
(NN)PDFs, the LHC & the LHeC

Alberto Guffanti

Niels Bohr International Academy & Discovery Center Niels Bohr Intitute - Copenhagen

Parton Distribution Functions What are they?

Consider a process with a single hadron in the initial state

The cross section for such a process can be written (Factorization Theorem) as

$$d\sigma = \sum_{a} \int_{0}^{1} \frac{d\xi}{\xi} D_{a}(x,\mu^{2}) d\hat{\sigma}_{a}\left(\frac{x}{\xi},\frac{\hat{s}}{\mu^{2}},\alpha_{s}(\mu^{2})\right) + O\left(\frac{1}{Q^{p}}\right)$$

Parton Distribution Functions What are they?

- Parton Distribution Functions are non-perturbative objects and their value at given x and Q² cannot be computed in QCD Perturbation Theory (Lattice?)
- ... but the scale dependence of PDFs is governed by the DGLAP evolution equations

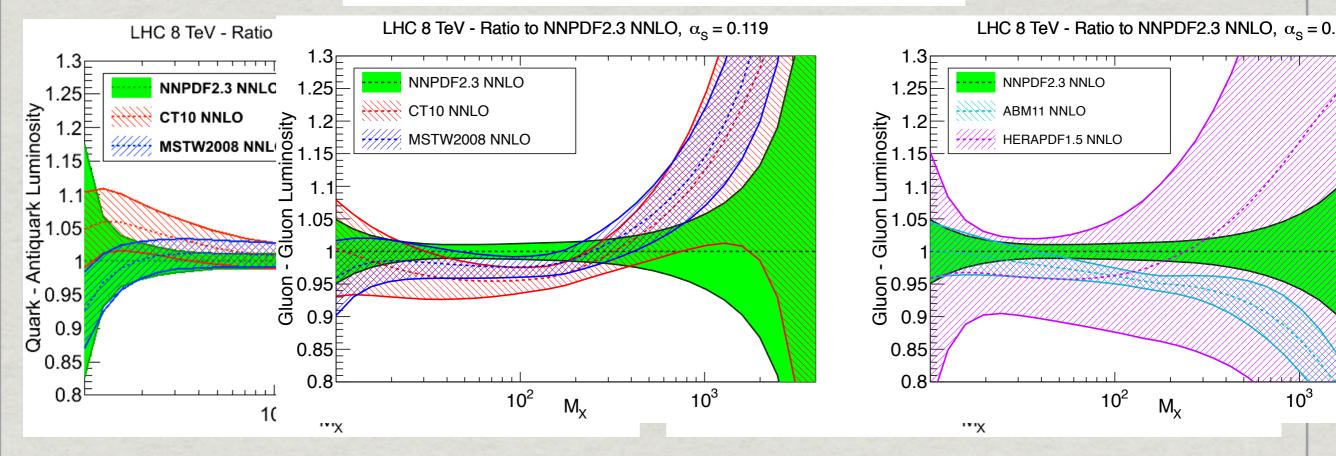
$$\frac{\partial q_i(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \Big[P_{qq}(x) \otimes q_i(x,\mu^2) \Big] + \frac{\alpha_s(\mu^2)}{2\pi} \Big[P_{qg} \otimes g(x,\mu^2) \Big]$$
$$\frac{\partial g(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} \Big[P_{gq}(x) \otimes \sum_i \Big(q_i(x,\mu^2) + \overline{q}_i(x,\mu^2) \Big) \Big] + \frac{\alpha_s(\mu^2)}{2\pi} \Big[P_{gg} \otimes g(x,\mu^2) \Big]$$

 ... where the splitting functions (P_{ij}) can be computed in Perturbation Theory and are known up to NNLO

[LO - Dokshitzer; Gribov, Lipatov; Altarelli, Parisi (1977)] [NLO - Floratos, Ross, Sachrajda; Gonzalez-Arroyo, Lopez, Yndurain; Curci, Furmanski, Petronzio (1981)] [NNLO - Moch, Vermaseren, Vogt (2004)]

