Reweighting NNPDFs

Francesco Cerutti

Departament d'Estructura i Constituents de la Matèria Universitat de Barcelona

on behalf of

NNPDF Collaboration:

R. D. Ball, V. Bertone, F. C., L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, M. Ubiali

> ACAT 2011 Brunel University, London September 6, 2011

- NNPDF Approach
- The Reweighting Method
- NNPDF2.2 Parton Set
- Conclusion and Outlook

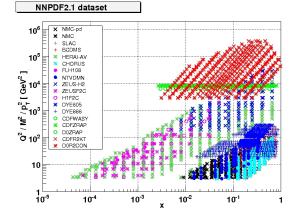
References:

arXiv:1108.1758

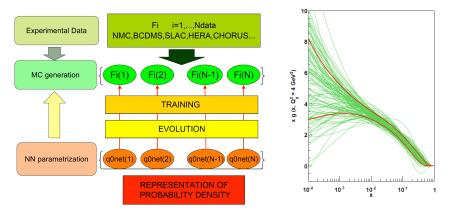
arXiv:1107.2652, to be published in Nuclear Physics B arXiv:1012.0836, Nucl.Phys. B849 (2011) 112-143

NNPDF Approach

- Combined HERA-I Data
- HERA F₂^c
- Fixed Target DY
- Tevatron W and Z Production
- Tevatron Jet Production



How does NNPDF work?



How does NNPDF work?

Monte Carlo generation:
 toythook methods to evaluate sta

textbook methods to evalutate statistical properties: $\langle \mathcal{F}[f(x)] \rangle = \frac{1}{N_{rep}} \sum_{1}^{N_{rep}} \mathcal{F}[f^{(k)}(x)] \qquad \sigma_{\mathcal{F}[f(x)]} = \sqrt{\langle \mathcal{F}[f(x)]^2 \rangle - \langle \mathcal{F}[f(x)] \rangle^2}$

• Neural Network technology:

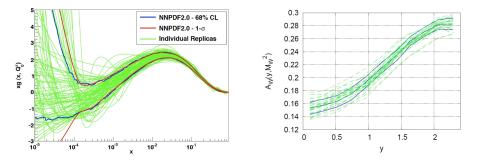
universal unbiased interpolant, very redundant parametrization \rightarrow O(300) parameters

- LO, NLO, NNLO sets:
 - \rightarrow Heavy quarks included with FONLL-C scheme
 - \rightarrow Fast evolution

What if a new dataset is released?

Usually refitting on old data + new data required: the N_{rep} replicas of a NNPDF fit give the probability density in PDFs space

 \rightarrow with reweighting method new data included without refitting



Reweighting...

If
$$y = \{y_1, y_2, \cdots, y_n\}$$
 is the new dataset:

$$\chi^{2}(y, f_{k}) = \sum_{i,j=1}^{n} (y_{i} - y_{i}[f_{k}])\sigma_{ij}^{-1}(y_{j} - y_{j}[f_{k}])$$

and the corresponding weights are:

$$\omega_k = \mathcal{N}_{\chi}(\chi_k^2)^{(n-1)/2} e^{-\frac{1}{2}\chi_k^2} \text{ with } \mathcal{N}_{\chi} = \frac{1}{N} \sum_{k=1}^N (\chi_k^2)^{(n-1)/2} e^{-\frac{1}{2}\chi_k^2}$$

The observables and their uncertainties can be recomputed like this:

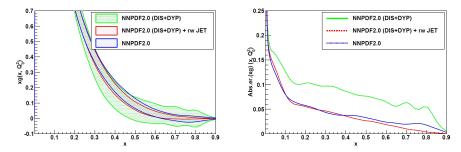
$$\langle \mathcal{F}[f_i(x)] \rangle^{RW} = \int [\mathcal{D}f_i] \mathcal{F}[f_i(x)] \mathcal{P}_{new}[f_i(x)] = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \omega_k \mathcal{F}[f_i^{(k)}(x)]$$

$$\sigma_{\mathcal{F}_{new}} = \sqrt{\omega_k \frac{\mathcal{F}^2}{N} - \langle \mathcal{F} \rangle_{new}^2}$$

Does reweighting work?

