as_0119_qed
 NNPDF23_lo_as_0119_qed_mem0

 NNPDF23_lo_as_0130_qed
 NNPDF23_lo_as_0130_qed_mem0

Proton NLO grids	Proton NLO grids (only replica 0)
NNPDF23_nlo_as_0119_qed_mc	NNPDF23_nlo_as_0119_qed_mc_mem0

