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Introduction

The last four decades of the twentieth century saw the ptgnand realization of sev-
eral particle colliders. They all were mainly constructedgtin introspection into the
“particle zoo” up to then observed and to refine and test tiggitiyr predictive theory that
is the Standard Model (SM). Their design allowed for leplepton (as LEP at CERN),
lepton-hadron (as HERA at DESY), and hadron-hadron (as f@vait FermiLab) col-
lisions. The huge information collected along the yearsighd to an extremely precise
determination of many Standard Model parameters and tossesament of perturbative
Quantum ChromoDynamics (QCD). The priceless experiencesdatuaring those years
Is the basis that made possible the construction of theda®ed by far more precise
working machine that humanity ever built: the Large Hadrofli@er (LHC) at CERN,
near Geneva.

The two proton beams that cross each other in four pointseoRihkilometers-long
ring previously occupied by LEP are bended by more than 16p8rsonductive magnets,
each positioned with a displacement resolution of 50 miat@nms. Many features of the
LHC and of the experiments connected to it are achieved usiedatest technology.
The correct and harmonic functioning of all the component®lved implies a huge,
challenging effort of thousands of experts.

The large amount of data produced each yed&q petabytes) needs to be analyzed
into detail in order to test new theories and to look for ploieshints of new physics.
Indeed, an increased accuracy on experimental measureces for a much stricter
control over theoretical uncertainties. The results ofgtesent work go in that direction.

At hadron colliders, even if the beams contain protons as thé case for LHC,
what really interact during a collision are proton’s congnts: quarks and gluons. As
a consequence, all the measured hadronic observablesddepéhe behaviour of these
constituents, that cannot be isolated and accelerated agkimwn energy before their
collision because of quark confinement. The strong couptmgstant has an opposite
behaviour if compared to the coupling of Quantum Electrofgits (QED), i.e. it has
large values for low energy scales, breaking the pertwdatgime: large couplings
imply strong interactions that no more can be considerecesbations.
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However, one of the consequences of the non-Abelian nafu@C®, asymptotic
freedom, allows for a perturbative treatment of the stramgraction for sufficiently high
energy scales. In fact, increasing the resolutiondhealue gets smaller. The observ-
ables factorize into a non-perturbative part, Parton iigtion Functions (PDFs), and
hard-scattering matrix elements that can instead be detedifrom perturbation theory.
Parton sets must be extracted from data, and are then usethpute theoretical predic-
tions and to perform phenomenological studies.

These theoretical considerations, preceded by a briedrigat introduction, are pre-
sented into more detail in Chapfér 1. There, the main featfrpsrturbative QCD are
discussed. Special attention is paid to that features asld tm which mostly rely the
results here discussed, as are the Dokshitzer-Gribowavpaltarelli-Parisi (DGLAP)
evolution equations or the treatment of heavy quark effeltts very important, in or-
der to deliver a competitive parton set for precision LHCmamaenology, to address all
theoretical and procedural issues that may introduce regfigible uncertainties on top
of the experimental ones. Indeed, these would affect alhtiayses that relies on such a
PDF set. All the efforts of the groups that produce PDF fitenfievailable data attempt
to address these issues.

The various procedures followed to this extent by the varignoups are discussed in
Chaptef 2. The work presented in this thesis is realized mitié Neural Network Parton
Distribution Functions (NNPDF) collaboration and its nadblogy is presented in Chap-
ter[3. As it is not known which functional form may be suitaflethe correct description
of a set of parton distributions, the parametrization usasditre very flexible. Commonly,
a polynomial functional form is used, but in this way the filikely to be biased because
of lack of flexibility. In NNPDF methodology, a combinatior blonte Carlo sampling
in the space of data with a non-linear parametrization gbweneural networks is used.
In this way it is possible to use a much larger parameter-see( times), minimized
through a properly tuned Genetic Algorithm (GA). To corhedetermine the best set of
parameters, the fit needs to stop its minimization beforertmmum possible? value
is reached. This is done using dynamical stopping based oosa-walidation method.
This avoids to enter the overlearning regime, i.e. the §twf statistical fluctuations of
datapoints.

In Chapterl 4, at first are discussed results relative to the DL NLO release,
and then also the LO and NNLO determinations. For the eregyie the performance
reached at the LHC, heavy quark effects must be included andibact of the neglected
higher perturbative orders must be kept under control. iBri®ne through the compari-
son with results from the same NNPDF collaboration, usirgyipus releases @d hoc
modifications of them made to assess the impact of each swegleeature introduced,
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but also through the comparison with parton sets from otheugs. This benchmark is
also performed computing predictions for a set of LHC stathdandles in Chaptér 5. It
Is important to check consistency of the results computel eifferent parton sets, both
among them and with the first available LHC measurements.

As one of the major sources of theoretical uncertainty ikished in the dependence on
ag, an estimate ofvs (M) using NNPDF methodology is finally presented. A parabolic
fit of the x? profile given by a set of PDF sets with varying(M) values is performed.
The profile is composed by the values for totdl on the global fit for each different
as(Myz) value and their errors. Also, the same kind of fit is perforrmedubsets of the
main global data as on single experiments. Hence, not oelpést value for, (M) is
determined but is also performed a complete study of thethaleeach single set plays
inside the fit.






Chapter 1

Perturbative Quantum
Chromodynamics

In this Chapter, | will discuss the main properties of quantthmomodynamics. In the
first part the evidences that first hinted at and then confirthe@xistence of quarks and
gluons are presented. Then, the properties of asymptetclérm and confinement are
introduced. In the second part of the Chapter, a general shgmu on Deep-Inelastic
Scattering (DIS) is used to gain insight on parton model édriprovements, DGLAP
equations, and heavy quarks treatment. The discussiondegetoped follows mainly
the arguments presented in Refs.[[1-3], along with the ciéerences throughout the
Sections.

1.1 Quarks and Gluons

The second half of last century was characterized by thedisg of an astonishing num-
ber of new particles. This fact, together with the peculiearcture emerged in organizing
these particles (hadrons) into groups, suggested thatvieey not elementary: on the
contrary, they were composed by other more fundamentatitosists. A scheme that
grouped together particles with the same spin, the SU(3)sstny, was introduced in
1961 by Gell-Mann[[4] and Ne’eman|[5]. Two groups of mesoni#h apin-0 and spin-1
respectively, and two of baryons, with spin-1/2 and sp8spectively. The feeling that
this symmetry was the correct one was enhanced by the digcof/eew particles, pre-
dicted by this model. Gell-Mann [6] and Zweig [7] in 1964 fisbposed the existence
of smaller, three-flavored particles inside hadrons: therkgi But still theA ™" baryon,
that accordingly to the quark model is composed of three @grlkguwith parallel spins,
showed that another ingredient was missing. Three iddrgicarks cannot form an an-
tisymmetric state, as is the case for a fermion. A year latar,HNambu, and Greenberg
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Figure 1.1: Left: ratioo/o.u VS ¢* for constant values of the invariant mass of the
recoiling target systefl’ = 2, 3, and3.5 GeV. Also shown is the elastic— p scattering
cross-section divided by,.«: [9]. Right: 2A/WW; andv W, for the proton as functions of
w for W > 2.6 GeV,¢* > 1 (GeV/c} andR = 0.18 [10].

solved this problem by proposing that quarks possess ati@uali SU(3) gauge degree
of freedom: the color charge.

It took several years to experimentally prove the real erise of these approximately
point-like components of the hadrons. Deep-inelasticteday experiments performed
at SLAC [€] showed that electrons were hitting some kind afii@ore inside the target
protons. As discussed in Refl[9] and summarized in Ref. [1@), unexpected hints of
this were the weal? dependence of the ratig/o . for that process and scaling, where
q¢*> = 2EFE’'(1 — cosf) is the momentum transfer of the proton withthe energy of the
incident electronE’ the energy of the scattered electron, @rile scattering angle.

It was clear that /o /0, With

2

N

et cos
4E? gin*

, (1.1)

O Mott =

N D

decreased much more slowly withthan the same quantity for elastic scattering (Eig. 1.1).
This was a similar situation to the one that brought Ernesh&trd to the discovery of
the atomic nucleus [11], where the probability of largelargpha particles scattering
from gold atoms was found to be far larger than anticipated.by Thompson’s model.
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¥ ATLAS Jet Event at 2.36 TeV Collision Energy
2009-12-14, 04:30 CET, Run 142308, Event 482137

X P E R I M E N T http://atias.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Figure 1.2: Di-jets event detected inside the ATLAS expernit{13].
Moreover, introducing the general expression for the ckfféial cross-section for unpo-
larized electrons scattering from unpolarized nuclep% &%

d*o

df2dE’

0
= O Mott W2 + 2W1 tan2 5 s (12)

wherell; andW, are the structure functions of the target, these two exjpessire ex-
pected to be functions of botfi andv, where the latter is the energy loss of the scattered
electron,El — E’. Bjorken suggested in a private communication that the dfiesw 11,
and2MpW,; become functions only of the ratio = 2Mpv /¢ in the limit of high¢? and

v, that is:

2MpWi (v, ¢%) = Fi(w) (1.3)
vWa(v, %) — Fy(w) (1.4)

whereMp is the proton massW{ from now on). In later contributions the variable was
replaced by its inverse;. The scaling behaviour of the structure functions is shawn i
Fig.[1.3.

Another important result is related to sum rules: it is plolesio write

F3(z) = vWy(z) (1.5)
= x[Qi(up(x) + ﬂp@)) + Q?I(dp(x) + Czp(x))} (1.6)

where functions, d, u, andd are the momentum distributions of the up and down quarks
and the respectively antiquark distributions (more dstail these distributions will be
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discussed in the next Chapter), apgd, ), are their electrical charges.
Considering the sum rule for neutrons and protons

Il == /100 VWQ(w)d—w (17)

w

using charge symmetry it reads:

_ Qi+ Q3

2 /0m[“p(x)+“p($)+dp($)+dp(a:)]dx. (1.8)

1 1

5 | @)+ Bl
0

If quarks and antiquarks carries the nucleon’s total momanthe integral on the right

hand side of Eq[(118) should equal 1. So, assuming thisoiildibe

1 2 2
[+ e - LB 2o a9

18

The evaluations of the experimental sum from proton androeuesults over the entire
kinematic range studied yielded

1 1

5/0 [F?(z) + F3(x)]dr = 0.14 £ 0.005 , (1.10)
thus suggesting that half of the nucleon’s momentum is @drpy neutral constituents,
the gluons, which do not interact with the electron. To idgrthe constituents of the
nucleon as quarks, some electron scattering results peyedcial role during the mid
70s. Mainly, measurements of the ratio between longitudind transversal components
R = o1 /or (determining the spin 1/2 of the constituents), measurésnafiv,, /o, ratio
between neutron and proton results (excluding purelyatifive models and discarding
identical momentum distributions for the constituents) avaluations of sum rules (that
confirms that the constituents has fractional electricghand, as anticipated, that half
of the nucleon’s momentum is carried by neutral gluons).

In that same period, among the facts that definitely condpdg/sics community that
quarks and gluons really existed it is worth citing the digy of J/ ¥ particles in 1974
at Brookhaven National Laboratory [14], that cannot be @rpldwithout adding to the
up, down and strange quarks also a foutfarmaquark ¢), the observation in 1975 of
hadron jetsl[15] from high energy electron-positron caiis (detailed analysis indicated
that these jets were the footprints of individual spin-1#42tigles), the discovery in 1977
at Fermilab [[16] of thebottomquark ¢), and the observation of additional jets emerg-
ing from electron-positron collisions at DESY in 1979 [1tHat gave visible evidence of
gluons existence. In particular, the production and olatem of multi-jets events has
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A EXPERIMENT

7 — ;.F,[ﬁ + 3 jets

Run Number 158466, Event Number 4174272
Date: 2010-07-02 17:49:13 CEST

Figure 1.3: A three-jets event detected inside the ATLASeexpent [13].

nowadays become a frequent and usual fact into LHC dete@mys.[1.2-1.8).

1.2 Asymptotic Freedom and Confinement

As introduced in the previous Section, the 70s have beenatryears for the develop-
ment of QCD. That years paved the way for high energy collidgss of today. As a
matter of fact, without a precise and complete descripti@trong interaction it would be
impossible today to study complex events as, for examplaggdboson decay. A turn-
ing point in understanding and describing strong inteosctvas reached in 1973. Up to
that moment, one of the unanswered questions was aboutskédjity of observing free
partons as R.P. Feynman called nucleon’s constituents. Whateventgy of collision
in the experiments, these particles were never directigmvesl.

In the summer of 1973, D.J. Gross and F. Wilczek [18] and Hdlitzer [19] demon-
strated asymptotic freedom for QCD. The coupling of strongrarction gets smaller in-
creasing the energy scale of the interaction and it is clear dsymptotic freedom and
qguark confinement are two different consequences,diehaviour. The strong interac-
tion, among the fundamental forces, has the peculiaritynofeiasing its strength with
the distance between partons. This explains why all thengtie of tearing apart a free
parton from a nucleon failed. As soon as the energy of thednt®n grows enough,
a quark-antiquark pair is generated. This mechanism alptai@s the phenomenon of
hadronization and jets are its detectable manifestation. If quark confer@ makes it
impossible to have free partons, asymptotic freedom gteearthe possibility of a per-
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turbative approach to QCD for sufficiently largescales.

In the following, asymptotic freedom is approached in a nawtailed way. QCD is
a renormalizable Lagrangian field theory of the strong axtgon. It is the study of the
SU(3) Yang-Mills theory of color-charged fermions (qugrkad of a set of spin 1 gauge
fields (gluons) which mediate the interaction among quasksell as among themselves.
The four-spinor describing the quark (antiquark) field isated byq? (7). The index
j refers to flavor while index: to the three color degrees. A vector gauge fidlfl
which transforms under the adjoint representation of SU$3htroduced to describe the
flavorless colored octet of gluons. The indebs again a color index but this time it runs
over eight values instead of only three. The Feynman rulgsimed for a perturbative
analysis of QCD can be derived from a Lagrangian density wisigiven by

L= £classical + Egauge—fiming + 'Cghost- (111)

The minimal locally gauge invariant Lagrangian density liegb by this SU(3) symmetry
IS

1 a v —a
Eclassical - _ZGW,GZ + Z Qj (ZVHD;L - mj)abq?- (112)
J

These terms describe the interaction of spin-1/2 quarksasfsm and massless spin-1
gluons, where
G, = 0A, —0,AL + gf Ab A (1.13)

bet tutty

is the field strength tensor derived from the gluon fiéfd with f,,. the structure constants
of the SU(3) color group, and

1 a
D, =0,— zgﬁAaA“ (1.14)

is the covariant derivative, with the coupling constant of the interaction, that is unique
and universal, and with, the SU(3) color matrices:

Aoy Ae] = i fapeAe - (1.15)

It is impossible to define a gluon field propagator withoutas$ing a gauge. For this
reason is needed a gauge-fixing tefg3.,,.— rizing that allows, for a specific value of the
gauge parameter, to fix the class of covariant gauges:

1
‘Cgauge—fixing = _ﬁ(aMAZ)Z (116)

To avoid that unphysical degrees of freedom propagate iar@w gauges, a non-Abelian
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theory such as QCD must be supplemented by a ghost Lagramdia is given by
Eghost = aunaT<DZb77b)! (117)
wheren® are massless fields that obey to Fermi statistics.

This is a renormalizable theory. As a consequence, a phydisgrvable perturba-
tively computed also depends on the sgak which the divergences of the perturbative
series are subtracted. Considering as an example a dimssighysical observablé
which depends on a single energy so@lewhen this is calculated as a perturbative ex-
pansion in the coupling, = ¢*/4r the perturbative series requires renormalization to
remove ultraviolet divergences. So, in general, the oladdeF" also depends on the ratio
Q?/u*. Another consequence of this procedure is that also themelized couplingy,
depends on the choice made for the subtraction poifthysical observables must give a
description of the phenomenology independent of the metised to obtain them. This
means that they cannot depend on the choice of the renoahahzscale. It is possible to
express this condition in a mathematical way: given thas dimensionless, it can only
depend on the ratiQ?/u? anda, so it must be

d ) dag O
2_F 2/, 2 _ 2 2 s
W (Q° /1 as) [u N + 1 o2 Do,

F=0. (1.18)

To solve this differential equation, the running couplirapstanto, (Q?) is introduced.
As a first step, EqL(1.18) is rewritten in a more compact way as

0
[_a_'_ﬂ(as)a_s F(etaas) =0 (119)
defining
2 a s
t=1In (%) , Blag) = uzazz ) (1.20)

Starting from Eq.[(1.20), the running coupling(Q?) is implicitly defined as

B O‘S(QQ) d_ﬂ? B 9
1= /as 5(3;) y Qs = a5<lu ) (121)

and differentiating with respect toanda, the first part of Eq.[{1.21) it follows

= B(a.(Q?) 80‘5222 ) _8 (Z(LQ) )| (1.22)

das(Q?)
ot
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Computing the observablg in ;2 = Q? it gives
F(eta as)|,u2=Q2 = F(L as(Q2)) ) (123)

and taking into account the expressions of Eq. (1.22) itsy éasee that this last expres-
sion of I, with all the scale dependence included in the running éngpis a solution of
Eq. (1.19).

In QCD, a way to determine the running of the coupling constatd expand pertur-
batively thes function as[[18, 20]

@2352 = Bla,) = =baZ(1 + Vo, + "’ + 0(al)) (1.24)
where
y - HCa—2ny 33— 2ny (1.25)
N 127 127 '
v 17C3 — 5Cany —3Cpny; 153 — 19n; (1.26)
27T(110A — 27’Lf) 27T(33 - 2nf) .
g _ 25TCH+ (54CE = 615CrCa — 415CHn, + (66Ck +T9CG | o,
28872(11C — 2ny)
77139 — 150990 + 325n>
_ f (1.28)
28872(33 — 2ny)
with A
Cp = - ’ Cy=3 (1.29)

as is the case for SU(3), and the number of active light flavors.
Contrary to what happens in the case of QED, in QCD the first coefii of thes function
is negative fom, < 16, thanks to the gluon-gluon interaction of this non-Abeliaeory.
As briefly discussed here below, this is a crucial featurdeftheory.
If both o, (1?) anda, (Q?) are in the perturbative region, it is possible to truncage th

expansion in Eq[(1.24) and solve Hq. (1.21):

(@) gy 1 1
= /a —bz? [bas(Q2) - bas(u2)]' (1.30)

Recalling that = In(Q?/?) it can be written

2y QS(N2)
as(Q°) = TF a(p2)t (1.31)

For large@?, t also grows and so this expression tells us thdt)?) decreases. This
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property is callecasymptotic freedorand it depends on the sign of theoefficient. In
QED the sign is the opposite and sgxp’s behaviour is also the opposite. This means
that to a largeQ? corresponds a large coupling, thus leading outside theirbative
region. Then, of course, are sm@lt that in QCD leads outside perturbative region.

The threshold at which the perturbative approach is spailgds easily introduced
with the parameteri?. When the termu, (1)bt ~ 1 thena,(Q?) is no more as small as
required by perturbation theory.

The parameten? is defined as

A2 = p2e /ot (1.32)

and it follows

o (4?) oy
1+a5(/12)blncj—§

O‘S(QQ) =

= : ! (1.33)
1+ as(u?)b(In % +In %)

p2=A2

The value ofA? refers to the energy scale at which partons cannot be conside
free particles, and are strongly bound to each other forraihgdronic state. There are
several possible approximate solutions for the renormtin group Eq.[(1.24) and an
alternative to the use of such approximated expressiomségdctly solve EqL(1.24) in
a numerical way. In these casds is not defined and in determinations of the strong
coupling it is a common practice to quote at a given scale rather than fixing/&
parameter. The typical scale far is the mass of th& bosonM ;. Asymptotic freedom
is a fundamental property that allows for precision QCD pimegiwology. In the next
Section the case of deep-inelastic scattering will be ctamed and discussed to illustrate
the main features of the parton model and perturbative QCD.

1.3 The Parton Model

The parton model can be considered as the leading orderap@ion of perturbative
QCD. As represented in Fig. 1.4, the DIS process here comsidsra lepton-hadron
scattering. The incoming and outgoing four-momenta of épédn are labeled by and
k'* respectively. As a consequence, the momentum transgér4sk* — k'*. Assuming
to have as hadronic target a proton, its momentum is labegleB*b The process here
considered is a high-energy scattering, and so lepton massebe neglected.
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X
P
Figure 1.4:Diagram of a DIS process.
The standard deep inelastic variables are defined by
Q? = —¢ (1.34)
P-q
= -1 1.
v 7 (1.35)
and also
1 Q?
pr— Em— 1-
o w 2Mv (1.36)
_q-P E’
Yy = o p- T (1.37)

Notice that only two variables among y, andQ? are independent of each other as the
center of mass energy of the lepton-nucleon systesn=s)? /(xy) + M?2.

It is possible to determine a general expression for thesesestion of such a process
paying attention to some peculiarity. To write down a Feynmiagram and compute the
matrix element in this case is nontrivial as the interactiere is not between two point-
like particles as is the case for example in an electron-nsgattering. Here, instead of a
muon, a more complicated hadronic object has to be considere

In general it is still possible to write
do ~ L, W", (1.38)

whereL,, represents the lepton tensor whilé"” parametrizes the unknown form of the
current relative to the proton system in the matrix elemekd. L, is symmetric, the
hadronic tensor must also be symmetric. Moreover, the merst@l form ofil/#” must
include terms constructed out gf* and the independent momentaandg.
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It is possible to write

Ey Fy F5
wo— _Fy gt PPV —(Ptq¥ + ¢ P 1.39
W 19 +M +M2q S (PP (1.39)
and as at the hadronic vertex must be verified, as for thereppart, current conserva-
tion, that is
qW" =qW" =q¢"L,, =q"L,, =0, (1.40)

imposing these conditions div** allows to express, and F5 in terms of F; and F3,
obtaining

W — F1< 9"+ qqq ) tpe (P“ - q2qq“> (P” - —qﬂf) . (141)

In this expression thé; contribution is not considered: this term appears as ayparit
violating structure function, in the case in which the elestis substituted by a neutrino.
In the present treatment electroweak contribution will b@tonsidered, as the result can
be easily generalized. Including the phase space factahéooutgoing electron and the
flux factor, the inclusive differential cross-section fbistprocess is obtained as

1 4met A3k
=—— | — L WV"| ———, 1.42
4(k-P)| ¢+ " W 2F'(2m)3 ( )
where the leptonic tensor is easy to compute and it gives
Q2
Ly =2 [k;#k{, + Kk, — 7gw] . (1.43)

As for the hadronic tensor, terms associated with paritiation are neglected.
The4r factor that multiplies the electric charge appears becatifee normalization of
WHv:

11

W =S <h\JWyX><X|JV|h>(27r)45(PX —k—P). (1.44)

For small-wavelength virtual photons (large momentumdfar) the nucleon internal
structure is resolved. A simple model is considered, in Whie virtual photon scatters
off a point-like quark constituent inside the proton camgyia fraction{ of the proton
momentum, so thatp" = £P*. If anete” — ¢g process is now considered, crossing
symmetry relates it to the partonic procesg — e~ ¢, so that is possible to easily write
the spin- and color-averaged squared matrix element sunowvesdthe final colors and
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Figure 1.5:Diagram of a DIS partonic process.

spins in terms of the Mandelstan%variants

EIMF = 2636432;_2112 (1.45)
with
§ = (k+p)Q?=£6Q% xy (1.46)
t = (k—FK)=-Q? (1.47)
@ = (p=K)=3y-1) (1.48)

that substituted into the standard result for the masgless2 scattering gives

doe  2ma’e?

pTozRRT 1N+ (1-y)7. (1.49)
An important consequence comes out of the mass-shell eamisfior the outgoing quark,
in fact

PP=0+9’=¢+2p-q=—-2P qlx—¢) =0, (1.50)

from which it follows necessarily that = ¢.
In other words, the fraction of the momentum carried by thecétparton is equal to the

1The ~symbol is used for variables and observables thats&fahe partonic level of the process.
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Bjorken-x. Finally, it is possible to write

026 2
= T+ (1 yeaa — ). (150

Going back to Eq.[(1.42), this expression can be rewrittenguthe results for lep-
ton and hadron tensors Eqs. (1.41)-(1.43) and introdudagdsrd variables defined in

Egs. (1.3%){(1.37).
It reads
o y d*c et |, ) Fy(z,0?)
drdQ? @dxdy AL y R (z, Q%)+ (1 — y)T
4o’ 1—
= gjf 1+ (1 —y)*| A+ T‘”(FQ —22F)| (1.52)
and by comparison with Ed._(1.61) it follows that
A 1
Fi(x) = 5e0(@ =€), (1.53)
Fy(x) — 22F (x) = 0. (1.54)

Partons inside the nucleon not always bring the same fraofithe nucleon momen-
tum. This fact is observed looking at experimental reswdtricture functions appear to
be distributions in: rather than a delta function. To take this into account

_ Z/ def(E)eetile =€) = Y elefie).  (155)

where f;(£) are probability distributions that give a weight to the duatructure func-
tions. The fact thaty, = 2z F; is directly related to the spin-1/2 property of the quarks
and is called Callan-Gross relation. It confirms that the itnal structure function is
zero, as a spin-1/2 quark cannot absorb a longitudinallgrzsd vector boson. A spin-0
quark would not absorb transversely polarized vector b®sgiving as a consequence
that/, = 0andly = 5.
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1.4 Perturbative Corrections to Parton Model

As already said, the parton model is a leading order appratkm of QCD. Taking into
account next to leading order effects, gluons start plagrigndamental role. In fact,
while in the parton model is zero, if gluon radiation is considered this is no more.true
In this case it can be that, ~ Q?, as the transverse momentum is not restricted to be
small. Thisis a direct consequence of a real gluon emisston fhe quark, before or after
its interaction with the virtual boson (Fig._1.6). Anoth@msequence of the inclusion of
next to leading order contributions is that structure fiorg lose their scaling property.
This feature here described for parton model is broken in QZDdarithms of2. This
means that structure functions are functions of hothnd Q. Let us reconsider the
expression of EqL(1.55): this relates the structure fonstidefined in the proton frame
with the ones defined in the parton frame.
Introducing

= @ s (1.56)

2pi-q Y

as a new variable for the parton frame, it is possible to tewthie relation between the
structure functions in a more general way as

By, Q) = Y /0 0z /0 dyfi(y)5(x — z9) Fo(z Q). (157)

whereF, and F;, are used as an examplejs fixed, z andy obey the constraim = zy,
andf;(y) are the parton distribution functions for a parton of mornemp;.
Integrating over: gives

% @)=3 [ e, (1.58)

from which it is easy to recover the result of Ei. (1.55) wheis computed at leading
order.

In this Section th&)(«;) corrections to the parton model are considered. The contri-
butions that need to be taken into account are representadsil.6-1.17. The tree-level
contribution, the one-loop correction, the real gluon eois, and the gluon-boson fusion
need to be considered. Divergences may appear due to softg(ue. almost zero en-
ergy gluons) and collinear gluons (i.e. gluons emitted Ipe® the incoming or outgoing
qguark). The main aim of this Section and of the following osi¢o show how it is pos-
sible to “cure” these singularities. Dimensional regwation is a standard method used
to perform ultraviolet regularization in the context of oemalization, and is the same
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Figure 1.6:The Feynman diagrams for the tree-level (a), the one-loop (b), anditbe gmission
(c-d) processes.

method applied in this case. Looking at the loop contribyttbe gluon is simultaneously
soft and collinear. An effective vertex/[1] can be writtesdribing both the tree-level
qv* — ¢ and the one-loop diagrams as

D= e [1— Qg (dmty D=9 2 3 o w

i iee, [1 47TCF( 0 > (1= 2¢) (eQ + - + 8+ 5+ O(e))] ,  (1.59)
whered = (4 — 2¢). Itis possible to explicitly check that soft and collineargularities
at the origin of the double pole inare removed by the real gluon contribution (FFigJ 1.6).
To do this, the hadronic tensor is considered in the form

WinlP) =3 / Y WO WP,q)., (1.60)

whererS? is the partonic tensor for the partanThis expression can be written thanks to
the factorization theorem [21,22]. It is useful to split tredronic tensor in its longitudinal
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and transverse components, writing

Wy = Z/ (yP,q) (1.61)
W= 3 [ s wro, (1.62)

Using these expressions, the structure functions are

Fy(r,Q) 1 3 — 2¢ 42?
T T o1-e TN 1—e @
2
Fi(z,Q) — FQ(;’:Q) ——A‘Q%WL (1.63)

For massless fermions the longitudinal projection varssired the Callan-Gross relation
is recovered. The transverse component for the virtualridmnion is easily determined
from the expression of the effective vertex, and it is

2, ¢ i -
W = 201 3(1 —s){l— () Ta ( 2 2ese T —s)}
(1.64)
while, to obtain the real contribution for the transversenponent, the square amplitude
of the sum between the s- and t-channels of the progess: ¢'¢ (Fig.[1.6) needs to be
computed. The result is

Wi = 20022 0 > T
2 3 7 1 1+£2 log(1 —¢§)
14¢&° 3 1
_1_5log§—§<1_§)++3—£+0(5)}. (1.65)

The plus-prescription is a distribution defined as

F@s = f(2) — 61— 2) / dEF(©). (1.66)

The double pole of the virtual contribution (that corresgi®to a soft and collinear singu-
larity) is exactly cancelled by an identical negative deuxble from the real contribution.
This fact is not accidental: suitably defined inclusive alables are free of singulari-
ties in the massless limit [28—25]. As can be seen immedgioieb comparison between
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Eq. (1.64) and Eq[{1.65), a single pole is still present.sTidue to the emission of a
collinear gluon. Before discussing how to get rid of this kofdsingularities, it is better
to look in a more detailed way at their physical origin.

A quark radiates a gluon before interacting with a virtuabtam. The region of in-
terest is the collinear kinematic one. In this region it carubed the Weizséker-Williams
approximation([26][[27]. The fermionic propagator has mainen (p — k). Let’s call
this quantityp’. Then it is possible to write

L u(p)alpy)
]% = S (14 0kl ). (1.67)
Because of the collinearity of the gluon the fermionic pragag can be approximated
with an on-shell fermion. Using the Sudakov kinematics faist is obvious: a four-
vector can be written on a basis composed by the momeptuarfour-vectorn, and a
transverse vectdr; so that

pP=n’=n-kr=pkr=0, 2p-n=1 (1.68)
with
p = (P0,0,P) (1.69)
1 1
n“ = (ﬁ,0,0,—ﬁ) (170)

So thek* four-vector can be written as
k=p(1—2z2)+yn—kr. (1.71)

Reminding tha&? = 0, from the previous expression it follows

k 2
y = —l f‘z. (1.72)
For |kr|* — 0, then, alsg; — 0 and as
p—k = zp—yn+kp (1.73)
2
P k) = —ay— |2 = — Pl (1.74)
1—2z

it is clear from the last expression thét— 0.
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Thanks to this approximation the matrix element factorlgesthis:
2 2 1 2 2
M = [ Mol Mool (14 Ok ) ). (L.75)

Focusing on the partonic cross-section for this processnitbe computed

2 2
Mol
/

> (1.76)
p

1 | M|
(A% / - dd a9
o(v'a—=d9) =7 /
whereK is the flux factor and® the one body phase space that can be written as

d*k wdz

de = 2n)32E,  2(2m)3(1 — 2)

d|kr . (1.77)

The factorized matrix elements are easy to compute, anégagithe results finally gives

6(v'g = dg) = 2 v el /1dz Py(2)e2d(z — ) + O(|kr[?)
27 m? ’kT‘Q 0 “ I

o2 %s
197

QQ
Py (x) log <ﬁ) +o. (1.78)
where P;;(x) is a splitting function that can be considered as the prdibabif finding
a parton; with momentumzp inside a partori with momenturmp. This contribution is
not subject to the theorems already cited in this Sectionhdhminate the double pole
singularity of the one loop diagram. The liniit-|> — 0 corresponds to a long-range part
of the strong interaction which is not calculable in peratitn theory. After applying the
Weizsaker-Williams approximation, the divergent partsslated into theM,, term and
going back to the expression of EQ. (1.58) for the structunetions follows

‘.. } ,

1
@) =5 St 52 [ Ea (%)
4 (1.79)

where the parton distribution functiap is considered as a “bare” distribution, that can
now be used to absorb collinear singularities at a factboaacaleu writing

q(w, ) = qo(x) + ;—W /zl %%(gj)

Q2

m2

P(z)log ( ) +C(2)

2

P(2)log (%) YO+ (1.80)

z

The factorization scalg is introduced by simply splitting the logarithm in EQ. (1) &

Q2 Q2 'u2

log = =log — +log —. (1.81)
m W m
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Figure 1.7:The Feynman diagram forg — gq process.
It is possible then to write Eq.(1.79) as

=S el [ ()

P(z)log (222> +C(2)| +

(1.82)
Looking at the result, it is clear that the unphysical seatehas been pushed inside the
PDF and now the structure function only presents the famticn scalg:? in its right

hand part. In the next Section will be explicitly discussédindependence from this
scale.

The last contribution that needs to be considered is thenghitiated procesgy* — ¢q.
To obtain the corresponding result, the procedure is pnetigh the same, and so for gluon

FY(x,Q°%) = xz ( log Q S+ Cg(x)> : (1.83)

Using the same arguments as before, the structure fundtiathe M/ S scheme can be
written as

1 _
Be,@) = a3 ¢ / LNeg [5(1—z>+§—;c;”3<z>+...

Ydz o« o
2 az T s ~MS
+x§queq/m 00 Q) |2l + (1.84)
2 o 9 Ydz o« 9 QSZC
L(l'aQ) = qu €q . ;Q<;7Q> ot FZ+
Ydz o« o
2 az T ov| Xs _
+x qu eq/m . g(z,Q ) 27T4TRZ(1 z) + (1.85)
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with
_ 11+_ZZ2 log 2 + 3 + 22 — (%2 + 2)5(1 - z)] (1.86)
C5(z) = Ty ((1 g 22) log ( . Z) — 824 8z — 1] . (1.87)

Gathering the results obtained up to now and generalizitiggcase of the exchange
of any vector boson, the structure functidfiswith j = 1, 2,3 at NLO can be written as

BOQ) [P g (2 2) 50—+ 22 (P tos & + (e
z & § 2m 1

T ; _
1=q,9

Ms(T 2\ Os Q* oS
D S e LA R SG (1.88)

wheregy; is the coupling between the vector boson and the quark.

1.5 DGLAP Equations

A collinear emission of the kind treated in the previous B&ctan occur repeatedly
n times before the parton interacts with the virtual boson. aBee of the non-Abelian
nature of QCD, the parton that finally participate in the iat#ion may be the result
of a great number of previous splittings. The parton herdg@dowith a DIS process
seems point-like at low energy but as a short-range enemgpahed, the parton appears
itself surrounded by a cloud of other partons. These paitwiesed share the proton’s
momentum and so, as rising the scale causes the number cfrgkemside the proton
to increase, a scale dependence arouses not only in sedahations but also in PDFs.
Inside the evolution of these non-perturbative objectsfaliese collinear singularities are
absorbed, order by order, using the well-known DGLAP equti Even if perturbation
theory cannot be applied for PDFs determination, deperaendhe factorization scale
1% can be calculated perturbatively through these equatibasking at Eq. [1.88) it is
clear that the structure function must be independent fteerfdctorization scalg?, and
so taking the logarithmic derivativé/d(log 1i?) of both sides of that equation gives a
differential equation for th@? dependence aof(z, ?) that reads

0 s [td
uQG—MQq(:v,uQ) = ;X—W/ f(qu(&u?)Q(?ﬁ) + qu(f,ﬁ)g(?ﬁ)> . (1.89)
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A more exact treatment based on the operator product expa[#i] and the renormal-
ization group equation [29] gives

(2o - 2023 (i) 1)) (e

J=q,q %
(1.90)

wherea, = a,(p?), ¢; is the generic quark distribution functio®;; are the Altarelli-
Parisi kernels. Equations (1190) represent a systetn pf- 1 coupled integro-differential
equations, withm, the number of active flavors. It is the generalization of Eg89) to
higher orders in perturbation theory. The splitting fuons only depend on the scale
through the strong coupling constant, as it can be seen fnemN"LO approximation.
In fact, defininga; = /2, it gives for the splitting function®,; (z, u?)

PY" O (z, %) = > ab T (1) P (), (1.91)
k=0

In the case here considered, the splitting functions aravkngp to NNLO and their
explicit expressions are found in Relfs. [30-32].

In the following, to describe the solution to the DGLAP eu@n equations the dis-
cussion will refer to the treatment given in Ref. [33]. The Mespace is considered. A
theorem in fact states that given a functipn= g ® h, where the symbok refers to a
convolution as the one considered in Hg. (1.90) between twetficient functions and
PDFs, it follows that the Mellin transform gf

1
M) = [ deg* ) (1.92)
0
is given by the product of the Mellin transform gfandh as

M{f] = M[g|M[h]. (1.93)

From considerations based on charge conjugation and flsmomstry it is possible
to rewrite the system of equatiotis (1.90Ras — 1 equations

o .. L
lfa—mqﬁ’s (z, %) = Pys ® qye(@, 1) (1.94)
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describing the independent evolution of the non-singlerkasymmetries

+ — _
Insyy = 4+ —(¢5+7;)
ng

s = Y (a—7) (1.95)

i=1

and a system of 2 equations describing the coupled evoluatiaghe singlet and gluon
parton distributions

Qi 2 2\ Paq  Pg 2 2
“am(Q)(””’“) = <qu ng>®<g>(w7u), (1.96)

where the singlet combinatioy;, is defined as

nf
Y= (a+d). (1.97)
=1
AtLO POyt = PO~ — PO — PO atNLO PO~ = P while all the other

splitting functions are different. Starting froi(a?) all splitting functions are different
from each other.

The evolution of the individual quark distributions witretBcale can be computed by
introducing the following set of non-singlet distributgn

V = u +d +s +c +b +1
Vo = u —d”

Vo = u +d —2s”

Vis = u +d +s —3c

Vou = w +d +s +c —4b”

Vas = u 4+d +s 4+c¢ +b =5t
T, = ut —dt

Tg = u™ +d" —2s"

Tis = ut+d"+st —3ct

Toy = u'+dt+st+c —4bF
Tys = ut +dt+st+ct +0" —5tF (1.98)

Whereqii = ¢; £ q;, andu, d, s, ¢, b, t are the various flavor distributions.

The combination¥; and7; evolve according to Eq.{1.96) withy ¢ and P;; respec-
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tively, while the total valenc&” evolves with thePy, ¢ kernel.

To find the solution of the DGLAP equations for the coupledjgtrgluon equations
and for the non-singlet ones, the structure of

gi(z, Q%) = Zrzj(% as, ag) ® q;(z, Qp) (1.99)
J

is exploited, introducing the Mellin transforms for the @ionsI” and P as

1
Fij(N,as,ao):/ dxa:N_lfij(m,as,ao) (1.100)
0
1
Yij (N, as) = / dza™ " a,xPy(x, as) (1.101)
0

wherev;; are the anomalous dimensions that can be written in a sdrigsas follows:

o0

Yij (N, as) = Z a’;%-(f) : (1.102)

n=0

It has been pointed out before that the splitting functi@mgl(therefore the anomalous
dimensions) depend on the scale only through the couplingtaat. It is then natural
to chooseu, as evolution variable and rewrite the DGLAP evolution egrafor the
evolution kerneld’, in Mellin-N space, as

Qs

d
a_asF”(N , s, ap) ZRMFM (N, a, aq) (1.103)

where the matribR has the following perturbative expansion

R = Ro + CLsRl + (ISRQ —+ ... (1104)
with
R, = 1 Z R (1.105)
0 — ﬁo k‘ = B(] k—1i 5 .

where they stands for the matrix of anomalous dimensions.