The PDF fitting game The players

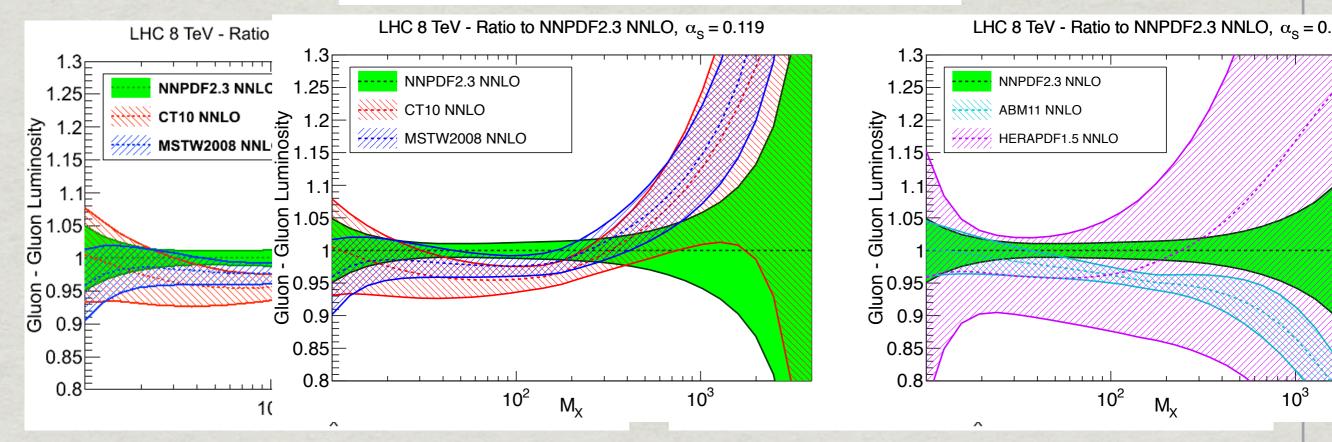
Collaboration	Authors	arXiv
ABM	S. Alekhin, J. Blümlein, S. Moch	1105.5349, 1101.5261, 1107.3657, 0908.3128, 0908.2766,
CTEQ/TEA	M. Guzzi J. Huston, HL. Lai, P. Nadolsky, J. Pumplin, D. Stump, CP.Yuan	1108.5112, 1101.0561, 1007.2241, 1004.4624, 0910.4183, 0904.2424, 0802.0007,
GJR	M. Glück, P. Jimenez-Delgado, E. Reya	1003.3168, 0909.1711, 0810.4274,
HERAPDF	HI and ZEUS Collaborations	1107.4193, 1006.4471, 0906.1108,
MSTW	A. Martin, J. Stirling, R. Thorne, G. Watt	1107.2624, 1006.2753, 0905.3531, 0901.0002,
NNPDF	R. D. Ball, V. Bertone, S. Carrazza, F. Cerutti, C. S. Deans, L. Del Debbio, S. Forte, AG, N. P. Hartland, J. I. Latorre, J. Rojo, M. Ubiali	1110.2483, 1108.2758, 1107.2652, 1103.2369, 1102.3182, 1101.1300, 1005.0397, 1002.4407, 0912.2276, 0906.1958,


