



Alberto Guffanti Niels Bohr International Academy & Discovery Center Niels Bohr Intitute - Copenhagen



## **NNPDF Methodology** Main ingredients

- Monte Carlo determination of uncertainties
  - \* No need to rely on linear propagation of errors
  - \* Possibility to test the impact of **non-gaussianly** distributed uncertainties
  - Possibility to test for non-gaussian behaviour of uncertainties of fitted PDFs
- \* Parametrization of PDFs using Neural Networks
  - Provide an unbiased parametrization
- \* Determine the best fit PDFs using Cross-Validation
  - \* Ensures proper fitting, avoiding overlearning





### **NNPDF Methodology** ... in a Nutshell

- Generate Nrep Monte Carlo replicas of the experimental data, taking into account all experimental correlations
- Fit a set of Parton Distribution Functions, parametrized at the initial scale using Neural Networks, to each replica

**\* Expectation values** for observables are then given by

$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}(f_i^{(net)(k)}(x, Q^2))$$

.... and corresponding formulae are used to compute uncertainties, correlations, etc.



# \* NNPDF2.3 dataset includes relevant LHC data for which the full covariance matrix is available

- \* ATLAS Inclusive Jets, 36 pb<sup>-1</sup> (arXiv:1112.6297)
- \* ATLAS W/Z lepton rapidity distributions, 36 pb<sup>-1</sup> (arXiv:1109.5141)
- \* CMS W lepton asymmetry, 840 pb<sup>-1</sup> (arXiv:1206.2598)
- \* LHCb W/Z rapidity distributions, 36 pb<sup>-1</sup> (arXiv:1204.1620)







| Experiment       | Data |
|------------------|------|
| Fixed Target DIS | 1952 |
| HERA DIS         | 834  |
| Fixed Target DY  | 318  |
| Tevatron W/Z     | 70   |
| Tevatron Jets    | 186  |
| LHC W/Z          | 56   |
| LHC Jets         | 90   |

## **3506 data points** (in the NNLO global fit)







| Experiment       | Data |
|------------------|------|
| Fixed Target DIS | 1952 |
| HERA DIS         | 834  |
| Fixed Target DY  | 318  |
| Tevatron W/Z     | 70   |
| Tevatron Jets    | 186  |
| LHC W/Z          | 56   |
| LHC Jets         | 90   |

## **3360 data points** (in the NNLO noLHC fit)







| Experiment                               | Data            |
|------------------------------------------|-----------------|
| Fixed Target DIS                         | 1952            |
| HERA DIS                                 | 834             |
| Fixed Target DY                          | 318             |
|                                          |                 |
| Tevatron W/Z                             | 70              |
| Tevatron W/Z<br>Tevatron Jets            | 70<br>186       |
| Tevatron W/Z<br>Tevatron Jets<br>LHC W/Z | 70<br>186<br>56 |

## **1236 data points** (in the NNLO collider fit)





### **NNPDF2.3** Methodological Improvements

- Inclusion of higher order corrections to hadronic processes is very intensive from a computational point of view
- \* Combination of FastKernel method for PDF evolution with APPLgrid/ FastNLO tables (FK) gives a substantial speed-up in computation of observables during the fit
- \* More advanced minimization studies allowed by fast computation of observables
  - \* larger number of maximum genetic algorithm generations allowed
  - \* increased number of mutants and mutations per generation
  - \* retraining of **outlier** replicas (defined as replicas which do not stop and have a  $\chi^2$  more than 4-sigma away from the average)