The solution of the singlet evolution equation at leadindeoris then

aro(r, Q%) = L(as, ag, N)aro(z, Q3) . (1.106)

The leading order evolution operatibiis written in terms of the eigenvalues of the leading
order anomalous dimension matrix
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1
200
and the corresponding projector matrices

0 0 2
Ax {’qu *+ Ygg + \/(ng - 739) + 4789’7& (1.107)

(RO — A1), (1.108)

in the following form:

A\ A W\ A
L(as,ap, N) = e_ (—s> +e, (—8) . (1.109)

Qo Qo

The solution of the evolution Eq_(1.103) is expressed asrtugative expansion
around the LO solutiotu(as, ag, N)

(2 ) (Naas):
g

I+ f:a’gUk(N)] ( = ) (N, ag)

9

(1.110)

The U matrices introduced in the previous equation are definetidjallowing com-
mutation relations

[Ul, Ro} = R1 + U1
[UQ, Ro} = R2 -+ R1U1 + 2U2 (1111)

k—1
[Ui,Ro] = R+ > R Ui +kU; = Ry + kU,

=1

as _ _
1 ~ ~ esRre_ e_Rye
U :——[ R R ,} + 1.112
el I W W S G y (1.112)
where
_ k—1
R, =Ry + Y Ry U;. (1.113)

=1
Solving recursively Eqs[(1.112)-(1.113) and the NLO appration of Eq. [1.10b)
gives
(
Ro=_'~  Ry= bRy +ONNLO) (1.114)
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and the NLO exact solution for the evolution factor in thegéet case can be linearized
as

Fs(N) = [L + CLsUlL — CLOLU1 + CL?UQL — asaoUlLUl + CL%L(U% — Ug)} . (1115)

Looking at the non-singlet combinations for the distribag of quarks, it can be seen
that Eq. [1.1111) also holds in this case of a scalar evolubahas the involved objects
are no more matrices the right-hand sides vanish. Consdguérg possible to write at
LO the solution for the evolution factor as

7Rns
v Ag 0
I'vero(N, as, a0) = (a—o) , (1.116)

and at NLO non-singlet solutions can be written down in a cachglosed form both as
an iterated solution

U [(1+ba ag\
+v 1Ws s
FNS,NLO<N7 as,ap) = exp{ ll)l In (1 n blao)} (a_o) (1.117)

or a truncated solution

Qs

_R(r)\s
FffngLO(]\L ag, Clo) = (1 — Uliﬂ}(a,s — ao)) (a—o) . (1118)
Thex-space parton distributions are obtained by taking therge/#lellin transforms
of the solutions obtained in Eq.(1.110) which, making uséhefconvolution theorem,
can be written as
1 dy

v v [T
QJ:‘\:[ZS<QT,Q2) - / ?qu<ya CLS,CL0> QJj\:fS (;»Q(Q)) (1119)

) o 1@ - p) T
(g ><w,Q) = / yPs(y, s 0)( ] ) (y’%)' (1.120)

The evolution kernel§'(z) are defined as the inverse Mellin transforms of the evolu-
tion factors introduced in Eq._(1.1110)
C4 100 dN
Ls(z,as,a9) = / — 2 NTg(N, a, ag) . (1.121)
c—100 2mi
Note however that all splitting functions, except the atigbnal entries of the singlet
matrix, diverge when: = 1. This implies that the evolution kerndlgx) will likewise be
divergent inz = 1.
In the following is shown that, like the splitting functiartbe evolution factors can be
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defined as distributions. To this purpose consider the geaeolution factorl” such that
(omitting the explicit dependence bfon the couplingz,)

fla, @) =/ dny( ) (3@3) : (1.122)

Defining the distribution

[ (x) =T(z) —v(l — x), where = /0 dxl(x), (1.123)

Eq. (1.122) can then be rewritten as

La
Fe@) = 1.0+ [ L) (g @3)

@)+ [ 1 Yr(y) [f (g Q%) —uf (=, Q%)] - Q) [ “aT(y).
(1.124)

Due to the subtraction Ed. (1.723), all integrals on thesrdi.Eq. [1.124) converge
and can be evaluated numerically. This expression, thenpeaused to compute the
parton distribution functions im-space, determining numerically from Eq.[(1.121) and

v as
c+100 dN N c+1i00 dN F(N)
—az "I(N) = —_— 1.12
/‘m[ omi ) [ omil— N (1.125)

—100

In this singlet case, however, this prescription has bemgtsl modified because
['(N) is indeed infinite. So EqL(1.1R4) is rewritten in anotheriegjent form. Let

N=1
us define

fY@,QY) =2 f(,Q%)  T'W(r,Q% Q% =l (z,Q% Q%).
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Thus

1
M@ = i) = | %ymy,@%,@?)xf(g,cz%)

_ ld_y (1) ”‘"2 2 (1)({ 2)

—/w Y0, Q8,04 10 (2,03
1

= / %Pm(y,@%,cf) <f(” (g,Qé)—yf“(x,QS))
1

4 / %yﬂ”(y,@%,@%f“’(a:,Q%)

= / 1 dy—yF“)(y, Q3, Q%) (f“) (3@3) - yf<1><:c,cz8>)

1 x

©O Q) { /0 dyyT(y, @2 Q%) — /0 yF(y)]

1
s e = [ Yyreee Gf (g,@a)—yf@,@é))

b Q) [mv, 0LQY)

- [ @3,@%] (1.126)
N=2 0

that is, finally, a regularized expression free of infinitetiutions.

1.6 Heavy Quarks: the FONLL Scheme

In this Section the FONLL scheme is introduced, paying paldir attention, as in previ-
ous Sections, to DIS structure functions and the impactttieinclusion of heavy quark
effects has on them. The case of neutral current (NC) interecwill be considered first,
and subsequently the case of charged ones will be discusd#idda Then, the LO and
NNLO treatment of heavy quark mass effects is also discussed

1.6.1 Neutral Current Structure Functions

The idea behind the FONLL general-mass scheme is simple llvesdor a consistent
combination of terms from different schemes. The name sfrtiethod comes from the
original work [34], where a fixed order calculation (secondes) is combined with a
next-to-leading log one. But the method is general and afsgni feature is that it can
be used consistently to combine a fixed order with a resumraledilation to any order
of either. The FONLL method only relies on standard QCD faz&tion and calculations
with massive quarks in the CWZ [35] decoupling scheme in whighheavy quark is
subtracted at zero momentum (it decouples for scales muotv lits mass) and massless
quarks in theMS scheme in which the heavy flavor is treated as another esssghrton
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and so it is included in the all-order resummation of cobinlagarithms up to a suitable
chosen logarithmic order. The method was generalized intfB8éeep-inelastic structure
functions.

In this specific case here studied, a Fixed-Flavor NumbeNjseheme massive term
up to ordera, is combined with a NLO Zero-Mass (ZM) computation. This sokds
called FONLL-A in [36] and it is equivalent to the S-ACOT schef37]. As shown in
Ref. [38], this turns out to be identical to the S-ACQOT[37] stlee A near-threshold
suppression is also adopted for the subleading terms a%ji8¥3 through a damping
factor. A benchmark of this method against fhecaling method is performed in [38].

The explicit expression for the, ;, heavy quark structure functi@"in the FONLL-A
scheme is given by the sum of two terms:

m,
-
The first contribution on the right-hand side of Hq. (1]1Z7)he massive-scheme heavy
quark structure function & ()

2
FEON (2, Q%) = B3 (2, Q%) + 0 (Q* — m3) ( ) F9,Q%.  (1.127)

ng 1 d ng X 2 n
Fy (e, Q%) = x/ —yCé,g) (—, Q—Q,as(Q2)> gt (y, Q%) . (1.128)
z Y Yy my,
The heavy quark gluon coefficient function is given by
2 2 2
(n) Q _a(Q7) (n),1 Q
Cog (z,m—i,as(Q2)> = 2e;Cy0 Yo +0(ad) . (1.129)

The O («;) coefficient is

()1 Q? 2 2 2 2 2.2 I+wv
Coy” | 2 ol 0 (W? —4mj) x Tr[(2* + (1 — 2)* + 4ez(1 — 3z) — 8¢%2%) log .

h

+(82(1 —2) =1 —4dez(1—2))v], (1.130)

e=mp/Q* v=/1—4m2/W2 (1.131)

and the partonic center of mass enelgy = Q*(1 — z)/z.

where

2See Ref.[[36] for the discussion on the FONLL expressionghfetongitudinal structure functions.
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The second term on the right-hand side of Eq. (1.127) is tifeetdnce” contribution

1
e = o %[Cétt;*” (g,asm) Ry, Q) + (g, Q)]
b (et (L) - 50 (5 L@ ) o 02

h
(1.132)

whereh, h are the heavy quark parton distributions. At first-ordewinB.’), is given by

5O Q*\ 5,62 (P01 Q? 1133
g, h va = <€ 2,9 Z?W ) ( . )

h h

and the massless limit of the massive coefficient function is

ny,0), Q* Q*(1 —z
oyt (z 7 ) =T (22 + (1 - 2)?) log # 4 (82(1—2) —1)| , (1.134)
which in the limitQ?* = m? reproduces as required the usual massless scheme coéfficien

function.

It is possible to suppress the difference term Eq. (1.132abee it is of higher order
near the threshold of the heavy quark and it is possible tolchieasily as all terms in
Eq. (1.127) PDFs and, are expressed in the same = 3 decoupling scheme.

The expression in Eq(1.1I27) interpolates smoothly betvire massive scheme at
small@? and the massless scheme suitable at l@¢geAs an illustration of the differences
between various schemes for the heavy quark structureifimsctn Fig[1.8 the’, . and
the F;, . charm structure functions are compared for various scheziddsFONLL-A and
the FFN scheme as a function @f for different values ofr. It is clear that FONLL-A
interpolates smoothly between the FFN scheme near thikahdlthe massless scheme at
large@? (also thanks to the use of a damping factor in Eq.(1.127))tHie comparison,
PDFs and other settings, like the valuenof, are identical to those of the Les Houches
heavy quark benchmark comparison![38]. The comparisorh®idngitudinal structure
function F, . shows that mass effects are much larger thakjn so the ZM computation
is completely unreliable.

Further quantifications of the impact of heavy quark masscesffin DIS structure
functions are performed in [40]: for the phenomenologicatiore relevant case dfy,
heavy quark mass effects can be as large d9%, decreasing fast for increasingand
Q2. As in the case of Fid._1.8, the Les Houches heavy quark bemdhsettings have
been used.

The O (o) massive scheme heavy quark coefficient function, Eq. (3,188s first
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Figure 1.8:The charm structure functions, .(z, Q?) and Fy, .(z, Q?) as a function ofp? for
different values ofc from 2 = 107 to z = 1072 in various heavy quark schemes, computed
using the FastKernel method: FONLL-A, ZM-VFN and the FFN scheme.RDEs and settings
are identical to those of the Les Houches heavy quark benchmark dsompar

computed in Refs[ [41-43], while its Mellin transform is prated in AppendiX’A. The
accuracy of the FONLL implementation has been assessedutmmgphe Les Houches
heavy quark benchmark tablés [38], showing that the acgusagufficient for precision
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PDF determination.

1.6.2 Charged Current Structure Functions

The case of charged current (CC) structure functions is tlesateording to the FONLL-
A scheme. The coefficient functions needed are known @y(to,) and so other schemes
that need higher order computations cannot be implemented.

This treatment is necessary especially to describe neubis charm production.
In fact, in this case data lie in a region where the s¢@lds close to the charm mass
threshold.

The analytic computation of the Mellin transforms of tl¥«a,) charged current
heavy quark coefficient functions [44] is given into detaiippendiX/A. For simplicity,
the assumption thai| = 1 is made, and the rest of the CKM matrix elements are set
to zero. The generalization to realistic CKM elements isightforward. A single heavy
guark, the charm quark with mass., is also assumed. The factorization scale is set to
be equal tqu2. = Q?. Finally, only neutrino induced charm production is coesétl, as
the antineutrino case is again straightforward.

In the FFN massive scheme, the charged current charm pioduléfcC structure
function for neutrino induced scattering has been compintedspace inl[44,45] as

Py, QY = 2¢s <5 Q%)

1
e 2t [ et e ($0)
3
+ Oy (2,Q% N)g (%QQH} (1.135)
where
2 Q2
5=x(1+@>, Azm. (1.136)

In Eq. (ﬂﬂi)ﬁég)’l includes the contributions in which the gluon splits inte and a
¢ quark, both of which contribute th(Zl)’CC at NLO. The Feynman diagrams for the LO
and NLO gluon-induced subprocesses are shown in [Eigs..1(®-1

Thezx-space expressions for thig(«, ) charged current coefficient functions in Hq. (1.]135)
are given in Refs![44, 45]. The quark coefficient function banseparated into a delta
function piece, a regular piece, and a singular piece régilaith the usual plus prescrip-
tion,

i8N = O (N3 (1= 2) + O (0 2) + |G (1,207 |+ (1.137)
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o

Y

/s/

Figure 1.9:Feynman diagram for the LO contribution Eﬁl)’cc in the FFNS scheme. Thick
solid lines indicate a heavy quark (charm) and thin solid lines a light quadngss).

Figure 1.10:Feynman diagrams for the NL@)((«)) gluon-induced contribution tEQ(Z‘)’CC in

the FFNS scheme.

Itis possible to write the explicit expressions for theiéint pieces contained in EQ.(1.137).
For the delta term

O (\) = —Cp (4 + % + %2 + %KA) , (1.138)
Ki=(1=XIn(1—X\)/\. (1.139)
The regular piece can be written as
(1+2%)Inz

OV (\z) = Or|—(1+2)2In(1-2) —In(l-A2)) -

1—=2

+ 22—1—2—2 + g—1—2 1 , (1.140)
z z 1— Xz
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and finally the singular piece reads

1+221nQ2+m 221n(1—z) In(1—\2)

o @) = ol - T

2 +1 1—2=2
1—=2 2(1—)\,2)2

(1.141)

where the first term is the contribution that depends on tb®feation scale and is pro-
portional to thegq splitting function. Separating the massive quark coefficfanctions
into the various contributions is important to properlylerde their Mellin transforms, as
will be discussed below.

Finally, the expression for the FFN gluon coefficient fuantis given. In this case
there are no singular terms and it reads

O (2, Q%N =

1— X\ >+ m?
Ty (2 + (1 - 2)2) <ln ﬁ +In %)

+ Ty (*+(1 —2)2) 2In(l—2z)—In(1—Az) —1Inz)

+(8—wu—AyH2u+Mﬂx1—@+(f:§—4)

1— Xz

+ (1—)\)zlnm(

6A——12A22)]. (1.142)

Again, the last term in the first line is the scale-dependentrdution and is propor-
tional to Pq(g). Note that both diagrams shown in Fig. 1.10 contribute [4&halogous
expressions for the charged currenit. and F}, . structure functions can be found in
Refs. [44,45)].

As in the case of neutral currents, the massless limit of fi¢ &ructure functions is
easily obtained. For the massi#&'" structure function it has the structure

F(T”OCC( Q%) = 2uxs(z,Q%)

TR
n £0@@2>(jyﬂ}, (1.143)

where

nl 0), 1( Q2 A) = O}(:é’o)é (1—2)+ O}(:rz,O) (2) + |:C’S’77’levo) (Z)} L (1.144)
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with 9 )
oy = —Cp (5 + %) , (1.145)

14+ 2%)Inz
(14 #)ns

OV (2) = O | — (1 +2)In(1 - 2) —

(") -5 () | 147

: (1.146)

and for the gluon

Oy (2, Q%) = 2Ty {(22 +(1=2)%)In ! ; S r8(1-2) - 1}
+ Ty (2 +(1—-2)°)In 2—2 : (1.148)

c

For completeness, the ZM Variable Flavor Number (ZM-VFN)eame quark coeffi-
cient functions for quarks and gluons is also provided,

In(1-2) 3 1
(u+1),10 \ _ _°2 _ —
Cyp 7 (2) =CFp 2( T >+ 2(1—z>+ (14 2)In(1—2)

22)Inz 2
_(1ﬂ1_)21 ——|—3—|—2z+5(1—z)(—§—g)], (1.149)
C’égﬂ)’l(z) =Tk (22 +(1- 2)2) In 1 ; : + (82(1 —2) — 1)] . (1.150)

Note that the above gluon coefficient function, Hq. (1l115®)Yefined according to the

notation of [46], that is, it corresponds to the productida single quark or antiquark.
Comparing the FFNSO and ZM-VFEN coefficient functions it falothat for the gluon

piece holds the relation

QQ

27
mC

Cyy ™M (2, Q%) = 2035V (2) + Ty (2 + (1 - 2)) In (1.151)

2,9
where the overall factor 2 is due to the fact that the ZM coiefficfunction, Eq.[(1.150),
has been defined for a single quark, while in Eq. (11.142) thergkoefficient function
accounts for the production of two quarksgndc). Note also the presence of the usual
collinear logarithm. For the quark piece

CyM (z) = CF YN (2), (1.152)
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nl+1 CC

Figure 1.11:Feynman diagrams that contributef in the ZM-VFN scheme at leading
order. The NLO diagrams are the same as in the FFNS scheme.

without any collinear logarithm.

The definition of the heavy CC structure function in the ZM subkds not unique:
here it is defined as the contribution to the structure famctvhich includes all con-
tributions to the inclusive structure function which sueviwhen all CKM elements but
|Ves| are set to zero. With this definition, both the leading-onglecessesV *—s and
cW*—5 contribute to it (see Fidg._1.11). This definition coincideghvthe experimental
one because the struck charm antiquark must be accompapiaa wbserved) charm
qguark, and it is free of mass singularities. The gluon itetiaNLO contributions remain
those shown in Fid._1.10. The structure function in the nemssscheme above charm
threshold is then given by

FQ(ZZH CC( Qz) _ 2x(3( Q2)+E( Qz))
e 2O [ oo (o (20 o (5.7
+ 208" (2,Q% N)g (gy)” (1.153)

The ZM-VFN massless coefficient functions have been defindghs. [1.149)E(1.150).
Note the factor two in front of the gluon coefficient functjdéa account for the production
of two quarks in the two NLO subprocesses of Fig. 11.10.

Finally, the various schemes can be combined to constrecE@NLL-A structure
functions. As in the NC case, the FONLL structure functiodeéined as

2
FQ(EONLL%CC( Q2) =F ,CC<x7 Q2) + 0 (Q2 ) (1 . g_z) (c ( QQ)
(1.154)
“o Q%) = P, Q1) = B0 @, P, (1.155)

where the damping factor is used as default threshold ppgiser.
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Using the explicit expressions derived in the previous iBador the difference be-
tween the ZM and FFNSO coefficient functions, Eqs. (11.152) @al51), the difference
term can be written as

a, . Q°

Fg((i)’cc = 2xcC (;1:, Qz) — 2;1:2— In =
’ T m?

1
[ Er e a2 e (L) o,
(1.156)
where the fact that the heavy quark distributiori&y,) has been used. Now, it is easy
to see explicitly that, in the region wherde = In Q*/m? is not large, the difference
term is of orderO(a?): to first order ina, the FONLL expression coincides with the
massive-scheme one also for charged current scattering.u3@ of the leading-order

QCD evolution equations immediately leads to

O‘S(Q2) In Q_2

2
2m mg

1
ol Q) = o, Q) = | S a2 (2.07) + 0.

‘ (1.157)
Inserting this expansion in EJ. (1.156), it is trivial to ckethe explicit cancellation of
the O(«;) terms, that is, near the heavy quark threshold the differéeion is of order
By = 0(a?).

c

The final FONLL-A expression for the charged current charwdpction structure
function F’¢ is given by

2

2
FQ(EONLL),CC(x’ QQ) — 2 (57 Qz) +0 (Q2 _ mg) (1 — Z)i;) 2xc (x7 Qz)
1

2
; 2§—0‘32(7?2){ / %{Cﬂ)’l(z,QQ,)\) <s (3@2) 0@ m?) (1—85) 2 (gQ»

3

+OY N (2, Q% \)g (g QQ) } } (1.158)

2\ 2 2 1
2 2 me as (@) dz 2 2 L 2

It can be easily verified that Ed._(1.158) reduces to the FRi¢mme Eq.[(1.135) at
the heavy quark threshol@? = m?, and to the ZM-VFN expression Eq. (1.153) in the
asymptotic regior)? > m?2.

The above derivation generalizes straightforwardly todtieer relevant charged cur-
rent structure functionsFi’~ and F'$, as well as to the case with a general CKM quark
mixing matrix. Note that in all the results shown below thenstard CKM mixing has
been assumed, with the CKM matrix elements set to their PDGegdU7].

Now that the FONLL-A General Mass (GM) scheme has been defimedharged
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current structure functions, it is possible to compare taeous schemes (ZM, FFNS,
FONLL-A) in the kinematic region that is most relevant in thbal PDF analysis,
namely the region covered by the NuTeV dimuon measuremédfis [n Fig.[1.12 the

results of such a comparison between various schemes fangraduction in neutrino-

induced charged current scattering are shown. Results anpared at the level of the
phenomenologically relevant charm production reducedsze®ction, defined as [49]

_ 1 dQO.V(D),c
~v(D),c 2y — 2
o (.Qi,y,Q )_ EU d.%’dy (x7y7Q )
G2 My 2MRj2*y? 2\ @ 2
- y, - SNV F
27T(1 + QQ/M‘%V)Z + Q2 Y +y 2,c ('Iv Q )

(0, Q%) + Vo aFy Y (x, QQ)] (1.159)

with Q% = 2MyE,zy andYy = 1 & (1 — y)2. This expression for the NuTeV dimuon
cross-section has been corrected with respect to Eq. (Rgbf40]. A spurious factor
of (1 + m?/Q?%) was present there, and it was pointed out by S. Alekhin. Theaan
of this correction was studied in Ref. [50] and found to be met¢vant. In Fig[_1.12 the
various schemes are compared in some representative bihe dluTeV dimuon kine-
matics [48]. Parton distribution functions and other sgf$iare those of the Les Houches
heavy quark benchmark comparison![38]. It is observed th#te kinematic region of
neutrino data (both inclusive CHORUS data and dimuon NuTetd)dahe FONLL-A
result is very close to the FFN scheme computation, and yt begins to differ from it
at the highest energies, where resummation of charm madsseewllogarithms begins to
become relevant.

Even if the differences between the FFN and FONLL-A schermoestarged current
scattering in the NuTeV kinematic region are moderate, awshn Fig.[1.12, they be-
come rather more important at smalend medium-largé)?, where the charm and gluon
PDFs become larger. To illustrate this, in Hig, 1.13 the gbdrcurrent charm structure
function F5C as a function ofp? is compared for two different values of Notice in
particular that at very small-the FONLL-A expression is essentially the massless result.
However, producing dimuons at ~ 1072 andQ? ~ 10 Ge\?, where differences are
larger, requires a fixed target neutrino experiment withwgnmeo beam with energy in the
multi-TeV range, which is not foreseen in the near futureeréfore one can conclude
that any reasonable general-mass scheme for chargedtcoattering will be very close
to the FENS in the region of experimental data.

The FONLL-A calculation of charged current structure fumes has been imple-
mented in ar-space code, FONLLdisCC, that will be used for benchmarkimpqees.



42 Perturbative Quantum Chromodynamics

E,=88.3 GeV, y=0.771 E,=247 GeV, y=0.771
40 : 40 :
FFNS —— FENS ——
= 35 ¢ FONLL-A R 35 ¢ FONLL-A R
< ZM-VFN - - - - . ZM-VFN - - - -
— 301 1 30 - N 1
)
X 25+ - E 25
2 _ T
= 20 T S R 20
w .
> L ~ 4 L
< L W ] L
:b 10 S R 10
T 5 ~ 5 S~
0 . . . . 0 . . . .
0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2
X X
E,=88.3 GeV, y=0.324 E, =247 GeV, y=0.324
40 T 40 T
FFNS —— ~. FFNS ——
= 35 ¢ ~ FONLL-A R 35 ¢ RS FONLL-A R
o . ZM-VFN - - - - s ZM-VFN - - - -
S 30+ . 30 b ]
= -
X 25¢ 25
D
> 20 | 20
w
> L L
z 15 15
5 1or 10 +
o 5+ Les Houches HQ benchmark settings 5t

0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

Figure 1.12:Comparison of different schemes for charm production in neutrinociedDIS.
The kinematic range is representative of the NuTeV dimuon data range.ZNMR¢FN, FFN
and FONLL-A schemes are compared at the level of the neutrino indinegchgroduction cross-
section, Eq[(1.159). The settings are the same as those of the Les Hbeakg quark benchmark
comparison[[38].
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Figure 1.13:Comparison of different schemes for charm production in neutrinociedDIS.
The F2CcC structure function in the massless, massive and FONLL-A schemes is shottris
case the FONLL-A expression is given by Hg. (1]158). The settingtharsame as those of the
Les Houches heavy quark benchmark comparison [38].

This is the analogue of the FONLLdis code for neutral cugdbil], however is rather
simpler since the unknowt (%) massive coefficient functions do not have to be imple-
mented. The NNPDF implementation of the FFNS calculaticass ieen benchmarked
with the corresponding results of the MSTWO08 codel [52], figdperfect agreement.
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The FONLL-A and MSTWO08 general-mass schemes for chargedmisrhave been also
compared, finding qualitative agreement but some quanmétdifference.

In Ref. [53], where a LO and a NNLO PDFs sets are presented giineylquark mass
effects are included using the so-called FONLL-C GM-VFNesoke of Ref.[[36]. The
main idea is the same of FONLL-A but combining NNLO masslestypbative evolu-
tion with the O(a?) massive coefficient functions. The FONLL-C scheme intexfes
smoothly between thé (a?) massive scheme (FFN) near the heavy quark threshold, and
the O (o?) massless scheme (ZM-VFN) at larg8. Mass effects are much larger for
the longitudinal structure functiof, . than for F;, ., as shown in Ref[[53], so there the
ZM-VFN computation is completely unreliable. A benchmagaist different GM-VFN
schemes was performed in Ref. [38] for DIS structure funstievith common input toy
PDFs and common choices of all other settings. This treatimmepplied to neutral cur-
rent structure functions, while in the case of charged cuiipgS a full implementation of
this scheme cannot be performed because only the asym@totico limit is known [54]
for the massive)(a?) heavy quark coefficient functions. For this reason in the g
sector of FONLL-C GM-VFN scheme the(a?) massive contribution is set to zero and
the other components (PDFs, ZM structure functions, @ydare evaluated at NNLO.
The computation of the neutral current massive coefficienttions in the Mellin space
atO(a?) is given in AppendixB, while benchmarking of the numericat@aacy of the
FONLL-C implementation is discussed in Appendix C. In thapapdix, also a compar-
ison with the FONLL-B scheme (that combin@$a?) massive contribution with a NLO
massless perturbative evolution) is performed.

The case of LO QCD is much simpler as here both neutral andetiatgrent massive
coefficient functions for DIS vanish and the only differewa¢h a standard ZM scheme
Is the presence of the damping factor. The only massive ibotivn present in this case
is for a heavy quark produced from a struck light quark. ThenRONLL expression is
reduced to the parton-mode&D(a?)) massive coefficient function.
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Chapter 2

Determination of
Parton Distribution Functions

The introduction of parton distribution functions was negdgince the first steps in the
formulation of the parton model and modern QCD, as seen inrénaqus Chapter. The
inclusion of a PDF set in a specific analysis is necessarpnéostudy and prediction of all
that observables based on some hadronic initial state @asoalgave reliable results from
the Monte Carlo event generators commonly used for expetahsimulations.

Looking at the last forty years before the Large Hadron Cell{@dHC) of Geneva was
operative, it is possible to distinguish three main “seaséor parton fitting: the first one
was intended to demonstrate the compatibility of the pactortierpretation of first QCD
processes with experimental datal[55-57], the second wdisaded to the extraction of
parton sets from the first hadron colliders data availatiieyang for qualitative QCD and
slowly progressing towards the third stage, which maingntts to DIS NMCI[[58,59] and
HERA [60] data has permitted QCD precision physics. Nowadagske facing a new
era, strictly related to new physics [61] 62] at the LHC.

In this Chapter the main elements needed for a PDF set detsiomrare sketched.
After introducing the general strategy for extracting a@aset from data, the error deter-
mination technique is discussed focusing in particularhentteatment of multiplicative
uncertainties as for example normalization uncertain&@sally, the main fitting strategy
Is analyzed.
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Figure 2.1:A gluon PDF estimate of 1984 [63](left) and a comparison between gluors RDR
NNPDF2.3[50] and NNPDF2.1[40] analyses (right).

2.1 General Strategy

Parton distribution functions, as already stated, arepenturbative, universal quantities,
because of their general independence on the specific grocesrder to release a PDF
set, experimental data involving hadronic initial states meeded, as these quantities
only may be extracted from data. Thanks to their univengatiis possible to use data
from different processes to better determine PDF’s behavionly in recent years these
guantities started to be released together with an esbmafithe experimental error they
may be affected by. Before then, the determination of the caéral value was enough
for the level of precision of the first QCD analyses (FEigl 2lh)tact the impact of PDF's
errors was widely considered to be negligible in comparigothe uncertainty due to
contributions from other theoretical and experimentakses.

The determination of a set of parton distribution functiea rather delicate exercise.
Several theoretical, experimental, and statistical sswe®d to be addressed in order to
provide reasonable results. From a theoretical point o, Mpeecision physics of modern
colliders as Tevatron and LHC requires the implementatidreod scattering matrix ele-
ments and evolution kernels for DGLAP evolution equatiommputed at the appropriate
perturbative order. Heavy quark mass effects has to be @emresli and also the choice
of the parametrization used in the fit may affect the final ltes@n the experimental
side, even if a wide number of different experiments areuidet in a global analysis,
some distributions may be poorly constrained because kfdaexperimental informa-
tion and also cuts must be performed on some kinematic regilmnfact, where theory
loses reliability it is not possible to compare predictiavith data. Moreover, a proper
use of the uncertainties and correlations delivered by raxatal groups together with
the development and application of refined statisticalt@oé necessary.
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Figure 2.2:The upper figure schematically represents how each calculation with arséen
of flavors Nr has a region of applicability. The transition from thg- — 1 scheme to theVy
scheme should be in the vicinity of they, mass, but need not occur exactlyat= my,. The
lower figure illustrates that multiple PDFs can coexistfor my, with matching performed at
i = mp,. Image taken from Refl._[64].

The general strategy for extracting PDFs from data it is alntiee same for all col-
laborations involved in parton fitting: thanks to factotina theorem, the observables are
computed theoretically at a certain initial scglg¢ as the convolution between coefficient
functions and PDFs. The coefficient functions are pertarbatbjects computed directly
from partonic Feynman diagrams. For all relevant procetis®s are available at LO,
NLO, and in some cases also at NNLO perturbative orders. ©madhtrary, PDFs are
parametrized and randomly initialized. Each observabsatsawn definition in terms of
a linear combination of partonic distributions and for tl@ason a specific observable can
constrain or disentangle some distributions and not aheit. Several different observ-
ables are needed to determine all #we + 1 independent parton components inside the
nucleon. This lack of information forced for a long time tokeayeneral assumptions on
the unconstrained PDFs.

As each data point is measured at a physical sQaJéo compute the error function
that then will be minimized in the fit it is necessary to evadive observables to that scale
solving the DGLAP evolution equations. Again, the solut@ithese equations can be
performed with different methods and at different perttivieeorders of the evolutive ker-
nels. Also, the error function, that contains the covaramatrices, the measured observ-
ables and the same observables computed as explained amieimized accordingly
to different techniques (mainly log-likelihood minimizan but also genetic algorithms).

On top of the general fitting strategy described above, afiseles has to be consid-
ered. One of these is related to nuclear corrections: evircdin be assumed that the
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scattering with individual partons inside the nucleus isolmerent, corrections may be
needed for different targets in some experiments. Theseamns are model-dependent
and may affect theoretical calculations. Another issuédésimplementation of heavy
quark mass effects. Different schemes may be used to take itite account. In the
following | briefly describe the main characteristics of leacheme.

The theoretical framework proposed by Collins-Wilczek amr@ Z35, 65] is the basis
for the schemes considered here. Due to kinematic and dgahissues it translates in
different schemes. The simplest one is the fixed flavor nurstieeme: the heavy quarks
are considered in the massive coefficient functions withedfixumber of light flavors,;.

All the flavors below the heavy quark mass are treated as assslhis scheme becomes
increasingly unreliable for scales larger than the heawrlqmass threshold and so the
most reliable results are: for, = 3 when@ ~ m,, for n; = 4 whenm, < Q < my,
for n; = 5 whenm, < Q < my, and forn; = 5 when@ > m;. On this basis it is ide-
ally straight-forward to define a variable flavor number sohdoy matching the previous
schemes in their respective regions of validity, but asitagéching can be performed in
slightly different ways there are several possible eqanakchemes deriving from this
one. Since a few years ago the most commonly implemented Wr$She ZM-VFNS.
All quarks are massless and the heavy quarks are radiatyeglgrated only above the
my threshold. The number of light flavors changes going through thresholds, chang-
ing as a consequence the anomalous dimensions and theg@@idtion. The ZM-VFNS
lose accuracy near threshold because it neglects termertimyal to powers ofn?, /Q?
and also the approximate treatment of phase space intrethuensistencies. A solution
is proposed in Ref[ [39] with the Improved-ZM-VFNS (I-ZM-VFE by defining a new
lower integration limit in PDF convolution with hard scattey matrix elements as:

X(z,Q%) = x(1+ M} /Q%), (2.1)

where)/7 is the total mass of the final state.

Schemes as the ACOT, the Thorne Robert (TR), and the FONLL ¢(Blie&roduced
in the previous Chapter) are also called general mass VFNSVYENS) as they all ex-
ploit the accuracy of the FFNS near threshold and of the ZNNSBFat large)?. They
combine the two schemes going smoothly from a FENS treattoeatZM-VFNS one
as the scal&)? is increased. The ACOT schenie [66] introduces the subtrattion to
remove double counting due to LO and NLO contributions @ggrbiving an inclusion
of mass effects at all energy scales. On this are based t&aarthe S-ACOT [37] and
the ACOT+ [67,68] schemes. The TR schemel[69] is similar to ACOT (a caiapa is
performed between the two schemes in Refl [64]) with more esiglon matching con-
ditions treatment. A generalization is represented by TB].[For details on the FONLL
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Figure 2.3:Calculation of DIS heavy quark production for a variety of schemes. énaken
from Ref. [64].

scheme see Section11.6.

Among the collaborations that actively produce global gt sets of distributions it
is worth citing the CTEQ-TEA[71-76], MRST-MSTW [77=82], NNFJ83-:88] [40],
and Alekhin-ABKM [89-+92] groups. The CTEQ collaboration use@M-VFNS for
several analyses and the ACOT scheme [66] for specific stwdibsheavy quarks [93]
and also in[[78]. The MRST global analysis used the Thorne Relf€R) scheme [69]
up to MRST 2004([79], then the TR’ scheme [70] began to be usedertRST 2006
releasel[80] and in all the MSTW analyses. The ABKM collaboratises a FFNS with
ny = 3,4,5 [94]. Finally, the NNPDF collaboration uses the FONLL GM-NEBcheme
[34,36] already introduced in the previous Chapter sinceNlN®DF2.1 release [40].

2.2 Statistical and Systematic Errors

Monte Carlo Sampling

To determine PDFs error from experimental information aored in covariance matrices
nontrivial. The attempt here is to extract from a finite numifedata points the necessary
information to describe the error on a set of functions, énainfinite dimensional objects.
A way to solve this difficulty was proposed in Ref. [95] and deped in Ref. [96]. It
is necessary to build a probability density in the space otfions, in order to give an
estimation of a generic observabfethat depends on a PDF set} as

(Finy= [ FoPlsypLA 2)

whereP[{ f}|D[f] is the density probability measure in PDFs space. Of cotingeset
{f} depends on a set of parameters: (ay, as, . . ., a,) With n the number of parameters
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that determing{ f} given the fixed functional form used in the fit. The main ide#ois
reduce Eq.[(2]2) to a sum over a number of replicas generatéddnte Carlo (MC)
sampling of the parameter space obtaining a randorfiz§ét) of sets of parameters. To
this numberN,., of random parameter sets corresponds an equal number ohaats
{f1® withk =1,2,..., N,, and it is possible to write

N'rep
|
(Fun) = 77— - > Fipo- (2.3)
TeP =1

A problem with this approach is that in several directionpanameter space there are flat
regions, thus a problem when generating MC replicas rigesdlasv directions are related
to almost unconstrained parameters, and this results yilasye values in the samples of
replicas. The NNPDF collaboration also uses the MC sampéiagnique, but at the level
of experimental data, avoiding this problem (Sectil 3.2).

Hessian Approach

The Hessian formalism_[77,97], among the PDF-fitter coltabons, is the most com-
monly used method for PDF error determination. Refunction is quadratically ex-
panded about its global minimleﬂt can be written as

d d
A =X —xp = Z ZHij(ai —a;})(a; — a?) (2.4)
i=1 j=1

with x2 = x*(Sp), {a’} respectively they*> and the set of parameters corresponding to
the best estimat§, for the PDFs sef f}. The valueH;; is the Hessian matrix element

defined as:
9*x*(a)

H, = -2
aaiaaj

(2.5)

Moving the parameters around their best value, a shift iemies! in they? function,
Ax?, and can be defined
Ax? < T? (2.6)

as the region of “acceptable fits”, wiihthe tolerance parameter: all uncertainties are pro-
portional to this parameter. Going back to the Hessiandutced in Eq.[(2]5), this matrix

1To avoid the quadratic approximation the Lagrange muéipinethod can be applied [98]99].
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Figure 2.4: Distribution of eigenvalues defined in E§._(2.7) of the Hessian matrix, talen f
Ref. [97].

has a complete set df,,, orthonormal eigenvectors; with eigenvalues;, defined by

Z Hij’l}jk = ErVik (27)
j=1
d
Z ViiVjk = Otk (2-8)
=1

Each eigenvector determines a direction in parameter sslang which they? variation
can be quick or slow, and as a direction can be far quicker #mather a consequence
is that the eigenvalues, are distributed over a wide range that covers many orders of
magnitude (Fig._214).

The eigenvectors can be related directly to the variatitm time space of parameters
by

d
a; — a? = Z VikSkZk- (2.9)

k=1

The normalization of;, such thatAy? = ZZZI 22 is obtained through the introduction of
s;, factors. Thanks to the transformation of Hg. [2.9), graglhydllustrated in Fig[2.b, it
is possible to notice that the region of acceptable fits atdba global minimum is con-
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2-dim (i,j) rendition of d-dim (~16) PDF parameter space

. . . 2
contours of constant (< q;,pq1
u,: eigenvector in the Il-direction
p(i): point of largest a; with tolerance T Y]

(i) Sy global minimum

diagonalization and €
rescaling by N —
the iterative method K

o Hessian eigenvector basis sets
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Original parameter basis Orthonormal eigenvector basis

Figure 2.5:Representation of the transformation of Eq.|(2.9) from the original pasarbasis to
the orthonormal eigenvector basis, taken from Ref. [97]. To each poihe graph corresponds a
set of V.- parameters associated to a PDFs set.

tained inside a hypersphere of radi{71/sA_X2 and in case of an ideal quadratic behaviour
of the 2 function the scale factors, would be equal ta/1/zy.

Coming back to the generic observalfiethe error on it and on the PDFs on which it
depends can be estimated using the formula

1

AFZE:U%Q)—fij (2.10)

whereS: are the2 N,,, sets of PDFs computed at the two points defined by

Aol (2.11)
2

on the edge of thév,.,-dimensional hypersphere in thgparameter space. Together with
So they form a set o2V, ., + 1 sets of PDFs, that are the ones needed to compute PDFs
errors onSy, besides observables error from Hqg. (2.10).

However, the tolerance criteria f@? > 1 lose a statistically rigorous interpretation
and together with the assumption of the validity for linead approximation in error
propagation introduce weaknesses in the error treatmemigh the Hessian method.

2.3 Normalization Errors

In this Section the normalization uncertainties introdlireEq. [(2.438) are discussed. Af-
ter a first introductory part which briefly explains the Hessand Monte Carlo methods,
the discussion moves towards the issues at the origin ofitlse$[100—102] associated
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with overall multiplicative uncertainties as normalizatierrors in global fits. Finally two
methods for the definition of the covariance matrix are preest thepenalty trickand
thet, method.

Hessian and Monte Carlo Methods

Given a number. of experimental measurements, one may want to extract from them
the expectation value and the variance of a theoreticaltgyaninformation about exper-
imental uncertainties is contained into a covariance mattiv),; that takes the common
form .
(cov)y; = di;07 + Z TikOkj- (2.12)
k=1

The uncertainties are supposed to be Gaussian. The vglaess;, are referred respec-
tively to the uncorrelated and correlated uncertaintieédollows that, using a Hessian
approach, the best value foafter the minimization of the? function is

¢ ZZj:l (cov1)ijm;

- (2.13)
Zi,j:l(cov_l)ij
and its variancé’, is
82X2 -1 1
V= (122 ) = — (2.14)
* (2 ot? ) > i jer (covh)y
for a? function defined as
XP(8) = D (t—my)(cov )yt —my). (2.15)

ij=1

An equivalent method, that is particularly useful in theecewswhich thef quantity is con-
nected to another underlying theoretical quantity like BOE the Monte Carlo method.
Each data point is related to a random variallgthat gives a Gaussian distribution cen-
tered inm; and spread around this value according to the covariana&ngatv),;. From
thesen random variables it is possible to generatg,, replicas of the original set of
data points. Callind7T'} the ensemble of replicas generated in this way, it is passibl
to determine for each of them the best value minimizing theesg? function given in
Eq. (2.15) forT" and obtain

> i (covT ) M

T A=l
ZZ]‘:1 (covt)y;

(2.16)
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and given that

E[t] =(T), Var[t] = (T?) — (T)? (2.17)
it follows
 XimaleovTim;
B = ZZ;’=1(COV*1)U (2.18)
Var[t] = D=t (€O )i (cov ) ((M; M) — (Mj) (M)

(ZZj:1(COV_1)z’j> :
1

B > i jei(covt)y (2.19)

This is the same result found with the Hessian approach giv&mys. [Z.1B){(2.14) Of
course the results depend on the choice of the error funtdiarinimize.