The PDF fitting game Status of PDF fits

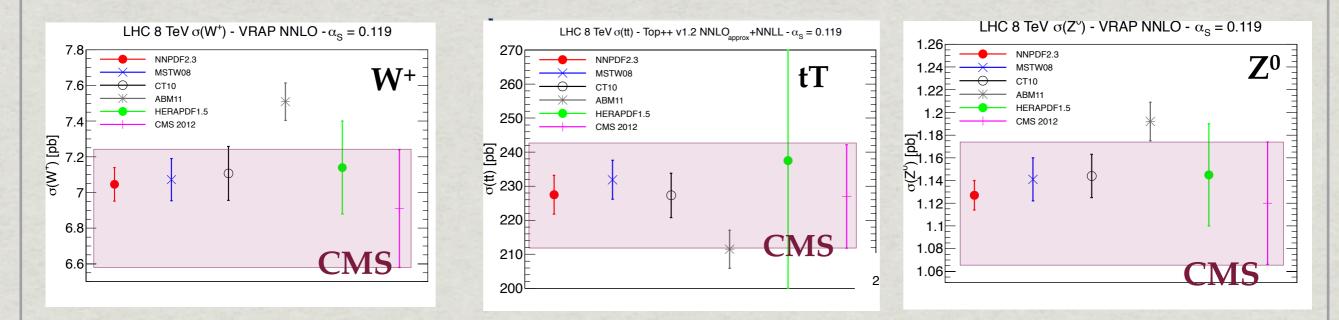
	DATASET	PERT. ORDER	HQ TREATMENT	۵s	PARAM.	UNCERT.
ABM11	DIS Drell-Yan	NLO NNLO	FFN (BMSN)	Fit (multiple values available)	6 indep. PDFs Polynomial (25 param.)	Hessian $(\Delta \chi^2 = 1)$
CT10	Global	LO NLO NNLO	GM-VFNS (S-ACOT)	External (multiple values available)	6 indep. PDFs Polynomial (26 param.)	Hessian $(\Delta \chi^2 = 100)$
JR09	DIS Drell-Yan Jets	NLO NNLO	FFN VFN	Fit	5 indep. PDFs Polynomial (15 param.)	Hessian $(\Delta \chi^2 = 1)$
HERAPDF1.5	DIS (HERA)	NLO NNLO	GM-VFNS (TR)	External (multiple values available)	5 indep. PDFs Polynomial (14 param.)	Hessian $(\Delta \chi^2 = 1)$
MSTW08	Global	LO NLO NNLO	GM-VFNS (TR)	Fit (multiple values available)	7 indep. PDFs Polynomial (20 param.)	Hessian $(\Delta \chi^2 \simeq 25)$
NNPDF2.3	Global	LO NLO NNLO	GM-VFNS (FONLL)	External (multiple values available)	7 indep. PDFs Neural Nets (259 param.)	Monte Carlo

The PDF fitting game Status of PDF fits - parton luminosities

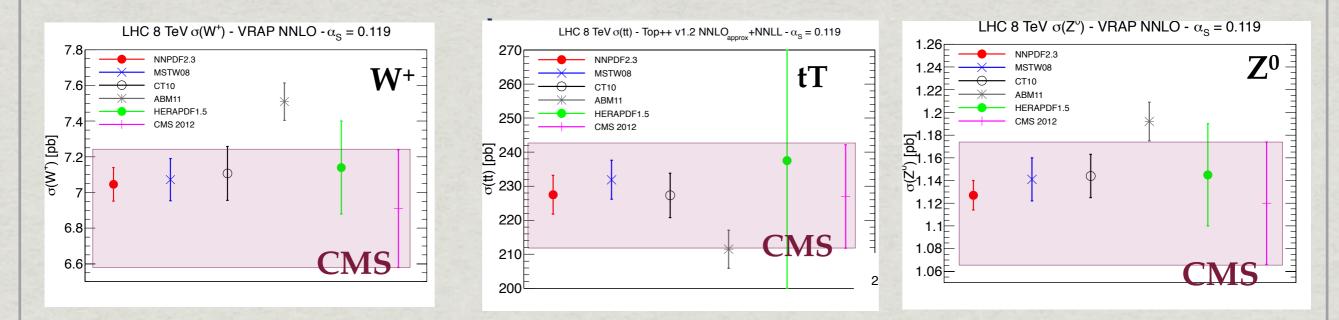
$$\Phi_{ij}\left(M_X^2\right) = \frac{1}{s} \int_{\tau}^{1} \frac{dx_1}{x_1} f_i\left(x_1, M_X^2\right) f_j\left(\tau/x_1, M_X^2\right)$$