#### **NNPDF2.3** Results - Statistical features of the fit

| NNPDF2.3                                                               |                      |                      |  |  |
|------------------------------------------------------------------------|----------------------|----------------------|--|--|
|                                                                        | NLO                  | NNLO                 |  |  |
| $\chi^2_{ m tot}$                                                      | 1.137                | 1.150                |  |  |
| $\langle E \rangle \pm \sigma_E$                                       | $2.19\pm 0.07$       | $2.21\pm0.06$        |  |  |
| $\langle E_{\rm tr} \rangle \pm \sigma_{E_{\rm tr}}$                   | $2.16\pm0.08$        | $2.17\pm0.08$        |  |  |
| $\langle E_{\rm val} \rangle \pm \sigma_{E_{\rm val}}$                 | $2.23\pm0.10$        | $2.26\pm 0.09$       |  |  |
| $\langle \mathrm{TL} \rangle \pm \sigma_{\mathrm{TL}}$                 | $(24 \pm 15) \ 10^3$ | $(22 \pm 15) \ 10^3$ |  |  |
| $\langle \chi^{2(k)}  angle \pm \sigma_{\chi^2}$                       | $1.21\pm0.05$        | $1.22 \pm 0.05$      |  |  |
| $\langle \sigma^{(\exp)} \rangle_{dat} (\%)$                           | 12.1                 | 12.2                 |  |  |
| $\langle \sigma^{(\text{net})} \rangle_{\text{dat}}^{\text{dat}} (\%)$ | 3.0                  | 3.0                  |  |  |
| $\langle \rho^{(\exp)} \rangle_{dat}$                                  | 0.18                 | 0.18                 |  |  |
| $\left< \rho^{(\text{net})} \right>_{\text{dat}}$                      | 0.40                 | 0.49                 |  |  |

- \* Overall fit quality comparable (better an NLO) with previous NNPDF fits
- Distribution of replicas χ<sup>2</sup>, and
   training lengths confirms the good fit quality





### **NNPDF2.3** Results - Parton Distributions (NLO)

#### \* Detailed comparison with NNPDF2.1

- \* addition of LHC data
- \* improved minimization
- corrected error in dimuon cross-section (moderate effect on strangeness)







#### **NNPDF2.3** Results - Parton Distributions (NNLO)

#### \* Detailed comparison with NNPDF2.1

- \* addition of LHC data
- \* improved minimization
- corrected error in dimuon cross-section (moderate effect on strangeness)