D’Agostini Bias

As studied into detail in Ref. [103], normalization uncemtags can be added to the simple
case considered above to illustrate the Hessian and Monte @athods. Considering
the MC method, it follows that the results for a single expenmt read
" (covh)m,
Ell] = z”jn‘ ! _)1J d (2.20)
Zi,j:1(COV )ij
1+ s? 9 9
Var[t] = . + s“Elt (2.21)
U S PR
as expected, whergs the overall normalization uncertainty of this single esiment. On
the contrary, considering a case in which each measuremgobmes from a different

experiment along with its independent normalization utaiety s;, gives the results

n
m;

Elt] = x? — (2.22)
i=1 ¢
Varlt] = %+ 3*) " si(m? +0})/o} (2.23)
=1
with
1 "1

It is clear that the result of Eq._(2.22) cannot be correds thsult does not depend on
the normalization uncertainty; and if is imagined a single data poimt; having a huge
value of s; its effect would not be taken into account by the expressare determined.
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Here the realistic situation in which correlations betweéiferent measurements from
independent experiments are not available is assumed. \rowreeir inclusion does not
affect the resuilt.

Considering now the Hessian method, things goes still wagain, an error function
that includes normalization uncertainties is used, withdimple choice

n

Xim(t) = Z (t = mg)(covy, )i (t —my) (2.25)
where
(COVm)ij = (COV)ij + 82mim]’. (226)

For the simple case of a single experiment with only two datatp the covariance matrix
IS

2 4 2,2 2
(covm)s; = ( o1+ s'mi  sTmimg ) (2.27)

s*mimy 03 + s*m3

and as a consequence teEq. (2.25) is

(t —my)*(0F + m3s?) + (t — ma)*(0F + m3s?) — 2(t — my)(t — ma)mymas®

2
t) =
X () o203 + (mios + miol)s?
(2.28)
The result of the minimization of this expression with regpe¢ is
my /o2 +my/os (2.29)

- /02 +1/03 + (my —my)2s2/0%03

That this expression is biased can be better seen by asstimisgnple case; = 0, =
o. Then, definingn = §(m, +m,) andr = ™2, the above expression foreduces
to )

m
T 1t 2r2s?m? /o?

It is possible to notice a downward bias, also present in #namce fort

t =m(1 —2r’s*m?/a* + O(r?)). (2.30)

X2 sfwP(140?)

= 2.31
Vi 1+ r2s2w?/X2 7’ (2.31)
where "
my;
w= X? pok (2.32)

i=1 !
It is common to refer to this as th@&Agostini bias from the name of the author of
Ref. [100[102].
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Penalty Trick and ¢, Method

As already seen, to use the most intuitive error functiortaiomg normalization uncer-
tainties leads to biased results. A new function to be mipgaithat could at the same
time take into account multiplicative errors and producbeiased results has to be de-
fined. Considering the Hessian method, a standard way ofgdgrsolving the problem
Is to include as parameters into the fit also the normalinataf the datay;, and to add
penalty terms in the error function to fix the estimated valfihese parameters close to
one and their variance close ¢b

In the simple case of a single experiment witithe variance of its overall normaliza-
tion uncertainty, the error function in the penalty trickpagach is defined as

Eess(t,n) = Xn: (t/n ;2””)2 Lo ;21)2 . (2.33)

The last term is the penalty term: minimizing with respect tivest = nw, wherew is
defined in Eq.[(2.32), while minimizing with respectriayivesn = 1 and inverting the
respective Hessian matrix it follows that the covariancérixa

Vie = 2% + s*w? (2.34)

is the same as the result easily obtained from Eqg. (2.21)eitMbnte Carlo approach by
considering uncorrelated uncertaintiegapart from a negligible term of cross-correlation
between variances). The result for a single experiment lisased, but considering the
case of more data points from different experiments withepehdent normalizations
n; = 1 & s? things again goes wrong. In this case

EHess(tani) = Z (t/nl Z (235)

and the minimum for this more complex error function is detieed byn + 1 equations
for ¢t andn;:

Dt s
t = ——— 2.36
O (2:36)
st [t
T?,O'Z n;

These equations cannot be solved easily because of theplexity and non-linearity. In
certain special cases, solutions can be found [103]. Ieiardrom these special cases that
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Figure 2.6:Dependence of the central valtien the ratio of normalization uncertainties and
s for a pair of measurements with central values= 0.9, my = 1.1 and negligible uncertainties
0. The unbiased result must be symmetric about the goiat0 (i.e. s; = s2): only thety curve
is unbiased. The image is taken from Ref. [103].

both the central value and the variance are again biasedunimary, with the penalty
trick the problem is only solved for the case of a single expent.

In Ref. [100] d’Agostini proposed an alternative method buRef. [103] it is shown
that also this method, in the case of more than one experjnebiased. There this
method is called self-consistent covariance matrix method relies on a definition of
the covariance matrix that reads

(covi)ij = (cov)y; + %t (2.38)

As for the penalty trick, for a single experiment everythingrks fine, but for several
experiments biased results and also multiple solutionoaned.

The main problem is that including tfadependence inside the covariance matrix or
anyway adding terms that make the error function no more rgtiadn ¢ brings as a
consequence that the distribution &xgx7 ()] is not a Gaussian. Also the self-consistent
covariance matrix method, while thieparameters inside the covariance matrix varies,
present this problem. Considering here once again the Heapjaroach, in Ref[ [103]
the so-called,-method is discussed for both the Hessian and the MC metHAddsidea
is to fix the covariance matrix by fixing itsdependence to an arbitrary valtse

(covyy)ij = (cov)i; + tas?, (2.39)
in the case of a single experiment or

(covy)ij = (01-2 + s?t%)éij, (2.40)
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for several ones and then to determine iteratively the nighie oft, that gives stability
over subsequent iterations. In this way the problem is shibagh for a single experiment
and for more experiments. In all cases the results are wbiast and for its variance.
The procedure converges quite quickly: in a couple of itenat as shown in Ref., [103],
stability is achieved. The dependencetgis quite weak (it determines uncertainties and
S0 a variation of it can be considered a second order effadtsa even with a bad first
choice of its value the impact is mild. In the same refererm®/a this is quantitatively
proven. In FigLZb an interesting comparison among the Ipers&|f-consistent matrix,
and¢, methods is shown.

2.4 PDFs Fitting

A first difficulty in performing a fit is represented by the tignorance on the shape each
PDF has. When fitting a set of data points that obeys a knowngaiyaw, the problem of
determining the best function that goes through the pagntsduced to the determination
of a finite set of parameters. In the present case it shout@ndecidedh priori a fixed
functional form, because actually which is the best formdqrarton distribution is not
known. For this reason parton distributions need to be de=stwith a sufficiently loose
parametrization, in order to reduce as much as possibleidgiseon results introduced by
fixing a functional form. Practical reasons don't allow fotom large set of parameters,
and so what almost all the parton-fitter collaborations dagproach this problem is to
exploit some well-known property a parton set must satisfy.

The usual parametrization for a single parton distributiea the form
fi(l‘, Qg) = a’xb(]' - x)CP(d17 d27 s 7I> (241)

where Q2 is the initial scale at which PDFs are determined. The désicaleQ? at
which PDFs are convoluted with coefficient functions to cotegtheoretical predictions
is reached using DGLAP evolution equations, as alreadyedeal he parametess b, ¢
are somehow constrained respectively by imposing momeiatuginvalence sum rules,
by Regge interpretation at small-and by constraining to zero parton distributions at
x = 1. In general, a Padé expansion [104] is used to derive[Eqll\2.Bhrough this
technique it is often possible to approximate a functiorhveitrational function with a
better precision than with a truncated Taylor expansione }th, x) expression above
is a smooth polynomial and the numberdparameters in the fit must be high enough
to avoid any possible functional tension but at the same tinsannot be too high for
practical reasons. A radically different approach to thishtem has been developed
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inside the NNPDF collaboration. More details on this arespreed in the next Chapter.

A figure of merit is defined to determine the best set of pararmsetssuming that all
the uncertainties are Gaussian. The quality of the fit carelsertbed using &2 function

Ndat
XQ _ Z (E(eXp) _ Fi(th)) [COV_l]ij (Fw;exp) . E(th)). (242)

1,j=1

This function is minimized during the fitting procedure, atsldependence on the set
of parameters is all contained into the theoretical preatistZ”. The indicesi and;
run over theN,,; number of experimental points in the fit™” are the measured central
values of the observables. If in the case of a polynomialrpatezation to a smalley?
corresponds a better fit, in the case of a parametrizatiougfrartificial neural networks,
as for NNPDF analyses, things are different. The best fit cmtscorresponds to the
smaller possiblg?, and as discussed in Sdct.13.6 a stopping criterion mustfireedeo
determine the best set of parameters. The covariance nsgenerally defined as

N Ng Ny
[covj;; = ( D 000+ Y OinOin+ Y OinGin + 6ijai2,s> EFPFS® (2.43)

ij=1 ij=1 ij=1

whereo;; are theN, correlated systematic uncertainties,, the N,, (IV,) absolute (rel-
ative) normalization uncertainties, angl, are the statistical uncertainties. In Séct] 2.2
the treatment of normalization and in general of multigieauncertainties was already
discussed. A proper inclusion of these contributions thatds systematic biases is in
fact nontrivial.

The lack of experimental data that could constrain and téseyte the various partonic
components may call for the introduction of some assumptidine number of indepen-
dent components i&n; + 1), to be extracted from experimental data involving linear
combinations of PDFs. However, in several nowadays obsalealysis the assumption
@ = d was used, due to the impossibility of disentangle the twtribligions for lack of
information. Also, not so long ago, the assumption of sgttmzero the strange valence
distribution was commonly imposed in parton fits. Nowadayhe (2n; + 1) compo-
nents can be determined separately, with different degrieasnstraint depending on the
considered PDF. This is achieved thanks to the universaliBDFs: this feature allows
for a global QCD analysis where, as anticipated in $ect. Belrdasults proceeding from
many different experiments are combined into a same asagsidescribed in a more
detailed way in Secf. 3.1.

A very important role in PDF determination is played by banarks against results
obtained using different techniques and methods. To thenethere is a constant effort
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Figure 2.7:Cross-section predictions at 7 TeV for a Higgs boson (gg fusion) Figgs mass of
120 GeV (left) and 180 GeV/(right). Plot by G. Weltt [112], PDF4LHC.

within the scientific community that was translated in theeseof HERALHC [105]
workshops between years 2004-2008 and nowadays in the rap@F4LHC series
[106,/107] that since 2008 is intended not only to performdbemark exercises but also
to provide guidance on PDFs to LHC experiments and phenologyno

Another important contribution to the development in parfitting is represented
by the Les Houches Accord PDFs (LHAPDF), first conceived i012(108+-110], that
provides a library with all the main and most recent PDF seimfall the delivering
collaborations[[111], along with precise instructions ba tisage of each set, and which
has favoured useful discussion among different groupstebksh baseline standards to
PDF determinations (data inclusion, methodology, thémakissues).

More details regarding the NNPDF approach to parton fittimdyspecifically on PDFs
determination are extensively given in the next Chapter.

2.5 Summary of Available PDF Sets

Several parton sets have been delivered during the ye@ersading obsolete ones. New
sets are usually updated with the inclusion of new data réteal or statistical features.

In this Section, the main characteristics and the statuseofrtost commonly used PDF
sets are discussed and compared to each other, leavingtussion around NNPDF sets
for the next Chapters.

ABM11

The ABM11 PDF set [113] is based on a dataset composed by & ££i¥S inclusive
data (HERA [114, 115], BCDMS [116, 117], NMC [58], SLAC [118=]pDrell-Yan
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data (E605 and E866 [123, 124]), and DIS dimuonic data (Nude¥ CCFR[115]).
The parton set is determined both at NLO and at NNLO QCD peatiud orders for
six independent PDFs. The parametrization is obtainedigir@ polynomial function.
The whole set of PDFs is determined fitting 25 parametersngmadnich then, coupling
constant is also fitted. Several sets are delivered wjttaariations: the strong coupling
Is varied between, = 0.110 anda, = 0.130 over 21 members (steps gfo, = 0.001).
The heavy quark mass effects are treated in a fixed flavor nusdieeme, delivering
sets corresponding to; = 3,4, 5 for both NLO and NNLO. They, variations are instead
performed only for,; = 5. To determine the errors over PDFs, experimental uncéigain
are treated through the Hessian method, setting a tole@heeAy? = 1.

These sets are publicly available, and for each ABM11 set picess are delivered:
the central value plus 28 replicas to compute the errorshdrcase ofvg variations the
delivered replicas are respectively 21 (20+1) at NLO andlB#1) at NNLO.

CJi12

The CJ12 PDF set[125] is based on a global dataset composd®luaixa (BCDMS[[116],
NMC [58,59], SLAC [126], JLabl[127], HERA[128]), Drell-Yanada (E866([129]), W
asymmetry (CDF[[130-132], D0 [133, 134]) and Z rapidity (CDB31136]) data, jets
(CDF [137]138], D0[[139, 142]) and photon-jet (00 [143]) dafehe CJ12 parton set
is only available at NLO. The parametrization is given us2ygparameters for the fit-
ting of 5 independent PDFs through a polynomial parametaza The value forog is
fixed from an external fit atrs = 0.118. The heavy quark effects are not treated, as the
implemented scheme is a zero-mass variable flavor numbemsehThe masses of the
heavy quarks only have a role in defining the thresholds athlwvtiie number of active
flavors is increased. The errors on PDFs are determined tisnigessian method with
T? = Ax? = 100. The analysis includes target mass and higher twist caorecheeded
for the description of deep-inelastic scattering data mela and low 2, and nuclear
corrections for deuterium targets.

Three different parton sets are delivered, determineceatsely with three different
methods for implementing nuclear corrections. Each seahantral value replica and
38 replicas for the computation of errors.

CT10

The CT10 PDF set [76,144] is based on a global dataset thamigsalequivalent to
the one on which is based the CJ12 set. The main differencethair€€J12 doesn't
include NuTeV data, while CT10 doesn't include SLAC, JLab, phdton-jet data. This
parton set is available at three different perturbativeessdLO, NLO, and NNLO. Six
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independent PDFs are fitted using 26 parameters that fix aa@wiial functional form
used to parametrize the parton functions. The heavy quask efects are treated through
the implementation of the S-ACOT [B7] general mass schenmmdnced in Secf._21.
The propagation of experimental uncertainties from dafDé&s is performed using the
Hessian method with tolerand® = Ax? = 100. The value ofa, is fixed from an
external fit to the valuevs = 0.118. A series of sets is delivered both at NLO and
NNLO, including or excluding the W asymmetry data, and vagythe value of the strong
coupling constant, with).112 < oy < 0.127 for the NLO analysis and with.110 <
as < 0.130 for the NNLO analysis and stefsag = 0.001 in both cases. Also, sets with
ny = 3,4 are produced. Each set is fitted using the standard CTEQ PDé&tievobut
using the HOPPE®, running solution.

The CT10 sets are delivered to the user as a 52 eigenvectdgtvgetsigenvectors for
each fitted parameter) plus the central value in the starafalysis, as a single member
in the varyinga studies, and as a two-members set in the cases ofiixed

HERAPDF1.5

The HERAPDF1.5 PDF set [145] is based on preliminary HERA |1£46] combined
dataset. Both NLO and NNLO sets are available, as the resaifpolynomial parametriza-
tion of 5 independent PDFs. The set of parameters fixed to liesi-fit values is com-
posed by 14 elements. Uncertainties from experimental al@gropagated to parton
functions through the Hessian method with a tolerafiége= Ax? = 1. Heavy quark
mass effects are treated using the Thorne Roberts (TR) [6@rgemass scheme intro-
duced in Sect. 211. The, value is fixed from an external fit to the valug = 0.1176.
Also a series of sets with varying, is produced: variations are produced over 12 val-
ues ofay,, betweenng = 0.114 andag = 0.122 with stepAas = 0.001 and then for
as = 0.1156,0.1176,0.1196 both at NLO and NNLO. An analysis is also performed for
varying parameters, as for example heavy quarks mass values

While the standard sets are delivered for NLO and NNLO as eg&ar sets of re-
spectively 20+1 and 28+1 members, for parameter variagtsthe members are 12+1 at
NLO and 10+1 at NNLO. For varying. the eigenvector sets have 12 members, both for
NLO and NNLO.

JRO9

The JR09 PDF set [147,148] is based on the HERA electron-pro&g@asurements [149—
153], fixed target SLAC data [126], BCDMS [116,117], E665 [1HE], NMC [58]59],
and Drell-Yan dimuon data E866/NuSéa [124,/156]. The pastins available both at
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NLO and at NNLO. Its parametrization is obtained using 15apseter to fix a polyno-
mial functional form for the 5 independent PDFs fitted in thhalgsis. Thexg coupling
constant is also fitted. The errors for PDFs are determinieg) tise Hessian method with
tolerancel™? = Ax? = 1. While the NLO parton set is obtained only in the FFN scheme
with n; = 3, the NNLO parton set is obtained both in the FFN scheme anlaeirvVEN
scheme.

The JR09 parton sets are delivered as a central value plug@@veictor sets for error
computation both at NLO and at NNLO.

MSTWO08

The MSTWO08 PDF sel [81,82] is based on a global dataset cordinyselS data, Drell-
Yan data, W asymmetry and Z rapidity data, and jets data. Arge®n of each compo-
nent of the dataset is given in Ref. [81]. This parton set islavie at LO, NLO and at
NNLO. To determine the best fit a polynomial functional fosrused for each PDF. The
independent PDFs that are fitted are 7, with a total of 20 fegarpeters to be determined
during the fit. Theas coupling constant is also fitted and sets with variations are
delivered. The errors are determined through the Hessidhatieimposing a tolerance
T? = Ax? ~ 25. The heavy quark mass effects are introduced using the TR glemass
variable flavor number scheme.

The MSTWO08 parton sets are available as 40 eigenvector sett far each mini-
mized parameter for each direction of variation) plus arengalue set. thev, variation
sets are instead given as a best-fit central set with= 0.12018 plus 21 sets withog
varying between 0.110 and 0.130, with st&p, = 0.001.
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Chapter 3

NNPDF Methodology

In this Chapter the strategy followed by the NNPDF collakiorais described. While the
general strategy has already been discussed in[Séct. Belthleediscussion will treat the
radically different ingredients developed and implemdmtéhin the NNPDF framework.

An alternative to standard methods in error determinasdvionte Carlo sampling in
data space. This method was presented in Ref! [157]. It waessiully combined with
an artificial neural network parametrization in Reéf. [158kuMal networks are universal
unbiased interpolators and can be trained on each set ofejaieas generated through
MC sampling. The flexibility and robustness of this approhels been developed and
tested in a series of different cases (structure functi@b8]| spectral functions for
decays|[160], energy spectra of B decdys [161], and cosmiaeatrino fluxes([162])
and is at the basis of all NNPDF parton releases. To go frond#ta to the parton
parametrization firsiV,., pseudo-data replicas are generated for each data poirg fit.th
In this way N,., replicas of the original dataset (that is identified withliegpi,., = 0)
are created.

The construction of physical observables to compare to déhesponding data point
IS a nontrivial step: it implies to parametrize PDFs with rauets at a reference scale
Q3, evolve at the physical scal@® and convolute the result with hard partonic cross-
sections. The physical observable obtained is then usednpute the error function
to be minimized. Minimization is obtained through a genefigorithm that acts in the
selection of the best set of parameters that determine tireme of the networks iteration
by iteration during the training. The optimal fit is obtaingg dynamical stopping using
a cross-validation method.

For each PDF and for each replica, = 1,..., N,., of the original dataset a neural
network is trained, so that at the end are produdgg sets of PDFs that are a Monte
Carlo representation of probability density in the spaceastqn distributions. From this
representation it is straightforward to determine cenales, errors, and correlations of

65
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Fi  i=1,...Ndata

Expermeriel e ’ NMC,BCDMS, SLAC,HERA,CHORUS...

MC generation }{

TRAINING

EVOLUTION

| NN parametrization

Figure 3.1:Schematic representation of the NNPDF approach.

any function depending on PDFs.

In this Chapter the experimental data and Monte Carlo samplie@t first discussed
(Sect[3.1[3]2). The central part of the Chapter is dedidatélde minimization process
and some related features including the structure andressatii the neural networks used
for the parametrization, the genetic algorithm and the dyinal stopping (Secf._3.3).
The FastKernel framework is then introduced (Seci. 3.7)fanadly an important feature
to include new datasets is discussed: the reweighting dé®ect[3.B).

3.1 Experimental Data

In this Section, a detailed discussion of kinematic cutshwieir respective motivation,
and the kinematic coverage of the dataset used for the NNADFK2, NLO and NNLO
parton distribution function analyses is performed. [aftdr emphasis is given to the
inclusion of new charm structure function data in the glditalas to correctly fit this
observable a general mass scheme is needed. The originaktatre the basis for the
Monte Carlo sampling method used to generate pseudo-ddieaepThe second part
of the Section reports and briefly illustrates the detailedlygses of data performed in
Ref. [84)/87]. Finally, also positivity constraints are dissed, paying attention to the
different methods used for different perturbative appmations.
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| NNPDF2.1 dataset
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Figure 3.2: Experimental datasets which enter the NNPDF2.1 analysis. The kinematiest co
age of each dataset is summarized in Table 3.1.

Kinematic Cuts

First is considered the NNPDF2.1 NLO dataset. The kinenwatts are performed in
variables@? andW? = Q?(1 — z)/xz. While the cut iniW? is the same as in previous
NNPDF analyses and set 2. = 12.5 GeV?, the one inQ? is now slightly higher,
going from@?, = 2 Ge\* for DIS data[[87] in NNPDF2.0 t@)?, = 3 GeV* in the
present NNPDF2.1 NLO analysis [40].

The cuts here discussed are motivated by the fact that adseavy quark threshold
Fs predictions from the general mass scheme here implemenigitt e affected by
instabilities. The cause can be found in having data ponutssing the heavy quark mass
threshold while varying its value in different fits. This giggts to use a value 62, at
least as large as the maximum value of the charm mass thatcanbidered acceptable.
Then, Q%,, = 3 GeV* is a reasonable choice since therf* ~ 1.7 GeV. Another
motivation can be found in Ref. [163, 164]. Possible deviairom NLO DGLAP in
the smallz andQ? HERA data can affect theoretical uncertainty in the PDFs ad@ L
observables related to their inclusion in the global fit in aderate way compared to

PDF errors and other uncertainties, but removing the HERAtpdielowQ? . reduces

min
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these theoretical uncertainties even further. The prigeatofor this reduced theoretical
uncertainty is an increase in statistical uncertainty.

While the kinematic cuts discussed above apply to all DIS expnts included in
the global fit, on HERAFY data additional cuts are performed. Concretely, HERA
data withQ? < 4 GeV? and data withQ? < 10 GeV? for x < 10~2 are removed from the
fit. The motivation for this is that the FONLL-A general mastame for heavy quarks,
as discussed in_[36], provides a poor description of the otathe smallest: and Q?
bins due to missing largé® (a?) corrections. This is true for any heavy quark scheme
that does not include th® («?) corrections, like for example the S-ACQTused in the
CTEQ/CT family of PDF sets. Only the FONLL-B scheme can curs ginoblem since
it includes consistently) (a?) corrections inFs into a NLO fit, as can be seen in|36].
These cuts ensure that &} experimental data included in the fit are well described by
O (as) theory.

Kinematic cuts on the invariant ma$g? and the scal&)? of the DIS final state
W2 > 12.5 GeV* and@Q? > 3 GeV? are the same for NNPDF2.1 LO, NLO and NNLO
datasets, while théyy data are subject to the further cupg > 4 GeV? and@Q? > 10
GeV if x < 1072 only in the LO and NLO analyses, due to the fact that in thisareg
NNLO massive corrections are so large that a NLO approxonas not acceptable (and
consequently at LO). These cuts will be removed for the NNItQrfiwhich theFy data
will only be subject to the cuts which are common to all oth& Data. The charm struc-
ture function data included in the NNLO fit are listed in TaBI@ all other data are the
same as in the NLO fit, Table 3.1. The total numbers of datapoised at LO, NLO and
NNLO are also given in Table3.2.

NNPDF2.1 Dataset

The NNPDF2.1 NLO dataset includes NMC [165,166], BCDMS [118])5and SLAC[[126]
deep-inelastic scattering fixed target data; the combirteldAt| DIS dataset[114], HERA
Fp, [167] andFy structure function data[168-174], ZEUS HERA-II DIS crosst®ons[[175,
176], CHORUS [[177] inclusive neutrino DIS, and NuTeV [1158] dimuon produc-
tion data; fixed-target E60% [123] and E866 [124,/156) 179IPr¥an production data;
CDF [132] W asymmetry and CDF_[135] and DO [13&] rapidity distributions; and
CDF [138] and DOI[[142] Run-Il one-jet inclusive cross-secsioi\ scatter plot of this
data in ther, Q? plane is displayed in Fif. 3.2, with the valuesiodletermined using LO
kinematics.

The dataset is slightly different in the case of LO and NNL®. fAt LO theF, struc-
ture function data are removed, since this observable asiat this perturbative order.
At NNLO two modifications are present: first, the E866 datehlighed asr distribu-
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tions, have been converted into rapidity distribution$ofeing the procedure discussed in
Ref. [180], since the use of rapidity as kinematic variabl&esathe inclusion of NNLO
corrections simpler. Second, instead of including the NM@agn data as data for struc-
ture functions they now are included as data for reducedsesestions. This decision
was taken after that in Ref. [181] was shown that the impachisfdifferent treatment
is almost negligible at NLO. The use of cross-section data inciple preferable, as
they are closer to what is actually measured. In Ref.[[182i$ wlaimed that the treat-
ment of this data may have a significant impact on NNLO PDFsygh this claim is not
supported by investigations with NNPDF2.1 NNLO [183], otmiMSTWO08 [184] PDFs.

All the relevant data from H1 and ZEUS experiments at HERAMHer¢harm structure
function F$(x, Q?) is included [168=174]. This inclusion of new data points INRDF
analyses introduces more information that helps constigiitne smallx gluon PDF and
moreover the included datasets are sensitive to the valtleeo€tharm mass:.. The
kinematic coverage of all the datasets included in NNPDFE2slimmarized in Table 3.1
and in Fig[3.D.

Now in turn the features of the variou§(x, Q?) datasets included in the fit are de-
scribed:

e The ZEUS 96-97D** analysis[[168].
In this analysisFy is extracted from the measurement/@f* mesons reconstructed
via their hadronic decays using data collected in the 196961887 running periods.

e The ZEUS 98-0* analysis[[1609].
As in the previous caséyy is extracted from the measurement/oft mesons re-
constructed via their hadronic decays, and uses data taall@cthe running period
between 1998 and 2000.

e The 04-05 ZEUSD*, D° analysis[[170].
In this analysis, based on the HERA-II running period of 200d 2005,D mesons
are reconstructed via their hadronic decays. An improvedigion is obtained
reducing the combinatorial background to themeson signals by using the ZEUS
micro-vertex detector to reconstruct displaced secondamyces.

e The 2005 ZEUS muon analysis [171].
This dataset is based on the measurement of muons that ageatgzhin charm
production from their semileptonic decays. Data was ct#@auring the 2005
HERA-II running period.

e The H1 96-97D** analysis[172].
This analysis, based on the 1996-1997 running period, useiths reconstruc-
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Deep-inelastic scattering

Experiment Set [ Ref. [ Niat [ Tmin [ Tmax [ Q?mn [GeV?] [ ana [GeV?] ]
NMC-pd 260 (132)
NMC-pd [165] 260 (132) 0.0015 (0.008) 0.68 0.2 (3.5) 99.0
NMC 288 (221)
NMC [166] 288 (221) 0.0035 (0.009) 0.47 0.8 (3.2) 61.2
SLAC 422 (74)
SLACp [126] 211 (37) 0.07 (0.1) 0.85 (0.55) 0.58 (3.0) 29.2
SLACd [126] 211 (37) 0.07 (0.1) 0.85 (0.55) 0.58 (3.2) 29.1
BCDMS 605 (581)
BCDMSp [i16] 351 (333) 0.07 0.75 75 230.0
BCDMSd [T17] 254 (248) 0.07 0.75 8.8 230.0
HERAI-AV 741 (592)
HERA1-NCep [14] 528 (379) | 6.210 7 (4.310 P) 0.65 0.045 (3.5) 30000
HERA1-NCem 114 145 1.310°° 0.65 90.000 30000
HERAL-CCep 114 34 0.008 0.4 300.0 15000
HERAI-CCem 114 34 0.013 0.4 300.0 30000
CHORUS 1214 (862)
CHORUSNU 77 607 (431) 0.02 (0.045) 0.65 0.3(3.0) 95.2
CHORUSNb [T77) 607 (431) 0.02 (0.045) 0.65 0.3 (3.0) 95.2
FLH108 8
FLH108 [67] 8 0.00028 0.0036 12.0 90.000
NTVDMN 90 (79)
NTVnuDMN [I5[178] 45 (41) 0.027 0.36 11 (3.1) 1165
NTVnbDMN [15[178] 45 (38) 0.021 0.25 0.8 (3.1) 68.3
ZEUS-H2 127
Z0B6NC [175] 90 5102 0.65 200 310°
Z06CC [176] 37 0.015 0.65 280 310°
HERA charm structure function data
ZEUSF2C 69 (50)
ZEUSF2C99 [168] 21 (14) 510 5 (310 %) 0.02 1.8 (7.0) 130
ZEUSF2C03 [169] 31(21) 3107 (1.8 10 °) 0.03 2.0(7.0) 500
ZEUSF2C08 [L70] 9(7) 2.210~%(6.510 %) 0.032 7.0 112
ZEUSF2C09 171 8 810 % 0.03 30 1000
HIF2C 47 (38)
H1F2C01 172 12 (6) 510 4 3.210 2 1.5(12) 60
H1F2C09 73] 6 2,410~ % 0.025 120 400
H1F2C10 [174] 26 210~ %(3.210~ %) 0.05 5.0 (12) 2000
Fixed Target Drell-Yan production
i F F . 2 2 2 2
Experiment Set Ref. Nyat l I:y/‘l/min’ y/xlnax:l l [Zmin, Tmax] lwmin [GeVv~] ]\Jlnax [GeV7]
DYE605 119
DYE605 23] 119 [=0.20, 0.40] [0.14, 0.65] 505 286
DYES66 390
DYEB66p [56[179] 184 [0.0,0.78] [0.017, 0.87] 19.8 251.2
DYEB66r [24] 15 [0.05, 0.53] [0.025, 0.56] 21.2 166.4
Collider vector boson production
Experiment Set Ref. Ndat [Ymin: Ymax] [©min: Tmax] M2 [GeV] [ M7 [GeV?]
CDFWASY 13
CDFWASY @32 13 [0.10, 2.63] [2.9 103, 0.56] 6463 6463
CDFZRAP 29
CDFZRAP [136] 29 [0.05, 2.85] [2.9 1073, o.so] 8315 8315
DOZRAP 28
DOZRAP [40] 28 [0.05, 2.75] [2.9 103, 0.72] 8315 8315
Collider inclusive jet production
Experiment Set Ref. Naat [Ymins Ymax] [©min, Tmax] P7 min [G8V7] | PT may [GEVZ]
CDFR2KT 76
CDFR2KT (41 76 [0.05, 1.85] [4.6 103, 0.90] 3364 3.710°
DOR2CON 110
DOR2CON @42 110 [0.20, 2.20] [3.1 103, 0.97] 3000 3.410°
Total
Experiment [ [ [ Ndat [ Tmin [ Tmax [ anin [Gevz] [ Q;zna [GeV2]
TOTAL | | | 4520 (3415) | 3.110°° | 0.97 | 2.0 | 3.710°

Table 3.1:Experimental datasets included in the NNPDF2.1 global analysis. For PEiments
in each case the number of data points and the ranges of the kinematichlesagee provided
before and after (in parenthesis) kinematical cuts. For hadronic datarthes of partor covered
for each set determined using leading order parton kinematics are sNotethat hadronic data
are unaffected by kinematic cuts. The valuesegf, and Q2 for the total dataset hold after
imposing kinematic cuts.
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[ Experiment | Set [ Ref. [ Naat | Tmin [ Zmax | Q% [ Q%
ZEUSF2C 69 (62)
ZEUSF2C99| [168] | 21(18) | 510~° (1.310~ %) 0.02 1.8 (4) 130
ZEUSF2C03| [169] | 31(27) | 310~°(710°?) 0.03 2.0(4.0)| 500
ZEUSF2C08| [170] 9 22104 0.032 7.0 112
ZEUSF2C09| [I71] 8 810~ % 0.03 30 1000
H1F2C 47 (45)
H1F2C01 | [172] | 12(10) | 510~ (1.310~%) | 3.210=3 | 1.5(3.5)| 60
H1F2C09 | [I73] 6 241074 0.025 120 400
H1F2C10 | [A74] 29 2107 0.05 5.0 2000
LO Total 3330
NLO Total 3338
NNLO Total 3357

Table 3.2: Charm structure function datasets included in the NNPDF2.1 NNLO analpdis.
other data are the same as in the NNPDF2.1 NLO analysis, given in[Table Belnumber of
data points after kinematic cuts are shown in parentheses. In the last tle®éslgiven the total
number of datapoints included in the NNPDF2.1 LO, NLO and NNLO fits.

tion strategies as the corresponding ZEUS analysis, nathelyeconstruction of
D**— D+ using theD* — D° mass difference method.

e The H1 largeR? 04-07 D** analysis[[178].
This analysis determines; via identified D mesons produced at large virtualities
Q? > 100 GeV?, and is based on data collected in the HERA-II running period
2004 and 2007.

e The H1 low)? 06-07 D** analysis[[174].
This is analogous to the previous measurement, but now iogvére small and
medium@? region. It is based on data obtained in the HERA-II 2006-2Q0ihing
period. Events containing heavy quarks are distinguisheh those containing
only light quarks using variables that are sensitive to dmgeér lifetimes of heavy
flavor hadrons, like the transverse displacement of tracka the primary vertex.

The datasets here above described are not all the publishetERA datasets. The
reason to exclude all the other ones is that in comparisdmtivé ones included they are
obsolete and, moreover, the measurements used in the flieab@sis for the combined
HERA F dataset.

In several analyses for the determination of PDF sEfsdata are excluded for the
fact that the wayFy is usually defined experimentally is affected by mass seufigs.
Usually Fs is defined as the contribution t, with at least one charmed quark in the
final state, and the result is not finite in the limit in whieh.—0. Here a definition of
Fy as the contribution td’y when only the charm electric charge is nonzero is adopted,
which is free of mass singularities. The deviation betwden definition and that which
is used to define the experimental observable is estimat®ein[36] by means of a
suitable resummation method, and shown to be negligibl&enrégion of the HERA
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FyS(z, Q)

Noen 10 100 1000
(PE[(Feo) 1) | 20%  64%  13%
r [Pl 097  0.99 0.99
(V]e®@]) .. 161107 1.9107° 6.710°°

(PE[o@0]) | 33%  11% 3%
(gl 0.011 0011 0011

r [o@0] 094  0.99 0.99
(V [p™]) s 010 94103 1.01073
(plerv) 0182  0.097  0.100

r [perd] 047  0.79 0.97
(V [ecov®™]) = [55107° 17107 57107
(covla®)) 1.3107° 761075 8110°°

r [covte] 041 081 0.98

Table 3.3:Comparison between experimental and Monte Carlo data. The experimatatdiave
(olexp)) = =0.011, (p(=P))  =0.107 and{cov(®*P)) = =8.61075.
Table taken from Ref[ [83].

data. Also,Fy is affected by theoretical uncertainties related to theagdiation from
the experimentally accessible region (restricteghirandn) to the full phase space. This
theoretical uncertainty is estimated using QCD exclusivéopé calculations and added
as an extra source of systematic uncertainty in the expatahanalysis.

3.2 Monte Carlo Generation

Through Monte Carlo generation, starting from the orginaghset composed by th€,.;
central values measured in the various experiments caesid¥,., sets of pseudo-data
are produced. Considering ™ as a general individual measurement, it follows:

Nc
F® — i ) (1 + ri o+ Tz(k)o-i,s> 7 (3.1)
p=1
with
Na
Sz(’j\)f H <1 + TZNUZN H \/ 1+ 7"Z NJZ N (3.2)
n=1
E=1,..., Niep , = - Naat -

Independent univariate Gaussian random numbérsire used for each independent
error source. These sources of error are the same introdiudled definition of covari-
ance matrix in Eq.(2.43). Each Monte Carlo replica of theinebexperimental data is
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generated according to a multi-Gaussian distributionezextin the original point (and so
with expectation value equal to the data point value) anot @md covariance equal to the
corresponding experimental quantities. In this way it ispble to generate a sampling
of the probability measure for each experimental data pdkstthe number of replicas
N.,., is arbitrary, can be decided with which accuracy the gesdrpseudo-data would
reproduce the original statistical properties of the dztas

In order to correctly determine a set of replicas, the dedinibf some statistical es-
timator is needed: a set of them is defined in the Appendix of [881. It is possible to
check that averages, variance and covariance of the psktdaeproduce central values
and covariance matrix elements of the original data. Reguls single observable were
determined in Ref[[83] and are presented in Table 3.3. kwfadlthat with/V,., = 1000 it
is possible to ensure average scatter correlations of 99P&aeruracies of a few percent
on central values, errors and correlations.

3.3 Neural Network Parametrization

The parametrization used in all NNPDF analyses is givennmgeof neural networks.
This choice allows for an unbiased fit with a very large andirethnt set of parameters.
The fitting strategy is very important, as the dependencé®bbservables on PDFs is
nontrivial. To minimize the error function for each neuraitwork a genetic algorithm
is used. The redundancy of the parametrization implies despooblem: surely the
underlyingtrue distribution given by data can be much better determinetthaue is the
possibility of minimizing the figure of merit beyond the bé&spoint. In this case would
be fitted not only the physical law, but also statistical fluation of data. The solution to
this problem is given using a cross-validation method tp she fit before entering this
overtrainingregion. These three ingredients (neural networks, geakgarithm as fitting
tool and cross-validation) are discussed respectivelhim $ection, in Sect._3.5, and in
Sect[3.6.

The flexibility of a neural network depends on its size. Annité size, as a limit
case, corresponds to a neural network that can reproducecamiynuous function. Of
course, it is not possible to deal with such an infinite-sizedral network and a structure
needs to be fixed. A neural network is a nonlinear map betwegunt EZ.(” and output
ffL) variables. For a correctly chosen structure, they can gresalt free of functional
biases. The standard methods, by fixing a functional formgkample polynomials of
fixed degree) are likely to be affected by this kind of bias.

The structure of the neural networks used in NNPDF’s fits isdiin a 2-5-3-1 ar-
chitecture. This result is achived through a series of btaltests: as is not knowm
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Figure 3.3:Schematic diagram of a feed-forward neural network.

priori which complexity is needed to correctly describe a PDF betsize of the net is
increased until independence of the results upon its vamias reached. Then the ar-
chitecture is fixed slightly above the critical size thategstability. A detailed study is
performed in([83]. The neural networks used are multi-laged-forward neural net-
works. A schematic representation is given in Eig] 3.3. Nesrare disposed ih layers,
each one withn; neurons. The number of neurons changes with the layers, Gsais
looking at the 2-5-3-1 architecture implemented. Each oreueceives input from the
neurons of the previous layer and feeds output to the oné®iaubsequent layer. These
inputs are combined linearly with a weight each and a glomashold, generating the
outputfj(.l) (j-th neuron of thé-th layer) given by a nonlinear activation functigfw)

g”:g(hy)), i=1,....m, 1=2. 1L (3.3)

which has as argument the linear combination

ny—1

B =Wl — 6, (3.4)

Jj=1

wherew;; (weights) and); (thresholds) are free parameters to be determined by timgjfitt
procedure, ang(z) is taken to be a sigmoid in the inner layers,

1

1t exp(—z)’ (3:3)

9(x)
and linearg(z) = x for the last layer.
In order not to have the neural network defined by weightsgpah many orders of
magnitude, it is a common practice to rescale both the inpdtlae output of the neural
network betweei® and1. Independence with respect to variations of this rescdiange
been checked in [83].
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The neural network outputs the valu{g‘é) as a function of the input value§§1) and
the parameters;;, 6;. The training of the neural network consists in the deteatim
of the best-fit values of these parameters given a set of-owpiut patterns (data). As
the same 2-5-3-1 architecture for all the neural networksegmt in the analysis is given,
the number of parameters that need to be determined is ofrarmpters for each PDF,
that means a total of 259 parameters. A standard fixed furatiorm fit has usually
less than 30 parameters. In Séct] 3.5 the genetic algorigedad for the training will be
discussed.