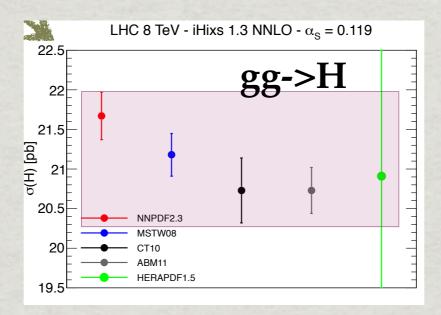


- Good compatibility among global fits
- * Differences are more marked when comparing to restricted dataset fits


$$\Phi_{ij}\left(M_X^2\right) = \frac{1}{s} \int_{\tau}^{1} \frac{dx_1}{x_1} f_i\left(x_1, M_X^2\right) f_j\left(\tau/x_1, M_X^2\right)$$

- Good compatibility among global fits
- * Differences are more marked when comparing to restricted dataset fits


The PDF fitting game Status of PDF fits - LHC cross-section


LHC data are already starting to discriminate among predictions

The PDF fitting game Status of PDF fits - LHC cross-section

LHC data are already starting to discriminate among predictions

NNPDF Methodology Main ingredients

- Monte Carlo determination of uncertainties
 - * No need to rely on linear propagation of errors
 - * Possibility to test the impact of **non-gaussianly** distributed uncertainties
 - Possibility to test for non-gaussian behaviour of uncertainties of fitted PDFs
- * Parametrization of PDFs using Neural Networks
 - Provide an unbiased parametrization
- * Determine the best fit PDFs using Cross-Validation
 - * Ensures proper fitting, avoiding overlearning

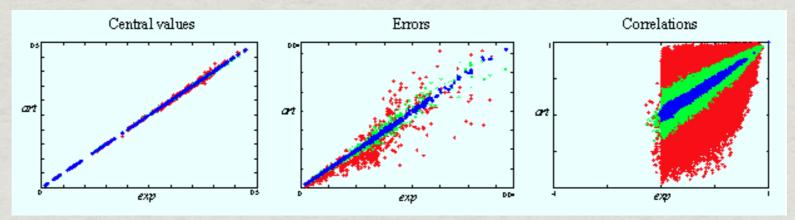
NNPDF Methodology ... in a Nutshell

- Generate Nrep Monte Carlo replicas of the experimental data, taking into account all experimental correlations
- Fit a set of Parton Distribution Functions, parametrized at the initial scale using Neural Networks, to each replica

*** Expectation values** for observables are then given by

$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}(f_i^{(net)(k)}(x, Q^2))$$

.... and corresponding formulae are used to compute uncertainties, correlations, etc.


NNPDF Methodology Monte Carlo replicas generation

* Monte Carlo replicas are generated according to the distribution

$$O_{i}^{(art)\,(k)} = (1 + r_{N}^{(k)}\,\sigma_{N}) \left[O_{i}^{(exp)} + \sum_{p=1}^{N_{sys}} r_{p}^{(k)}\,\sigma_{i,p} + r_{i,s}^{(k)}\,\sigma_{s}^{i} \right]$$

where r_i are (gaussianly distributed) random numbers

Validate Monte Carlo replicas against experimental data

* O(1000) replicas needed to reproduce correlations in experimental data to percent accuracy

Reweighting (NN)PDFs The reweighting idea

[R. D. Ball et al, arXiv:1012.0836] [R. D. Ball et al, arXiv:1108.1758]

- The N replicas of an NNPDF fit give the probability density in the space of PDFs
- Expectation values for observables are computed as

$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}(f_i^{(net)(k)}(x, Q^2))$$

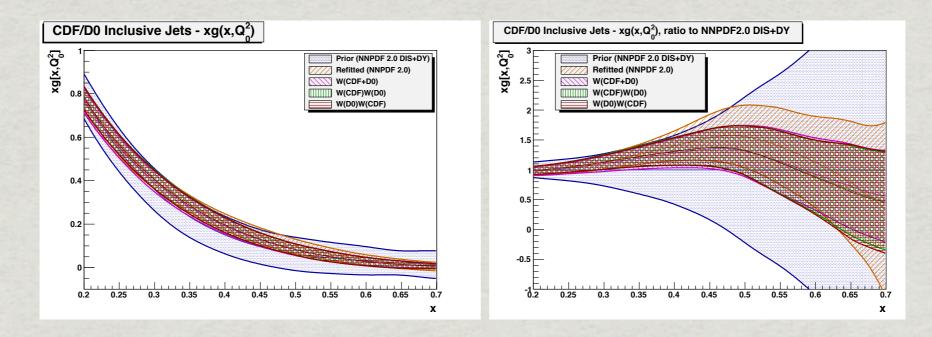
* We can then assess the impact of including new data in the fit updating the probability density without performing a complete refit