- NNPDF2.0 based in DIS+DYP+JET data
- \rightarrow produce a 2.0 set DIS+DYP only

 \rightarrow add through reweighting JET data



Differences within statistical fluctuations

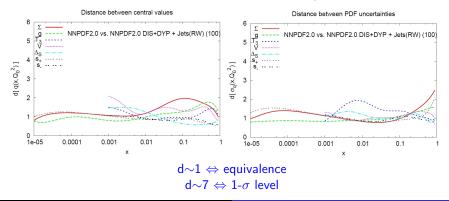
The Reweighting Method

Need to quantify statistical equivalence of two sets

 \rightarrow distances between PDFs:

$$d^{2}\Big(\langle q^{(1)}\rangle_{(1)}, \langle q^{(2)}\rangle_{(2)}\Big) = \frac{(\langle q^{(1)}\rangle_{(1)} - \langle q^{(2)}\rangle_{(2)})^{2}}{\sigma_{(1)}^{2}[\langle q^{(1)}\rangle] + \sigma_{(2)}^{2}[\langle q^{(2)}\rangle]}$$

Average of a hundred random partitions of $N_{rep}/2$ replicas each

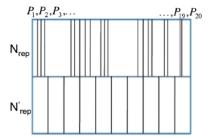


The Reweighting Method

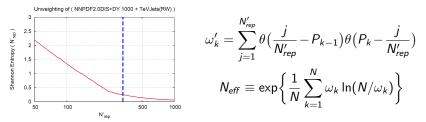
... Unweighting

$$p_k = rac{\omega_k}{N_{rep}}$$

$$P_k \equiv P_{k-1} + p_k = \sum_{j=0}^k p_j$$



By construction new weights are all zero or positive integers:

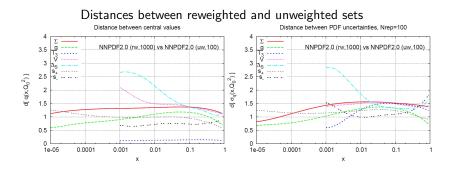


Unweighted sets are as easy to use as original "unprocessed" PDF sets

Francesco Cerutti Reweighting NNPDFs

Does unweighting work?

Unweighting of NNPDF2.0(DIS+DY)+rw Tevatron Inclusive Jets



No significant loss of accuracy

What if new datasets are more than one?

 \rightarrow check combination and communtation properties:

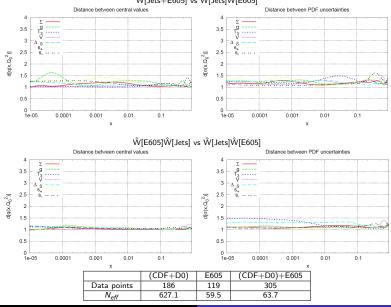
$$\label{eq:W12} \begin{split} \hat{W}_{12} {=} \hat{W}_2 \hat{W}_1 {=} \hat{W}_1 \hat{W}_2 \\ \hat{W} {\equiv} \hat{U} \hat{R} \ (\hat{U}: \mbox{ Unweighting}, \ \hat{R}: \ \mbox{Reweighting}) \end{split}$$

 $\begin{array}{c} \mbox{combination} & \Longrightarrow \mbox{ commutation} \\ (\mbox{if } \hat{W}_2 \hat{W}_1 = \hat{W}_{12} \mbox{ we have } \hat{W}_2 \hat{W}_1 = \hat{W}_1 \hat{W}_2) \end{array}$

but

commutation \implies combination (we might have $\hat{W}_2\hat{W}_1 = \hat{W}_1\hat{W}_2 \neq \hat{W}_{12}$)

The Reweighting Method



Ŵ[Jets+E605] vs Ŵ[Jets]Ŵ[E605]

Francesco Cerutti

Reweighting NNPDFs

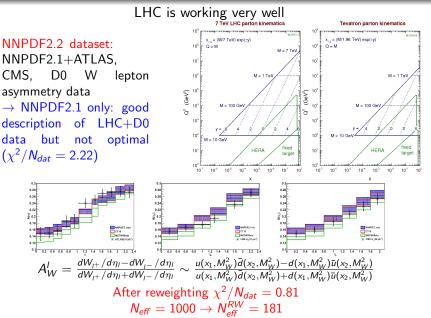
- Reweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to NNPDF2.0
- Unweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to its unweighted set
- Consistency:
 - \rightarrow NNPDF2.1 DIS +rw Jets and DY
 - \rightarrow NNPDF2.0(DIS+DY)+rw Tevatron inclusive Jets (CDF+D0)

- Reweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to NNPDF2.0 V
- Unweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to its unweighted set
- Consistency:
 - \rightarrow NNPDF2.1 DIS +rw Jets and DY
 - \rightarrow NNPDF2.0(DIS+DY)+rw Tevatron inclusive Jets (CDF+D0)

- Reweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to NNPDF2.0 V
- Unweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to its unweighted set V
- Consistency:
 - \rightarrow NNPDF2.1 DIS +rw Jets and DY
 - \rightarrow NNPDF2.0(DIS+DY)+rw Tevatron inclusive Jets (CDF+D0)

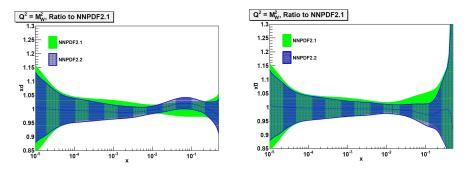
- Reweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to NNPDF2.0 V
- Unweighting:
 - \rightarrow NNPDF2.0(DIS+DY)+rw Jets equivalent to its unweighted set V
- Consistency:
 - \rightarrow NNPDF2.1 DIS +rw Jets and DY V
 - \rightarrow NNPDF2.0(DIS+DY)+rw Tevatron inclusive Jets (CDF+D0) V

NNPDF2.2 Parton Set

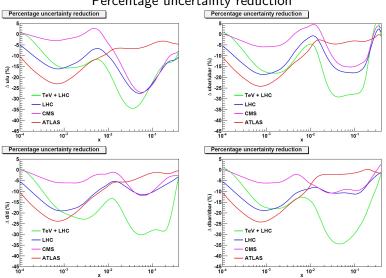


Impact mainly in two regions:

- $x \sim 10^{-3}
 ightarrow$ up to 20% uncertainties reduction
- $x \sim 10^{-2} 10^{-1} \rightarrow$ up to 30% uncertainties reduction



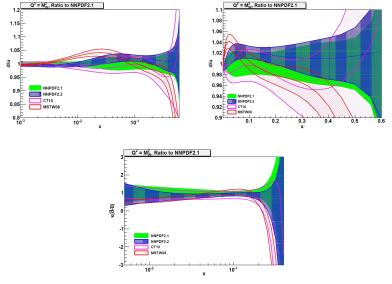
Very significant constraint



Percentage uncertainty reduction

NNPDF2.2 Parton Set

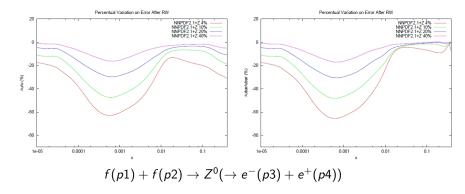
Comparison between NNPDF2.1, NNPDF2.2, CT10, and MSTW08



Francesco Cerutti Reweighting NNPDFs

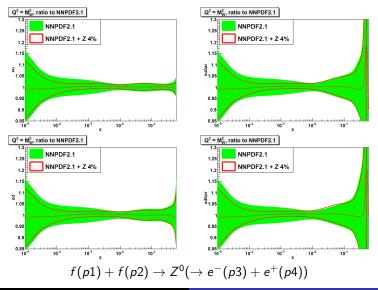
The method is useful to determine pseudo data's impact \rightarrow possible dialogue with experimentalists

Percentual reduction of PDFs uncertainties:



The Reweighting Method

Impact on up, down and respective anti-flavor PDFs



Francesco Cerutti

Reweighting NNPDFs

Conclusion and Outlook

- Reweighting Method
- NNPDF2.2: first Parton Set including LHC data
- LHC is providing us precision information on PDFs
 → medium & large × gluon:

prompt photons available (precision) jets in progress

 \rightarrow light flavor separation:

low-mass DY preliminary high-mass DY in progress Z rapidity distributions preliminary W asymmetries available