Preprocessing

To speed up the fitting procedure, a preprocessing of theisigirformed. As already
said, a neural network can accomodate any functional foroyigled that it has a large
enough size and that it is trained for enough time. Howeves, common to factorize
with preprocessing the asymptotic behaviour that the padistributions may have for
x — 0 and forz — 1. The parametrization of the basis of PDFs implemented irfithe
reads

(0Q) = (1= 2)"a "=NNs(o).

( ) = Ay(1—2)™ 2 " NNy(z),

( ) = (1 —ax)"Bsz "3NNgp(x), (3.6)
Aol QF) = As(1— a0 0NNy (0]

(2,Q?) = A (1 —x)"sz NN, (),

( ) = (1—a)™" 27"+ NN (),

( ) = (1—2)™ 27" NN, (2) — saux(z, Q3),

where
Saux(2,Q)) = Ay [27 (1= )] (3.7)

The NN(z) functions represent the neural networks that are trainemhglthe fit. The
preprocessing exponents, n, are randomly variated on a range given in Tablé 3.4. The
normalization factorsly, Ax ., andA, are constrained by the sum rules and are discussed
in Sect[3.4. A simple test to check that preprocessing isintotducing a bias is to
remove it. For a sufficiently long training the results muststable. A more sofisticated
tool is given in Ref.[[87] by the computation of the correlatioetween a preprocessing
coefficient and the¢? of the relative PDF computed between théh net (trained on
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’ PDF ‘ [Mmins Mmax] ‘ [Mmins Mmax) ‘ r[x%,m] ‘ r[x%,n] ‘
S(z,Q2) | [2.55,3.45] | [1.05,1.35] | -0.018 | 0.131
g(z,Q3) | [1.05,1.35] [1.05,1.35] -0.002 | 0.050
Ty(z,Q2) | [2.55,3.45) [0,0.5] -0.023 | -0.130
Vr(z,Q3) | [2.55,3.45] [0,0.5] 0.003 | -0.068
Ag(z,Q3) [12, 14] [—0.95,—-0.65] | 0.000 | -0.069
sT(z,Q2) | [2.55,3.45] | [1.05,1.35 | 0.021 | -0.055
s (z,Q2) | [2.55,3.45] [0,0.5] -0.027 | -0.015

Table 3.4: The range of random variation of the largeand smallz preprocessing exponents
m andn used in the present analysis (the precise form of these exponenteisigi®ect. 3.1
of Ref. [49]). The last two columns give the correlation coefficient @) between thg? and
respectively the large- and smallpreprocessing exponents.

replicak) and experimental data, defined as

2 2
<X m2>rep - <X >rep <m2>rep
o2 '
mx

(3.8)

r |:X27 m2:| =

The results of this test are given in the last column of Tah. 3.

3.4 Sum Rules and Positivity Constraints

While performing a parton fit, it is important to guaranteet thialy the subspace of ac-
ceptable physical solutions is explored by the fitting pdoge. It is possible to constrain
the space of acceptable solutions by implementing some gieieatures, as for example
sum rules and positivity.

Sum rules follow from conservation laws, and read

/O do 2 [D(x) + g(x)] = 1 (3.9)
for the momentum sum rule, and
/0 dx (u(x) —u(x)) =2, /0 dr (d(z) —d(z)) =1 (3.10)

for the valence sum rules. The momentum sum rule[Eg| (3.9 thefactor4, as

_1- ) dx 2 [(1 — )™ NNy (z)/2"*]
Jy dz @ [(1 = 2)moNN,(z) /a]

A , (3.11)

g
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while the valence sum rules EQ.(3/10) fix the factdfsand A, , as

3
Jo dz [(1 = 2)™ NNy (z) /2]
L— fy dv [(1— &)™ NNy, (z) /a"73]

o . 3.12
T 2l de (12" NNay(o)/2">] o

Ay =

These rules are satisfied at the initial evolution sézjes an imposed condition. Evolu-
tion will preserve this condition at each value®@f.

This is almost the same strategy adopted for positivity tamgs. Of course all phys-
ical cross-sections has to be positive. Positivity needsetimposed only on hadronic
cross-sections and not on partonic quantities (only at Lksists a probabilistic inter-
pretation for PDFs) [185]. For the NLO case, additional pEedatasets are defined for
physical cross-sections with extremely small uncertastn such a way that negative
cross-sections would lead to a very large contribution ®th (Lagrangian multipli-
ers method). All the positivity constraints are implemené a low scale)? . chosen

pos

to beQ?,, = 2 GeV”, in the ranger € [107°, 24, Wherez,,,, is the corresponding
kinematical boundary;,,... ~ 0.1 for NC scattering and:,,., ~ 0.5 for CC scattering.
The evolution (DGLAP) then takes care of preserving thetpatsi properties for higher

scales, as for sum rules.

In NNPDF2.1 NLO, positivity of the longitudinal structurerfction F;, (x, Q?) is im-
posed, which constrains the gluon positivity at smalbf the charm production cross-
section in neutrino DIS,dc"¢/dxdy [49]), which constrains the strange PDFs both at
large and at small; beyond the reach of existing data, and of the neutral cuiD¢h
charm structure functioi’s(x, Q?), useful to impose the positivity of the gluon at very
large<, where it is not constrained by any experimental dataset.

The physical observables for the pseudo-data that implethepositivity constraints
are computed consistently at the same perturbative oraggr@ther physical observables,
in the present case next—to—leading order perturbative QCD.

The same procedure with Lagrangian multipliers is applethe case of NNPDF2.1
NNLO. The same could be done at LO, where as already said P&fesehprobabilistic
interpretation and it is possible to impose the positivipnstraints directly on PDFs.
Instead of using the same method with the generation of psdath explained above,
it is possible to obtain the same result with a consequentctaxh of the fitting time
just implementing a minor modification in the PDF parametiian. Within the neural
network PDF parametrization which is adopted, this can beds follows. Recall that
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in the architecure that is adopted for neural networks, éspanse function is a sigmoid

&V = g(z we ™ — g ) g(x) = ) (3.13)
J

for hidden layer, but it is linear in the last layer. For the fit3, instead, for the last layer
a quadratic response function

2
= (S - ) 019
J

Is adopted. The output of the neural network, and thus the BQRen guaranteed to be
non-negative.

The basis of PDFs that are parametrized by neural netwotkbIPDF fits (Sec{_115)
includes the gluon, quark singlet, and various other lirc@emnbinations of quark PDFs.
Of these, only the gluon and singlet must be positive, siicgtger combinations contain
differences of PDFs. However, in practice also the totadnved and isospin triplet com-
bination are positive definite. Hence the parametrizatiqs. [E3.18){(3.14) for simplicity
is adopted for all PDFs: partonic functions other than gfgiluon, valence and triplet
are allowed to change sign by simply adding to the above fooonstant shift. It turns
out that with the constraints from the data, this is sufficiempractice to ensure positivity
of all PDFs: has been checked a posteriori that for everyaaphe gluon and all indi-
vidual quark and antiquark flavors are positive for all valeéx and@Q? for which the
NNPDF2.1 LO PDFs are provided.

3.5 Genetic Algorithm Minimization

A reasonable minimum in a very large parameter space andafitgjure of merit that is a
nonlocal functional of the set of functions that are beingedrined in the minimization
needs to be find. This problem can be efficiently solved usiggreetic algorithm.

Starting from a randomly chosen set of parameters, the igealgbrithm generates a
pool of possible new sets by mutation of one or more parametex time. Each new set
that has undergone mutation israitant To each set of parameters corresponds a value of
the error function that is being minimized, and so those gonéitions that fall far away
from the minimum can be discarded. This procedure is itdrater a sufficiently large
number of generations.



3.5 Genetic Algorithm Minimization 79

The error function to be minimized has the foim|[84]

Ndat
1 art)(k net)(k — art)(k net)(k
B0 — T (Fz( ) _ plnet) >> ((cov) ™), <F§ D) _ pnet) )) . (3.15)
dat 1,0=1
whereFI(a”)(k) is the value of the observablg at the kinematic point corresponding to

the Monte Carlo replic#, andFI(“et)(k) is the same observable computed from the neural

network PDFs, and where thig covariance matrixovy, has been defined in Ed._(2140).
For a more detailed explanation on the application of geragorithm minimization to
PDFs fitting see Ref [84]. Recent NNPDF analyses have to dehlmany different
experimental datasets. In the following some more softgitéeatures needed in this
case with respect to a standard one are discussed.

Targeted Weighted Training

Due to the fact that several different datasets are preséme ifit, often with very different
chatacteristics, itis likely that during a standard fit theimization over a specific dataset
iIs much faster than over the other datasets. Of course it rapgdn also the opposite
situation, in which the training of a specific dataset is maldwer than all the others.
In short, the training of more datasets at a time can well berdogeneous. This results
not only in a very inefficient training, but also in a final ueevfigure of meritE®), A
possible solution is to introduce a dynamical weightedittiechnique.

The main idea is to define a weight for each dataset that getsteq during the fit. In
a first epoch of the training the error function is modifiectltkis:

Nsets

(k) 1 (k) (k)
B = E ' Naar B 3.16
wt Nddt Jfl p] d t7j J ( )

whereE](."") is the error function in Eq[(3.15) restricted to the datgseV,.. ; is the
number of points of this dataset apﬂ) are weights associated to this dataset which are
adjusted dynamically. These weights are defined in relatidarget valuess; for the
figure of merit, chosen for each single experiment. Then &mheset the weights are
defined as

= (BY /E;’f““g)2 it B> g (3.17)

while are set to zerqaﬁk) =0)if Ef’“) < E/™®. This procedure has the effect of giving
a larger weight to that datasets that are far above theietamue, so that the training
on them is more intense, and to remove from the training thtsets that already have
reached a good minimization. This avoids to waste traingsgpurces on datasets that are
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already well trained.

The target value®*"® are determined for all sets with an iterative procedureistar
with all E;*® = 1 and going through a first very long fit. The resulting outcorhthe fit
is used for a first set of;*"® values. This procedure is iterated until convergence. More
details are given in Ref._[87].

The dynamical targeted weighted training only lasts a fixedhiner of generations
Ngv;g. Only if the error function of a specific replica is above agiroldE*) > E* then
the weighted training is not turned off unfil’®) goes below the threshold. The last part of
the training then is without weights and the unweightedretroction is again Eq[(3.15),
computed on experiments (the weighted one was computedngiesilatasets). This
last epoch is important to eliminate any possible residiss mtroduced by the=: ™

)

weighted minimization. Using this procedure the fit is fasted much more uniform.
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Figure 3.4:lllustration of the weighted training in one particular replica. Individual va&gor
each dataset converge to a valueppiwhich is close to 1 as the training progresses. Only the
behaviour of representative datasets is shown.

3.6 Dynamical Stopping

To determine the best fit, the training has to be stopped aird ipowhich the fit repro-
duces the underlying physical law contained in the inforamagiven by the data with
sufficient precision but not the statistical fluctuationghe same data. To this extent, it
is necessary to define a dynamical stopping criterion. Aesexi tests over the conditions
for dynamical stopping is turned on only after weightedrirag has instead turned off,
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that is afterN,y;, generations. The stopping is applied on the training of eeplica, and
it is based on the cross-validation method, widely used enctbntext of neural network
training [186]. This method consists in dividing the dataegwo subsets: over one of
them the fit is regularly performed (training subset), while other (validation subset)
is used only to compute the error function and validate tisaltegiven by the training

subset. While the error function computed over the trainedtpas by definition mono-

tonically non-increasing, the same quantity computed d¢vervalidation points would

increase when the overlearning regime sets in. The apiplicaf the cross-validation
method to this case has been described into detail in Ref$834837].

The conditions for dynamical stopping are three:
¢ the fit must be, as already said, out of the targeted weigha@urig epoch
¢ all experiments must have an error function below some redse threshold’y,,s

e a moving average for training-{) and for validation £,,;), defined below, must
satisfy
Tir > 1-— 51:1‘ s Tyal > 1 + 5val . (318)

In this last condition, the moving averages are defined as

Ew(1))
Tey = . ; 3.19
‘ <Etr(7/ - Asmeaur)> ( )

<Eval(i)>
Tval = . , 3.20
1 <E1val(Z - Asmear)> ( )

where theA,,,.... functions are given by

. 1 d

<Etr,val(7/)> = N, Z Etr,val(l> y (321)

smear

l=i—Nsmear+1

with E, v.1(1) the value of the error function Eq. (3]15) evaluated for teeation! of the
genetic algorithm and over the training and validation stdsn practice, for a variation
between an iteration and another of the valyesandr,, such that the first is decreased
and the second is enhanced by a quantity that exceeds thextigssensitivities,, and
dval, If the first two conditions are satisfied then the fit stops.e Tho parameters;,
andd,, set the accuracy to which the increase and decrease isedduiorder to be
significant (in order not to confuse a fluctuation with a rewrease in validation error
function). The tuning of the dynamical stopping parameigngerformed into detail in
Ref. [87].
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N, smear Asmear 51:1‘ 6val Ethres Nyoax

gen

200 200 | 107*|3107* 6 30000

Table 3.5:Parameter values for the stopping criterion.

The final values of the determined parameters are listed laleT&5. In order to
avoid unacceptably long fits, when a very large number obitens N . * is reached
(see Tablé 316) training is stopped anyway. This leads toadl $oss of accuracy of the
corresponding fits, which is acceptable provided it onlygeays for a small fraction of

replicas.

Genetic Algorithm Parameters

As in the case discussed above for dynamical stopping, As@éenetic algorithm is
characterized by a certain number of parameters that ndsglttoned in order to improve
its efficiency and, as a consequence, that of the whole tigini

A mutant as a set of parameters associated to the neuralnketved is being trained
has already been introduced. More mutants are obtaineddrmther set of parameters
by introducing mutations on them. As can be seen in Tableeaéh PDF has a fixed
number of mutationsV,,,; that can modify its set of parameters at each generation. To
each mutation it is associated a mutation rate, that is digadijpnadjusted as a function
of the iterationsVy, in this way:

Mg =1 /Nah (3.22)

Wherenfg) is the initial mutation rate of the PDFand the mutation, NV is the number
of iterations already cycled, ang is an exponent randomly initialized at each iteration
betweerD) and1 that allows to span the range of all possible beneficial nanat Looking
iteration by iteration which is the value of this exponenttfee accepted mutations reveals
that the size of the mutation doesn’'t depend on the stageedfaining. Both large and
small mutations are accepted with the same frequency imdigpely of V.

At each iteration, a certain number of mutants is producédshte a pool of parameter
configurations from which it is possible to choose the beditvidual. Before a certain it-
eration/V;21", the number of generated mutants correspond§lfg > 1, in order to have
a large population in the pool and better explore a paransgi&ce as large as possible.
In a more advanced stage of the training it is more usefuldaae this number so that
NP . < N2 .. to help with a reduced population to propagate the benefivigihtions.

The final choices of parameters of the genetic algorithm whive been adopted in
the NNPDF2.1 parton determination are summarized in Talle W/hile at NLO they
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Nt | Ngon' | Mgt | ™ | N | N
LO & NLO | 10000 | 2500 | 30000| 2.6 | 80 10
NNLO 10000 | 2500 | 30000 2.3 | 80 30
LO & NLO NNLO
PDF Nmut 77k Nmut nk
> (x) 2 101] 2 10,1
g9(z) 2 10,1|| 3 103,04
Ty(z) 2 1,01 2 1,0.1
V(z 2 1,01 3 | 8101
Ag(z) 2 1,01 3 | 5101
st (x) 2 5,0.5 2 5,0.5
s~ () 2 1,01 2 1,0.1

Table 3.6:Parameter values for the genetic algorithm for the NNLO fits compared to tfose
the LO and NLO fits (top). The number of mutations and the values of the mutaties for the
individual PDFs in the NNLO fit as compared to the values of the LO and NtsGafe also given
(bottom).

are the same as in Ref, [49)84] 87], the poorer quality of thdiL.@h the one hand, and
the greater complexity of NNLO coefficient functions on theey hand, require some
retuning of the parameters of the minimization algorithnthiese two cases.

At leading order, the best-fit value of the figure of métit) which is being minimized
for each replica (which is essentially tiyé of the fit of each PDF replica to the given data
replica) is on average rather larger than in an NLO fit, beeadishe poorer accuracy of
the LO theory. This is particularly true for the Drell-Yansdvvables, which have large
NLO corrections with & -factor of order two. As a consequence, the minimum value tha
E®) must reach for each experiment in order for the fit to stop k@ tincreased from
Ey = 6 to ERY = 12 for all Drell-Yan experiments. Furthermore, the crosseation
method that is used to determine the optimal fit stops themizaition when the moving
average (over iterations of the genetic algorithm)f) increases more than a fixed
percentage threshold valug larger than a typical random fluctuation. Because the size
of fluctuations ofE®*) remains fixed, while its value at best fit has increased, thieay
values ofr, are smaller at LO, and thus it turns out to be necessary taestthe value of
r, required for stopping to, — 1 = 2- 1074, fromr, — 1 = 3 - 10~* used at NLO.

Even with these adjustments, for a sizable fraction of caglithe cross-validation
algorithm fails to stop dynamically the minimization evefteaa large number of gen-
erations of the genetic algorithm. This reflects the poouemty of LO theory, and it
could only be obviated by letting the genetic minimizatiom much longer. In view of
the large theoretical uncertainties inherent to any LO PBtemnination, as a practical
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compromise replicas that do not stop dynamically after Bd@ations of the genetic al-
gorithm are discarded, retaining only those replicas foictvithe stopping criterion was
fulfilled. It has been checked that this leads to no signifistetistical bias.

At next-to-next-to-leading order the partonic cross-eecthave rather more structure
than at lower orders, both because of the opening of newmpartbannels and because of
the appearance of new transcendental functions in therpative results (such as higher
order harmonic sums). This results in somewhat more coniil#x shapes. As a conse-
guence, it turns out to be necessary to increase the numbautahts and mutations per
PDF in the genetic minimization in order to fully exploreginnore complex space of min-
ima. The NNLO settings for the genetic algorithm used forimination are summarized
in Table[3.6 and compared to those used at LO and NLO.

3.7 The FastKernel Method

In this Section the FastKernel method is briefly describdte main idea is presented in
the case of PDFs evolution. A detailed description and bmack of the method for the
construction of the observables is developed in Ref. [87].

The computation of physical observables requires both emepatation of PDFs at
the initial scale and solving DGLAP evolution equations.phrticular, this second step
implies the computation of convolutions between PDFs and $zattering cross-sections.
To compute convolutions is a time consuming procedure, aritié case of hadronic
observables, where two PDFs are involved - one from eachdcwnucleon - a double
convolution need to be computed. As developed in Refs. [§&®d recalled in Sedt. 1.5,
to solve DGLAP equations it is possible to pre-compute a Gfeaction that can be
determined in theV space and that takes a PDF from its initial scale to the sdale
physical measurements. This function can be also pre-cwdlwith the hard scattering
cross-sections into the definition of an appropriate evafukernel. This method allows
to reduce the computation of any observable to performingreaution (or two, for
hadronic observables).

However, despite this simplification, to compute physidaservables is a lengthy
process, due to these convolutions. For this reason, inaeyebal PDF fits the com-
putation of Drell-Yan processes is treated using NLO and RNK-factor approxima-
tion [81,187]. A method to exactly compute Drell-Yan andlidelr weak boson produc-
tion was first proposed in Ref. [87], and is based on analogiassias the ones on which
are based tools like FastNLQO [188] for the case of jet pradu¢ctAPPLGRID [189], or
the fastz-space DGLAP evolution code HOPPET [190]. The original idaavhich all
these tools are based was proposed in Ref./[191].
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In Sect[1.5 has been already introduced a basis in termsiocfiDFs can be written:
fj = {Za g, ‘/7 ‘/37 ‘/87 ‘/157 ‘/247 ‘/35a T3a T87 T15a T247 T35} (323)

The independent contributions are only seven because rgawgic flavors are not being
considered. In this case only the six lightest quark-amtigontributions and the gluon
need to be parametrized.

Equation[(1.99) gives
dif 1
d
k=1 Y 7TI

whereT';;. is the matrix of DGLAP evolution kernels ar{d;,, Q7) defines the kinemat-
ics of a given experimental point. The indéxrefers both to the kinematic variables
which define an experimental poifit, Q?) and the type of observable. The expression in
Eq. (3:24) describes the evolution of a PDF from an initials? to the physical scale
Q?. The integration in Eq[{3.24) was performed in Ref] [84] byameof Gaussian inte-
gration. Here the FastKernel method is first introduced imgpker (but slower and less
accurate) case that relies on triangular basis functiodgten is generalized to Hermite
cubic functions.

A grid in x that is independent of the experimental paipis considered. The grid is
defined by a set of points

Tmin =01 <22 < ...<xyn,1<2Zn, =1,

thatis labeled as, with o = 1, ..., V.. Itis now possible to define a basis of interpolating
functionsZ(® such that

T(zy) = 1

I (zg) = 0,#0a

Ng
Iy = 1, (3.25)
a=1

An example for such a basis is represented by the triangutetibns plotted in Fid, 315
where, for anyy, only two triangular functions are non zero and their suniviggs equal
to one. A triangular functior®(® is centered in,,, where its value is equal to one, and
is zero outside the intervak, 1, z,.1).
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Figure 3.5: Set of interpolating triangular basis funcsion

At the initial scale a PDF can be rewritten using the appratiom

iy, Q3) = ka 2a) T(y) + Ol(wasr — za)"], (3.26)

given by the general set introduced above. Hers the lowest order neglected in the
interpolation. As triangular functions are linear, in thaésep = 2. It is possible to write
in a more explicit way Eq[(3.24) like

Npat N,

filzr, Q) = fi(zr) = > Rl / m Ui ( » ) I(y) + Ol(Tas1 — Ta)"]
k=1 a=1
Npas N,

= > 65 R(@a) + Ol(wars — )", (3.27)

k=1 a=1

where

ak(IDQO?QI = Aijk = / _ij( ) I(a)(y)‘ (328)

The dependence dp has been dropped on the right hand part of the equations.ndke i
cesj, k, run over the PDFsy runs over thec-grid points and refers, as already said, to
the experimental point. It is visible from EqQ. (3127) the wenience of this approach: the
63,; coefficients can be precomputed for each péiahd stored. Then the computation of
the integral in Eq.[(3.24) can be performed by only evaliétéimes the PDFs, indepen-
dently of the point at which the evolved PDFs are needed. fBdigces the computational
effort, but things gets still better by using a more sofisédabasis.
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Figure 3.6: Set of interpolating Hermite cubic functionghe [0,1] interval.

In Ref. [87] a basis of cubic Hermite interpolating functiossntroduced, defined as

hoo(t) = 2t° =3t +1=(1+2t)(1 —¢t)? (3.29)
hio(t) = 3 =262+t =1t(t—1)°

hot(t) = —2t3+3t* =*(3 — 2t)

hu(t) = 3 -2 =13t —1)

and represented in Fig._3.6.

Using this new basis, it is possible to rewrite a PDF as

W) = hoo(t) fi(xa) + hio(t)hama + hor () fR (£as1) + by (E)hamaty
+O[(Tag1 — xa)ﬂa

where

9(y) — g(xa) 7 (3.30)
ha

with ¢(y) a monotonic function in [0,1] which determines the disttibn of points in the

interval (linear, logarithmic, etc.). Moreover,

ha = g(Tat1) — 9(a), t=

f;g(ma)—flg(wafl) f;?(anrl)—f/g(xa) for2<a<N.—1

2he1 + 2he )
My = —fg(”*“a“h)*fg(:‘a), fora =1 (3.31)
fo(wa)_fo(xafl) _
#, fora = N,

are derivatives of the interpolated function, at the rigdmdh side of the interval,) or
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at the left hand siden{, ). It is convenient to rewrite the expression in Eq. (8.3 li

fly) = flza1) A () + fl(za) BYY) + f(2ar1) C(y)  (3.32)
+ 2 (Tar2) D (y) + O[(Tas1 — 2a)]

where

AW (y) = ; (3.33)

— hlo(t) — hll—(t), fora =1
( ) —hn(t), forOé:Nm—l
\hoo(t - h“;(t) (1 — > — h“z(t), fora #1,N, — 1

+h10(t>, fora=1
fora=N, -1
4+ ol forq £1,N, — 1

Gathering all the parts defined up to now in Hq. (8.24), thiofahg contributions
from thes coefficients can be written:

/

Jort ey, () ACy), fora =,

x
[ T () BOw)

FO(N, — (c+2)) [T Dy (” Al (), fora =c+1,

Tce41 Yy

Jortt ATy, (%’) C)(y)

FO(N, — (c+2)) [22 Ty (2) Bt (y)
bk = HON. = (c+3) [0 2Ty (2) AC(y), fora=c+2, (3.34)
O(N, — (1= 1)) [} 2Ty, <%> D=V (y)
FON, — ) [0 Ty () ey
FON = (ot 1)) [0 9T (%) BO)
HO(N, — (a+2)) [ dr, (3) ACH(y), fore+3<a <N, +1,

0 fora <,
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with ¢ the index such that

Te K21 < Tey1-

Even if at first sight these expressions seem more complictitey are simpler to
pre-compute. It can be observed that while in the previoge ¢ar each poiny the
computation of only two contributions from the interpotetibasis was needed, in the
present case is needed the computation of four contribufible gain in accuracy (now
terms of the fourth order are neglected and not just of therskas before) allows for a
much less dense grid, that corresponds to a sensible speedampputations.

A last issue needs to be addressed: whenz; the precomputed coefficients need to
be regularized, using the same subtraction used in Ref. f@disidering the case of the
first integral of A (y), it can be written

f;}”l C;—y L <%I> AL (y)
— ey (2) (A90) - 2AO@) + A [0 4T (2)
= [ Uy, <x1> (A(C) (y) - ﬂA(C)(II)) + A9 [y, 42 Tik(2)

) (490) — 49))

@) [Tin(N)] gy = Jo " dzTy(2)]. (3.35)

N

In this way all thes coefficients can be regularized and stored, so that theipatation
is only needed once for each experimental point, thanksetéeitt that they do not depend
on PDFs at the initial scale.

The accuracy of a 50 point grid results inX10~°) discrepancy in a benchmark
against the Les Houches tables given in Ref. [192], that iseéyhe accuracy needed for
precision phenomenology at LHC. This is the main result of aengetailed study given
in Ref. [87].

3.8 New Data Inclusion by Reweighting

The features of the NNPDF approach discussed in this Chalier for an interesting
exploitation of Bayesian inference to determine the impéoew datasets.

How an existing probability distribution in the space of PDiRay be updated with
information from new data shall be discussed. To includentwve data, one can of course
perform a fit with the new, enlarged dataset. However this tisne consuming task,
particularly for observables where no fast code is avadlalii is therefore desirable to
have a faster method of including new data in order to assessipact rapidly without
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the need for a full refit. NNPDF parton sets are supplied asnaerable ofN = N,
parton distribution replicag, representing the probability density in PDP$f) based
upon the data in the existing fit. It is therefore possiblentdude new data by weighting
each replicaf, in the ensemble by an associated weight If the replica weights are
computed correctly, then reweighting is completely edentto a refit.

In order to illustrate the reweighting method, the compatadf the expected value of
a PDF-dependent observati#gf] is considered. As the NNPDF Monte Carlo ensemble
is a good representation of the probability dengtyf ), the expectation valugF|f]) can
be calculated as a simple average,

F) = [FUNPUI DI = > FA).
k=1
New data can be included into the existing ensemble by asgjgach replica a unique
weightw. This weight assesses the agreement between the replicaeandata. The
reweighted ensemble now forms a representation of the pildlalistribution of PDFs
Puew(f) conditional on both the existing and new data. The mean \altiee observable
F taking account of the new data is then given by the weightedeae
N
(Fhnew = /f[f] Prew(f) Df = % Zwk}_[fk]a
k=

1

where the weights are given in terms of the individual replié to new data by

(G2

B N — 1.2
%Zkzﬂ(Xz)(" /2= 32Xk

= NXP(X2|fk) .

Note that after reweighting a given ensemblé\oPDF replicas the efficiency in describ-
ing the distribution of PDFs is no longer the same. The relateig procedure will often
assign replicas very small weights, therefore these r@pho longer contribute to the en-
semble. The efficiency of the representation of the undeglgistribution?,,..,(f) will
therefore be less than it would be in a new fit. The loss of mftion due to reweighting
can be quantified using the Shannon entropy to determindftatiee number of replicas
in the reweighted set:
N
Neg = exp{+ Z wg In(N/wg) }.

k=1
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Figure 3.7:The gluon distribution (left) and its uncertainty (right) of the NNPDF2.0((DSY¥
fit before and after reweighting with the inclusive jet data compared to fittecegluon from
NNPDF2.0.

Unweighting

Once areweighted PDF set has been determined, it woulddresting to be able to pro-
duce a new PDF ensemble with the same probability distobuas a reweighted set, but
without the need to include the weight information. A metloddinweightinghas there-
fore been developed, whereby the new set is constructed teyndgiaistically sampling
with replacement the weighted probability distributiorhi§ means that replicas with a
very small weight will no longer appear in the final unweighset while replicas with
large weight will occur repeatedly.

If the probability for each replica and the probability cuants are defined as

k
W
= P.=P._ = g ;
pk Nrep * * 1+pk 7=0 p]’

it is possible to quantitatively describe the unweightimggedure. Starting withiV,.,,
replicas with weightsuy, V.., New weightsw; are determined:

erep . .

J J
wy, = E 6 — Py1)0(P — .
b= (N;ep 1) N;ep)

These weights are therefore either zero or a positive int&yeconstruction they satisfy

N, rep

r /
Nrep - Zwka
k=1

i.e. the new unweighted set consists/gf, replicas, simply constructed by taking,
copies of thé-th replica, forallk = 1, ..., N, . This procedure is illustrated graphically
in Figure[3.8.
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Figure 3.8:Graphical representation of the construction of a séf,’g; unweighted replicas from
a set of Ny, = 20 weighted ones. Each segment is in one-to-one correspondence to a,replic
and its length is proportional to the weight of the replica. The caséggf > N, (top) and

Nyep = 10 (bottom) are shown.

3.9 Closure Test

To verify the effectiveness of the reweighting proceduszetbelow will be shown that in-
cluding datasets by reweighting produces an ensemble offBjli€as statistically equiv-
alent to a full refit. This test is calledosure testAt first, a new NNPDF2.0 fit including
only DIS and Drell-Yan data is produced. The data left ouheffit (Tevatron Run Il in-
clusive jet data) is then reintroduced by reweighting. Tésulting reweighted ensemble
is then compared to the full NNPDF2.0 fit.

In Figure 3.7 is shown the gluon PDF for the three sets; thar itiNNPDF2.0(DIS+DY),
the reweighted set NNPDF2.0(DIS+DY) with jet data includadd the refitted full set
NNPDF2.0. The figure shows excellent agreement betweeretheighted set and the
full fit. Differences stay well below statistical fluctuatis.

To obtain a more precise estimation of the statistical edence of the refitted and
reweighted parton sets, and also to test the unweightingeptoe, it is useful to ex-
amine the statistical distances between the new unweiglsédbutions and the refitted
set. The distance formulae are defined in Appendix A of Ref]. [87two sets give a
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description of the same underlying probability distribatiand so are statistically equiv-
alent, the distance between them will fluctuate around aevafuone. Atd ~ 7 the
discrepancy between the two sets is at the one-sigma lavehel case of the Tevatron
jets reweighting exercise, can be seen in Figure 3.9 thaetbistances oscillate around
one. The reweighted set is therefore equivalent to the maditlaere is no significant loss
of accuracy in the unweighting procedure.

Distance between central values Distance between PDF uncertainties
4 5T : : : : : : : 4 ST : : : : : : :
NNPDF2.0 vs NNPDF2.0(DIS+DY)-RW(JETS)-UW NNPDF2.0 vs NNPDF2.0(DIS+DY)-RW(JETS)-UW
35 Tg ------ 1 35 Tg ------ q
A v A v
S L S
317, 31
S, S --
25 25
> g
g 2 z 2
© >

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
X X

Figure 3.9: Distance between central values (left) and uncertainties (right) of theD¥IRP
PDFs and the NNPDF2.0 DIS+DY PDFs reweighted with Tevatron jet datéhamdunweighted.

Having developed the unweighting procedure, it is possbfeerform another check
on the consistency of the reweighting method. When addingthan one set of data by
reweighting, this method must satisfy combination and comation properties. Reweight-
ing with both sets must be equivalent to reweighting with,amsveighting then reweight-
ing with the other. Of course switching the order in which tbeeighting is performed
must produce an equivalent distribution.

‘ E605/Inclusive Jets - xg(x,Q g), ratio to NNPDF2.1 DIS | ‘ E605/Inclusive Jets - xV(x,Q 5), ratio to NNPDF2.1 DIS

[__] Prior (NNPDF 2.1 DIS)
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W(Jets +E605)

W(Jets)W(E605)
W(E605)W(Jets)

SETTTTTIT 17T
SETTTT[TITTT

s

Figure 3.10: Multiple reweighting demonstration. Plotgghfon PDF(left) and valence
PDF (right).

To check that the procedure satisfies these propertiest & tesrformed using the
Tevatron jet data as the first dataset and E605 fixed targétY2re data as the second one.
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Figure 3.11: Comparison of light quark and antiquark distiins at the scal€)? =
M2, from the global NNPDF2.1 and NNPDF2.2 global fits. Partonsiteas are plotted
normalized to the NNPDF2.1 central value.

In Figure[3.10 are compared the inclusion of the combinedavihtthe inclusion of one
set after the other. The result is clearly independent fiwgrorder in which the inclusion
of single datasets is performed. A distance analysis onhitee tproduced sets confirms
that the reweighting method satisfies the combination anthwatation requirements.

NNPDF2.2

The Bayesian reweighting method has been used to constrgst &INPDF parton set:
NNPDF2.2 [193]. In this set is taken as a prior ensemble th®BRR2.1 fit and the W-
lepton charge asymmetry measurements of the ATLAS, CMS ancold@borations are
inclueded by reweighting.

The NNPDF2.1 set provides a reasonable description of twenmeasurements, with
X2,/ Naa = 2.22. After reweighting with the new data this improves to an dece
level of agreement with;,/Na.: = 0.81. Having reweighted a prior set with,, =
1000 initial replicas,181 remain, indicating that the data provides a substantiadtcaimt.
Using the unweighting procedure outlined above, the new B&Rvith V.., = 100 has
been produced.

Figure[3.11 demonstrates the impact of the new data on thedigark and antiquark
PDFs. The uncertainties are significantly constrained bydtita in two main regions, is
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observed a reduction of arourd% atz ~ 10~2 and30% in the regionz ~ 1072 to
x ~ 1071, The overall fit quality improves slightly, from a totgf,,/Ns.: of 1.165 with
NNPDF2.1tol.157. The constraints demonstrated here are the first such aornstupon
parton distributions from LHC data.

Such constraints are particularly important given the réigancies between global
parton distribution fits in flavor separation at medium t@gé&x. The W-lepton charge
asymmetry data included here may prove useful in resohongesof these discrepancies.
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Chapter 4

Impact of Heavy Quark Masses on
PDFs

After introducing and discussing the theoretical issuésted to parton distribution de-
termination and after discussing the main features of argeN&NPDF fit, explaining all
the related theoretical and experimental aspects, in thégpteh are presented the results
of the NNPDF2.1 analysis. At first the NLO results are preseé@nd compared both to
the previous NNPDF2.0 release and to parton sets from otbapg. The dependence of
this set on the value of heavy quark masses is also discussdlde central part of the
Chapter the LO and NNLO NNPDF2.1 parton sets are presentddirely perturbative
stability of the sets going from LO to NNLO is verified.

4.1 Next-to-Leading Order Results

4.1.1 Statistical Features

The results of the global fit performed to determine the NNPRRRNLO parton set are
briefly compared to NNPDF2.0 release and to other PDF setsQ@mdl MSTWO08. A
first comparison between the two NNPDF sets can be done by worgpa set of sta-
tistical estimators for NNPDF2.1, that here are shown in. flab for the global fit and

in Tab.[4.2 for individual experiments. A direct compariseith NNPDF2.0y? is given

in Tab.[4.2, where the shown valug$, has been computed including the normalization
uncertainties through the samgprescription as for the NNPDF2.1 case.

The set of estimators shown in Tdb.]4.1 are the same as theatneesly used in
Ref. [87]: 2, is computed comparing the central (average) NNPDF2.1 fiteotiginal
experimental datg,x**)) is computed comparing to the data each NNPDF2.1 replica and
averaging over replicas, whilgF) is the quantity which is minimized, i.e. it coincides

97
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X%ot 116
(E) £ op 2.24 +0.09
(Ey) + o, 2.22+0.11
<Eval> + OByl 2.28+0.12

(x*™) +o0,2 | 1.25+0.09

(0@ k)| 113
(o) 8) | a4
L o
<p ne >dat 0.56

Table 4.1:Table of statistical estimators for NNPDF2.1 NLO wit.,, = 1000 replicas. The
total average uncertainty is given in percentage. All {Reand E values have been computed
using the same, covariance matriX [103] used for minimization.

Experiment X2 X%-O <E> <O-(9Xp) >dat (%) <U(net) >dat (%) <p(exp) >dat <p(net) >dat
NMC-pd | 0.97| 1.04 || 2.04 1.9% 0.5% 0.03 0.37
NMC 1.73| 1.73 | 2.79 5.0% 1.5% 0.16 0.71
SLAC 127|142 2.34 4.4% 1.6% 0.31 0.79
BCDMS | 1.28| 1.30| 2.33 5.7% 2.3% 0.47 0.60
HERAI-AV | 1.07| 1.15] 2.15 2.5% 1.2% 0.06 0.35
CHORUS | 1.15| 1.24 || 2.23 15.1% 4.7% 0.08 0.32
FLH108 | 1.37| 1.50| 2.36 72.0% 4.0% 0.64 0.67
NTVDMN | 0.76 | 0.73 | 1.77 21.1% 14.1% 0.04 0.62
ZEUS-H2 || 1.29| 1.33| 2.32 13.4% 1.2% 0.27 0.51
ZEUSF2C || 0.78| - 1.80 23.3% 3.1% 0.08 0.41
H1F2C 150| - 2.52 17.3% 3.0% 0.30 0.40
DYEG05 | 0.84| 0.87 | 1.92 22.3% 7.9% 0.47 0.76
DYE866 | 1.27| 1.29| 2.37 20.1% 9.2% 0.20 0.52
CDFWASY | 1.86| 1.84 | 3.08 6.0% 4.4% 0.51 0.75
CDFZRAP || 1.65| 1.85| 2.80 11.5% 3.6% 0.82 0.72
DOZRAP || 0.60| 0.60| 1.62 10.2% 3.1% 0.53 0.76
CDFR2KT | 0.97| 1.01| 2.10 22.2% 4.0% 0.78 0.57
DOR2CON || 0.84 | 0.86 || 1.92 16.8% 4.5% 0.77 0.59

Table 4.2:Same as Table4.1 for individual experiments. All estimators have been ettaith
Nrep = 1000 replicas. Note that experimental uncertainties are always given inrgagee In the
second and third column the NNPDF2.1 and NNPDF2.0 sét{8Have been computed with the
to prescription.
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Figure 4.1:Distribution ofx2*) (left) and " (right), over the sample d¥,.,, = 1000 replicas.

with the y? computed comparing each NNPDF2.1 replica to the data eejtlis fitted to,
with the three values given corresponding to the totalningi, and validation datasets.

The value ofy?2, for the NNPDF2.0 global fit computed using themethod, to be
compared to the NNPDF2.1 value of Tab.]4.1xf, = 1.23 (very close to the value
2. = 1.21 of Tab. 9 in Ref.[[87], computed with the “standard” covariamoatrix).
The valuex?, = 1.16 for the NNPDF2.1 NLO fit is rather better than for the NNPDF2.0
analysis, where heavy quark mass effects are not inclutdesdodssible to notice, looking
at Tab[4.2, that with respect to that analysis all datasepsdves or remain similar: the
improvement is particularly evident for the HERA-I averaggadet (in consequence of
the more tight kinematic cuts along with the implementattbheavy quark mass effects)
but also for CHORUS dataset description.

It can happen that a replica never satisfies the conditiaisatttivate dynamical stop-
ping (Sect[.3.6), reaching the maximum number of possiblationsN;.: fixed in the
genetic algorithm. This can affect the quality of the fit. kow at Fig.[4.28 it is clear
that while most of the replicas fulfill the stopping critarica fraction & 12%) of them
stops atVye, = Ngon*- By performing a series of fits in which the training lengthased
more and more, it has been checked that these replicas dtagghat lengths and that the
loss of accuracy due to the choice/8f;;* is reasonably small, in that the features of the
global fit change very little ifV;:2* is raised.