[R. D. Ball et al, arXiv:1012.0836] [R. D. Ball et al, arXiv:1108.1758]

We can apply Bayes Theorem to determine the conditional probability of the PDF upon inclusion of the new data

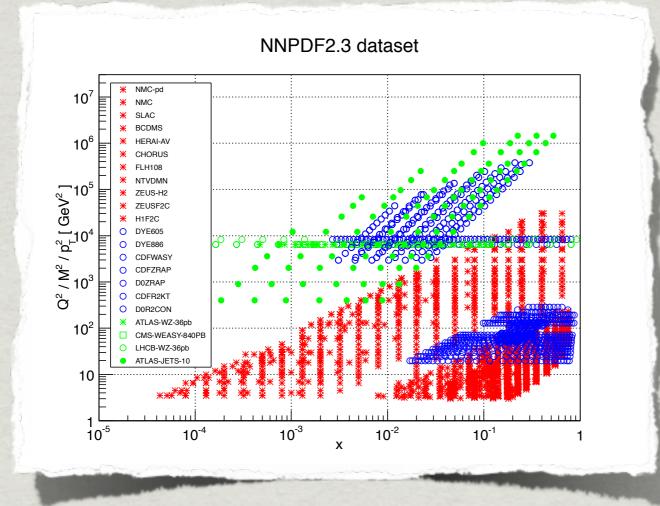
 $\mathcal{P}_{\text{new}}(\{f\}) = \mathcal{N}_{\chi} \mathcal{P}(\chi^2 | \{f\}) \mathcal{P}_{\text{init}}(\{f\}), \quad \mathcal{P}(\chi^2 | \{f\}) = [\chi^2(y, \{f\})]^{\frac{n_{dat}-1}{2}} e^{-\frac{\chi^2(y, \{f\})}{2}}$

* Averages over the sample are no weighted sums


$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = \sum_{k=1}^{N_{rep}} w_k \mathcal{F}(f_i^{(net)(k)}(x, Q^2))$$

and the weights are given by

$$w_{k} = \frac{[\chi^{2}(y, f_{k})]^{\frac{n_{dat}-1}{2}} e^{-\frac{\chi^{2}(y, f_{k})}{2}}}{\sum_{i=1}^{N_{rep}} [\chi^{2}(y, f_{i})]^{\frac{n_{dat}-1}{2}} e^{-\frac{\chi^{2}(y, f_{i})}{2}}}$$


Reweighting (NN)PDFs Validating the reweighting procedure

- We started from a fit to DIS and Drell-Yan data and included Tevatron inclusive jet data (CDF & D0) via refitting and reweighting
- Reweighting with the two dataset at the same time or separately (in either order) yields identical results
- Reweighting and refitting yield statistically equivalent results in the region constrained by the new data

NNPDF2.3 Dataset

Experiment	Data
Fixed Target DIS	1952
HERA DIS	834
Fixed Target DY	318
Tevatron W/Z	70
Tevatron Jets	186
LHC W/Z	56
LHC Jets	90

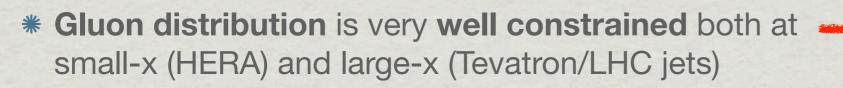
3506 data points (in the NNLO global fit)