### **NNPDF2.3** Results - Data description

|               | NNPDF2.1 |        | NNPDF2.3 |         |       |       |        |        |         |         |
|---------------|----------|--------|----------|---------|-------|-------|--------|--------|---------|---------|
|               | Gl       | obal   | Glob     | oal Fit | Glob  | al RW | nol    | LHC    | Col     | lider   |
| Experiment    | NLO      | NNLO   | NLO      | NNLO    | NLO   | NNLO  | NLO    | NNLO   | NLO     | NNLO    |
| Total         | 1.145    | 1.167  | 1.121    | 1.153   | 1.116 | 1.153 | 1.101  | 1.147  | 1.018   | 1.034   |
| NMC-pd        | 0.97     | 0.93   | 0.93     | 0.94    | 0.93  | 0.94  | 0.93   | 0.94   | [4.72]  | [5.03]  |
| NMC           | 1.68     | 1.58   | 1.61     | 1.57    | 1.59  | 1.56  | 1.59   | 1.56   | [1.86]  | [1.87]  |
| SLAC          | 1.34     | 1.04   | 1.26     | 1.02    | 1.24  | 1.00  | 1.28   | 1.04   | [1.80]  | [1.48]  |
| BCDMS         | 1.21     | 1.29   | 1.19     | 1.29    | 1.21  | 1.29  | 1.20   | 1.28   | [1.81]  | [2.08]  |
| CHORUS        | 1.10     | 1.08   | 1.10     | 1.06    | 1.10  | 1.06  | 1.09   | 1.07   | [1.93]  | [1.81]  |
| NTVDMN        | 0.70     | 0.50   | 0.45     | 0.55    | 0.45  | 0.59  | 0.42   | 0.48   | [28.51] | [22.61] |
| HERAI-AV      | 1.04     | 1.04   | 1.00     | 1.01    | 1.00  | 1.02  | 1.01   | 1.03   | 0.97    | 0.98    |
| FLH108        | 1.34     | 1.23   | 1.28     | 1.20    | 1.29  | 1.20  | 1.29   | 1.21   | 1.33    | 1.25    |
| ZEUS-H2       | 1.21     | 1.21   | 1.20     | 1.22    | 1.21  | 1.22  | 1.20   | 1.22   | 1.30    | 1.32    |
| ZEUS $F_2^c$  | 0.75     | 0.81   | 0.82     | 0.90    | 0.83  | 0.90  | 0.81   | 0.86   | 0.73    | 0.77    |
| H1 $F_2^c$    | 1.50     | 1.44   | 1.58     | 1.52    | 1.63  | 1.53  | 1.58   | 1.49   | 1.34    | 1.30    |
| DYE605        | 0.94     | 1.09   | 0.88     | 1.02    | 0.86  | 1.04  | 0.85   | 1.07   | [11.12] | [4.56]  |
| DYE886        | 1.42     | 1.76   | 1.28     | 1.62    | 1.25  | 1.59  | 1.24   | 1.61   | [4.44]  | [4.63]  |
| CDF W asy     | 1.87     | 1.63   | 1.54     | 1.70    | 1.56  | 1.69  | 1.45   | 1.66   | 1.17    | 1.16    |
| CDF Z rap     | 1.77     | 2.42   | 1.79     | 2.12    | 1.77  | 2.16  | 1.77   | 2.15   | 1.49    | 1.49    |
| D0 Z rap      | 0.57     | 0.68   | 0.57     | 0.63    | 0.57  | 0.63  | 0.57   | 0.64   | 0.57    | 0.61    |
| ATLAS W,Z     | [1.58]   | [2.22] | 1.27     | 1.46    | 1.26  | 1.53  | [1.37] | [1.94] | 1.08    | 1.08    |
| CMS W e asy   | [2.26]   | [1.45] | 1.04     | 0.96    | 1.18  | 1.04  | [1.50] | [1.37] | 0.96    | 0.96    |
| LHCb W,Z      | [1.34]   | [1.42] | 1.21     | 1.22    | 1.19  | 1.21  | [1.24] | [1.33] | 1.22    | 1.29    |
| $CDF RII k_T$ | 0.68     | 0.65   | 0.61     | 0.67    | 0.58  | 0.65  | 0.60   | 0.67   | 0.57    | 0.59    |
| D0 RII cone   | 0.90     | 0.98   | 0.84     | 0.93    | 0.82  | 0.92  | 0.84   | 0.94   | 0.83    | 0.93    |
| ATLAS jets    | [1.65]   | [1.48] | 1.55     | 1.42    | 1.44  | 1.37  | [1.57] | [1.45] | 1.46    | 1.41    |

- \* Overall quality of the fit is good, with no signs of strong tensions among different datasets
- \* Good consistency of refitting and reweighting results





#### **NNPDF2.3** The LHC data - Fit quality

- \* Compare the quality of the fit to LHC data before and after inclusion in the global fit
- Including LHC data in the fit improves the quality of their description, w/o deteriorating quality of the fit to other datasets
- Moderate impact of the LHC data, supporting consistency of the global fit framework
- \* Fit quality is comparable at NLO and NNLO, thought the former marginally better

| NLO             | NNPDF2.3 noLHC | NNPDF2.3 |
|-----------------|----------------|----------|
| NMCpd           | 0.93           | 0.93     |
| NMC             | 1.59           | 1.61     |
| SLAC            | 1.28           | 1.26     |
| BCDMS           | 1.20           | 1.19     |
| HERA-I          | 1.01           | 1.00     |
| CHORUS          | 1.09           | 1.10     |
| NuTeV           | 0.42           | 0.45     |
| DYE605          | 0.85           | 0.88     |
| DYE866          | 1.24           | 1.28     |
| CDFWASY         | 1.45           | 1.54     |
| CDFZRAP         | 1.77           | 1.79     |
| D0ZRAP          | 0.57           | 0.57     |
| ATLAS-WZ        | 1.37           | 1.27     |
| CMS-WEASY       | 1.50           | 1.04     |
| LHCb-WZ         | 1.24           | 1.21     |
| CDFR2KT         | 0.60           | 0.61     |
| D0R2CON         | 0.84           | 0.84     |
| ATLAS-JETS-2010 | 1.57           | 1.55     |