If now the NNPDF2.1 NLO set and the CT10 analysis are compéreah be noticed
the effect of different kinematic cuts over the respectivenmon datasets by looking at
the number of datapoint for each set in Tabl 4.3. Moreovertlis defined in a somewhat
different way by the CTEQ/CT group, specifically, but not ontywhat concerns the
treatment of normalization errors (see Ref./[76]): hence ¢bimparison should be taken
with care. From this comparison, it is clear that the two baise a comparable fit quality

to fixed target DIS, CT10 being somewhat better for BCDMS protod BNPDF2.1
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Figure 4.2:Distribution of training lengths over the sample/§f., = 1000 replicas.

NLO rather better for NMC deuteron/proton ratio. The fit toRi=| and Tevatron jet
data is rather better in NNPDF2.1 NLO. Comparable fit qualityite Drell-Yan and
vector boson production data is obtained in the two caseh,seimewhat smalley? in
the CT10 fit. No comparison is attempted for the HERA data because of the very
different kinematic cuts used in the two fits. A similar compan to MSTWO08 would be
less significant because in the MSTWOS8 fit correlated sysiemate not included in the
covariance matrix for some datasets.

4.1.2 Parton Distributions

A comparison between NNPDF2.1 NLO and NNPDF2.0 deliveseshown for the sin-
glet and non-singlet sector respectively in Figsl[4.3-4.4.

The main differences can be found at medium and smailthe singlet, where for
NNPDF2.1 the PDF is slightly larger, at smalthe gluon is also larger than in NNPDF2.0
as its medium- and smatl-uncertainty, that again is slightly larger in the 2.1 delwe
Below will be shown that the gluon central value shift withpest to NNPDF2.0 is a
consequence of the general mass scheme treatment, whilidee uncertainty is due
to the different kinematic cut. The valence PDF is poorletiéd by these changes, but
Is equally subject to minor modifications in consequencero$stalk induced by sum
rules and other constraints. It is possible to better undedsthis effect due to sum rules
by looking at the strange PDF in NNPDF2.1: including heavarumass effects, an
enhancement with respect to NNPDF2.0 of the strange disimitwould be expected. In
the NNPDF2.0 set an Improved-ZM scheme is implemented fodtmuon data, which
mainly constrain the strangeness. This scheme overessmaavy quark mass effects,
thus generating a charm distribution lower than the one a @&ldlementation would
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NNPDF2.1INLO CT10

Experiment | Naae | x* | Naws | x*
NMC-pd 132 0.97 121 | 1.28
NMC 221 1.73 196 | 1.71

BCDMSp 333 1.28 337 | 1.14
BCDMSd 248 1.15 250 | 1.12
HERAI-AV || 592 1.07 579 | 1.17
NTVnuDMN | 41 0.50 38 | 0.94
NTVnbDMN | 38 0.42 33 [ 0.91
DYE605 119 0.85 119 | 0.81
DYE866p 184 131 184 | 1.21
DYES866r 15 0.77 15 | 0.64
CDFZRAT 29 1.62 29 | 1.44
DOZRAP 28 0.59 28 | 0.54
CDFR2KT 76 0.97 76 | 1.55
DOR2CON | 110 0.84 110 | 1.13

Table 4.3:Comparison of? per data point for experiments which are common to the NNPDF2.1
NLO and CT10 PDF determinations. For each PDF set the number of data pfigr kinematic
cuts is given.
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Figure 4.3: Comparison of NNPDF2.1 and NNPDF2.0 singlet sector PDFs, computed usin
Nrep = 1000 replicas from both sets. All error bands shown correspond to one sigma
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generate, and as a consequence all other PDFs are enhancie. following will be
shown that comparing the NNPDF2.1 result for strangenedsanpure ZM fit reveals the
expected behaviour: the GM fit for strangeness will be sona¢whhanced with respect
to the ZM case.

sl b b b b b e 1y L PN I IS (AN N AVA N NSRRI AV AR AR I
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

0.03

0.025

0.02

Figure 4.4:Same as Fid. 4.29 for the non-singlet sector PDFs.

As defined in Appendix A of Ref[[87], the distance between tets ©f PDFs can
be computed in order to quantify the differences. This siatl tool allows to establish
whether two sets are a representation of the same undegyotzability distribution or
not. Ford ~ 1 the two sets come from the same distribution whiledox 7, in the
case ofV,, = 100 replicas, a one-sigma difference is observed. The differebetween
NNPDF2.1 NLO and NNPDF2.0 are mainly present in the mediustrangeness and to
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Figure 4.5: Distance between the NNPDF2.0 and NNPDF2.1 parton sets. All distanees ar
computed from sets a¥,., = 100 replicas.

a lesser extent in the medium and smatifuon. In general, the two sets are clearly not
describing the same underlying distribution but all PDFs@nsistent at the one-sigma
level. Only the strangeness is consistent atthié confidence level.

These differences that have been discussed for the PDFtsis @mitial scale are
propagated through evolution also to fieandZ scale: atp? = 10* Ge\~ differences in
gluon and light sea quark distributions up to the one-sigeallat smalk: are observed.

4.1.3 Comparison to NNPDF2.0 Parton Set

It is an interesting exercise to consider one by one the mdierehces introduced in
the NNPDF2.1 analysis with respect to the NNPDF2.0 fit andklilee corresponding
impact on PDFs.

With respect to NNPDF2.0, with the inclusion of heavy quarkssieffects mainly a
new Q2. kinematic cut is applied, the FONLL-A general mass schenmjdemented,
HERA Fy data are included, and a threshold prescription in the GMsehs introduced.

In Fig.[4.6 is shown the distance between NNPDF2.0 PDFs artdadttii the same
dataset but with the new c@,, = 3 GeV?, denoted by NNPDF2.0RED (reduced). Also,
in order to ease the subsequent discussion on the impactagy lqpiark mass effects,

in NNPDF2.0RED a pure ZM scheme is used for all observabléiserahan the I-ZM
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Figure 4.6:Distance between the NNPDF2.0 PDF set and a fit to the same data b@3yith 3
GeV? and the ZM-VFN scheme for all observables (NNPDF2.0 RED). All distaraze computed
from sets ofV;., = 100 replicas.

I:I NNPDF2.0

NNPDF2.0 RED

Pl

xg (x, Q

Figure 4.7: Comparison of the smalt-total strangeness and gluon in NNPDF2.0 and in
NNPDF2.0RED (the distances are shown in Eigl 4.6).

schemel[39] used for dimuon data in Ref./[87].

The two mainly affected PDFs are the mediumstrange and the smatigluon PDFs,
as can be seen by looking at Hig.14.7 and at distances in_Fg.The strange is rather
smaller in the ZM as compared to the I-ZM scheme, where it wdmeced due to the
approximate inclusion of charm suppression. Its modifocatan be checked to be the
responsible for the singlet deviation visible in the diseuplot. The strange PDF con-
tributes in fact to the singlet. The gluon is somewhat smaltesmall« and with rather
larger uncertainties, due to the reduction in dataset all-snr@used by the new kinematic
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Figure 4.8:Distance between the NNPDF2.1 PDF sets in the GM and in the ZM schemes, in
both cases without HERAY data. All distances are computed from setsvaf, = 100 replicas.
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Figure 4.9: Comparison of the small-total strangeness and gluon in NNPDF2.0RED and
NNPDF2.1 withoutFs data (distances are shown in Hig.14.8).

cut.

Considering now the NNPDF2.1 fit withodt; data, it is compared to the above in-
troduced fit NNPDF2.0RED. In this way exactly the same datssesed and the only
difference is in the implemented scheme: the FONLL-A GM scle/ersus a pure ZM
scheme.

It is possible to verify that the interpretation previougjiven of the strange PDF
behaviour was correct: as in the previous case, the only Riich undergo a change
worth mentioning are the strange and gluon PDFs. The simglgistead unaffected.
These PDFs and the corresponding distances are preserfégl .9 and in Figl 418
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Figure 4.10:Distance between NNPDF2.1 PDF sets with and without HERAz, Q?) data.
Distances have been computed from setd/@f, = 100 replicas.

respectively. The GM scheme leads to a larger gluon:fgr2 - 10-3, as well as to a
somewhat medium-larger strangeness. This confirms what previously statedtahe
[-ZM approximation for dimuon data in NNPDF2.0, which ov&imates charm mass
effects.

The impact of HERAFY data is quite low. It is possible to see this by looking at
distances between NNPDF2.1 with or without the inclusionhe$ dataset, represented
in Fig.[4.10. Almost all distances lay aroudd~ 1, due in part to the relatively large
uncertainties on currerty data and in part to the kinematic cuts. In fact, lovandQ?
data, which are most sensitive to the gluon PDF, are exclbgedts. Inclusion 0®(a?)
heavy quark mass effects (e.g. by means of the FONLL-B schenmecessary in order
to take advantage of these data.

Regarding the last issue concerning heavy quark mass affggdesmentation, a NNPDF2.1
fit with a pure FONLL-A scheme (i.e. without the threshold gang factor) is com-
pared to the standard NNPDF2.1 fit. The difference betweesetibases should provide
a reasonable estimate of the spread of results obtainecclwding heavy quark masses
according to different prescriptions, as suggested in 8. [Looking at distances in
Fig.[4.11 is easy to see that the singlet and gluon PDFs atumedi shown in Fig[4.12,
are the most affected. Without damping factor, fifestructure function is closer to the
massless result even at moder@te and this explains why the singlet PDF is somewhat
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Figure 4.11:Distance between the NNPDF2.1 reference set and the same set obtihmd w
threshold damping factor in the computation of the FONLL-A structure funstion
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Figure 4.12: The smallz singlet and gluon PDFs, in the reference NNPDF2.1 set and in
NNPDF2.1 obtained with FONLL-A without threshold damping factor (distarene shown in
Fig.[4.11).

smaller at mediume.

4.1.4 Comparison to CT10 and MSTWO0S8 Parton Sets

As already done in Ref[ [87] among NNPDF2.0, CTEQ6.6 and MSTWD§ Bets
(Figs. 18-19 of that reference), here NNPDF2.1 NLO PDFs amepared to other global
PDF sets, CT10[76] and MSTWO08 [81], in Figs. 4[13-4.14. It teiasting here to refer
to that previous comparison.
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e It is likely that the mediume singlet marginal agreement is a consequence of the
poor agreement in strangeness.

e While the largex gluon PDF is in marginal agreement with the other sets, in the
medium-/smallx region the agreement is improved. The inclusion of heavylqua
mass effects brings the NNPDF central value nearer to MST V&Y Moreover,
the CT10 parametrization is more flexible than the one useth®CTEQ6.6 set,
generating a central value and an error band in much betteeagent with the
wider NNPDF and MSTW uncertainties.

e The small changes in valence and triplet distributions betwNNPDF2.0 and
NNPDF2.1 go anyway in the direction of improving the agreetwaith the other
global sets.

e The strange PDFs are quite different, presumably due toatttettiat a much less
flexible parametrization is adopted by CT/CTEQ and MSTW in carigon to
NNPDF.

In the next Chapter, the differences analyzed above regaRID¥ sets are translated
to the observable level, focusing on LHC observables: valshown that on the whole
a reasonable agreement holds between global sets. The igwificant differences are
mostly related to the rather different largegluon in CT10 as shown in Fig. 4.113.

4.2 Heavy Quark Mass Dependence

The MSTW collaboration performed in Ref. [194] a study of tiependence of PDFs on
the values of heavy quark masses andm,,, using MSTWO0S release as a basis for this
study. In this Section a similar analysis is performed usihPDF2.1 NLO as baseline fit
and following the lines of that reference. At first, how diffat features of the NNPDF2.1
PDFs depend on the values:of. andm, is discussed. Then some LHC observables are
considered and their dependencemnis studied, along with the correct treatment of
heavy quark mass uncertainties in the Monte Carlo approach.

In order to quantify the dependence of PDFs on heavy quarkesaseveral fits are
performed, shifting the default value for charm and bottaavy quarks to various dif-
ferent values. The default masses are shown in Table 4.4nadzed and compared to
those of other PDF sets, while the values for the differegtdie 1.5, 1.6 and 1.7 GeV for
the charm mass:. and 4.25, 4.5, 5.0 and 5.25 GeV for the bottom magsAll the other
settings are left unchanged and equal to the reference fitstandard mass values. It is
important to observe that at the order at which the analggieiformed, the perturbative
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‘ m. [GeV] ‘ my, [GeV] ‘

NNPDF2.1 1.414 475
NNPDF2.0[87] V2 4.3
CT10 [76] 1.30 4.75
MSTW2008 [194] | 1.40 4.75
ABKMO09 [94] 1.50 4.50
HERAPDF1.0[114]|  1.40 475

Table 4.4:The default values of the heavy quark masses used in NNPDF2.1 anetialsecent
PDF sets.

definition of the heavy quark mass is immaterial: indeeckedght definitions (such as, for
example, the pole anBllS mass definitions) differ by terms @ (o). However, heavy
quark mass corrections are included ugxay,) only, so the difference is subleading (it
becomes relevant ona&@(a?) heavy quark corrections are included, for example using
the FONLL-B scheme). This implies that the value considdéoedhe quark mass in the
NNPDF analysis and in analogous determinations which asean an NLO ACOT
treatment of heavy quarks can be read as a pole massMfanass, equivalently. The
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Figure 4.13:.The NNPDF2.1 singlet sector PDFs, compared with the CT10 and MSTW@&8.PD
The results for NNPDF2.1 have been obtained with, = 1000 replicas. All PDF errors are
given as one-sigma uncertainties.
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Figure 4.14:Same as Fig. 4.13 for the non-singlet sector PDFs.

MS mass is better known, and it has been shdwn[195] to lead tarpatively more
stable results for deep-inelastic structure functions.

The central value of PDF sets with heavy quark mass varsigshifted accordingly
to the value of the heavy quark mass: for larger values of thesmsmaller PDFs are ob-
tained. This can be seen in Figs. 4[15-4.16, where the raB®6s for different values of
m. andm,, to the reference NNPDF2.1 fit is plotted as a function &dr Q* = 10* Ge\~.
This effect can be explained recalling that heavy flavorgareerated radiatively and their
PDFs vanish when the energy scale reaches the value of thg tpeark mass. Hence to
a smaller value of the mass corresponds a longer evolutiaytHeand so a larger PDF.
Because of the momentum sum rule, if the charm PDF becomes |later PDFs are ac-
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Figure 4.15:Ratio of NNPDF2.1 PDFs obtained for different values of the charmkgonass to
the reference NNPDF2.1 set@ = 10* GeV2. Top left: gluon; top right: charm; bottom left:
up; bottom right: down.

cordingly smaller (and conversely), as anticipated in $&82. For bottom in principle
the same mechanism is at work, but in practice the effectlasttadr PDFs is negligible.

4.2.1 Mass Uncertainties and LHC Observables

A more detailed analysis of the phenomenological consempgedue to the computation
of LHC observables using NNPDF2.1 NLO parton set will be giuethe next Chapter.
Here the impact on LHC standard candles of charm and bottoss wadues is considered.
The dependence of light quark distributions and the gluothercharm mass displayed
in Fig.[4.15 is strong enough to affect these observabldsegpércent level or more, as
observed in Ref[[187]. Instead, the bottom mass value afldtPDFs (except the same
b distribution) in a much weaker way, below the percent lesekthat only the observables
that directly depend on thedistribution are significantly affected.

A sample of LHC standard candles is computed using each tidigeaent PDF set,
corresponding to the values of the charm mass of[Fig] 4.16.r&sults of this computa-
tion are collected in Table 4.5, and are graphically represkin Fig[4.1l7. It can be seen
that to a variation of then, charm mass of the order of 10% corresponds a variation of



112 Impact of Heavy Quark Masses on PDFs

‘ Q? = 10* GeV?, ratio to NNPDF2.1 m , = 4.75GeV ‘ Q? = 10* GeV?, ratio to NNPDF2.1 m , = 475 GeV |
LIS 115

0 m, =4.75GeV T m, =475 GeV

m,=425Gev | F . m, = 4.25 GeV

11— e m, =4.50 GeV 11— e m, = 4.50 GeV

----- m, =5.0 GeV =wem, =5.0 GeV

m, =5.25 GeV m, =5.25 GeV
. 1050 T

1.05

0.95 0.95

0.9 0.9

| Lol Lol Lol L
10* 10° . 10? 10"

Q? = 10" GeV?, ratio to NNPDF2.1 m , =475 Gev

I m, =4.75GeV
m, = 4.25 GeV
e My = 4.50 GeV

| TR Lol Lol L
10* 10° « 10? 10*

Q% =10 GeV?, ratio to NNPDF2.1 m , =475 GeV

-mh—47SGeV
weem, =4.25GeV ||
......... m -450Gev

m, = 5.25 GeV m, = 5.25 GeV |

Figure 4.16:Ratio of NNPDF2.1 PDFs obtained for different values of the bottom cuonas to
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the LHC standard candle values around the percent level.

Combined PDF+mn,;, Uncertainties and Correlations

The various sets obtained with heavy quark mass variatiangde used to combine the
uncertainty over PDFs with the heavy quark mass depend@&heavionte Carlo approach
developed within the NNPDF collaboration makes the deteation of this combined
uncertainty much easier. The notation F@F"J is introduced to refer to a precise replica
k;; of a precise set with definea” andm heavy quark mass values. It follows that
the mean value of any observabtecan be written as

Ny Ny N&3)

(Frep = N >S5S F(POEC ), m ) (4.1)

TP =1 j=1 k=1

whereN,, is the total number of replicas given by

Nomg Nom,

Neep=>_ > NG (4.2)

=1 j=1



4.2 Heavy Quark Mass Dependence 113

| LHC7TeV |W'™B,[nb] [ W By [nb] | Z°B;[nb] | tt[pb] | gg—H [pb] |
me = 1.414GeV | 599 £0.14 | 4.094+0.09 [ 0.9324+0.020 | 170 +5 | 11.64 +0.17
m.=15GeV | 6.06+0.17 | 4.14+0.12 | 0.943 +£0.024 | 169 £6 | 11.65+0.25
m.=16GeV | 6.114+0.14 | 4.17+0.10 | 0.951 £0.020 | 167 £6 | 11.70 + 0.21
me.=17GeV | 6.1440.14 | 4.19+0.09 | 0.956 £0.019 | 166 £5 | 11.71 +0.22
plo,m] 0.44 0.41 0.48 -0.31 0.16

| LHC14TeV | W'B, [nb] [ W™ By, [nb] | Z°B;[nb] | tt[pb] | g9—H [pb] |
m. =1.414GeV | 12.00 £0.27 | 8.84+0.17 | 1.99 £0.036 | 946 =19 | 37.50 £ 0.40
me.=15GeV |12.01+031 | 8944+0.22 | 2.01 £0.04 | 942 £24 | 37.62 £ 0.62
m.=16GeV | 12244028 | 9.02+0.20 | 2.03£0.04 | 9394+ 22 | 37.90 £+ 0.55
m.=17GeV | 12.374+0.28 | 9.10+0.18 | 2.05£0.04 | 935+ 19 | 38.15+0.58
plo,me| 0.48 0.50 0.56 -0.19 0.41

Table 4.5:LHC standard candles gts = 7 TeV (upper table) and 14 TeV (lower table) obtained
using NNPDF2.1 fits with different values of the charm mags The bottom line of each table
gives the correlation coefficient between the observable and the mass.

with Nr(ég) distributed according to a two dimensional Gaussian

. 2 . 2
(mgw _ mgn) (mlc;n _ mém)

202, B 202

NI o exp (4.3)

rep

with mean(m'”, m\”)) and width(dm., ém,) and making the assumption that the values
of charm and bottom masses are uncorrelated. Of coursefeaetif probability dis-
tribution (possibly including a correlation between heawark mass values) could be
assumed. It is consequently possible to compute the cohlidd-+n,;, uncertainty as
the standard deviation of the observable over the replicgpkaas

OppFam, F = \/ (F2) — (F)*, (4.4)

where to determine averages over replicas [Eql (4.1) musidxk u

The correlation between PDFs and heavy flavor masgesan be easily computed:

p [, PDF (2,07)] — (maPDF (2,0Q%)),ep, = (Mh)ye, (PDF (%Qz))rep’ (4.5)

Om;, OPDF (z,Q2)

where averages over replicas are to be understood in the sEBg. [(4.1). The correlation
Eq. (4.5), computed assuming. = 1.55 + 0.15 GeV andm,, = 4.75 + 0.25 GeV, is

displayed in Figl_4.18, as a function effor Q% = 10* Ge\2. Again, it can be seen how,
as the mass is increased, the corresponding heavy quarkdPi@Buced. This implies
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Figure 4.17:Graphical representation of the results of Tablé 4.5.
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Figure 4.18: Correlation between PDFs and the heavy quark masses at a typical L& sc
Q? = 10* GeV?: charm mass variations (left plot) and bottom mass variations (right plogs@h
correlations quantify the qualitative behaviour observed in Eigsl[4.7&-4.1

that the PDF is strongly anticorrelated with its mass. Asady discussed, because of the
sum rules this effect have repercussions on the other PDHse heavy quark suppression
corresponds an enhancement of other PDFs, that is trashgtesepositive correlation in
Fig.[4.18. For the bottom quark the effect is negligible.

4.3 Leading Order Results

The main reasons for producing a LO PDFs set are that they asdynused with lead-
ing order Monte Carlo event generators, and are also of sttéwe comparison of QCD
calculations at different perturbative orders. Even iftise of LO PDFs for calculations
which has LO accuracy is not mandatory, using for example WIOFs, as suggested in
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Ref. [196], with LO matrix elements may lead to a poorly beligverturbative expansion
and to bad phenomenology. On the other hand, to use a full aatd PDF set, even
if it is the simplest choice, may not be the best one. The pralik to determine which
is the best PDF definition to match with a LO Monte Carlo evemiegator. The simplest
and more consistent choice seems to be the standard fulllFOd@termination, but such
a fit over a global dataset may give unacceptably low qualitthe description of some
sets. Several different “recipes” were proposed as passiloidifications to the standard
LO determination and are discussed below.

As expected, an optimal LO parton set lies typically at agatlrge distance outside
the experimental error band of a standard NLO PDF deteriomaand it is possible to
argue from this fact that in a LO analysis theoretical uraaties are predominant. The
solution proposed in_[196] to just use NLO PDFs within the L@rie Carlo can be
supported by the fact that the difference between LO and Nétrdhinations is mostly
due to the difference between LO and NLO DIS hard scatteriatgimelements used in
the fit for the global PDF analyses. In hadronic collidergqasses the difference between
matrix elements in the two perturbative approximations igmlower and so NLO PDFs
combined with LO collider matrix elements within a Monte @agenerator of events
may give a good approximation. This is the case for examplRYGtHIA, or equivalently
of HERWIG: the main problem here is the substantial retunihthe parameters in the
event generator needed for the inclusion of a NLO PDFs set.

Another possible set of PDFs can be defined including somendamNLO correc-
tions to the LO matrix elements. This is actually what the M&aollaboration did when
producing the MSTWOS8LO PDFs (see Réf.|[81]): a sizable fraotibthe large NLO and
NNLO K factor for Drell-Yan comes from contributions which have #ame kinematics
as the LO. This allows for a simple rescaling of the LO crasstien for the Drell-Yan
data, giving an intermediate solution between the two aealyp to now.

In Ref. [197] other ideas on how to modify standard LO deteations were pro-
posed. These ideas arise after better focusing on the matohejon with LO PDFs. In the
cited reference the observation that the LO fit quality nyodéteriorates because of the
faster gluon evolution at small-and the slower quark density evolution at largbfings
to the determination of a PDFs set, MRST2007lomod: in thigreeNLO value for the
strong coupling constant together with its two-loop rugnimused. This leads to smaller
values ofa, in the low Q? region where the smalt-data are concentrated, and thus to
slower PDF evolution. Another choice can be made to avoidrem@onsequence of the
faster smallx gluon evolution: this leads through the momentum sum ruldetoletion
of the gluon content at medium-/large-which may cause a poor description of large-
fixed-target data. A possible way out is to relax the momerdum rule, justifying this
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y [ NLO [LO« =0.119] LO* o, =0.119] LO o, =0.130[ LO* o, =0.130 |

Total ? 1.16 1.74 1.76 1.68 1.74
(AWY 1] 1.2540.07 | 1.95+0.21 1.89 4 0.22 1.95 +0.19 1.94 4 0.18
NMC-pd 0.97 1.43 1.13 1.18 1.12
NMC 1.72 2.05 1.68 1.74 1.72
SLAC 1.29 3.77 3.00 2.91 2.70
BCDMS 1.24 1.87 1.82 1.76 1.75
HERAI-AV 1.07 1.70 1.55 1.58 1.59
CHORUS 1.15 1.51 1.67 1.53 1.67
NTVDMN 0.45 0.69 0.71 0.71 0.78
ZEUS-H2 1.29 1.51 1.42 1.43 1.44
ZEUSF2C 0.78 1.75 1.26 1.56 1.34
H1F2C 1.51 1.77 2.00 1.81 2.02
DYE605 0.85 1.86 2.02 1.70 1.83
DYE886 1.26 1.99 2.52 2.59 3.11
CDFWASY 1.83 1.80 2.50 2.16 2.29
CDFZRAP 1.64 2.88 3.89 2.08 2.58
DOZRAP 0.59 1.07 1.29 0.87 1.02
CDFR2KT 0.96 2.60 3.22 2.45 2.76
DOR2CON 0.83 1.18 1.56 1.17 1.35
[ M ] 1 \ 1 | 116£0.03 | 1 | 1.09+0.03 |

Table 4.6: Fit quality for the global fit and for all experiments included in it for eachtiof
NNPDF2.1 LO PDF sets. The corresponding values for the NNPDF2.1 $8tOf Ref.[[103] are
given for comparison. The value of the momentum integ¥d] Eq. (4.6) is also shown. All the
fits haveN,e, = 100 replicas.

choice as aad hocphenomenological patch.

A last strategy that is worth discussing is depicted in Re98]1and is the basis for
CTO9MC1/MC2 PDF analysis. The main idea is that, as these L@pa#ts are con-
ceived to be used as a combination with Monte Carlo event gasy they should be
determined by optimizing the agreement with the data of ttegliptions obtained by
using them already in such a combination. This involves iciemigg all the various mod-
ifications of the minimal LO framework discussed above, aisd antroducing suitable
pseudodata to optimize the agreement with Monte Carlo gerera

4.3.1 Quality of the Fit

Four PDF sets are produced as a result of the variation betevaetandard LO fit and a
LO* fit (in which the momentum sum rule is not imposed) on o snd of the value of
as between 0.119 and 0.130 on the other. The combination oé tveasations produce a
set of four different PDF sets. The runningfis always computed at LO in each single
case.

The x? of the four LO NNPDF2.1 sets, both for the global fit and foriindual ex-
periments, are collected in Takle 4.6 and compared to thesmonding results of the
NNPDF2.1 NLO set. The first line shows the totdland then also thg? experiment by
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experiment computed between the experimental data anddlaécpons obtained using
the central value of the PDF set (replica O, i.e. the meanalether replicas) are shown
for each case. The mean value over replicas of the tdtatomputed replica by replica,
is shown in the second line, while in the last one is given #laerof the momentum inte-
gral. All these quantities, as described in Seci. 2.3, amgpeed including normalization
uncertainties.

Comparing the four PDF sets, it is possible to say that vartfiegr value all they?
are poorly affected, so that the case of a NLO runningois not investigated. Relaxing
the momentum sum rule instead on one side doesn't affect tmactotaly?, but on the
other affects the experiment by experiment result: therg®gm is improved for several
DIS experiments, especially for HERA data, but at the same tiadronic data quality
lowers significantly. On the whole, the fit quality of the fdiis is almost unchanged: the
values of(y? ) differ from each other by less than a standard deviation.

Contrary to what previously discussed in the case of MSTWOSREX.([81]), here
can be seen that Drell-Yan data and DIS data are simultalyefiitesd without the need
for rescale of DY data. Surely an optimization of the LO deti@ation here performed
would bring to a better fit quality of these datasets, alsaaanof a possible combination
with an event generator, but the purpose here is to built asP{ef based on pure LO
theory.

In Table[4.6 the value of the momentum integral

[M] E/O dv xX (x,Q2) +/0 dxr xg (x,Q2) , (4.6)

is also given for each LO PDF sets. These are determined ataiing scale)? =

2 GeV?, but note that the momentum integfaf] does not depend on scale. A discussion
of the behaviour of the momentum integral at LO, NLO and NNL{D ke given in the
next Chapter.

The conclusion is that analyzing the four sets produced @amaparing them with
the NLO PDF set previously introduced, a marked worseninfenfit quality is indeed
observed with respect to the NLO case. Considering one byrenmodifications intro-
duced in the various LO cases no significant improvementssied. A curious effect is
found by relaxing positivity constraint on PDFs: thé of the LO fit then becomes only
about10% higher than in the NLO case. Of course, as at LO PDFs aredubjthe prob-
abilistic interpretation, the imposition of this constracannot be avoided. If relaxed, it
leads to a negative gluon PDF at largethat also may give negative cross-sections.
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Figure 4.19:Distances between the reference LO and NLO NNPDF2.1 sets. Here anb-in
sequent figures in this Section, the left plot shows the distance betwetralaalues, while the
right plot shows the distance between the uncertainties. Bothdadwe,) = 0.119.

4.3.2 Parton Distributions

It is interesting to make a detailed comparison between Ridé-istroduced above, ex-
tending the comparison also to parton distributions detexthwithin other groups than
the NNPDF collaboration. Again, the distances introduce@ppendix A of Ref. [[87],
and already used in Se€t. 4]1.2 are computed. Descriptibas @entical underlying
probability distribution havel ~ 1 while for statistically nonequivalent but consistent
descriptions at the-sigma level distances are of the orderiof 7n.

As a first comparison the standard NNPDF2.1 LO set (with0.119) is analyzed
versus the NNPDF2.1 NLO set introduced and described in Bekt This LO fit can
be considered as the reference for the LO determinatiomnanitbe seen, looking at the
distance plot represented in Fig. 4.19, that while the uagdies are consistent within
one sigma, the central values are separated by severalssigrhe tells us that the un-
certainties are equivalent in the two cases, reflectingdhethat the two fits have been
performed over the same data. The difference of many sigo@swkented for central val-
ues reflects the fact that theoretical uncertainties arénrfarger for the LO case than the
experimental error bands of either determinations, dubdddack of inclusion of higher
order corrections.

Looking now into detail at single parton functions, the glu®the one that present the
largest difference: in the range of medium- sma(lt0—* < z < 0.05) is in fact possible
to see a difference of more than five sigmas. This is congigtgimthe fact that the gluon
decouples from LO observables. Also, in the same rangebot slightly shifted towards
largerx values, the singlet and valence PDFs are lower than the NsE@eotive parton
functions by more than three sigmas as can be seen if_Fig. k. & same set of plots
it is clear that the LO gluon is instead larger than the NLCedwatnation. The only:
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Figure 4.20:Comparison of the quark singlet, valence and gluon distributions for thefRDF
fits whose distances are plotted in Fig. 4.19.

regions where consistency is found are at smalle. forz < 107, because of the
lack of information to constrain gluon PDFs there with thesequent blow up of error
bands, and at large- The LO quark is rather smaller (by more than one sigma) than t
NLO one for largex (x > 0.1), but it becomes compatible with it at the one-sigma level
for smallerz. Finally, the light sea and strangeness asymmetries arnenadiy affected
and quite close at LO and NLO. The fact that the quark LO distions are smaller
or comparable to the NLO ones tells us that the Drell-Yan dataally have relatively
little effect on the LO fit, other than through the determioatof thew — d light flavor
asymmetry. The missing large NL&-factors in Drell-Yan data should enhance the LO
quark distributions in comparison to the NLO ones.

Looking again at Tak. 416, the reference LO set witi)/,) = 0.119 is now com-
pared with the other pure LO set with, (M) = 0.130. It can be seen the effect of
evolving a larger value of,, down to a scal&)? ~ 10 GeV? using LO evolution: in this
way a value fora, that is preferred by data in this region is reached. The targkie
leads to a better description of scaling violations at loalescand conversely.

Itis interesting to look at Fig. 4.21 and Fig. 4.22: it can bersthat again uncertainties
are not affected, because mostly driven by experimentaértmiaties. Among central
value distances, the gluon present the higher shift at medamall«, being smaller
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Figure 4.21:Distances between the NNPDF2.1 LO sets with0.119 and,=0.130.
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Figure 4.22:Comparison of the quark singlet, and gluon distributions for the pair of PISF fi
whose distances are plotted in Hig, 4.21.

for the higheras value. The momentum sum rule instead constrains the glutarger
values at large:. The difference between the two gluon distributions is h@vet most

of the same order of their uncertainty. Even if the gluon P®the only one significantly
affected, also has to be noticed that the larggnglet and valence quark PDFs increase
somewhat whei, is raised, especially at large{z ~ 0.3), where a shift of about two
sigma is observed.

The comparison between the reference LO set and the setamités (M) = 0.119
value but relaxed momentum sum rule condition {L@ given in Fig[4.2B. The main
difference is seen in the mediumgluon, as shown in Fid. 4.24: the LO* gluon is rather
larger than the LO one. However, the central values for arigiPDFs are very close to
the standard LO ones.

Next, the NNPDF LO sets are compared with PDF sets from otloerps. A first com-
parison is made among NNPDF2.1 LO with = 0.130, MSTWO08 LO [81] (s = 0.139)
and CTEQ6L1[[71] s = 0.130). In Fig.[4.25 the comparison of the three determinations
for the singlet, isospin triplet and gluon distributionsiwn. The comparison between
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Figure 4.23Distances between the NNPDF2.1 LO and*L€®ts witha;=0.1109.
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Figure 4.24:Comparison of the valence and gluon distributions for the pair of PDF fitsgho
distances are plotted in Fig. 4]23.

CTEQG6L1 and the other sets is somehow less precise for theofaglor bands of this
delivery. Between the NNPDF analysis and MSTWO08 LO again wdifiees are espe-
cially large for the gluon distribution, both at small andgle=r, and for the isospin triplet
at largez. However NNPDF and MSTWO08 LO determinations are mostly cdibjea
within the large error bands.

As a last comparison, are considered the modified LO PDF sSR&8T2007lomod [197],
obtained relaxing the momentum sum rule and using two-laoping ofa;, with a4 (M,,) =
0.121, and the dedicated Monte Carlo sets of the CTEQ/TEA collalwor{it 98], CTO9MC1,
CTO9MC2 and CTO9MCS, based on an LO QCD analysis framework of daitzhywon
top of the standard global dataset used for the NLO PDF datation, also includes
a set of LHC pseudo-data generated using NLO PDFs. The CTOOME@L&09MC2
are performed without imposing the momentum sum rule anagusspectively a one-
and two-loop expressions far,. The CTOOMCS is instead extracted from an analysis
in which the two-loop strong coupling is used and the momansum rule is imposed
during the fit. All these sets are compared to the referencBDI2.1 LO (v, = 0.119)
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Figure 4.25:Comparison of LO PDFs: the quark singlet, triplet and gluon PDFs arersfmw
the NNPDF2.1, MSTWO08 and CTEQ6L1 sets.

in Fig.[4.26. Itis possible to argue that differences ambiegé sets are due to the various
different methodologies and assumptions on which is baaet ef them, being larger
than the typical difference between the NNPDF2.1 LO and &€s.

4.4 Next-to-Next-to-Leading Order Results

In this Section NNLO PDFs are presented and compared to NNdsDlts from other
groups and also to previous LO and NLO results discussedeabBarton sets at this
perturbative order are mainly used for the computation dftwacolliders standard candle
processes such a§, 7, top and Higgs production. Phenomenological consequences
deriving from the use of the NNPDF2.1 NNLO set for LHC stambzandles computation

are discussed in the next Chapter.

The statistical features of the NNPDF2.1 NNLO fit are deterdithrough the same
statistical estimators used in previous Sections to apalyg NLO and LO cases. Here
their values are given in Talle 4.7 for the global fit and inl&@&b8 for individual exper-
iments. In this second case, also t{tefor the NLO parton set is presented, to ease the
comparison between the two fits as was done for the LO set.

Itis observed a general similarity of the fit quality betw&#rO and NNLO results, as
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X%ot 1.16
(E)y+op | 2.2240.07
(Ey) £op, | 2.19£0.09
(Eya) £og,, | 2.27£0.10
(L) £or, | (1T£7) 10
(*P) £, | 1.23£0.05
o (exp) 0
G
dat '
<,0(‘3><P)>dat 0.18
(P s 0.53

Table 4.7:Table of statistical estimators for the NNPDF2.1 NNLO fit with., = 1000 replicas.

Experiment| x? [ x2, [ (B) | (c©®)_ (%) | (c™) (%) | (o) | (p"V)
NMC-pd 0.93| 0.97| 1.98 1.8 0.5 0.03 0.34
NMC 1.63| 1.73 | 2.67 5.0 1.8 0.16 0.75
SLAC 1.01| 1.27| 2.05 4.4 1.8 0.31 0.78
BCDMS 1.32| 1.24| 2.38 57 2.6 0.47 0.58
HERAI-AV || 1.10| 1.07 || 2.16 7.6 1.3 0.06 0.44
CHORUS | 1.12| 1.15| 2.18 15.0 3.5 0.08 0.37
FLH108 1.26| 1.37| 2.25 72.1 4.8 0.65 0.68
NTVDMN | 0.49| 047 | 1.74 21.0 14.0 0.04 0.64
ZEUS-H2 || 1.31| 1.29| 2.33 14.0 1.3 0.28 0.55
ZEUSF2C || 0.88 | 0.78 | 1.89 23.0 3.7 0.07 0.40
H1F2C 1.46| 1.50| 2.48 18.0 35 0.27 0.36
DYEG605 0.81| 0.84| 1.88 25.0 7.2 0.55 0.76
DYE866 1.32| 1.27| 2.40 21.0 8.7 0.23 0.48
CDFWASY || 1.65| 1.86 || 2.80 6.0 4.3 0.52 0.61
CDFZRAP || 2.12| 1.65| 3.21 12.0 3.6 0.82 0.67
DOZRAP | 0.67| 0.60| 1.69 10.0 3.0 0.54 0.70
CDFR2KT || 0.74| 0.97 | 1.84 23.0 4.8 0.77 0.61
DOR2CON || 0.82| 0.84 | 1.89 17.0 55 0.78 0.62

Table 4.8:Same as Table4.7 for individual experiments. All estimators have been ettaith
N:ep = 1000 replicas. Note that experimental uncertainties are always given inrgagee For
reference the NNPDF2.1 NL&? for the various experiments is also provided.
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Figure 4.26: Comparison of the NNPDF2.1 LO PDF to modified LO PDF sets:
MRST2007lomod, CTO9MC1, CTO9MC2 and CTO9MCS.

also between all the other statistical estimators. Lookitgthe detail of the experiment
by experimenty? of Table[4.8 the difference is less then 10% for each experin@nly
SLAC, W asymmetry and CDF jet data differ more than that (because Mi&Nit gives

a better quality), and thg& rapidity distribution (for which the quality instead is veer at
NNLO). Itis also interesting to notice that the descriptadtH1F2C (the HERAFY data)
is almost the same and slightly better than at NLO: while aONdn optimized cut and
a tuning of the treatment of heavy quarks was needed to givepepdescription of this
set, here the FONLL-C general mass scheme is introducedr{ded in Sectl_1]6) that
permits to release the kinematic cut, obtaining a largeasit

The distribution ofy2®), £, and training lengths among th&., = 1000 NNPDF2.1
NNLO replicas are shown in Fig. 427 and Hig. 4.28 respelgtiva the latter histogram
it is visible that not all the replicas stop dynamically ancbapicuous fraction of replicas
(~ 20%) stops at the maximum training lengt¥: . This fraction is not too higher than
the one in the NLO fit. As was done in the NLO analysis, also eshecked that the
impact of these replicas is negligible: in fact, discardatigreplicas that do not stop dy-
namically the PDFs change by an amount which is smaller thetatastical fluctuation.
Raising the training length reduces also in this case theidraof unstopped replicas,
proving that the problem is only of computational efficiency
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Figure 4.27 Distribution ofy2(*) (left) andE* (right), over the sample d¥.., = 1000 replicas.
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Figure 4.28Distribution of training lengths over the samplef,, = 1000 replicas.

4.4.1 Parton Distributions

The parton distributions presented here, the NNPDF2.1 NNeDis plotted in the ba-
sis in which the set is parametrized and directly comparetiedNLO fit in Figs[4.2P
and4.30 at the input scalg; = 2 Ge\~.