NNPDF2.3 The LHC data - Fit quality

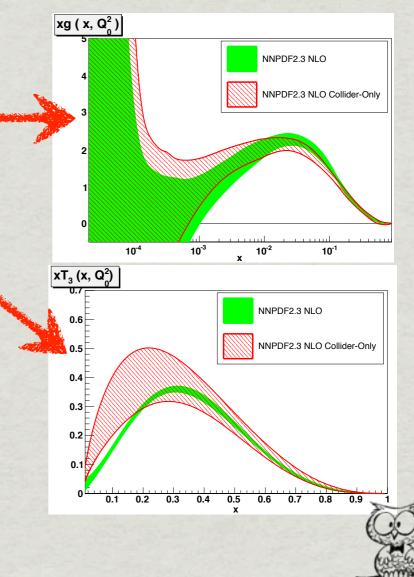
- * Compare the quality of the fit to LHC data before and after inclusion in the global fit
- Including LHC data in the fit improves the quality of their description, w/o deteriorating quality of the fit to other datasets
- Moderate impact of the LHC data, supporting consistency of the global fit framework
- * Fit quality is comparable at NLO and NNLO, thought the former marginally better

NLO	NNPDF2.3 noLHC	NNPDF2.3
NMCpd	0.93	0.93
NMC	1.59	1.61
SLAC	1.28	1.26
BCDMS	1.20	1.19
HERA-I	1.01	1.00
CHORUS	1.09	1.10
NuTeV	0.42	0.45
DYE605	0.85	0.88
DYE866	1.24	1.28
CDFWASY	1.45	1.54
CDFZRAP	1.77	1.79
D0ZRAP	0.57	0.57
ATLAS-WZ	1.37	1.27
CMS-WEASY	1.50	1.04
LHCb-WZ	1.24	1.21
CDFR2KT	0.60	0.61
D0R2CON	0.84	0.84
ATLAS-JETS-2010	1.57	1.55

NNPDF2.3 The LHC data - Fit quality

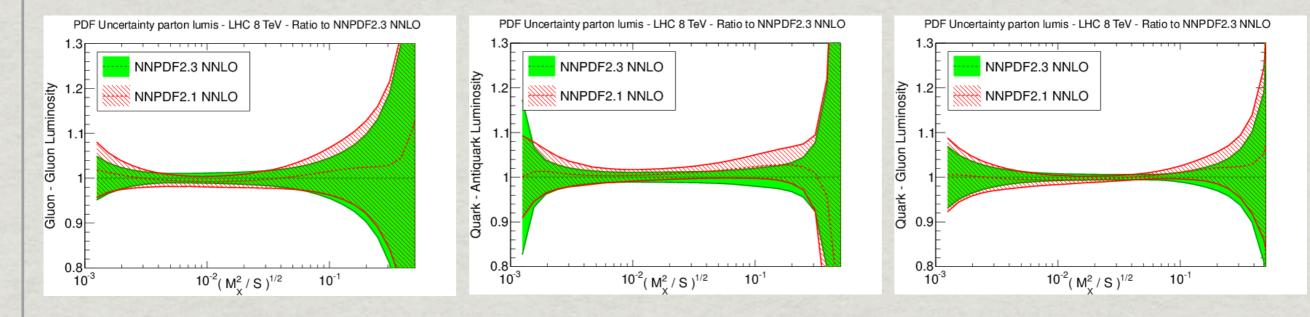

- * Compare the quality of the fit to LHC data before and after inclusion in the global fit
- Including LHC data in the fit improves the quality of their description, w/o deteriorating quality of the fit to other datasets
- Moderate impact of the LHC data, supporting consistency of the global fit framework
- * Fit quality is comparable at NLO and NNLO, thought the former marginally better

NNLO	NNPDF2.3 noLHC	NNPDF2.3
NMCpd	0.94	0.94
NMC	1.56	1.57
SLAC	1.04	1.02
BCDMS	1.28	1.29
HERA-I	1.03	1.01
CHORUS	1.07	1.06
NuTeV	0.48	0.55
DYE605	1.07	1.02
DYE866	1.61	1.62
CDFWASY	1.66	1.70
CDFZRAP	2.15	2.12
D0ZRAP	0.64	0.63
ATLAS-WZ	1.94	1.46
CMS-WEASY	1.37	0.96
LHCb-WZ	1.33	1.22
CDFR2KT	0.67	0.67
D0R2CON	0.94	0.93
ATLAS-JETS-2010	1.45	1.42


NNPDF2.3 Collider fit - are we there yet?