 \rightarrow strangeness & heavy flavors:

strangeness: W+c in progress charm: Z+c, γ +c future? bottom: Z+b in progress

Conclusion and Outlook

- Reweighting Method
- NNPDF2.2: first Parton Set including LHC data
- LHC is providing us precision information on PDFs
 → medium & large × gluon:

prompt photons available (precision) jets in progress

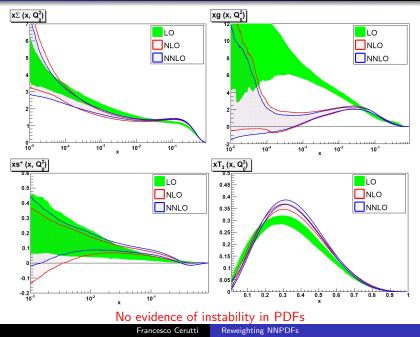
 \rightarrow light flavor separation:

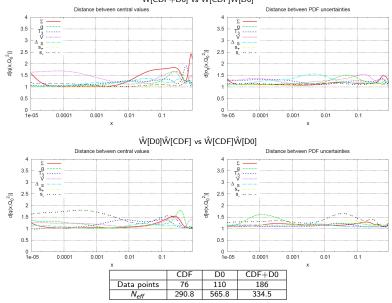
low-mass DY preliminary high-mass DY in progress Z rapidity distributions preliminary W asymmetries available

 \rightarrow strangeness & heavy flavors:

strangeness: W+c in progress charm: Z+c, γ +c future? bottom: Z+b in progress

BACKUP SLIDES





Ŵ[CDF+D0] vs Ŵ[CDF]Ŵ[D0]

Francesco Cerutti

Reweighting NNPDFs

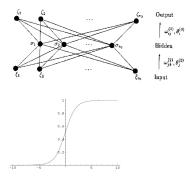
Neural Networks: a non-linear functional form

- Each neuron receives input from neurons in preceding layer and feeds output to neurons in subsequent layer
- Activation determined by weights and thresholds

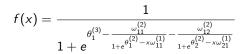
$$\xi_i = g(\sum_i \omega_{ij}\xi_j - \theta_i)$$

• Sigmoid activation function

$$g(x) = \frac{1}{1 + e^{-\beta x}}$$



An example of 1-2-1 NN:



 \rightarrow distances between PDFs:

$$d^{2} \Big(\langle q^{(1)} \rangle_{(1)}, \langle q^{(2)} \rangle_{(2)} \Big) = \frac{(\langle q^{(1)} \rangle_{(1)} - \langle q^{(2)} \rangle_{(2)})^{2}}{\sigma_{(1)}^{2} [\langle q^{(1)} \rangle] + \sigma_{(2)}^{2} [\langle q^{(2)} \rangle]}$$
$$\langle q^{(k)} \rangle_{(i)} = \frac{1}{N_{rep}^{(i)}} \sum_{i=1}^{N^{(i)}_{rep}} q_{i}^{(k)}, \sigma_{(i)}^{2} [\langle q^{(i)} \rangle] = \frac{1}{N_{rep}^{(i)}} \sigma_{(i)}^{2} [q^{(i)}]$$

Determination of moments more accurate increasing N_{rep} : \rightarrow if underlying distributions are different, distance grows with $\sqrt{N_{rep}}$

$$\delta(\sigma_{(1)}, \sigma_{(2)}) \equiv \frac{d(\sigma_{(1)}, \sigma_{(2)})}{\sqrt{N_{rep}}}$$

Bayes theorem in terms of probability densities: $\mathcal{P}(f|y)\mathcal{D}f\mathcal{P}(y)d^ny = \mathcal{P}(y|f)d^ny\mathcal{P}(f)\mathcal{D}f$

When fitting we don't demand data to coincide with predictions but we minimize a figure of merit. So:

$$\int \delta(\chi - \chi(y', f)) \mathcal{P}(y'|f) d^n y' \mathcal{P}(f) \mathcal{D}f =$$

$$2^{1-n/2} (\Gamma(n/2))^{-1} \Omega_n \chi^{n-1} e^{-\frac{1}{2}\chi^2} \mathcal{P}(f) \mathcal{D}f$$
from which

$$\mathcal{P}(f|\chi)\mathcal{D}f\propto\chi^{n-1}e^{-rac{1}{2}\chi^2}\mathcal{P}(f)\mathcal{D}f$$

Integrating probability density over a finite volume and sending it to zero: $\omega_k' \propto \mathcal{P}(f_k|\chi_k) \propto \chi_k^{n-1} e^{-\frac{1}{2}\chi_k^2}$