Observing the distances between these two sets plotted.idBil, it can be seen that
the central values are almost everywhere within one sigora #ach other, showing the
stability of PDFs while going from NLO to NNLO. The largestriations are observed
for quarks atr ~ 0.1, while the smallx PDFs (gluon and light quark sea) are very
similar to their NLO counterparts. The fact that theordtigzcertainties are not included
in PDF error bands and the quite similar quality of the NLO &L O fits explain the
particularly small distances shown in Hig. 4.31 for PDF utaisties.

One of the useful exercises that can be done using the NNL€aselis to assess
the impact of NNLO corrections on physical observables. sTikieasier if PDFs are
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Figure 4.29:Comparison of NNPDF2.1 NLO and NNLO singlet sector PDFs, computed usin
Nrep = 1000 replicas from both sets. All error bands shown correspond to one sigma

represented in the flavor basis at a typical hard scale asgiri4E32, where the ratio
between NNLO and NLO parton functions is plotted as a fumctbz at Q*> = 10*
Ge\?. The most noticeable difference is at~ 1072 for the light quark sea, where
the two plotted bands almost don't overlap. Other changewiaible at smalle in the
quark distributions, that are larger in that region, and alwaller large: quarks. As a
consequence of evolution is also observed a larger sogllion.

Another interesting comparison is performed between NNEDRNLO PDFs to
those from the MSTWO08 NNLO set. A more precise estimate ohides and difference
is made using the same (1 ;)=0.119 value. The two PDF sets are plotted in Higs.14.33
and[4.3%4. The MSTWO08 NNLO gluon, unlike its NNPDF2.1 counsetpis unstable at
small«, where it becomes very negative. Unusually small uncestéiands are observed
for MSTW determination and in general the two sets show mealsle agreement for cen-
tral values. The only significant difference is found in tieasge distribution, probably
due to the extremely restrictive parametrization giventiers + s ands — s MSTWO08
PDFs.

A last comparison is made in Figs. 4135 and 4.36 with the ABKMIDEO set (with
fixed flavor numbemn,; = 3) [94]. A NNPDF2.1 NNLO PDF set withy, = 0.114 is
chosen, as the ABKM set is only provided fag (M) = 0.1135 £+ 0.0014. Further-
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Figure 4.30:Same as Fid. 4.29 for the non-singlet sector PDFs.

more for this set (and its NLO counterpart) only combined P®Funcertainties can be
determined, unlike other sets for which PDF uncertaintiigls fixed o, may also be com-
puted. The energy scale is fixed@t = 2 Ge\? and in general is observed a somewhat
bad agreement.

4.5 Perturbative Stability

It can be exploited the fact that to determine LO, NLO, and KINBDF sets the same
data and the same methodology are used in the three casesisbeaf this can be ad-
dressed issues of perturbative stability by comparingviddal PDFs but also looking at
the behaviour of the total momentum fraction carried byqrest
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Figure 4.31Distances between the NNPDF2.1 NLO and NNLO parton sets shown il Ex8s. 4
and4.3D. All distances are computed from setd/pf, = 100 replicas.
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Figure 4.32:Comparison between NNPDF2.1 NLO and NNLO light quark and gluon PDFs a
Q?* = 10* Ge\~. The results have been obtained with,, = 1000 replicas. All curves are shown

as ratios to the central NNPDF2.1 NNLO result.

The LO, NLO, and NNLO parton functions are plotted togetlmeassess the pertur-
bative stability of NNPDF determination, as can be seen gs .37 and 4.38 at the
starting scal&)2=2 Ge\? in the basis in which they are independently parametrized by
neural networks. In Figé. 4.89 ahd 4.40 a similar comparnsamovided but this time at
the scale)?=(100 GeV} in the basis of individual flavors. All the error bands takin
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Figure 4.33: The NNPDF2.1 NNLO singlet sector PDFs, compared to MSTW08 PDFs. The
results for NNPDF2.1 NNLO have been obtained with,, = 1000 replicas. All PDF errors are
given as one sigma uncertainties. In the comparison a common vadug df ;)=0.119 has been
used.

account also possible deviations from Gaussianity, asahegefined as 68% confidence
levels, rather than as standard deviations.

These comparisons manifest the excellent convergenceeopéhturbative expan-
sion within the kinematic region covered by the experimedg&da. Also, in the kine-
matic region where resummation is supposed to affect thdtrgsnall- and large: re-
gions) [199, 200] and the perturbative stability shouldtsia be compromised, no ev-
idence of instability is seen in the PDFs, thus suggestiaf) rdssummation corrections
are smaller than current PDF uncertainties (at smathis is borne out by the dedicated

study of Refs.[[163,164]).

Focusing on the differences between NNLO and NLO partontfans, it is possible
to see that in almost all cases there is agreement withinrtametes. This is true at the
initial scale (Figs[4.37-4.38), where the NNLO centralueails within (or just outside)
the NLO uncertainty band, and it is still better at highelasdFigs[4.39-4.40) The only
noticeable differences are @& = 2Ge\? for the isospin triplet distribution around the
valence peale ~ 0.3, where the NLO and NNLO bands overlap, but the NNLO central
value is clearly outside the NLO band, and at higher scalmagabserved as in Fig. 4.32



130 Impact of Heavy Quark Masses on PDFs

- NNPDF2.1 NNLO - NNPDF2.1 NNLO
NN

Wy MSTWO08 NNLO a,=0.119 i Ay MSTWO8 NNLO a,=0.119

- NNPDF2.1 NNLO
N

3] MSTWO08 NNLO a,=0.119

N MSTWO8 NNLO a,=0.119

Figure 4.34:Same as Fid. 4.33 for the non-singlet sector PDFs.

a small discrepancy in light quark distributions fop 103,

It can be concluded that effectively PDF uncertainties oefiect the data uncertainty.
Theoretical uncertainties due to higher orders in pertivd&CD excluded in the analy-
sis are not taken into account in the shown error bands. Thiedef uncertainty can be
estimated by varying the renormalization and factorizatoale during the PDF fit, and
at NLO by a direct comparison with the NNLO results. Thankthie comparison it can
be safely said that at present the size of the uncertaintyta@tieoretical inaccuracy is
reasonably smaller than the PDF uncertainties, deriveldigixely from data.

The same cannot be said for the LO PDFs. Here in fact it is ¢hedircentral values
differ by several standard deviations from NLO parton fusred. The situation improves
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Figure 4.35: The NNPDF2.1 NNLO singlet sector PDFs, compared to the ABKMQ9 three-
flavor set. The results for NNPDF2.1 NNLO have been obtained Wijth = 100 replicas. The
NNPDF2.1 set withhy = 0.114 is shown because ABKM PDFs are only available for this value
of as. Note that for ABKM uncertainties also include the uncertaintyo@rwhile for NNPDF
they are pure PDF uncertainties.

somewhat at high scale (Figs. 4/39-4.40), but the differémetween LO and NLO re-
mains large for the gluon. Hence, it can be concluded thatigndase the theoretical
uncertainty is dominant, and the error represented by thigepl bands is only a fraction
of the effective total error. These conclusions are trueNWPDF sets as for PDFs from
other groups.

The value of the total momentum carried by quarks and gluodsita dependence
on the perturbative order provide a strong consistencylchéthe perturbative QCD
framework. The momentum fraction carried by a parton diation is

[q] (Q%) E/O drzq (z,Q°) . (4.7)

Using the LO*, NLO* and NNLO* PDF sets, where thiandicates that the momentum
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Figure 4.36:Same as Fid. 4.35 for the non-singlet sector PDFs.

sum rule has been relaxed, the total momeniifh= [X] + [¢] carried by partons is

[M],, = 1.161 +0.032,
[M]y.o = 1.011 4 0.018, (4.8)
[M] o = 1.002 £ 0.014.

where the uncertainty is only from PDFs (and thus does ndudiecany theoretical un-
certainty).

Estimating the theoretical uncertainty as the differenevben results at two subse-
guent perturbative orders, is seen that at LO the theoletigzertainty is dominant, as
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already concluded from the PDF plots Figs. 4.37-4.38 abOrethe other hand already
at NLO the theoretical uncertainty is half of the PDF undaetya A™ [M]y,, = 0.01,
and thus at NNLO the theoretical uncertainty is likely to legligible.

It is also interesting to determine the momentum fractiamied by individual PDFs.
These are tabulated in Tables]£.9-4.10 at a low s@gle- 2 GeV* and at a high scale
Q? = 10* GeV?, both before (Table 4.9, * PDF sets) and after (Tablel4. ¥hdsrd PDF
sets) imposing the momentum sum rule.
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| PDF combination| LO* | NLO* NNLO*
[+ 9] | 1.161 +0.032 | 1.011 £ 0.018 | 1.002 £ 0.014 |
Q3 =2 GeV

[2](Q3) 0.550 £ 0.025 | 0.591 & 0.010 [ 0.602 % 0.010

9] (Q3) 0.612 £ 0.028 | 0.421 £ 0.021 | 0.400 £ 0.018
[(u+w)] (Q3) || 0.346 +£0.015 | 0.371 £ 0.005 | 0.376 & 0.005
[(d+d)] (Q3) | 0.192+0.011 | 0.206 £ 0.005 | 0.209 & 0.003
[(s +38)](QF) | 0.012£0.004 | 0.014 4 0.006 | 0.017 = 0.006

Q* = 10" GeV?

[X1(Q%) 0.546 & 0.017 | 0.528 & 0.009 | 0.527 & 0.005

9] (@) 0.615 +0.020 | 0.486 + 0.018 | 0.475 4 0.011
[(u+@)] (@) || 0.264 £ 0.009 | 0.256 & 0.003 | 0.255 & 0.002
[(d+d)] (@* | 0.165+0.007 | 0.160 +0.002 | 0.159 & 0.001
[(s+3)](Q% | 0.048£0.003 | 0.047 & 0.004 | 0.048 + 0.004
[(c+2)](Q% | 0.041+£0.002 | 0.039 £ 0.002 | 0.039 & 0.001
[(b+b)] (Q*) | 0.027 £0.001 | 0.025 +0.001 | 0.025 & 0.001

Table 4.9:Momentum fractions of various PDF combinations at low s&fe= 2 GeV? and high
scaleQ? = 10* GeV? when the momentum sum rule is not imposed (LO*, NLO* and NNLO*
PDF sets). All results are obtained wit., = 100 replicas.

| PDF combination LO \ NLO \ NNLO |
| [~ +4] \ 1 \ 1 \ 1 |
Q3 =2 GeV
[£1(Q3) 0.521£0.023 | 0.590 +£0.009 [ 0.609 £ 0.013
9] (Q3) 0.479£0.022 | 0.411+0.009 | 0.391=+0.012
[(u+2)] (Q3) |0.328+£0.012 | 0.371£0.005 | 0.38140.007
[(d+d)] (Q3) |0.1814+0.010 | 0.206 +0.004 | 0.211=+0.005
[(s+35)](Q3) |0.012+0.005 | 0.013£0.006 | 0.017 = 0.005
Q* = 10" GeV?
1(Q?) 0.492+0.010 | 0.523+0.003 [ 0.529 +0.004
9] (Q%) 0.509 & 0.010 | 0.477 +0.003 | 0.471=£0.005
[(u+ )] (Q* |0.245+0.007 | 0.255+£0.003 | 0.257 % 0.004
[(d+d)] (Q* |0.150£0.006 | 0.159£0.002 | 0.159 & 0.002
[(s+35)](Q%) |0.041£0.003 | 0.046+0.003 | 0.048 +0.002
[(c+2)](Q% | 0.03340.001 | 0.0383 + 0.0004 | 0.0393 £ 0.0006
[(b+0)] (@) |0.021+0.001 | 0.0245 & 0.0002 | 0.0249 + 0.0003

Table 4.10:Same as Tablg 4.9, but when the momentum sum rule is imposed (LO, NLO and
NNLO PDF sets).
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Chapter 5
LHC Phenomenology

This Chapter is dedicated to the study of phenomenology dill@& The target of mod-
ern parton fits is to provide a reliable description of theoas components inside the
nucleon. For this reason is of primary importance to compelictions at LHC, bench-
mark the results against other groups predictions and palysieasurements of the con-
sidered observables.

After a brief discussion on parton luminosities (Sectl 54 main topic of the Chap-
ter is treated in Sedi. 8.2. Then other minor but not less apbissues are discussed:
NuTeV anomaly (Sedt. 5.3), accuracy of NNLO PDFs (Sect. &w)finally an interesting
and surprizingly precise estimate of the strong coupling constant is given in Sect.|5.5.

5.1 Parton Luminosities

Once more the factorization properties can be exploitedrsidering hadronic observ-
ables, it is known that in this case a PDF for each collidindrba is involved in observ-
ables computation. Following Ref. [196], then parton lunsibyocan be defined as

1
®y (3) = ¢ [ EU 000 £ (/w1003 51)

S 1
wheref;(z, M?) is a PDF and- = M% /s. The behaviour of parton luminosity is strictly
related to factorized observables behaviour, and the dipee of hadronic observables
on PDFs can be mostly read by looking at parton luminositya/satter of fact, parton
luminosities correspond to individual parton subprocesbeparticular, the gluon-gluon
luminosity, the total quark-gluon and quark-antiquark ilnosities are considered, defined

as
ny

Pyy = Z DPog,  Pyq

i=1

ng
> By (5.2)
=1
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and the charm and beauty quark-antiquark luminosities.
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Figure 5.1:Comparison of the parton luminosities Eds. 5[1)4(5.2) for LHC at 7 TeMmaded
using the NNPDF2.1 NLO and NNLO PDFs, using., = 100 replicas from both sets. From
left to right are showr®,,, @44, (t0p) Pyg, Pce, (Middle) @5, @y, (bottom). All luminosities are
plotted as ratios to the NNPDF2.1 NNLO central value. All uncertainties stawe/ione sigma.

Another test for perturbative stability is to look at the quanson between parton lu-
minosities computed from NNPDF2.1 NLO and NNLO parton sé&tsis comparison is
given in Fig[5.1 for all luminosities normalized to the NNPR21 NNLO central value.
The compatibility, and thus the perturbative stabilitygmod for all luminosities, as ex-
pected from PDFs comparison of Figs. 4[29-4.31. It is irstiamg to look at the gluon-
gluon luminosity, that is the relevant one for Higgs produttat the LHC, and observe
that the result is quite stable especially in the region whecently a Higgs candidate
has been observed at ATLAS [61] and CMSI[62]{ = 125 — 126 GeV, /s =7 —8
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TeV). The value for the NNLO luminosity however gets quiteadier for higher values
of the invariant mass. Focusing now on quark-antiquark tasity and going back to
Fig.[4.32, the differences noticed there in light quarkrdistions are here reflected and
enhanced because of the square dependence of parton litreghoa PDFs. As a con-
sequence, non-negligible differences are seen for thisnlsity, which is significantly
larger at NNLO in the region relevant fé¥ and Z production. Similar but somewhat
smaller differences are seen in the quark-gluon channed. HBavy quark PDFs follow
the behaviour of the gluon, from which they are generatecnyoally via perturbative
evolution.
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Figure 5.2:Same as Fid. 511, but for NNPDF2.1 NNLO and MSTW2008 NNLO PDFs. Btir b
sets PDFs corresponding to the same valye- 0.119 have been used for consistency.

Indeed a useful exercise is to compare NNPDF results withoties from other
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| [o(W*)Bi, 0] | o(W ) By, [0b] | o(Z°)Bu [nb] |

NNPDF2.0 5.84 £0.14 3.97 £0.09 0.91 +£0.02
NNPDF2.1 5.99£0.14 4.09 £0.09 0.93 £0.02
CT10 -as =0.118 6.00 £0.13 4.10 £0.09 0.94 £0.02
CT10 -as = 0.119 6.04 £0.13 4.13 £0.09 0.95+0.02
MSTWO8 -as = 0.119 5.91+£0.11 4.16 £0.08 0.94 £0.02
MSTWO8 -as = 0.120 5.95£0.11 4.19 £0.08 0.95 £0.02

y | o(tt) [pb] | o(H,my =120GeV) [pb] |

NNPDF2.0 168 £ 7 11.59 £ 0.22
NNPDF2.1 170+ 5 11.64 £0.17
CT10 -as = 0.118 158 £ 7 10.99 £0.21
CT10-as =0.119 161+ 7 11.17£0.21
MSTWO08 -a; =0.119 | 164+5 11.48 £0.18
MSTWO8 -a; =0.120 | 168+5 11.69 £0.18

Table 5.1:Cross-sections for W, Z¢ and Higgs production at the LHC gfs = 7 TeV and the
associated PDF uncertainties. All quantities have been computed at NL@O MSIRM for the
NNPDF2.1, NNPDF2.0, CT10 and MSTWO08 PDF sets. All uncertainties staye one sigma.

groups: in FigL 5.2 the NNPDF2.1 NNLO luminosities are conepgao MSTWO08 NNLO
(at a common value af, = 0.119), again as a ratio to NNPDF2.1 NNLO central value.
A clear worsening of the agreement is observed for low aneaalty high values of
M this is mainly a consequence of the smatiscrepancy seen in Fig. 4133 for singlet
and especially for gluon distribution, related to the ubE@ehaviour of the MSTWO08
NNLO gluon. In general, in the region @f% /s which is relevant for typical electroweak
final state massek/y at the LHC, the agreement is good.

5.2 Predictions and Benchmarks at the LHC

In this Section predictions are computed and benchmarkzadeiced between both NLO
and NNLO observables at LHC and the results obtained froraraoups. In the first
part of the Section predictions for a set of LHC standard endre computed using the
NNPDF2.1, NNPDF2.0, CT10 and MSTWO08 sets. Results are presantecompared
for W+, Z° tt and Higgs production via gluon fusion with; = 120 GeV both at
/s =7 TeV and,/s =14 TeV. These predictions, presented in Tables 5.1 and B, a
in the corresponding Figs. 5.3 andl5.5, are all computedyudi@FM [201/202] code at
NLO QCD. In this comparison the value of in the case of CT10 and MSTWO08 sets is
fixed both at the respective default value and at the commhue \af o (M) = 0.119,
obtained using the PDF sets of Refs.|[82,203].

At first the comparison between NNPDF2.0 and NNPDF2.1 PD§ isedliscussed:
differences are driven mainly by the heavy quark mass effeat also by different kine-
matic cuts. FoiV* and Z production at 7 TeV differences are below or equal to one
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Figure 5.3:Graphical representation of the results of Tablé 5.1.

sigma and fort and Higgs are essentially unchanged, as can be seen froff.Eignd
Table[5.1. It can be concluded that these LHC observablesrdyanarginally affected
by the implementation of heavy quark treatment.

Coming now to the comparison among NNPDF2.1, MSTWO08, and CTiBiisle a
rather good agreement between NNPDF2.1 and MSTWO08 obsesvabtl slightly larger
differences with CT10, especially for Higgs andproduction, observables which are
most sensible to the behaviour of gluon distribution alyeahlyzed in Fig. 4.13. Things
goes towards better agreement by using a common value ofrtmgsouplinga,. This
effect is stronger for observables as Higgs production uoglfusion [204], because of
the characteristic dependence@nalready at leading order of this observable. The first
measurements released by the ATLAS and CMS experimentsd@6bfor W=+, Z, and
tt production at 7 TeV are compared to the presented predsctiomfortunately, on that
measurements luminosity uncertainty still dominai@dl(1%)), so that their constraining
power on PDFs is spoiled out.

If now the energy of the center of mass is increased figm=7 TeV to 14 TeV,
the impact of heavy quark treatment should be larger. By logphkit the results collected
in Fig.[5.5 and Tabl€ 512, it can be seen thattié and Z cross-sections, going from
NNPDF2.0 to NNPDF2.1, are subject to an enhancement oftgligiore than one sigma.
The Higgs andt production are instead almost unchanged. The comparisitbnGAli10
and MSTWO8 is similar as before, but with the agreement soraebétter for the Higgs
and somewhat worse for top production.

A widely used technique to reduce experimental uncergsnis to consider the ratio
between cross-sections, as for examplelifie/TV— andW/Z cross-section ratios at the
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Figure 5.5:Graphical representation of the results of Tablé 5.2.

LHC. Here normalization uncertainties cancel out. Predingifor these ratios are given
in Fig.[5.6 for NNPDF2.1, CT10, and MSTWO08 both at 7 and 14 Tevat be observed
that for W+ /W~ ratio CT10 and NNPDF2.1 are in good agreement but MSTWO08 is
lower by more than two sigmas, so that in general it seemstierb@greement the result
for total cross-sections. Also for th&/Z ratio at 7 TeV the agreement is only marginal,
while at 14 TeV a better result is found. For these obsergathle dependence on is
negligible.
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| [ o (W) Bi, 0] | o(W ) By, [0b] | o(Z°)Bu [nb] |

NNPDF2.0 11.59 £ 0.27 8.56 £0.17 1.94 £+ 0.04
NNPDF2.1 12.00 £ 0.27 8.84 +0.17 1.99 £+ 0.04
CT10-a, = 0.118 12.20 +0.30 9.00 £+ 0.22 2.03 £0.05
CT10-a4, = 0.119 12.31 £ 0.30 9.07 £0.22 2.05 £ 0.05
MSTWOS8 -a, = 0.119 11.95 £+ 0.22 9.03 £0.17 2.01 +0.04
MSTWO08 -a; = 0.120 12.06 £ 0.22 9.10 £0.17 2.03 £ 0.04
’ \ o(tt) [pb] \ o(H,myg = 120 GeV) [pb] ‘

NNPDF2.0 942 4+ 21 37.3 £0.50

NNPDF2.1 946 £+ 19 37.5 £0.40

CT10-a4, = 0.118 880 + 21 36.32 + 0.80

CT10 -a, = 0.119 895 + 21 36.90 £ 0.80

MSTWOS8 -, = 0.119 | 917 £18 37.78 £0.50

MSTWO8 -ay, = 0.120 | 934 + 18 38.43 + 0.50

Table 5.2:Same as Table 5.1 for the LHC gfs = 14 TeV.

Another interesting exercise to understand the relati@ta/den PDFs and observ-
ables is to compute their correlation. This is a way to qarikie relevance of each
PDF for different physical observables [187,207]. In Figl & shown the correlation
coefficient between PDFs anti*, Z total cross-sectiond}y* /W, W/Z cross-section
ratios at 7 TeV for the LHC. Knowing the dependence of tétalnd Z cross-sections,

a dominant correlation with the andd sea quarks and an anticorrelation of similar size
in modulus with the strange quarks is observed as expectstbad, the gluon and heavy
quarks that are dynamically generated from it are less ladee with these observables.
Looking now at the cross-section ratios, it is interestmgatice that, for thél’/Z cross-
section ratio, correlations are only slightly suppressedomparison to the previous an-
alyzed cases, while for the/* /1~ ratio the suppression is much more intense. This
observation suggests that the latter ratio should be lesstse to PDF uncertainties.

In the treatment of heavy quark mass effects theoreticalguitles due to subleading
terms are present. Here is given a partial study of this #tea uncertainty related
to heavy quark inclusion td(a,) by comparing results obtained from the three sets
discussed in Sedt. 4.1.3: NNPDF2.0 RED (without heavy quarkstterms, but the same
kinematic cuts as NNPDF2.1), the default NNPDF2.1, and NRERD without damping
terms in the FONLL-A method. As can be seen in Eigl 5.8 andéragsociated Tahle 5.3,
the results for the NNPDF2.1 “plain” FONLL-A (i.e. withouathping terms) are always
half way between the ZM-VFN treatment (NNPDF2.0 RED) and thadard NNPDF2.1
global fit at 7 TeV. At the higher energy of 14 TeV the NNPDF2dlain" FONLL-A
results sit nearer to the standard NNPDF2.1 set results.isssissed in Sedi. 4.1.3, the
difference between the NNPDF2.1 results with and withompiag terms can be taken
as a conservative estimate of the theoretical uncertasggaated to the uncertainty in
the inclusion of heavy quark mass effects(x;).
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Figure 5.6:Comparison between predictions from different PDF sets fobithe/ TV~ andW/Z
ratios at the LHC,/s =7 TeV (upper plots) ang/s =14 TeV (lower plots).

In this second part of the Section a similar set of LHC stathdaandles are com-
puted using NNPDF2.1 NNLO. The physical observables thia Wil be considered are
the total cross-section for Higgs, weak vector bosons prisaiy, approximate NNLQ#
production and théW* + W~)/Z° andW* /W~ cross-section ratios.

As already seen in the case of NLO observables, their depeadm, at hadron
colliders is nontrivial: the hard matrix elements dependranstrong coupling and PDFs
are correlated with the value of [82,208, 209], especially in the case of the gluon PDF.
A very important issue that needs to be considered when cangpgredictions trying
to understand their dependence on PDFs and their assouratedainty is related to the
mixing between uncertainties due to PDFs with uncertartdiee to the choice of external
parameters [210]. This mixing should be avoided. A detaijedntitative comparison is
performed between NNPDF2.1 and MSTWO08, both at NLO and NNLO QD sake
of illustration also the comparison with ABKM09 NNLO will beegformed, even if these
PDFs are provided far, (M) = 0.113540.0014, and their uncertainties always include
also the contribution due to the variation@f in this range.

The first comparison that needs to be discussed is relatedgtys throduction from
gluon-gluon fusion. The total inclusive cross-section tlis gluon-gluon channel has
attracted considerable attention: in Ref. [211] was claithed the determination of un-
certainties due to PDFs through the so-called PDF4LHC pgsan [106] might suffer
of a substantial underestimation. More details on thisudison are given in Ref. [181]
and especially in Ref.[184]. In Fig. 5.9 the results for thaltmclusive cross-section for
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Figure 5.7:The correlation between PDFs and vector boson production total seations (up-
per plots) and their ratios (lower plots) for LHC 7 TeV. Correlationsior (not shown) are very
similar.

Higgs production from gluon fusion are compared as a ratidN&#DF2.1 NNLO with
as(Myz) = 0.119. The code of Refs[[212,213] is used to compute this physioseiy-
able for NNPDF2.1, MSTWO08, and ABKM09 PDF sets at the respectefault value of
as (in the order:ag(Mz) = 0.119, as(Myz) = 0.1171, anda,(Mz) = 0.1135 £ 0.0014)
as a function of the Higgs massy. All uncertainties are one-sigma error bands. As
already said, ABKM determination includes also the uncetyadbn a,. The shown ob-
servable is also computed using NNPDF2.1 witi}/7) = 0.117 to have a more precise
comparison with MSTWO08 prediction. The NNPDF result for tlaist computation and
MSTW default result are in excellent agreement. The sameaatdre said for ABKM:
surely part of the several sigmas difference between NNPD&2d ABKM is due to the
different value ofas used for the computation, but looking at Hig. 5.16 below itlesar
that even adopting the same value for the strong couplingtaanthe difference would
persist.

The results for top production are shown in Fig, 5.10 wheeettitalt¢ cross-section
determined at NLO and NNLO at the LHC 7 TeV with, =172 GeV (pole mass) is
compared with NNPDF2.1, MSTWO08, and ABKM. The ABKM predictiagiven only
at NNLO with as(Myz) = 0.1135 4+ 0.0014 as in the previous case, while for NNPDF2.1
NLO and NNLO a,(Myz) = 0.119 and for MSTWO8«, (M) = 0.1202, 0.1171 re-
spectively for NLO and NNLO predictions. To ease the congmaribetween NNPDF2.1
and each of the other predictions from MSTWO08 and ABKM, the NIRRBsults with
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y 7 TeV | o(WT)Byy, [nb] [ o(W™)B,, [nb] | o(Z°)By [nb] |
NNPDF2.1 5.99 +0.14 4.09 +0.09 0.93 +0.02
NNPDF2.0 RED 5.81 £0.13 3.98 +0.08 0.91 £ 0.02
NNPDF2.1 FONLL-A plain|  5.90 +0.12 4.03 +0.08 0.92 +0.02

14 TeV | c(WH)By, [nb] [ o(W™)By, [nb] | 0(Z°)By [nb] |
NNPDF2.1 12.00 £ 0.27 8.84+0.17 1.99 +0.04
NNPDF2.0 RED 11.57 +0.25 8.57 £0.17 1.93 4+ 0.04
NNPDF2.1 FONLL-A plain| 11.82 4 0.22 8.72+0.15 1.96 + 0.03

Table 5.3:Cross-sections for W, Z; and Higgs production at the LHC gfs = 7 TeV and the

associated PDF uncertainties for the reference NNPDF2.1 set contpatesse obtained using
sets with different treatment of heavy quarks: NNPDF2.0RED, withocanyhguark mass effects,
and NNPDF2.1 FONLL-A plain with heavy quark mass effects but withowgshold damping
terms.
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Figure 5.8:Graphical representation of the results of Tablé 5.3.

as(Mz) = 0.120 (NLO) and as(Mz) = 0.114, 0.117 (NNLO) are also computed.

To determine all predictions for this observable, appr@teNNLO expressions based
on threshold resummation have been constructed [214] aptbmented in the public
HATHOR code [215]. These theoretical predictions can bepamed to the average of
the first measurements from CMS [216, 217]tt) = 158 + 19 pb, and ATLAS [218],

o (tt) = 180 + 19 pb. Averaging the most accurate results, which have beeairsut

with a luminosity of~ 36 pb~!, and assuming that the two measurements are indepen-
dent, yieldss (tt) = 169 + 13 pb (shown in Figi.5.10 as a dashed band).

Figure[5.10 shows that the NNPDF2.1 and MSTWO08 predictioasragood agree-
ment both at NLO and NNLO: however, once again, it is impdrtanise a common value
of a,. Also, of course, one should remember that the uncertaistiewn in Figl 5.10 are
only PDF uncertainties. In particular theoretical unaettaes, such as may be estimated
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Figure 5.9:The total cross-section for Higgs boson production via gluon fusionNdtas a
function of my. Results are shown for NNPDF2.1 with (M z) = 0.119 andas (M) = 0.117,
MSTWO08 withas(Mz) = 0.1171, and ABKMO9 withas(Mz) = 0.113540.0014, all displayed
as ratios to the central NNPDF2.1 curve. The NNPDF result is obtaineg isip = 100 replicas.
All uncertainties shown are one sigma; for NNPDF and MSTW they are PDIe uncertainties,
while for ABKM they also include thexs uncertainty corresponding to their given range.

by scale variation, and uncertainties due to the dependante top mass, are not shown
and might also be significant. Again, the ABKMO9 predictiorsignificantly lower, and
the disagreement persists even when a common valuag isfadopted: already the LHC
data are starting to discriminate between PDF sets.

A closely related recent measurement by CMS [216] is the wftia and Z cross-
sections. Predictions has been computed for this observasitg the VRAP codé [219]
together with HATHOR, for the same PDF sets and settings. AL®Rhis ratio is only
weakly dependent on the value @f. Results are also shown in Fig. 5.10 and compared
to the CMS measurement, again shown as a dashed band. Thestonslare similar.

As a last case, the electroweak vector boson productiohdass-sections and their
ratios at the LHC are considered. In Fig. 5.11, as for the cdgep production, is
shown NNPDF2.1 with the same values farused there (NNPDF preferred value and
the MSTW and ABKM default one). These observables has beemuima with the
VRAP code|[219], within the narrow-width approximation (inding they* contribution
to gauge boson production). For cross-section ratios bends are determined as a 68%
confidence level instead of a standard deviation, becauséden verified that the dis-
tribution of results can be markedly non-Gaussian. Agdiasé theoretical predictions
are compared to the first ATLAS [220] and CMS [221] results fos tobservable, cor-
responding to an integrated luminosity 3§ pb~!, averaged together. The results are
shown as dashed bands on the plots. The single results andwbges are summarized
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Figure 5.10: The total cross-section fat production at the LHC 7 TeV computed using
HATHOR (left) and its ratio to the totaf production cross-section computed using VRAP (right).
Results are shown for NNPDF2.1 with (M) = 0.119 (NLO and NNLO),as(Mz) = 0.120
(NLO) and as(Mz) = 0.114,0.117 (NNLO), MSTWO8 with as(Mz) = 0.1202 (NLO) and
as(Mz) = 0.1171 (NNLO), and ABKMO09 with as(Mz) = 0.1135 £ 0.0014 (NNLO). The
NNPDF results are obtained using., = 100 replicas. All uncertainties shown are one sigma,
for NNPDF and MSTW they are pure PDF uncertainties, while for ABKM thp include the
ag uncertainty corresponding to the given range. The band corresporide combination of the
most recent CMS and ATLAS measurements (left, see text) and to the CMSimeeent [216]

(right).

in Table[5.4.

As these processes are quark-dominated, their dependencei® weaker than the
ones previously considered. This is also due to the factth@Born level is indepen-
dent of the strong coupling and because they are affectedhbilles NNLO corrections
(though not negligible, as can be seen from the plots in[EM)5 Differences between
PDF sets are also less significant, except forlihe/WW~ cross-section ratio which is a
very sensitive probe of the quark flavor decomposition. titloa concluded that the LHC
data used here, and particularly tHécross-section ratio, can already provide some dis-
crimination between PDFs. Also, from the comparison betnid¢C data and theoretical
predictions for some of the standard candles here analydisgi@mination between NLO

] | ATLAS | CMS | Average |
o (W*) B (I*v) (nb) 6.26 £0.32 | 6.02+0.26 6.11 & 0.20
o (W~) B (I"v) (nb) 4154021 | 4.26+0.19 4.21+0.14
o (Z°) B(1*1™) (nb) 0.945 4 0.051 | 0.975 £ 0.044 || 0.962 4 0.033
c(Wr+W7)B(v) /o (Z°)B("1™) | 10.91+£0.28 | 10.54+0.19 | 10.65+0.16
o(WT) /o (W™) - 1.42140.034 || 1.421 +£0.034

Table 5.4:Recent results from CMS at ATLAS for the total cross-sectiongifor, W~ and Z°
production and their ratios, obtained with an integrated luminosity &6 pb~!, together with
their average. The average has been obtained assuming the two meassiterbe completely
uncorrelated.
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and NNLO sets may be drawn.
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Figure 5.11:The total cross-sections foF +, W~ and Z° production at the LHC 7 TeV and their

ratiose(W+ + W~)/a(Z°) ando(W)/o(W ™). Predictions are shown for the same PDF sets
and values ofvs shown in Fig[5.10, and compared to the ATLAS and CMS data summarized in

Table5.4, shown as a dashed band. Uncertainties shown are one sigihsdinte cross-sections,
and 68% confidence levels for cross-section ratios.
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5.3 The NuTeV Anomaly

In Ref. [222] the estimated value fem? y;; extracted from the NuTeV data was found
to be three standard deviations above the value given by tdned&d Model predic-
tion. In previous NNPDF releases [49/87] the implicationattthe determination of
the strangeness asymmetry(z, Q?) has on the so-called NuTeV anomaly [223] were
studied. By looking at the updated plot in Hig. 3.12, it is clémat the values

.. 92 22
sin® Oy [Ny Tey = 0-2277 £ 0.0017 , sin” By | pyysip = 0-2223 +0.0003  (5.3)

are effectively significantly different, but looking at tketerminations of the Weinberg
angle [48] corrected for the strangeness asymmetry usawgilnes from previous [49,87]
and current NNPDF2.1 sets it can be observed how the oneastgrar bar gets bigger
using NNPDF1.2, where a more reliable uncertainty deteation for strange flavor is
given, and in particular for NNPDF2.1

fol drvxs™(z, Q%) . [S7]

JFdex (u(z,Q2) + d—(z,Q2) (U +D7] (137 +0.77) 107%.

(5.4)
This result, that includes heavy quark mass effects, ieqear to the NNPDF2.0 result
that does not include them, thereby showing that the implaoeavy quark mass effects
on the determination of the strangeness asymmetry is veajl,samd can also be seen
that the three corrected values are in excellent agreemiémitire electroweak fit and
with each other.

Rs(Q2> =2

Determinations of the weak mixing angle sinzeW

0.245 .
NuTeVO01l NuTeVO01l NuTeVO01l EW fit

+ NNPDF1.2 + NNPDF2.0/2.1

0.24

0.235

02
Sin“Byy

0.23

0.225 f {(
¥ :

0.22

0.215

Figure 5.12:Determination of the Weinberg angle from the uncorrected NuTeV data W8]
[S~] correction determined from NNPDF1.2, NNPDF2.0 and NNPDF2.1. Thertaioty shown
on NNPDF2.0 and NNPDF2.1 is the one-sigma PDF uncertainty only.
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Figure 5.13:Comparison of NNPDF2.1 NNLO sets with different values of the stronglaag,
shown as ratios to reference set with = 0.119 at Q?> = 10* GeV?: gluon at small and large-
(top), triplet at largex and singlet at small- (bottom). To improve readability PDF uncertainties
are only shown for the,; = 0.119 set.

5.4 Accuracy of the NNLO PDF Determination

The aim of this Section is to discuss the main sources of taiogy that affects NNPDF
results and their influence on them. The main contributioRDd uncertainties comes
from the underlying dataset (more details are given in R&f[284]). Of course, another
factor that plays an important role is the choice of QCD patarseaused in the partonic
fit, as the value of the strong couplimg, but also of the quark masses. The variation of
these parameters allows for an estimation of the relatedrtainties on PDFs and can be
shown that in some cases their impact is comparable to tiiataf38,40,204,209]. In the
following are discussed the results obtained generatinguws fits with different values
of ag both at NLO and NNLO and also by repeating NNPDF2.1 NNLO dwrieation
with various subsets of the global dataset. Theoreticaédaimties will not be studied
here: as argued in SeCt. 1.5, at NNLO the uncertainty relatéigher order corrections
(as might be estimated by renormalization and factorinasicale variation) is usually
subdominant, as are those related to the treatment of hemrkg[38].
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Figure 5.14:Comparison between NNPDF2.1 NLO sets with different values of the strong
pling, shown as ratios with respect the reference fit with= 0.119. The PDFs shown are the
gluon at small and large-(upper plots), the triplet at large-and the singlet at smad-(lower
plots).

Dependence ony, (M)

First, the NNPDF2.1 NLO PDFs set is analyzed. Several setscwi() ) in the range
from 0.114 to 0.124 in steps of 0.001 are generated and threlabons between the
as (M) values and each PDF are computed as defined in Eq. (82) of Réi. [he re-
sults are shown in Fig, 5.115 as a functionvpboth atQ? = 2 Ge\? and@? = 10* Ge\~.
As expected, the most sensitive PDF is the gluon, and indesdlations gets weaker
increasing the scale because of asymptotic freedom. létemination the uncertainty
on o, at the 68% confidence level is considered\as, = 0.0012.

To determine the combined uncertainty on observables, dtieto PDF andy, un-
certainties, can be followed the procedure described in[B@4], that combines sets with
different values otv,. The method there described suggests to pack together aehelv s
replicas choosing in a proper way a certain number of replican each of the delivered
sets with variedy, values. The suggested proper way is to construct a Gaugstaitat
tion with the assumed central value and uncertaintynfoand then select according to
this distributionV,,, replicas from the original generated sets. In this way aoelpced
prepacked sets containing a number of replicas for eacle wdhu, which corresponds to
a Gaussian distribution with given mean and standard dewiaOf course the accuracy
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Figure 5.15:Correlation coefficient between PDFs amg M) computed assumings (M) =
0.119 £ 0.0012 at 68% C.L. Results are shown at low scal¥ (= 2 GeV?, left) and high scale
(Q? = 100 GeV?, right).

of the prediction using a combined PDdr#set depends on the number of replicgs, .

Following the PDF4LHC recommendation [106] for the combimaof PDF+x, un-
certainties, two prepacked PD&guncertainty sets withy, (M,) = 0.119 and uncer-
taintiesé,, = 0.0012 and A« = 0.002 as one-sigma errors are delivered. It is enough
to follow the procedure explained above to produce sets aithother values. Below
N.ep ~ 100 is observed a somewhat less accurate result for Higgs ptiodua gluon
fusion at LHC 7 TeV, while above this number of replicas in tihepacked set the result
looks independent a¥,.,,. In conclusion V.., =100 is recommended.

The same range af, values is covered also with the NNPDF2.1 NNLO treatment.
Results for the gluon, the quark singlet and isospin tripletisplayed in Fid. 5.13, where
the ratio of the central PDFs for each valuengfto the defaultn, (Mz) = 0.119 set is
shown, and compared to the PDF uncertainty on the centralfggtin, the gluon PDF
is the most sensitive ta, variations. In particular, looking at Fig. 5116 where theés
cross-section from gluon-gluon fusion is computed usirggNINLO sets with different
values ofa, and normalized to the central value, can be seen that itsndepee on the
value of g is remarkable: the factors discussed above that make tioa glistribution
dependent on thag value affect the result through a quadratic gluon PDF depecel
Moreover, the Higgs cross-section from gluon-gluon fusiodergoes NLO corrections
which are as large as the LO contribution, and NNLO corrastiwhich are about half
of the LO (see Ref.[[184, 204] for detailed studies of the nedasize of PDF andy,
uncertainties on this process).