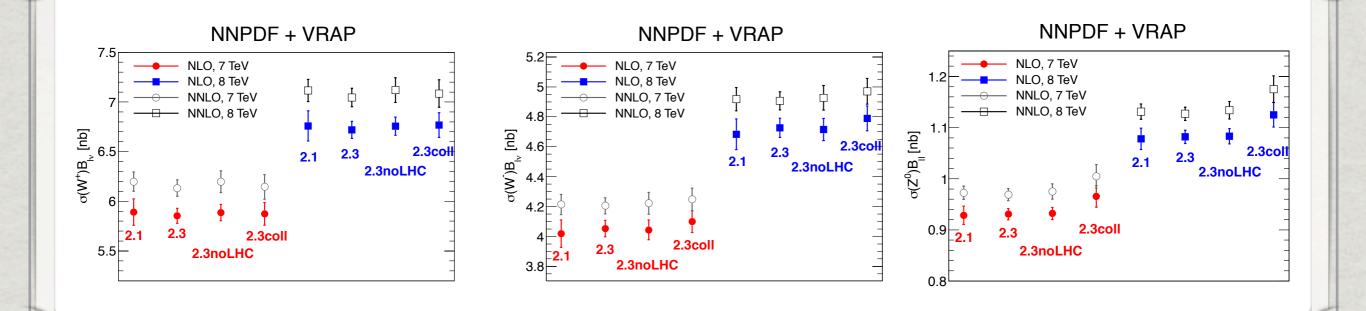
It is the fit we would love to have

- * Only high energy data: minimize the effects of higher-twist contributions
- * Only proton data: no assumptions based on models for nuclear corrections



- * PDF combinations sensitive to light flavour separation have substantially larger uncertainties (missing constraints from fixed target DIS/DY data)
- * Uncertainties on "fixed target" observables are still unacceptably large
- things can only get better with more LHC data coming (W+c, low mass DY, photons, high pt Z/W ...)

NNPDF2.3 Phenomenology - parton luminosities


$$\Phi_{ij}\left(M_X^2\right) = \frac{1}{s} \int_{\tau}^{1} \frac{dx_1}{x_1} f_i\left(x_1, M_X^2\right) f_j\left(\tau/x_1, M_X^2\right)$$

- Reduction in uncertainty on gluon-gluon luminosity for larger final state invariant masses when going from NNPDF2.1 to NNPDF2.3
- * NNPDF2.3 quark-antiquark luminosity at large invariant masses somewhat smaller than NNPDF2.1


NNPDF2.3 Phenomenology - W/Z production

- * Mostly sensitive to quark parton luminosities
- * Predictions from NNPDF2.3 sets are compatible with each other and with predictions obtained using the NNPDF2.1 global set
- * Largest differences with collider only fit, although the latter has larger uncertainties

NNPDF2.3 Phenomenology - top/Higgs production

- * Mostly sensitive to quark parton luminosities
- * Predictions from NNPDF2.3 sets are compatible with each other and with predictions obtained using the NNPDF2.1 global set
- * Largest differences with collider only fit, although the latter has larger uncertainties

The LHC Lepton-hadron collision at the LHC

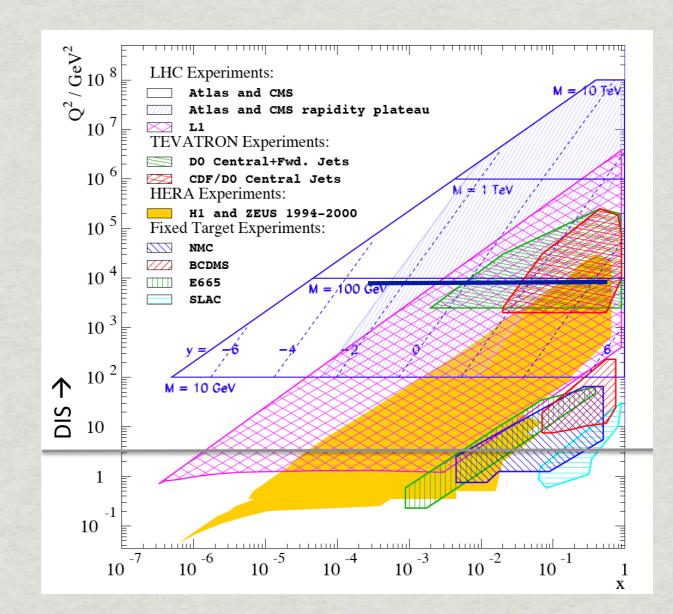
- * The LHeC is a proposed facility at CERN, where a (7 TeV) LHC proton beam is brought into collision with a lepton beam
- * The LHeC is designed to operate simultaneously with the LHC
- * Two options for the lepton beam are considered
 - * Linac-Ring option
 - * Ring-Ring option
- * Many more details can be found in the recently published Conceptual Design Report (arXiv:1206.2913)

Journal of Physics G

Nuclear and Particle Physics

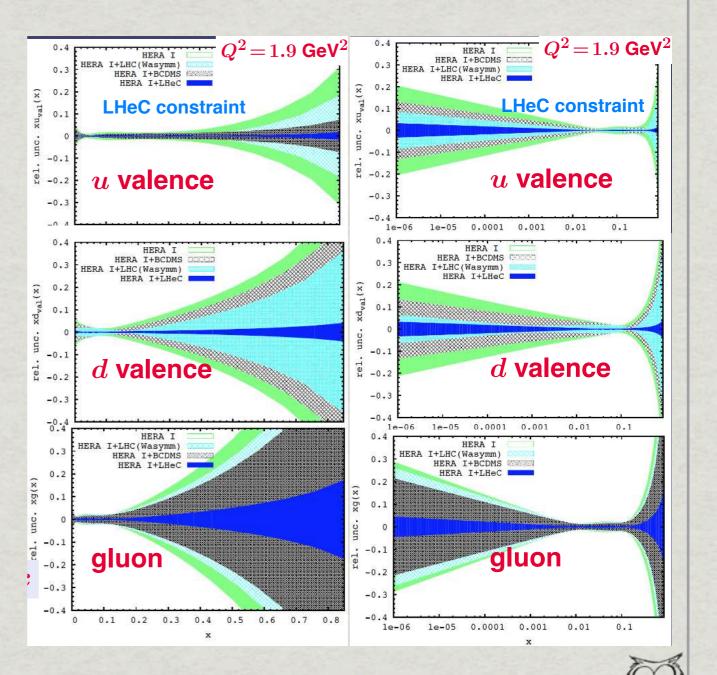
Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group


IOP Publishing

luly 20 12

The LHC Potential to constrain PDFs


- The measurements at the LHeC will nicely complement the pp and pA measurements from the LHC experiments
- * Unique possibility to explore the small-x region in DIS
- Precise measurements of the Neutral and Charrged Current DIS cross-section at large-x for accurate flavour separation
- * Precise determination of heavy flavour parton distributions

The LHC Potential to constrain PDFs

- * The measurements at the LHeC will nicely complement the pp and pA measurements from the LHC experiments
- * Unique possibility to explore the small-x region in DIS
- Precise measurements of the Neutral and Charrged Current DIS cross-section at large-x for accurate flavour separation
- * Precise determination of heavy flavour parton distributions

Conclusions & Outlook

- * Parton Distribution Function are an essential ingredient of theoretical predictions for observables at hadron-hadron and lepton-hadron colliders
- * The NNPDF methodology is ideally suited to tackle the shortcomings of the standard PDF fitting methodology
- * The reweighting technique can be used to quickly and reliably assess the impact of new data in parton distribution functions fits without the need for refitting
- * NNPDF2.3 is the first global PDF fit to include LHC data
- * The proposed LHeC experiment will be a unique tool to understand the structure on the proton and accurately determine parton densities