The values of heavy quark masses are varied in the same wdseadyadone for
the NNPDF2.1 NLO fit:m,. = 1.5, 1.6 and1.7 GeV (in addition to the defaulth. =
V2 GeV), and withm, = 4.25, 4.5, 5.0 and5.25 GeV (in addition to the defauli, =
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Figure 5.16:Same as Fid. 59, but for NNPDF2.1 NNLO sets with different values,6M /).
Results are shown as ratios to the NNPDF2.1 NNLO referenceawith/z) = 0.119.

4.75 GeV). The dependence of PDFs on these variations is simithaat observed for the
NLO case.

Dependence on the Dataset

The focus is now set on the dependence of PDFs and their aimtégs on the dataset
they are extracted from. It is important to study into detfais dependence because if on
one side it is true that a wider dataset always carries mdoenmation, on the other side
it is also true that smaller datasets may be more consisteinnare reliable.

To better understand which are the consequences of redin@rataset to gain more
consistency of the fitted data, four different parton setgpmoduced on a smaller dataset,
that is a subset of the full NNPDF2.1 NNLO global dataset:

e HERA data only. This set is fitted on the smaller dataset of thee $ubsets con-
sidered, and at the same time is the most consistent. Itdasluthe combined
HERA-I inclusive data, the H1 and ZEUE; data and the ZEUS HERA-II data.
Parton distribution functions based on this dataset haa@ la¢en determined and
published by the HERAPDF group [114].

e Deep-inelastic scattering (DIS) only. From the global dataare excluded all
hadron-hadron data, i.e. DY and jets, which one may perhapsider theoreti-
cally or experimentally less clean than lepton-hadron.data

e Deep-inelastic scattering and Drell-Yan (DIS+DY) only. iFldetermination is in
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| Experiment| Global | HERA—only | DIS—only | DIS+DY | Collider—only |

[ Naw | 3357 | 834 | 2783 | 3171 | 1090 |
[ Total | 116 | 107 | 115 | 118 | 102 |
NMC-pd || 0.93 | [13.15] 0.88 0.94 [3.43]
NMC 1.63 [1.91] 1.69 1.69 [2.06]
SLAC 1.01 [3.17] 0.97 1.03 [1.23]
BCDMS || 1.32 [2.15] 1.28 1.30 [2.22]
HERAI-AV || 1.10 1.05 1.09 1.09 1.06
CHORUS | 1.12 [2.63] 1.08 1.13 [1.74]
FLH108 | 1.26 1.32 1.27 1.26 1.26
NTVDMN | 0.49 | [60.51] 0.45 0.54 [23.02]
ZEUS-H2 | 1.31 1.21 1.26 1.28 1.30
ZEUSF2C | 0.88 0.77 0.86 0.88 0.75
H1F2C 1.46 1.30 1.47 1.50 1.24
DYE605 || 0.81 [9.06] [6.86] 0.82 [1.34]
DYES66 | 1.32 | [12.41] [2.70] 1.32 [5.76]
CDFWASY | 1.65 [7.71] [13.94] | 1.64 1.07
CDFZRAP | 2.12 [3.74] [2.15] 1.91 1.22
DOZRAP || 0.67 [1.11] [0.67] 0.65 0.61
CDFR2KT || 0.74 [1.15] [0.99] | [1.25] 0.64
DOR2CON | 0.82 [1.28] [0.88] | [1.03] 0.83

Table 5.5: Quality of the fit for NNLO PDF sets based on datasets of varying size. tdtaé
number of data points is given in the first row, followed by ffenormalized to the number of
data points both for the total fitted set and for each of the individual @xpets. They? values
for experiments which are not fitted are also shown in square brackets.

principle the only truly NNLO one, as it excludes jet data, idnich only approxi-
mate NNLO matrix elements are known.

e Collider data only (lepton and hadron collider). In this ca¢he fixed-target data
are excluded. They are considered less clean because avihenkergy range at
which they are determined and also because of the nuclgatsarsed for example
in the case of neutrino DIS data. This determination is oatgnecomplexity than
DIS+DY, despite having a smaller number of datapoints, beeat also includes
jet data.

In each case, a set df,,, = 100 PDF replicas has been constructed. The NLO coun-
terparts of the DIS and DIS+DY PDF determinations were dised in Ref.[[87] and
are available from LHAPDF both for NNPDF2.0 and NNPDF2.E HERA-only NLO
PDFs were briefly discussed in Ref. [225]; collider-only PRIs presented here for the
first time.

The possibility of obtaining reliable PDFs from datasetsvifely varying size (more
than a factor three, in this case) without having to modify aspect of the methodol-
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Figure 5.17:Distances between central values (left) and uncertainties (right) fos RDEhe
HERA-only and default NNPDF2.1 NNLO fits. All distances are computechfsets ofiV,e, =
100 replicas.
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Figure 5.18:Comparison of NNPDF2.1 NNLO singlet, total strangeness and isotriples RDF
the global and in the HERA-only fits.

ogy (and in particular without having to change the parairetion, see Ref/ [85]) is an
advantage of the NNPDF approach, since it allows a mearliogfaparison of uncertain-
ties. Each of these PDF sets is made available through thdasth LHAPDF interface,
and each so far as it goes is as good as the default one, thdifialgnce between them
being the smaller amount of experimental information tlwsginto them.

In Table[5.5 the totak? and that of the individual experiments of the fits presented
above are shown, together with the global NNPDF2.1 NNLO fititue respective number
of points included in the fit. The columns of Tablel5.5 areesbly decreasing complexity
of the fitted data and the? values shown in square brackets correspond to the expgsmen
excluded from the corresponding fit.

To quantify the comparison between each of these PDF se&i8) agg used the dis-
tances introduced in Appendix A of Ref. [87] and already useprevious Chapters. In
order to assess the impact of individual data each of thecestidata fits, the default
NNPDF2.1, and the fit with immediately greater complexity eompared in turn. Some
of the pairs of PDFs with the largest distances will also begared directly. In this way
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Figure 5.19: Distances between central values (left) and uncertainties (right) fos RDEhe
DIS-only and default NNPDF2.1 NNLO fits. All distances are computeohfsets ofV,., = 100
replicas.
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Figure 5.20: Distances between central values (left) and uncertainties (right) fos RDEhe
HERA-only and DIS-only NNPDF2.1 NNLO fits. All distances are computedfsets ofV,., =
100 replicas.

the impact of individual data on PDFs is assessed.

Considering the first, smaller reduced dataset with only HER#& thcluded, rises the
problem that charged current DIS data are enough to deteratimost four independent
linear combinations of quark PDFs (see e.g. Ref.[226]). Trhdies that strangeness is
completely unconstrained: in the HERAPDF [114] set an inddpat parametrization is
only provided for the combinations+ s andd + 5, but not separately for strangeness. As
can be noticed from Table 5.5, the fit quality to NuTeV dataisemely poor, as also poor
is the description for all datasets which are sensitive écsthglet-triplet separation (such
as fixed-target DIS and DY data) to the light sea decompas({g8ach ad¥ production
data) and, to a lesser extent, the valence-sea separaticm &s neutrino data). Of the
excluded datasets, jet data are the best described bumatijinal quality is found.
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Figure 5.21:Comparison of NNPDF2.1 NNLO singlet, total strangeness and total vaRiDEs
in the DIS-only and in the HERA-only fits.

The distances for the HERA-only fit compared to the defaultaseeshown in Fig. 5.17.
Triplet, strangeness, sea asymmetry, and valence distriisuhave the largest distances
between uncertainties, and triplet and strangeness tealuas have also large distances.
For singlet and gluon are observed even larger distancedatye shifts in strangeness
and triplet are accompanied by a corresponding increadeein wncertainty, while the
increase in the uncertainty of the singlet and gluon is mooelerate, so the change in
central value ends up being statistically more significastcan be clearly seen in the
direct PDF comparison of Fifg. 5118. It can be clearly seenttiesinglet and gluon have
a distance from the NNPDF2.1 NNLO global fit that is more thae sigma, while all
other PDFs stay around the 90% C.LW and Z production at the LHC is considered,
the strange contribution is of order 15-25% of the total syesction([22[7]. Using HERA-
only PDF sets to compute cross-sections which dependsangstness gives a theoretical
uncertainty of that same order. This implies a very uncegaenomenology for this kind
of predictions. This uncertainty is not due to inaccuracH&RA data from which this
PDFs set is extracted, but to lack of information necessadigentangle and constrain
each flavor contribution.

Flavor decomposition considerably improves by includimghie fit data with neutrino
beams or deuterium targets, as is the case for DIS-only PB¥frdmation. Gluon and
singlet distances (Fig.5.119) show almost perfect agreemi¢imthe global fit, with only
a deviation around the half-sigma level in the largeegion of the gluon distribution.
Instead, distances between strangeness, valence anddglasymmetry determined in
this fit and those of the global fit, are rather smaller thansigma (though uncertainties
are still significantly larger). A direct comparison of tHiswith the HERA-only fit is
shown in Fig[5.21: the most remarkable improvement is afeskin singlet, strangeness,
and valence PDFs. The triplet distribution also shows afstgmt decrease in uncertainty,
but around the valence peak it only agrees with that of thieajlfit at the 90% confidence
level. This may suggest some tension between deuteriumm8adron collider data (as
has been discussed elsewhére [[76] 228]), though it coubdbals statistical fluctuation.
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Figure 5.22:Distances between central values (left) and uncertainties (right) fos RDEhe
DIS+DY and default NNPDF2.1 NNLO fits. All distances are computed fsets$ of/V,e;, = 100
replicas.
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Figure 5.23 Distances between central values (left) and uncertainties (right) fos R0IRe DIS-
only and DIS+DY NNPDF2.1 NNLO fits. All distances are computed from eét¥,., = 100
replicas.

Another interesting comparison can be made by looking atithstic improvement in
uncertainty distances going from Fig. 5.20 to Fig. 5.19.

Despite all the improvements commented above in compatastire HERA-only fit,
looking at Tablé 55 a poor description of all DY data is giveapecially forlV and Z
production, thus showing that a DIS-only PDF fit is not adéguar precision hadron
collider phenomenology. It is anyway remarkable that thaliof jet data description
Is pretty near to the one given by the global fit. The gluonritistion determined by
DIS scaling violations is in good agreement with that of thabgl fit, even in the large-
region where jet data have an impact on its uncertainty. IQRB4- fits based on reduced
datasets (such as HERAPDF or ABKM) do not seem [184] to provwidecgally good fit
to jet data, presumably because of their less flexible PD&mpeirization.
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Figure 5.24.Comparison of NNPDF2.1 NNLO isotriplet, total valence and sea asymmetrg PDF
in the DIS-only and in the DIS+DY fits.
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Figure 5.25: Distances between central values (left) and uncertainties (right) fos RDEhe
collider-only and default NNPDF2.1 NNLO fits. All distances are computethfsets ofV,¢, =
100 replicas.

It is natural then to consider the DIS+DY fit. Observing thetpf distances with
respect to the global fit represented in Fig. 5.22, it can e seat almost all PDFs are
statistically equivalent. If the distances with respe¢h®sDIS-only fit are also computed,
as shown in Fid. 5.23, it is clear that the inclusion of D data provides information
that helps flavor separation: the uncertainties of the flalemomposition are strongly
reduced, as can also be seen by directly comparing PDFSSE2i).

The gluon presents a shift of about half a sigma of its centahle at largee. This
shows explicitly that jet data has an impact on gluon PDFstraiming it at large: where
no other dataset among the ones used in the global fit inchele¢eded information.
Also a related slight shift of the singlet and valence disttions is observed.

Finally, the case of a collider-only fit is analyzed: the satatasets as in the HERA-
only fits supplemented by the Tevatron weak-boson produetra inclusive jet produc-
tion data are used. Comparing from Tablel 5.5 the values ofatiaé > for this fit and
the global one, a significant improvement frorth=1.16 of the latter ta> =1.02 of the
former is noticed. This fact supports the idea that a callmldy dataset might be more
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Figure 5.26:Comparison of NNPDF2.1 NNLO gluon, singlet and triplet PDFs in the collider-
only and reference fits.

consistent than one which also includes fixed-target data.

In spite of this improvement, checking the distances wittpeet to the global fit
(Fig.[5.25) reveals that almost all PDFs undergo a shiftebtie-sigma level, with uncer-
tainties significantly larger in the collider-only fit. Thessgtription that this set gives
of fixed-target data is generally poor, especially for deute data (such as NMCpd
or DYE866), which control the up-down separation, and thauwtin data (which con-
trol strangeness). These increased uncertainties endnipnemating also the singlet
and gluon PDFs, as shown by the distance computation andrégt (’-DF comparison
(Fig.[5.26). The extremely poor determination of strangsrand light quark asymmetry
PDFs and the slightly better but still rather poor determameof valence, triplet and even
singlet PDFs show that a collider-only fit at present doepnmtide competitive accuracy
for phenomenology.

5.5 Determination of ag(M,) Using NNPDF2.1 NLO

The value of the strong coupling constant is a fundamentakitient for collider phe-
nomenologyl[229]. If for example the gluon fusion channelHiaggs production is con-
sidered, the dominant source of uncertainty is due to theevaf o, (M) [204]. The
PDG [47] value is determined by a combination of results iolethby different processes
as ther decay rate and the totat e~ — hadrons cross-section, which are independent of
PDFs, but also DIS data, which indeed depends on them. The galen in Ref.[[229] is

a, (M) = 0.1184 = 0.0007 (5.5)

and as the uncertainty in this result may seem too optimggtien the spread of value
on which is based and the significant dependence on the patiter order of some of
them, the use of a somewhat more conservative estimate ahtertainty has been rec-
ommended([204, 230], such @&, = 0.0012 at 68% confidence level for LHC phe-
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nomenology.

To exploit the same data used for PDFs determination tomi@tera value oty (1)
is interesting in that it is possible at the same time to takeatage of the dependence
on the coupling of scaling violations as well as that on imdiral hard matrix elements
of the various processes under consideration. A quite atedetermination is therefore
expected. However, in such a determination the value,aé necessarily correlated to
the best-fit form of the PDFs, and thus subject to potentiatses of bias, such as for
example an insufficiently flexible PDF parametrization.

An example of the possible pitfalls of a simultaneous deileation of PDFs andy;
is highlighted by the analysis of Ref. [231], in which the extion ofa, from BCDMS
and NMC deep-inelastic scattering data was performed usingethodology (scaling
violations of truncated moments) which avoids completély tse of parton distribu-
tions. The result foundy, (Mz) = 0.124735%, had rather different central value and
uncertainties than those obtained by direct analysis ostree BCDMS ¢, (M) =
0.113+0.005 [232]) and NMC ¢, (M) = 0.117+3:9t [233]) data by the respective col-
laborations. This suggests that the latter results, obthirsing a PDF parametrization,
were biased by it.

The fit to o, that will be discussed in this Section is determined usimgateviously
presented NNPDF2.1 NLO parton set (an analog determinasorg the NNLO set is
given in [234]). The NNPDF methodology, as widely commenisdntended to mini-
mize the parametrization bias through the use of a Monte @Ggpooach combined with
neural networks as underlying unbiased interpolatingtions. Moreover, the use of the
NNPDF approach allows for the analysis of different datséthout having to retune
the fitting procedure (such as, for instance, the form ofgsaptarametrization) according
to the size of the dataset. This enables a direct comparisaaiues ofa, obtained from
different subsets of data which enter the global fit, and atsanalysis of the correlation
between individual datasets, individual PDFs, and theevafuy,. In this way, it will also
be possible to check if DIS data systematically settle orelovalues ofx, than hadron
ore™e~ collider data.

The quality of the fit as it is delivered by the NNPDF collaliara, i.e. as a Monte
Carlo sample, is a random variable which tends to a constéun ¥@r an infinite number
of replicas. The size of the fluctuations of th&is of the order of the square root of the
number of data points included in the &, while the size of fluctuations of the average
over a sample ofV,., replicas decreases awé{f. The value of they? for a typical
NNPDF fit (with N4,, = 3338) is shown as a function aW,., in Fig.[5.27. To reduce
fluctuations in order to be sensitive to variations of thaltgt by a few units one needs
for each value ofv, a number of replicas of the same order of magnitude as the @umb
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Figure 5.27: Left: The x? as a function of the number of replic@é.., for NNPDF2.0; the
horizontal line shows the value fo¥.., = 500. Right: The uncertainty, » Eq. (5.6) as a function

of N, , averaged over all values of. A fit of the form AN@I},/2 is also shown.

of independent data points. This implies a quite large nurabeeplicas to determine;,
and thus a rather computationally intensive effort.

The uncertainty on the value of thé due to the finite size of the replica sample may
be computed using the so-called bootstrap method. Narhelgample ofV,., replicas is
divided into N,,,,; disjoint partitions withﬁrep = Niep/Npart replicas each. The variance
of the x* for the full N,., replica sample is then found from the variance of ffig,;
valuesy? of each replica subsample according to

Npart Npart 2
R IR 1
(00 = 5— |7 2 (W) - (N > Xi) : (5.6)

part part k=1 part k=1

The value obr, 2, averaged over all the (eleven) valueswgto be considered, is displayed
in Fig.[5.27. A fit of the formA N2, also shown in Fig.5.27, shows that the expected
decrease of the fluctuations with N, is borne out by the data.

The procedure for the, determination is quite simple: once a sufficiently largecdet
PDF replicas has been produced 9y, fixed values ofy,, for each of these values the
corresponding? and their uncertainty, - Eq. (5.6) are computed. Then, a parabolic fit
is performed on thesg? values, seen as a function @f. The quality of the parabolic fit
is then determined by evaluating the correspondd'glag/NdOf, With Ngor = N,, — 3. A
reasonable value Qﬁar /Naor may be used to confirm that the parabolic approximation
to x*(«,) is adequate in the range @f under investigation. The best value for the strong
coupling constant is then given by the minimum of the paralanid theAy? = 1 range
gives the uncertainty on it at a 68% confidence level. Thén&rtincertainty due to the
finite size of the replica sample is determined by error pgagian ofo,» Eq. (5.6) on the

position of the minimum of the parabola.
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Figure 5.28: The x? as a function ofo, (M) for the NNPDF2.1 global fit. The statistical
uncertainties in thg? for each value ofv, have been determined from EQ.(5.6). The solid line is
the result of a parabolic fit.

The number of replicas used for each valuexgis N,., = 500, with equally-spaced
larger sets withV,,, = 1000 meant to increase accuracy. Together with the global
NNPDF2.1 NLO fit, the two reduced sets over HERA- and DIS-ord{acare also con-
sidered, along with the NNPDF2.0 global and DIS-only setsisiitering the HERA data
only fit, the sensitivity ton, is weaker due to the much smaller size of the data sample,
and so the range af, values is enlarged as shown in Tabl€ 5.6 to ensure that tagdac
of the minimum is more or less at the center of that range. biel&.6 are also gath-
ered thex values and their respective number of replicas for the NNRDElobal and
DIS-only fits.

In Fig.[5.28 the parabolic profile of? as a function ofn,(M7) is shown for the
NNPDF2.1 global fit. The results for the DIS-only and HERAyodata fits are presented
in Fig.[5.29. The numerical values of each fit are summarinetable[5.V, where the
values and uncertainties of, (M) are shown, with thexp experimental uncertainty
determined from thé\ x? = 1 range and with theroc propagated procedural uncertainty,
due to the finite size of the replica sample. The quality ofptasbolic fit is also shown
in each case through théar/NdOf value. The fits denoted by thred. label are simply
equal to the respective standard fits but with,, = 500 for eacha value considered in
the procedure.

The fact that a further increase in the number of replicasl is@ot needed can be
seen by looking at the procedural uncertainty: its value iganeral very small and with
Niep = 500 for all s values almost no fluctuation at all is observed on the unicgyta
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Figure 5.29:Same as Fid. 5.28 but for a fit to DIS data only (left) and to HERA data onliat]rig

2.1 HERA-only
as (Mz) | Nrep
0.100 1000
2.1 global H 2.1 DIS-only ‘ 0.102 500
as (Mg) l Nrep as (Mg) l Nrep 0.104 500
0114 500 0.114 500 908 1000
0.115 500 0.115 500 0110 200
0.116 1000 0.116 1000 0112 1000
0.117 500 0.117 500 0114 500
0.118 500 0.118 500 0115 200
0.119 1000 0.119 1000 0116 1000
0.120 500 0.120 500 0117 500
0.121 500 0.121 500 0118 200
0.122 1000 0.122 1000 0119 1000
0.123 500 0.123 500 0120 500
0.124 500 0.124 500 0121 200
0.122 1000
0.123 500
0.124 500

Table 5.6:The values ofys (M) and the number of replicas,., used in each case for various
determinations ofvs (Mz).

thus confirming the reliable determination of the finiteesimcertainty. Also, the change
in value ofa is always smaller than the procedural uncertainty as thebeuwf replicas
is decreased. Theg? values of the parabolic fit are expected to follow#adistribution
with Ny = 8 degrees of freedom for the global and DIS fits, awgd; = 12 for the
HERA only fit. The standard deviation q%ar/]\fdof is thus expected to be of ordes,
as indeed observed. Another check that has been perforrtedxslude the points at the
edge of the fit, adding extra parameters: it follows thatltesre almost unaffected and
no improvement in fit quality is observed.

In Fig.[5.30 the results for various best-it values are shown. It is interesting to
notice the correct behaviour of uncertainties, that ireeeahen reducing the size of the
dataset, and in particular the good agreement between tiRDRR.1 best-fit value and
the published PDF value. Moreover, the found experimermakrtainty is surprisingly
small. Interestingly, the value found using HERA data oniyigch smaller, even though,
because of the considerable (almost sixfold) increasatisstal uncertainty it is still less
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| | as (Mz) | Xpar/Naot |
NNPDF2.1 0.1191 £ 0.0006 £ 0.0001P°¢ 1.6
NNPDF2.1 DIS—only 0.1178 & 0.0009%*P + 0.0002P°¢ 0.7
NNPDF2.1 HERA—-only 0.1101 £ 0.0033%*P 4 0.0003Pr°¢ 0.7
NNPDF2.1red. 0.1191 £ 0.0006%*P + 0.0001Prec 1.5
NNPDF2.1 DIS—onlyred. 0.1177 £ 0.0009%*P £ 0.0002P°¢ 0.5
NNPDF2.1 HERA-onlyed. | 0.1103 + 0.0032%*P + 0.0004P¢ 1.1
NNPDF2.0 0.1168 £ 0.0007°*P 4 0.0001P°¢ 0.4
NNPDF2.0 DIS—only 0.1145 £ 0.0010%*P £ 0.0003P°¢ 1.4.

Table 5.7: Values ofa, (M) and associated uncertainties. All uncertainties shown are 68%
confidence levels, with the experimental uncertainty obtained by requixirg = 1 about the
minimum, and the procedural uncertainty from propagation,afEq. (5.6) due to finite size of
the replica sample. The quality of the parabolic fit as measureﬂ%gyj\fdof is also shown in
each case. For the global, DIS-only and HERA-only fits (first threesypthe maximum number

of replicas, given in Talp. 5.6, has been used. The three redudethris (subsequent three rows)
only differ from these because of the use/af,, = 500 for all o values. The NNPDF2.0 fits of
the last two rows also haw¥,., = 500 always.

than threes from the global fit. The fact that HERA data prefer a lower vadfie, may

be related to the deviations between HERA data and the peeldiitO scaling violations
which was observed in Refs. [163, 164] for the smallesind Q?> HERA data. These
may be affected by small-resummation or saturation effects. As shown there, scaling
violations in this region are weaker than predicted fromlbbaviour observed in other
kinematic regions, and thus would tend to bias the value,afownwards. A dedicated
analysis would be required to prove conclusively that thithe case. Focusing on the
DIS-only result, there is no evidence that a lower valuevpfis preferred: the results
found in this case are perfectly compatible with the glolatfthe one-sigma level.

Itis possible to briefly comment on theoretical uncertasmtn NNPDF fit, without the
intention of giving to this issue an exhaustive and detadlescription. A possible source
of theoretical uncertainty could be introduced by inefficies of the global PDF fit (such
as, for example, any residual bias related to parton digtabs). This kind of uncertainty
should show up in the behaviour of thé as a function ofy,, either as point-to-point fluc-
tuations or as a systematic deviation from the underlyingased quadratic behaviour (if
they are correlated to the value @f). The good quality of the parabolic fit suggests that
these uncertainties are small, and thus that NNPDF unogrigian accurate assessment
of the total uncertainty due to the statistical and systenogicertainties in the experimen-
tal data. Indeed, the uncertainties due to NNLO and highgersrin perturbative QCD
introduced in the computation of the several different psses included in the analysis
still need to be assessed and surely affect up to some ekiemésults here presented.
Other possible sources of theoretical uncertainty may leetalthe lack of resummation
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Figure 5.30: Left: Graphical representation of the valuescaf(M) of Table[5.Y (reduced
replica fits not included). Uncertainties have been added in quadraRight: comparison to
other recent determinations af (M) from NLO PDF analysis. The PDG value of Réf. [229] is
also shown.
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Figure 5.31:Same as Fid. 5.28 but for the NNPDF2.0 global fit (left) and NNPDF2.0 DI o
fit (right).

of higher order QCD corrections in some kinematic regionstaride treatment of heavy
quark mass effects. In cases in which both NLO and NNLO detextions are available,
such as Refs[ [82, 94], a sizable downward shift of the bestfite, of order of several
percentage points, has been observed when going from NLONtdON Looking at the
more recent result obtained using NNPDF2.1 NNLO in Ref. [2f4d stability is found:
the shift is around 1.5%.

In order to give an approximated estimate of the impact ofheaark masses treat-
ment, thea, fit has been also performed using the NNPDF2.0 [87] PDF sei, Wwith
global and DIS-only dataset, which is based on a zero-massl@flavor number scheme
in which all heavy quark masses are neglected. In these ffits; #alues considered in
the procedure have a number of replicgs, = 500. Considering again Table 5.7 and
Fig.[5.30, a remarkable downwards shift is observed for beghNNPDF2.0 determina-
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tions here considered: if one were to conservatively esénige uncertainty due to heavy
guark mass effects as the difference between the NNPDFA.NE®DF2.0 results one
would get, for the global fitAa ~ 0.002. In the DIS-only case a still larger shift is
observed, because hadronic data is unaffected by the eaatthheavy quark mass ef-
fects. The theoretical uncertainty due to neglected peative higher order corrections
is expected to be of the same order of magnitude, being tleugaiminant uncertainty for
these fits but also for the ones from other groups.

The result obtained from the global NNPDF2.1 NLO set is camgavith the ones
determined using PDF sets from other groups: MSTW [82], CTEHII]and ABKM [94]
PDF sets. The CTEQ collaboration is the only one among thepgrbere considered that
to determine the best fit value and its uncertainty studiesiédpendence of the fit quality
on ay, as is done here. The other two, ABKM and MSTW, fit thevalue introducing it
as a free parameter in the parton fit performed to determm®D¥F set. In this way they
obtain a correlated Hessian matrix which mixes the PDF peatars witha;. The equiva-
lence of then, uncertainty obtained from either methods is explicitlywwhan Ref. [203].
Observing the plot in Fig. 5.80, the agreement among thewsaudifferent results is clear.
It can be seen that CTEQ and MSTW [82, 203] have a quite largésttal uncertainty.
This is due to the tolerancee [97] criterion, that is based suestantial rescaling of the un-
certainty ranges in parameter space. In NNPDF procedweésthiot needed because the
x? fluctuations are kept under control by a suitable choice @fike of the Monte Carlo
sample, as discussed above. The dataset used in the ABKMnileddion is smaller than
the other ones because it does not include collider jet aotbvboson production data.
The CTEQ and MSTW collaborations instead use almost the sataseat as done in the
NNPDF analysis (see SeCt. R.5).

As a cross-check, the Gaussianity of the distribution ofiltesobtained performing
a fit experiment by experiment is verified, applying a variainthe method proposed in
Ref. [235]. The results are displayed in Hig. 5.32 togethéh wie uncertainties due to
the finite size of the replica sample, determined as above.e&ch experiment that is
included in the global fit already performed, a dedicatedlpalic fit to thex? profile
Is operated. The results for each of them (among the oneshidvata minimum in the
investigated range) are shown in Tablel 5.8. Only NMCraticASLCHORUS, H1F2C
and FLH108 data have no minimum in the fitted range.

The distribution of results can be studied defining the pull

L (My) — atot (M
p = 2 (Mz) = ol (Mz) (5.7)
1,2 tot,2
Oa, + Oa,

wherea!, (M) is the best fit value for theth experiment and’, the associated statisti-
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Figure 5.32:The y? profiles for the individual experiments in the NNPDF2.1 global fit together
with the results of the corresponding parabolic fitejo The uncertainties due to the finite size of
the replica sample are shown on each value.

cal uncertainty, obtained from th&y? = 1 rule. The pulls are summarized in Tablel5.8
and displayed graphically in Fif. 5)33. A Gaussian fit to thstribution of pulls is per-
formed and also displayed in Fig. 5133. The Gaussian fit ioipdgagreement with the
histogram data with meaf’) = 0.04 and standard deviation, = 1.3. The standard
deviation would be further reduced somewhat if finite-sineartainties were included.
This however would require a lengthy correlation analysSitfie conclusion is that the
value of the tolerance required to get a perfectly Gaussgtralition of pulls is smaller
than1.3 — a value which is clearly compatible with a statistical fluation.

Thanks to the particular procedure used, that is the sandatasets of different size,
the issue of whether and why different datasets may preféareint values ofo, can
be addressed. In Fig. 5134 thé profiles for the global NNPDF2.1 fit, already shown in
Fig.[5.32, are compared to the same quantities determimeiedit to DIS data only. The
interesting behaviour of the BCDMS dataset is discussed:readt observed in several
other studies [82, 232, 2B6], this dataset seem to prefenvarlsalue ofag, in particular
lower than Eq.[(5J5). There is a clear difference in Fig. Bo8tween they? profile for
global or DIS-only fits. This seems to suggest that, using\@tosalue ofag, the parton
fit would show a better quality because of this allowed dicecin DIS data, but in the
global fit the quality that in DIS sector improves would wors®mewhere else.

A clearer picture of the situation can be gained by studyireggdorrelation([40] be-
tween parton distributions and the value of tftefor individual experiments. Looking
at the best-fit results, if nonvanishing correlations aesent means that the fit for that
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Figure 5.33: Distribution of pulls, Eq.[(5]7), for the value af, preferred by the individual
experiments included in the global fit. These pulls have been summarizedl@blan).
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specific dataset can be improved by changing the given PDFeldabons of opposite sign
denote a “tension” between different datasets: the PDFllsgin opposite directions.
As an example, here the gluon PDF is considered, and thelatiorecoefficient for a
pair of values ofr as a function ofy, is computed and the result is shown in FFig, 5.35 (all
from a set ofV,., = 500 replicas). While for large values of; all correlations have the
same sign, near the best-fit value of the strong coupling HERRBECDMS data on one
side and jet data on the other pull the gluon in opposite tioles. Hence, a determination
of a, including DIS data only can easily be biased. The fact that B&ta prefer a
lower value ofa, in a DIS-only fit, but not if the gluon is constrained by jetaatas also
found recently in Ref[[236], in the context of the MSTWO08 parttetermination. How-
ever, in that case the BCDMS data was also found to significdmdly downwards the
value ofa, for the DIS fit, perhaps due to the fact that the MSTW gluon petaization,
though more flexible than that of other groups, is still lessgilile than that of the present
analysis.

The fact that runaway directions for thé may appear in the joint,-gluon space can
be understood by noting that in DIS the gluon is determineddajing violations, hence
a smaller value ofy, can be partially compensated by a larger gluon and conyersel
However, the jet cross-section pins down the size of therg(@bthe rather larger scale
of the jet data) thereby quenching this potential instgbildence, can be concluded that
even though in this fit the DIS-only value of is not significantly smaller than that for
the global fit (possibly due to the great flexibility of the ttional form of these PDFs), a
fit to DIS data, and specifically to BCDMS data, has a potentsthipility in the direction
of lower values ofv, which is only kept under control by the inclusion of jet data.
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Experiment al + o’
s o

[P

NMCp
BCDMS
HERA-I|

ZEUS-H2

NuTeV

ZEUSF2C

0.1192 £ 0.0018
0.1204 £ 0.0015
0.1223 £ 0.0018
0.1170 &= 0.0027
0.1252 £ 0.0068
0.1144 £ 0.0060

-0.05
-0.78
-1.65
0.75
-0.89
0.77

EG05
E866
CDFWASY
CDFZRAP
DOZRAP

0.1168 £ 0.0100
0.1135 £ 0.0029
0.1181 £ 0.006
0.1150 £ 0.0034
0.1227 £ 0.0067

0.22
1.87
0.16
1.18
-0.53

CDFR2KT
DOR2CON

0.1228 £ 0.0021
0.1141 £ 0.0031

-1.67

1.57

Table 5.8:The pullsP; Eq. (5.7) for individual experiment included in the NNPDF2.1 global fit
case, computed for each experiment which has a minimum in the range cedside
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Figure 5.34:Comparison of the? profiles for the global NNPDF2.1 fit (same as in Fig. 5.32;
red, solid curves) to those determined for the DIS-only NNPDF2.1 fiefgrdashed curves).
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Figure 5.35:Correlation between thg? and the input gluon as a function af, (M) for z =
0.05 (left) andx = 0.1 (right) for the NNPDF2.1 global PDF set.

Summarizing the results discussed in this Section, thexgtoouplinga, has been
determined from a next-to-leading order analysis of preegsised for the NNPDF2.1
global parton determination. A value, (M;) = 0.1191 4+ 0.0006** has been found,
where the uncertainty includes all statistical and systenexperimental uncertainties,
but not purely theoretical uncertainties, which are expetd be rather larger. A detailed
study of the dependence of results on the dataset has befennped, analyzing each
single experiment included in the global fit. Finally, ha®ierovided evidence that
individual data subsets can have runaway directions dueddypdetermined PDFs, thus
suggesting that a global dataset is necessary for a retigdemination.



Conclusions and Outlook

In this thesis the main problematics related to the deteatian of a set of parton distribu-
tion functions have been presented and, after a brief dismu®n the strategies adopted
by other groups to address them, the focus has been set on Nhieihodology.

The fit performed on a global dataset using the combined img@h¢ation of Monte
Carlo sampling in the space of data, neural network parana¢itvn, and genetic algo-
rithm minimization allows the NNPDF collaboration to delifPDF sets which behave in
a statistically consistent way and minimize parametriabias.

Three PDF sets are presented and analyzed: NNPDF2.1 LO, &HdNNLO. Heavy
quark mass effects are taken into account through the ingi&tion of the FONLL-
A GM-VFN scheme for the NNPDF2.1 NLO parton set and using FONLfor the
NNPDF2.1 NNLO delivery. At LO heavy quark mass effects imére to a much minor
extent. The NLO PDF set has been compared to the previous IRRPDelease, which
does not include HQ mass effects, and also with parton sais dther groups as CT10
and MSTWO08, which instead include them but through diffetezatments. The leading
order determination has been compared both with the NLO adewndth the LO PDF
sets from other groups as MSTW and CTEQ. The NNPDF2.1 NNLpatt, after the
usual comparison to the NLO release, has been instead cechpaMSTWO08 NNLO
and ABKMO09 NNLO. In general, has been verified consistencyhatdne-sigma level
among NNPDF releases (with the only exception of LO deteation, where theoretical
uncertainties are relevant) while rather significant shifive been observed in specific
cases in the comparison with results from other groups,ceshein the NNLO analysis.

Several sets of PDFs have been determined with varying valiue; and of the heavy
quark masses:., my, to allow the computation of the respective uncertainties.

Theoretical predictions for a set of LHC observables (isiole vector boson, top
and Higgs production) have been computed for benchmarlgamst results from other
groups and against first LHC available measurements. Thageha this kind of inclu-
sive cross-sections has been found to be rather small wiskrding heavy quark mass
effects. The change is instead substantial when lookingsg¢rwables that directly probe
heavy quark distributions.
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Also, has been shown that an estimate ofith@alue is possible exploiting the simul-
taneous dependence of the global dataset on PDF& awdlue. It has been determined
as(Myz) = 0.1191 £ 0.0006°*P, with a surprisingly low statistical uncertainty.

Having determined LO, NLO, and NNLO PDF sets using the vemyesmethodology
and the same data, allows for the assessment of perturlséividity. Excellent conver-
gence of the perturbative expansion within the kinematgore covered by the experi-
mental data has been shown. Moreover, has been shown thabthded uncertainty on
PDFs at LO is only a fraction of the theoretical uncertainityat is not included). Looking
at the NLO fit it can be estimated as dominant in this case. Difeg$ets produced by the
NNPDF collaboration as well as the ones delivered by otheugg only include data’s
experimental uncertainties. A similar estimate of theoattuncertainty can be given
also for the NLO determination by looking at the followingrpebative order (NNLO):
in this case the size of theoretical uncertainty is smalantthat of experimental one,
thus at NLO and beyond it is reasonable to neglect theotetragertainty. The theoreti-
cal uncertainty could be evaluated in a more precise waydch single perturbative order
determination by varying the renormalization and facttian scale during the PDF fit.

The inclusion of the amazing amount of new data that the LH@Ilsvering will be
the main target in the next years. The NNPDF2.2 PDF set, #sablen briefly presented
in this thesis, already includes a part of LHC data througtréweighting technique. The
NNPDF2.3 parton set [50] includes sistematically all tHevant LHC data. The presence
of these data will be more and more important in parton fitadileg to much better
constrained PDFs. Also, new processes will be availableeseg¢mhergies at which the LHC
operates, hopefully allowing for a competitive PDF deteraion using collider data, for
exclusion of the less cleaner fixed-target data and in geoEiav energy measurements.
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Appendix A

Heavy Quark Coefficient Functions to
O (as) in Mellin Space

Neutral Current Coefficient Functions

In this first part of Appendix A the analytic Mellin transforofi the z-space? (o) heavy
quark neutral current coefficient functions is computed igrdiscussed the implementa-
tion and benchmarking of FONLL neutral current structunections in the FastKernel
framework. The corresponding results for charged curreattire functions follow be-
low.

The z-space gluorO (a,) heavy quark coefficient function is given by EQ. (1.1.30).
Its Mellin transform is defined in the standard way as

2 (14+4m3 /Q*)~! 2
ny),1 Q h — ny),l Q
o5 (N, _m2) — /O dz2N1Op (z —m2> . (A.1)

h

It is easy to see that the integral Eg. (A.1) can be writteménfollowing way

1
1
OSTZ)’l (N,e) = TRaN/ dt thl{ [1+ 2a(2e — 1)t + 2a°(1 — 6e — 4€°)t*] In ! +Z
O J—
—[1+ da(e — 2)t — da*(e - 2)¢v} (A.2)
1
1
= TRaN/O dtthl{ [1+ (1 —3a)t — (14 4a — 9a*)t*] In J_FZ
—[1+ (1 =9a)t —a(l— 9a)t2}v}, (A.3)

wherea (e) = (1 + 4¢)~ " is defined to simplify the coefficients. The needed integaas
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thus
! N-1y. LF0 ' N-1
JI(N)= [ dtt" 7" In——, Jo(N)= [ dtt" v, (A.4)
0 1—wv 0
since extra powers dgfcan be accommodated by a shiftihby an integer. Here as usual
v=(1-1)"Y2/(1— at)"/2

The two integrals are related by an integration by parts.htoshis, is needed

d, 1tv _ dvd 1+
dt  1—v  ditdv 1—w
_ <_l 1—a )(2(1—@2&))
2(1—t)12(1 —at)?2/\ (1 —a)t
1 1
= —— . A.5
F 0= V21— at)i 2 (A-5)
Thus )
1 d 1+v 1
JiI(N)=—= [ attV—1 = —I(N A.6
1( ) N 0 dt n 1 — N ( )7 ( )
where .
I(N) = / =11 — )7V2(1 = )2 (A7)
0

Note that the boundary term in the integration by parts yesdor allRe/N > 0, and
thus its analytic continuation vanishes for all so it can be safely ignored. Trivially
Jo(N) = I(N) — I(N + 1). The integral/ (N) may be evaluated in the usual way in
terms of a standard hypergeometric function:

N,N +La). (A.8)

Note that whem = 0, this reduces td (N, 1), as it should.

Thus it is obtained

) —3a a—9a>
Cégl)l(N,é) :TRaN{[%[(N)-F %VEII(N_FU _%%](‘N—'—m}

—[I(N) =I(N +1)+ (1 = 9a)(I(N +1) = I(N +2))
—a(1 = 9a)(I(N +2) — I(N +3))] }

- TRaN{(% — DI(N) + (522 1 9a)I(N + 1)

—(SE — 1+ @)1 9)I(N +2) —a(l = 9)I(N +3)} . (A9)

This result is the required ingredient to implement the FQMLneutral current structure
functions in the FastKernel framework.

A cross-check of the Mellin transform of the massive coedfitifunction Eq.[(A.D)



is provided by the fact that its massless limit coincideswiite Mellin transform of the
x-space massive asymptotia;, 0) coefficient function, Eq.[{1.134). To this purposes,
Eq. (A.9) needs to be expanded near 1. Neara = 1, i.e. ¢ = 0, the asymptotic
expansion

( 3) ~=T(n+3T(N+n)
3)2T(N)? nz% (n!)?

[2¢(n+ 1) —¢(n+ %) — (N +n)—1In(l —a)](1—a)", (A.10)

is needed, so that

o0

1 I(n+ HI(N +n)
L(3)T(N) ,; (n)?

2¢(n+1) —¢(n+3) — (N +n)—In(l —a)](1—a)". (A.11)

I(N) =

Then = 0 term then gives th& e collinear divergence, which is subtracted by the mass-
less coefficient function: as—0

I(N) = —In(4¢) — 2vp — 1[)(%) — (N) + O(e). (A.12)

Substituting in Eq.[{A.D) the result

_N3+3N2_N<2+N+N2)(lne+7E+¢(N))]

(nl)vl — [
Gy (Ne) = Tx N2(I+ N)(2+ N)

+0(e),
(A.13)

is obtained, as expected: the coefficient of the singula@ifyrecisely the LO anomalous

dimensionyy (V). Therefore it has been checked that the massless limit isepiso

reproduced,
Cénl),l (N, 6) 4 0(6) — C(m,O),l (]\f7 6) ’ (A14)

g

with the massive asymptotic coefficient function given b/ kiellin transform of EqL(1.134),
as desired.

For completeness, the correponding expressions fotthe,) heavy quark coeffi-
cient function for the longitudinal structure functidf, . is also provided, which is im-
plicitly contained in Eq.[(A.B) sincés, . = Fr. + FL .. Thez-space expression for the
longitudinal heavy quark coefficient function is

2
" 1
oot (z @ ) =0 (W? —4m?) x T | ~8¢z"log i

m2

+4vz(1—2)| . (A.15)

— v



Its Mellin transform can be computed using the integralsuised above, with the result

2

n I(N +2
Cé,;“ <N, ﬁ) = Tra¥t? [—86@—( +2)

N 12 +4(I(N+1)—I(N+2)(14+a)+I(N+2)|.

The massless limits of the- and N-space results are straightforwardly computed and
checked to be related by Mellin transformation as they otmht

Now the implementation and benchmarking of these resuliisarFastKernel frame-
work is considered. The major improvement in the FastKemnaehework as compared to
Ref. [87] is the inclusion of heavy quark mass effects in deefastic scattering structure
functions, following the FONLL-A general-mass schemé [3%] discussed in Ref. [87],
FastKernel requires to write down all the DIS observableslallin space and precom-
puting all the associated x-space Green'’s functions. Toexgeto extend FastKernel with
FONLL structure functions a formulation of FONLL in Mellirppace is needed.

Thex-space expression for the FONLL-A heavy quark structuretions, Eq.[(1.127),
can be easily written down iv-space as follows:

FYONIU(N, Q%) = FyY (N, Q%) (A.16)

2
0 (Q2 _ m2) (1 B g) [Fg(j;f’o)(N> QZ) B F2(77'th+1)(N’ QZ) 7
with the default damping factor as threshold prescriptlararder to implement Eql_(A.16)

in the FastKernel framework, the Mellin space expressidiiseoheavy quark coefficient
function in the(n,;), (n;,0) and (n; + 1) schemes are needed. While the last two are
known, the former was not available in a closed form suitdbteanalytical continua-
tion. The details of the computation have been presentedeabod the desired result is

Eq. (A.9).

With all the Mellin space heavy quark coefficient functionaitable, it becomes pos-
sible to implement the FONLL-A heavy quark structure fuons, Eq.[(A.16) into the
FastKernel framework. To show that tAé-space implementation has the required ac-
curacy, in Tablé_All forF;, . and in Tablé_A.P forfy, ., the results for the Les Houches
Heavy Quark benchmarkis [38] for FONLL-A obtained with theNAQ dis code [36], 51]
and with the FastKernel framework for various relevant galof()? are compared. The
benchmark settings for the PDFs andare used for this comparison. What can be seen is
that the accuracy on the FONLL heavy quark structure funstie essentially always be-
low the percent level, enough for precision phenomenolgtudies. For completeness
the analogous results for the case of the massive schenitsyagwere similar accuracies
are obtained, are also shown.



FONLL-A FFN
x| FONLLdis | FastKernel] Accuracy| FONLLdis | FastKernel| Accuracy
Q? =4 GeV?
10~° | 0.1507 0.1501 0.4% 0.1088 0.1091 0.3%
107* | 0.0936 0.0931 0.5% 0.0697 0.0698 0.1%
1073 | 0.0506 0.0504 0.4% 0.0392 0.391 0.2%
1072 | 0.0174 0.0177 1.5% 0.0136 0.0137 0.7%
Q? =10 GeV?
107° 0.563 0.561 0.4% 0.3598 0.3602 0.1%
1074 0.312 0.311 0.3% 0.2007 0.2011 0.2%
1073 | 0.1499 0.1495 0.3% 0.0981 0.0982 0.1%
1072 | 0.05056 | 0.05052 0.1% 0.0328 0.0327 0.3%
Q? = 100 GeV?
107° [ 2.28636 | 2.28577 | 0.02% 1.9779 1.9877 0.5%
1074 | 1.12186 | 1.12082 0.1% 0.9161 0.9184 0.3%
1073 | 0.48008 | 0.47919 0.2% 0.3644 0.3647 0.1%
1072 | 0.15207 | 0.15200 | 0.04% 0.1037 0.1038 0.1%

Table A.1: Results of the benchmark comparison for thig(z, Q?) structure function in the
FONLL-A scheme for the FONLLdis code [B86] and for the FastKernelecdresults are provided
at the benchmark kinematical pointsinQ?. Results for the massive (FFN) scheme are also given
for completeness.

FONLL-A FFN
x| FONLLdis | FastKernel] Accuracy| FONLLdis | FastKernel| Accuracy
Q? =4 GeV?
10~° | 0.0130174| 0.013094 0.6% 0.009077 | 0.009081 | 0.04%
10~* | 0.008347 | 0.008316 0.4% 0.005913 | 0.005910 | 0.05%
1073 | 0.004795 | 0.004778 0.3% 0.003511 | 0.003509 | 0.06%
102 | 0.001910 | 0.001907 0.2% 0.001403 | 0.001406 0.2%
Q? =10 GeV?
10~° | 0.073235| 0.073022 0.3% 0.049856 | 0.049982 0.2%
10~% | 0.041392 | 0.041251 0.3% 0.028402 | 0.028423 | 0.07%
1073 | 0.020754 | 0.020707 0.2% 0.014463 | 0.014456 | 0.05%
1072 | 0.007616 | 0.007595 0.3% 0.005350 | 0.005346 | 0.07%
Q? = 100 GeV?
107° | 0.471889 0.4729 0.2% 0.3955 0.397855 0.6%
10~4 0.2236 0.2235 0.1% 0.18656 | 0.186914 0.2%
1073 0.0920 0.09188 0.1% 0.0765 0.076393 0.1%
1072 | 0.027822 | 0.02782 0.1% 0.023079 | 0.023100 0.1%

Table A.2:Same as TableAl.1 for thE;.(z, Q?) structure function.

Charged Current Coefficient Functions

In this second part of Appendix A the analysis of the previpart is repeated for charged
current structure functions.



The F¥ charm structure functions in charged current DIS is giveQy(1.135). The
expression for structure functions in neutrino-inducedrgkd current scattering in the
FFEN scheme is

File.Q) = gsle.) + 1 {/5—5[ € (S )+

+ O 12, N)g (g,pﬁ) ] } (A.17)

with i = 1,2, 3. In Eq. (A.17) have used the following definitions:

Ny

/:2 2 2 2 1— . —_ __ ~p .
A D

2 2 (A.18)
== (“ Z_) A= ﬁ'

The explicitz-space expressions of thig( o) contrlbutlonsC o 10 the coefficient func-
tions are given in Refs| [44, 45]. The standard structuretfuns are related to those
defined in Eq.[(A.17) through

2
Ff = Ff, Fy =26F5 = xx]:g; Fi =2Fy, (A.19)
so that
Fi = Fy — 20 F] = 26 (F5 — AF)). (A.20)

Before Mellin- transforming the-space quark coefficient functions of Refs.|[44, 45]
they are all rewritten in the form

(@) = K6(1 — ) + f(2) + [g(2))+,

whereK is a constant andl(x) is regular function inc € [0, 1] (so in generaf(x) is not



regular inx = 1). It gives

C(2)
N
N
C5)(2)
N
N
N
C§(2)
N
N

1 72 143\
[ (1 H1
Cr —%—2(1+z)1n(1—z)+(1+z)1n(1—)\z)+(3—z)+
[ In(1—2) _In(l1—Az) 1 1 1—=2 1+ 22
Cp |4 _9 _ - _
U 1—=2 1—z+2(1—)\z)2 1—=2
1 7 1+
Opla+ —+ T Tk, e —
CF(+2A+3+ ) A)é( z)
1+ 2?)1
Cr {—% —2(1+2)In(1 —2)+ (1 +2)In(1 — A2)
2——z
(2:42-2) + 5557
In(1 — 2) In(1 — Az) 1 1 1—-=2 1+ 22
Cr |4 - —9 - .
F{ 1—2 1—2 =2 20 —rp2 1-2
1 7 143\
—Opla+ =4+ T Ka)o(1—
[ (14 22)1
Cr —%—2(1+z)1n(1—z)+(1+z)ln(1—)\z)+(1+z)+
[ In(1—2) _In(1—Az2) 1 1 1-—=2 1+ 22
4 9 - - .
OF_ 1—2 1—2 =2 20— 1=z

In )\]

.
(A.21)
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with K, = (1 — A\)In(1 — A)/A.

In /\]
(A.23)

The gluon coefficient functions do not need any further wartt are given by
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Ci"(z) = Tp22° —22+1){2In(1 — 2) — 2Inz — In[A(1 — A)]} +

2,9

1
1— Xz
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In order to transform to thévV-space the above-space expressions, in Tables ]A.3
and[A.4 are tabulated the Mellin transforms of all terms Imed. In these tables the
analytic continuation of the harmonic sum

-~ 1 (-1
51 = Si(N) Zj 7= O - o D,
is used, wheré (l) is the Riemann-function, with {(1) = g, ¥((l — 1)) is the
polygamma, andF (a, b, ¢; N) is the Gauss hypergeometric function .

As an example of use of Tables A.3-A.4, here is presented ahglete N-space
quark and gluon coefficient functions ok

1 ™ 14\

() _ _ A _ _ _

Cof (N) = CF{ (4+2)\+ 3 + o KA) 2(Sy — () +

(N +1)2 N N+1 (N+1)? N(N +1)
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Table A.3: Mellin transforms of the terms involved in the NldBarged current quark
coefficient functions.



f(2) MI[f](N)
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Table A.4: Mellin transforms of the terms involved in the Nlgbarged current gluon
coefficient functions.
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As a cross-check of the Mellin space results, it is possibleampute the asymp-
totic limit A—1 of these expressions. The asymptotic expansion of the ggparetric
functions is needed, Eq. (A10) up@@(X — 1) terms. In particular,

2P (LN +1L,N+20) = —(1+N) (In(1 = A) +95 +O(N +1)) + O (A - 1)),
(A.29)
21 (2, N,N+2;0) = =N(1+N) (In (1 = A) + v + O (N)) +O (A — 1)) . (A.30)



Substituting in Eq.[(A.27), one can see that all collineaavyequark logarithms and
that the massless limit of the massive charged current hgaagk coefficient functions
reduces to the usual ZM-VFN result, as known frorspace.

Now the implementation and benchmarking of the above resutt the FastKernel
framework is discussed. Analogously to the neutral cursentor, the FONLL-A charged
current structure functions in Mellin space can be written a

FOOPONY (N, QY = FGCM(N,QP) (A.31)

2
- 0(Q* - m?) (1 - Z;‘—) G OWL Q) = BTN QY)
with 7 = 1,2,3. The Mellin space expressions of the massive heavy quarficent
functions have been computed above, and the other ingtediérEq. (A.31) are their
massless limits and the standard Mellin transform of the \ZIMN coefficient functions.

With these results, the FONLL-A charged current structurefions Eq.[(A.31) have
been implemented into the FastKernel framework. As it hanlamne in for neutral cur-
rents, here the accuracy of this FONLL scheme implememtagitbenchmarked. Again
the same settings of the Les Houches heavy quarks benchiuaik a&re used. The
benchmarking of the FONLL-A CC structure function implensgian in FastKernel is
performed for the charm production cross-section in neatimduced DIS, defined by
Eq. (1.159), that combines all three charged current straclunctions. It has been
checked that the comparison of individual structure fuordihas a similar level of ac-
curacy.

Results for the benchmark comparison are shown in Table Assdigcussed above,
the FONLL-A calculation of charged current structure fuomies has been implemented in
azx-space code, FONLLdisCC, that will be used for the benchmgnkith the FastKernel
implementation. Results are shown for various valueg)bfrelevant for the analysis
of experimental data. The accuracy is similar to the oneeaeli for neutral current
structure functions (see Tables A.1-A.2), at the per miglesuitable for precision PDF
determinations.



FONLL-A FFN
x| FONLLdisCC | FastKernel| Accuracy| FONLLdisCC | FastKernel| Accuracy
Q? = 4 GeV?
107° 163.14 164.06 0.6% 158.70 158.15 0.3%
10~4 109.48 109.55 0.1% 106.81 106.64 0.2%
1073 69.24 69.35 0.2% 67.86 67.88 0.1%
1072 37.75 37.87 0.3% 37.27 37.30 0.1%
1071 13.56 13.57 0.1% 13.53 13.51 0.1%
Q? =10 GeV?
107° 279.31 278.71 0.2% 261.49 261.55 0.02%
1074 167.02 166.85 0.1% 157.27 157.11 0.1%
1073 92.90 92.87 0.03% 88.33 88.12 0.2%
1072 44.92 44.93 0.02% 43.36 43.23 0.3%
107! 14.50 14.48 0.1% 14.26 14.28 0.1%
Q% = 100 Ge\?
10-° 674.55 674.53 0.02% 651.21 645.94 0.1%
10~4 345.73 345.81 0.02% 331.17 329.14 0.5%
1073 161.70 161.78 0.05% 153.94 152.36 0.1%
102 64.20 64.26 0.1% 61.11 61.06 0.1%
1071 15.79 15.83 0.2% 15.33 15.42 0.1%

Table A.5:Results of the benchmark comparison for the dimuon charm productios-seasion

Eq. (1.159), in the FONLL-A scheme for the FONLLdisCC charged euromde and for the
FastKernel framework. Results are provided at the benchmark kineipatings inz, Q2. Results

for the massive (FFN) scheme are also given for completeness. Theticigtavariable in the

dimuon cross-section for this benchmark table has been takenigo=b@.5. The Les Houches
Heavy Quark benchmark settings [38] have been used for the compariso



Appendix B

Heavy Quark Coefficient Functions to
O (a2) in Mellin Space

In this Appendix expressions for the Mellin transforms @& ¢h () massive heavy quark
coefficient functions in th€)?—oc limit are provided. These asymptotic coefficient func-
tions were first computed long in Ref. [237] inspace. Their Mellin transforms have
been given in Refs| [238, 2B89], and will be rederived here iarenfwhich is suitable for
the purposes of the present analysis.

In order to perform the Mellin transform of thespace FFN heavy quark coefficient
functions of Ref.[[23]7] it is convenient to rewrite them inrtex of independent Mellin
integrals, which can be then tabulated.

Following the notation introduced in Ref. [237], first the giucoefficient function for
F is considered. The corresponding Mellin transform can btemras

2

(2) Q2 ,u2 const Q > I M
HEy (N, 55, 55 ) = 4Ty | Ot (V) + O, (N) In 55— O (M In 2o 1. (B.1)

m?2 2

The coefficient function has been separated into three team3@2-independent term
Cst(N), a collinear log termC%(N), and a scale variation ter@*(N). A similar
decomposition will be performed for all coefficient functs
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The individual terms are:

oy = Co [ — AR + 2 84+ 840 - ) — 04
1 3 0 1 2 -1
el B ol st
2 104 4 1 - 4 152 1
—f Ay — A+ FAT + AT - RAY — BAY 4+ RAY]
+C4  [16A%) +164%) — 3248 +16¢(2) A — 484" + 164
+8A — 84D + 24450 + 840D — gAY — 724 4 224
+8AY) 46445 — 10447 — 8ATY 4 A0 4 136 40 %Agzg,z |
.Za
O, =Cp8AY) +4AP 4441 — 8AP)]
+C4[164%" — 164? — 3240 + 840D —84© — 404D 4 13647
(B.2b)
O, = Ca[16A8 — 1647 — 324 + 84TV — 84" — 404V + 12947 (B.2¢)

where theAEf,) are the independent Mellin integrals
AD = A (N +1). (B.3)

Those for which closed-form analytic expressions will beduare collected in Tablés B.1
andB.2. Some of these Mellin transforms were already condpuat®ef. [240] and are
repeated here for completeness. The remainder, for whicteriaal approximations will
be used, are evaluated at the end of this Appendix.

The quark coefficient function fakF;, can be similarly written as
2 2 2 2
2 Q H cons H
iy (N, gt ﬁ) — AT {OLH {(N) +C2 (N)In = LN sl (B4)
where
gt =Cp [ —8AY — 845 + 845 + 847 —8AY + 164 1 84Y)
1 2 —1 0 1 2
—8AM — 164 — ATV 4 840 3240 4 0430

(B.5a)
CF,=Ct, =Cp[—8AY + 3A77Y — 84" + 1847, (B.5b)
Finally, the gluon radiation coefficient function féi, can be written as
12 (N L) —aty [epmn + B L) @)
where
Ciogh = Cr[3(AY — 24,7 + A7) — A7, (B.72)

Cfon = Crial. (B.7b)



Let us now turn to ther;, heavy quark coefficient functions. In comparison to the
longitudinal structure function, there are extra pie€88(N) andC*%(N) arising from
the double collinear logarithm. The gluon coefficient fuoctfor £, can be written as
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2 2 2
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(B.8)
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The quark coefficient function faf, can be written similarly as
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Cy, =Cp {4AY +4AY + 44D + 44 — 240 — 240 4 84TV
1240 — 241 — AP 24D 1040 4 84D +440Y (B.12d)
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Chd = Cr [449) + 4490 + 347V 24 — 247 — 247, (B.12e)

The gluon radiation coefficient function fdé# can be written as

2 2 2 2
il (3 5,15 ) = a1y s + €3 & o L
(8.13)
where
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In addition to the elementary Mellin transforms listed irbles[B.1FB.2, the coef-

ficient functions contain terms whose Mellin transform i$Wm in closed form, but is
N). The Mellin transform of

these functions has been evaluated through suitable ncaehepproximations. The-
space expression whose Mellin transform will be evaluatatiis way are the following:

fi6(2) = 2Lis(—2) In(1 + 2) + In(2) In*(1 + 2) + 251 2(—2), (B.15a)
faa(z) = Lig(1 — 2), (B.15b)

f24(z):Li3(1:Lz> —Li?,(—;j), (B.15¢)

fos(2) = In(2) In(1 — 2) In(1 + 2), (B.15d)

fos(2) = In(1 — 2)Liy(—2), (B.15€)

Lia(l = 2) (B.15f)

fa3(z) =
Each of these functions will now be considered in turn.

In order to determine the Mellin transform of EQ. (B.l15a), ERR) of Ref. [240] is
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o <+ @80 - 5 (5200 + 520
—S51(N)S2(N) — S3(N)
Sia1 - 2) — 7 1S3(V) — ¢(3)]
mE) 1 N-1 N
In(1+ z) N +2N[51< 5 )-Sl <2>]
3 SP(N) + 351 (N)Sa(N) + 253(N)
In°(1 — 2) - N
_ 303)  C2) () 1 N-1 N
Lis(=2) AN Ton? T N3 T an® [Sl< 2 >_51 (2)}

Table B.1:Elementary Mellin transforms.
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Table B.2: Continuation of Table B.1.




used, which can be written as

(V) = M) = 50| o (2]
(B.16)

(), [ 2 ] c@ame) | @)

* NM{HJ_ N aN

The last two Mellin transforms are respecti@aly

(R 5(D) e

W)

The Mellin transform of the term involving the special fuim‘t&)(z) is given in Ref.[[240]
in terms of the generalized harmonic s, (V). To avoid evaluating this directly for
complexN, it can be rewritten as

and

2(2) = Z a2 ®(2), (B.20)

where the values of the coefficientsare determined by fitting the polynom@}f:1 a2k
to the functionz/(1 + z) on the unit interval. One can then use the Mellin transform of
the functionz*®(z), which reads

M[2F®(z)] = (Nik:)?) + 2(N1+ N {SQ <W> — 5, (%)} . (B.21)

The desired Mellin transformi4(V) is immediately found combining Eqgs.[ (BI18),
(B.129), (B.20) and/(B.21).

In general

[ () () e

This Mellin transform is superficially different from the NMa transform number 15 in the Appendix of
Ref. [240], but they turn out to be equivalent after suitadifaplification. This apparent difference is also
responsible for the mismatch between entries 13, 28, 436aral the Table in the Appendix of Ref. [240]
and entries 17, 21, 20 and 19 in Talles|B.1[and B.2, respbctivar the same reason entries number 4 and
57 of [240] look different from Eqs[{B.18)-(B.P1).



In order to determine the Mellin transform of EQ. (B.15b) tkkpansion

Lis(z) =) e (B.22)
k=1
is used. It follows that
An(N) = M{fn(=)](N) = Y o5 /O N1 - )k, (B.23)
k=1
but
L v, DNT(k+1) k!
/OZ A=) = N ke~ Nk (Nt DN (B.24)
so that
> k!
Az(N) :;kS(NJrk)...(NJrl)N' (8.29)

In the NNPDF implementation this series has been truncated-a30.

Next, the Mellin transform of EqL(B.15c) is discussed. Irstbéase the function

10
g(z) = (1 —2)"* Z cpzt (B.26)
k=0
is fitted to the functiory,4(z). However, one can show that

f24(0) = Liz(1) — Liz(—1) = 25(3) = Co, (B.27)

so thatc, is fixed, and needs to be fitted only

10

g9(z) = (1= 2" [5¢3) + D ad®]. (B.28)

k=1

The Mellin transform of Eq[(B.15c) follows immediately, laerse

Asa(N) = M[faa(2)I(N) = S0 e fiy N1 = 2)0 Nz
10

_ T(N)T(b) 3 (N+k)...(N+1)N
“(

~ I(N +Vb) N+b+l+k)...(N+b+1)
(B.29)

k=0

In order to determine the Mellin transform of E§. (B.15d), teeresentation given
as Eq. (21) of Ref[[241] is used, in which the functiaiil + z) is approximated by the



polynomial

n(l+z) Z d2". (B.30)

Using also Table Bl1, it then gives

dM[2F In(2) In(1 — 2)] =

]

Ags(N) = M[fo5(2)](N) =

k=1
(B.31)
28: SUN +k) | Su(N +k) = ((2)
- (N + k)? N+k '
In order to determine the Mellin transform of EQ. (B.l5€) tkpansion
=> (= (B.32)
k=1
is used, so
e 0 k+1 S (N + ]{)
k 1
A26( ) f26 kz:; k2 lIl ]_—Z kz:; N—{—k‘ .
(B.33)

In this case has been decided to truncate the series-at00.
Finally, the Mellin transform of EqL(B.15f) is determinech this case the geometric
series forl /(1 — z) is used so that

- L So(N + k) —
Az3(N)M [f53(2 = M Liy(1 - 2)] 2 Ntk —¢(2) (B.34)
k=0 k=0

As in the case above, the series is truncated-at100.

Note that the Mellin transform of the-space coefficient functions involve terms of the
form 2! f,,(z). The Mellin transformM|[z! f,,(2)](N) can be obtained fromvI|[f,(z)](V)
using the identityM 2! f,,(2)](N) = M| f,.(2)](N + [). Thus the Mellin transform of any
of the terms in Tablels BI[I-B.2 and also any of the terms Eqs.&-\.15f) multiplied
by a factorz! can be obtained replacing with N + .

In conclusion, this calculation has been checked by comgadte inverse Mellin
transform of thelV-space coefficients with the originatspace results. In Table B.3 the
accuracy of this comparison is shown for the various coefficfunctions. Excellent
accuracy is found for all coefficients and all valuescof



v e (C07%) | e (C357°) | e (C15"°) | em (C55™°)
1077 7 x 10712 4 x 10711 2 x 10710 7 x 10712
1076 3x 1071 1 x 101 4 x 10~ 3 x 10712
107° 2 x 10712 3 x 10711 4 x 10713 2 x 10712
1074 6 x 10710 1x 1071 3x 10711 4 x 10712
1073 6 x 107 2 x 10712 1x 10710 2x 1071
1072 7x 1078 7 x 10712 2 x 10710 1 x 101
107! 1x 1077 4 x 101 1 x 1071 5% 10713

3x 107! 9x 1077 1x 1071 1x10~1 5x 10713
5x 1071 4 %1076 3x 10711 8 x 10712 1x 10713
7x 107! 1x107° 9x 1071 6 x 10712 5x 10713
9 x 101 1x10°° 6 x 1078 7x 1078 1x10°8

Table B.3:Comparison of the inverse Mellin transforms of coefficient functions cdetpbere
to the originalz-space expressions of Ref, [237]: the percentage differenceebatthe original
expression and the numerical Mellin inverse is shown in each case.






Appendix C

FastKernel Implementation of
FONLL-C

In this Appendix the implementation and benchmarking ofR@NLL-C neutral current
structure functions in the FastKernel framework is disedsdAt the same time has been
implemented and benchmarked FONLL-B.

The implementation of FONLL-B and FONLL-C structure furcts in FastKernel
requires the) (a?) massive heavy quark coefficient functions as well as thgimasotic
Q?*—oo limit in Mellin space. In Ref.[[40] analytic results for the Me spaceO ()
heavy quark coefficient functions for neutral current andrgkd current scattering are
presented (see also Ref. [242] for the latter). For @hg?) heavy quark coefficient
functions in Mellin space the parametrization of Ref. [244)sed. The Mellin transforms
in the asymptotic limit ag)?— oo have been determined as in Apperidix B.

The O (%) massless coefficient functions were first computed in Re@;2d5--247].
For the implementation in the FastKernel framework the fasliin space parametriza-
tions of the exact coefficient functions as given in Refs. [248] has been used.

The gluon radiation terms, namely contributions with hegugrks in the final state
but where the struck quark is light, have to be treated with.cAs discussed in Ref, [36],
the gluon radiation contribution (which first appeargata?)) is part of the light quark
structure functions. It has been checked (see[Fig. C.1)hbkatize of these terms is very
small both for thef, and £, structure functions, typically below 1%.

Now the implementation and benchmarking of these resulisarFastKernel frame-
work are discussed. Benchmarking has been performed by comgphe FastKernel re-
sults with the FONLLdis codé [36], arrspace code that implements all FONLL schemes.
In Table[C.1 are shown the results of the benchmark compafisahe Fy.(z, Q%) and
Fr.(z, Q%) structure functions in the massive fixed flavor number schand2(a?) for
the FONLLdis code and for the FastKernel code. Results araded at the reference
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Figure C.1:Percentage difference between the NNLO light quark structure fursctiprgleft)
and Fy, (right) with and without gluon radiation contributions. From bottom to top thetgoin
correspond to scales =4, 10 and 100 Ge¥respectively.

points in the(x, Q?) plane and with the settings of the Les Houches heavy quarkhen
marks [38]. The accuracy is given as the percentage difteréetween the FastKernel
and FONLLdis calculations. The accuracy is never worse 8anwhich is amply suffi-
cient for the purposes of the present analysis. The accafatgble[C.1 is a little worse
than that of its0 (a;) counterpart, shown as Tables 14-15 of Refl [40]. This may lee du
to the fact that the Mellin space parametrizations of theyeaark coefficient functions
that are used [244] are in turn based on a parametrizatidreahtact:-space coefficient
functions, while FONLLdis uses the original exact coefiitiinctions of Ref[250]. This
loss of accuracy is negligible for the needs of current phesrmlogy, but more detailed
studies of this issue may be needed in the future when finabotwd HERA heavy quark
structure function data become available.

The same comparisons for the FONLL-B and FONLL-C are preseint Tables CJ2
and.C.3B respectively. Comparable accuracy is achieved feettveo GM-VFN schemes,
again sufficient for the purposes of the present analysis.



. FENS Fr. FENS
x| FONLLdis | FastKernel Accuracy (%)| FONLLdis | FastKernel| Accuracy (%)
Q? = 4 GeV?
107° 0.24591 0.24244 1.43 0.02215 0.02184 1.41
107* | 0.13658 0.13481 1.31 0.01306 0.01283 1.75
1073 | 0.06384 0.06308 1.20 0.00662 0.00653 1.41
1072 | 0.02025 0.02007 0.92 0.00238 0.00237 0.38
Q? =10 GeV*
107° 0.53701 0.53904 0.38 0.08031 0.08105 0.91
107% | 0.29558 0.29550 0.03 0.04611 0.04579 0.71
1072 | 0.13909 0.13852 0.24 0.02273 0.02254 0.86
1072 0.04689 0.04664 0.10 0.00832 0.00826 0.70
0% = 100 Ge\?
107 1.99594 2.00744 0.57 0.44200 0.43976 0.51
10~ 1.00912 1.01479 0.56 0.22148 0.21880 1.22
1072 | 0.43527 0.43410 0.27 0.09487 0.09380 1.14
1072 0.13574 0.13492 0.61 0.03019 0.03002 0.57

Table C.1:Benchmark comparisons for the.(x, Q?) and Fr.(x, Q?) structure functions in the
FFN scheme at @) obtained using the FONLLdis code [36] and the FastKernel code. Resu
are provided at the benchmark kinematic points i)? and with the settings of the Les Houches
heavy quark benchmarks [38]. The accuracy is given as the pageedifference between the

FastKernel and FONLLdI$ [36] calculations.

F,. FONLL-B Fr;. FONLL-B
x| FONLLdis | FastKernel Accuracy (%)| FONLLdis | FastKernel| Accuracy (%)
Q? =4 GeV
107 0.24787 0.24858 0.29 0.02519 0.02524 0.21
107* | 0.13556 0.13598 0.31 0.01435 0.01435 0.01
1073 | 0.06360 0.06350 0.15 0.00718 0.00715 0.34
1072 0.02062 0.02051 0.52 0.00258 0.00258 0.08
Q? =10 GeV?
107° 0.55100 0.55088 0.02 0.09637 0.09679 0.43
107* | 0.30114 0.30150 0.14 0.05229 0.05222 0.14
1073 | 0.14371 0.14375 0.02 0.02507 0.02499 0.32
1072 | 0.05012 0.05015 0.01 0.00908 0.00907 0.06
0% = 100 Ge\?
107° 2.10034 2.08834 0.57 0.48769 0.48716 0.11
1074 | 1.04510 1.05096 0.56 0.23569 0.23418 0.65
1072 | 0.45879 0.45916 0.08 0.09923 0.09888 0.35
1072 0.15039 0.15030 0.06 0.03170 0.03174 0.15

Table C.2:Same as Tabled.1 for the FONLL-B GM-VFN scheme.




F5. FONLL-C F;. FONLL-C
z | FONLLdis | FastKernel Accuracy (%)| FONLLdis | FastKernel| Accuracy (%)
Q? = 4 GeV?
107 | 0.27830 0.28163 1.18 0.02468 0.02500 1.30
1074 | 0.14709 0.14858 1.00 0.01423 0.01441 1.23
1073 | 0.06556 0.06591 0.52 0.00733 0.00735 0.24
1072 | 0.02034 0.02034 0.00 0.00281 0.00283 0.74
Q? =10 GeV?
10~° | 0.69412 0.69873 0.66 0.09909 0.10062 1.52
1074 | 0.34662 0.34911 0.88 0.05520 0.05550 0.52
1073 | 0.15025 0.15114 0.32 0.02682 0.02699 0.63
1072 | 0.04986 0.05022 0.13 0.01002 0.01008 0.58
Q? = 100 GeV?
10~° | 2.36920 2.37887 0.41 0.47822 0.47994 0.36
107* | 1.12695 1.13870 1.03 0.23916 0.23914 0.01
103 | 0.47058 0.47317 0.55 0.10262 0.10293 0.30
102 | 0.15175 0.15236 0.40 0.03312 0.03327 0.47

Table C.3:Same as Table d.1 for the FONLL-C GM-VFN scheme.




Appendix D

Distribuciones Partdnicas para
Fenomenologia de Precision del GCH

Los desarrollos de la fisica de colisionadores de los Gftigincuenta afios han permi-
tido alcanzar resultados fundamentales a nivel experghgrdonsecuentemente a nivel
tedrico. El descubrimiento de nuevas particulas, los guatks gluones, fue una sélida
confirmacién de la teoria de la cromodinamica cuéntica (Q€®gnmarca en el modelo
estandar de las particulas elementales. Los parametrostelenedelo han sido medi-
dos con elevada precision, confirmando las teorias y camdivies gran poder predictivo.
Toda la fisica de los colisionadores de hadrones, en platieudel Gran Colisionador de
Hadrones (GCH), activo al CERN de Ginebra, se apoya en la crodwmita cuantica y
en general en el modelo estandar.

Cromodinamica Cuantica Perturbativa

La cromodindmica cuantica describe la fisica de los hadrbasandose en la dinamica
y en las interacciones fundamentales de quarks y gluonesserAla QCD una teoria
no-Abeliana, los gluones (bosones responsables de ladcién entre quarks) pueden
interactuar entre ellos, al contrario de lo que ocurre pasafdtones en el caso de la
electrodinamica cuantica (QED). Esta caracteristica de-iateraccion de los gluones
provoca un comportamiento de la constante de acoplamiende la teoria diferente re-
specto a la analoga constante de acoplamiento de la elieénoidaczp. En el caso de

la QCD a bajas energias el valor dgno permite el uso de la teoria perturbativa, siendo
la interaccion fuerte. Esta propiedad se traduceaiinamientolos quarks no pueden
ser aislados. Fueron D.J. Gross, F. Wilczek, y H.D. Poligeenes demonstraron lia-
ertad asintéticade la QCD, mereciendo el Nobel en el afio 2004. Al subir en lal@&sca
de energia la constante se vuelve mas pequefa, permitiendo asi la aproximacion per-
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turbativa. Gracias a la libertad asintética y a las propgledaleteorema de factorizacion
la QCD perturbativa se vuelve una teoria de precision. L@slestiniciales y finales de
cualquier proceso que involucre hadrones estan constitygdr quarks y gluones fuera
del régimen perturbativo. En el calculo de los observabiaguarte no-perturbativa puede
factorizarse de la parte puramente perturbativa, la cuad@ser calculada con la teoria.
Considérese en el caso de un procesaekep inelastic scatterin¢DIS) el ejemplo de
la funcién de estructur&, medida en un punto cinemati¢e, Q%) dado. Es posible
escribir este observable como la convolucién de una digtidn partonicaf; (parte no-
perturbativa) con la parte calculable perturbativamestisgrvable partonich,). Gracias

a las ecuaciones de evolucion DGLAP es posible calculangetivamente la dependen-
cia de las distribuciones parténicas con la escala de faatdéon. En el marco de la
teoria perturbativa los efectos debidos a las masas de éwkggpesados son tenidos en
cuenta gracias al uso del esquema FONLL. Los términos nmssivo incluidos al or-
denag (FONLL-A) 0 o2 (FONLL-C) para determinar respectivamente las distribueso
NNPDF2.1 NLO y NNPDF2.1 NNLO.

Determinacion de Distribuciones Parténicas

Las distribuciones partonicas (PDFs) son extraidas arphriilatos de diferentes experi-
mentos. Determinar una densidad de probabilidad en el iespadas funciones a partir
de un numero finito de puntos experimentales es un problemificiesolucién y ademas
la forma funcional de las distribuciones no es conocida.

Varios grupos se dedican a la determinacién de las PDFs. karfaale ellos fija una
forma funcional (generalmente una polinomial) y reduceehgiroblema a la determi-
nacién de un conjunto finito de parametros. Los errores arpetales son transferidos
a las PDFs utilizando el método del Hessiano. De este modotreducida facilmente
una desviacion sistematica en la determinacion de lostaelad debida a la rigidez de la
parametrizacion escogida y una sub-estimacién de losestrparcialmente corregida a
traves del uso de tolerancias mas grandes que uno.

La colaboracion NNPDF utiliza una parametrizacion de rewesonales cuyo entre-
namiento es efectuado utilizando algoritmos genéticos.ef@ manera, la desviacién
debida a la parametrizacion es minimizada. También seaitli método Monte Carlo
para generai,., réplicas de los datos experimentales y poder asi determingcon-
juntos de PDFs en lugar de uno solo. De esta forma, es pogtdentnar bandas de
error para las PDFs que mantienen una interpretacion sstadiigurosa. El uso de re-
des neuronales permite una parametrizacion muy flexibleyn@ante. A consecuencia
de esto es necesario parar el entrenamiento antes de alehnzimimo y? posible que
corresponderia a un régimen de sobre-entrenamiento. Baraen en esta situacion un



método decross-validatiores utilizado para determinar el mejor ajuste.

Resultados

En este trabajo, realizado en el ambito de la colaboracioRDH los conjuntos de dis-
tribuciones partonicas determinados incluyen los efedtomasa debidos a los quarks
pesados. Se han determinado tres conjuntos: NNPDF2.1 LO,\NNNLO. En el caso
NLO, las PDFs se han comparado con el conjunto NNPDF2.0 a¢ihcuincluye efectos
de masa, y también con distribuciones de otros grupos comé € MSTWO08, que los
incluyen usando métodos diferentes del FONLL. Las distidnes LO se han comparado
tanto con las NLO como con las distribuciones de las colabmmas MSTW y CTEQ,
mientras que las distribuciones NNLO se han comparado coMBTW08 NNLO y
ABKMO09 NNLO (ademas de compararlas con NNPDF2.1 NLO). Se hdicado que
en general las distribuciones de la colaboracion NNPDF sosistentes dentro de una
sigma (solo en el caso LO esto no es verdad, debido a la inmpatee la incertidumbre
tedrica en este caso). En comparacion con los resultadas demas grupos se han ob-
servado diferencias de alguna forma significativas enaserasos especificos, sobretodo
en el caso NNLO. Comparando los tres conjuntos LO, NLO y NNL®@sble estu-
diar la estabilidad estadistica, siendo los tres deteghomaegun la misma metodologia y
usando los mismos datos. Se observa una excelente consi@rgeria expansion pertur-
bativa en la regién cinemética de los datos. De la comparat@dun orden perturbativo
con el siguiente es posible dar una estimacién de la incentide tedrica que afecta al
orden mas bajo. En el caso de la determinacion a LO, se ver@ata que el error exper-
imental solo es una fraccion del error teorico (que no esiéiagluido). En cambio, para
el conjunto NLO (y plausiblemente NNLO) la incertidumbrériea resulta despreciable
en comparacion a la experimental.

Han sido también producidos varios conjuntos de PDFs cenattifes valores tanto de
as como dem. y my,. De estaforma, es posible determinar las incertidumbnedo@das
para las PDFs y para el parametro que varia.

Se han calculado las predicciones para un conjunto de @tdesvdel GCH (pro-
duccion de bosones vectores, top quarks y bosones de Higgsdlal las distribuciones
parténicas NNPDF2.1 NLO y NNLO. Estas predicciones hansiioparadas entre ellas
y también con predicciones obtenidas usando las PDFs degruipos. Ha sido posible
comparar también estos resultados con los primeros datas delaboraciones ATLAS
y CMS. Al incluir los efectos debidos a las masas de los quagkagos se observa una
modificacion bastante pequefia en estas observables. Ero¢céartiferencia es substan-
cial si se consideran observables que sondean directafasmdestribuciones partonicas
de los quarks pesados.



La metodologia usada por la colaboracion NNPDF ha sido aphlada también para
la determinacion de la constante de acoplamiento fuert®/ ;). Esto es posible gracias a
gue las predicciones tedricas para el conjunto global desdblpenden simultaneamente
tanto de las PDFs como de.. El valor asi determinado ha sidg (M) = 0.1191 +
0.0006°*P. En la determinacion de este parametro la incertidumbreteés dominante y
significativa, y no esta incluida en el error aqui determinguge en cambio solo representa
la incertidumbre estadistica.
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FastKernel code. Results are provided at the benchmark kinematic points in
x, Q% and with the settings of the Les Houches heavy quark benchmarks [38].
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