#### **NNPDF2.3** The LHC data - Fit quality

- \* Compare the quality of the fit to LHC data before and after inclusion in the global fit
- Including LHC data in the fit improves the quality of their description, w/o deteriorating quality of the fit to other datasets
- Moderate impact of the LHC data, supporting consistency of the global fit framework
- \* Fit quality is comparable at NLO and NNLO, thought the former marginally better

| NNLO            | NNPDF2.3 noLHC | NNPDF2.3 |
|-----------------|----------------|----------|
| NMCpd           | 0.94           | 0.94     |
| NMC             | 1.56           | 1.57     |
| SLAC            | 1.04           | 1.02     |
| BCDMS           | 1.28           | 1.29     |
| HERA-I          | 1.03           | 1.01     |
| CHORUS          | 1.07           | 1.06     |
| NuTeV           | 0.48           | 0.55     |
| DYE605          | 1.07           | 1.02     |
| DYE866          | 1.61           | 1.62     |
| CDFWASY         | 1.66           | 1.70     |
| CDFZRAP         | 2.15           | 2.12     |
| D0ZRAP          | 0.64           | 0.63     |
| ATLAS-WZ        | 1.94           | 1.46     |
| CMS-WEASY       | 1.37           | 0.96     |
| LHCb-WZ         | 1.33           | 1.22     |
| CDFR2KT         | 0.67           | 0.67     |
| D0R2CON         | 0.94           | 0.93     |
| ATLAS-JETS-2010 | 1.45           | 1.42     |



#### **NNPDF2.3** The LHC data - PDF comparison

- Moderate impact of LHC data on extracted PDFs
- \* Largest impact on singlet quark and strange distribution
- \* Effect is at most half a sigma shift in central values







#### **NNPDF2.3** The LHC data - Observables

- \* Fit to LHC data already acceptable before including them in the fit
- \* Very good description of LHC datasets after inclusion in the NNPDF2.3 fit
- Substantial reduction in the uncertainties on the observable predictions







#### **NNPDF2.3** The LHC data - a "strange" story

\* ATLAS recently presented evidence for a larger than thought strange distribution at low Q2 and x, leading to a value for

$$r_s(x,Q^2) = \frac{s(x,Q^2) + \bar{s}(x,Q^2)}{2\bar{d}(x,Q^2)} \approx 1$$
 (for Q<sup>2</sup>=1.9 GeV<sup>2</sup> and x=0.023)

which disagrees at two sigma level with the NNPDF2.1 prediction

\* The ATLAS analysis is based on a fit combining the HERA-I data with the ATLAS W/Z rapidity distribution data



In order to check the ATLAS claim we produced a version of the NNPDF2.3 fit based on the same dataset used in the ATLAS study





1.5

2.5

3

2

#### NNPDF2.3 The LHC data - a "strange" story



- \* Strangeness in NNPDF2.3 somewhat larger than NNPDF2.3noLHC in the range  $10^{-3} < x < 10^{-1}$ , though still compatible within errors shows minor small impact of LHC data
- \* Determination from HERA+ATLAS dataset yields r<sub>s</sub>~1 but has much larger uncertainties (substantially larger than ATLAS determination)





#### **NNPDF2.3** Collider fit - are we there yet?

It is the fit we would love to have

- \* Only high energy data: minimize the effects of higher-twist contributions
- \* Only proton data: no assumptions based on models for nuclear corrections
- **Gluon distribution** is very well constrained both at small-x (HERA) and large-x (Tevatron/LHC jets)
- \* PDF combinations sensitive to light flavour separation have substantially larger uncertainties (missing constraints from fixed target DIS/DY data)
- \* Uncertainties on "fixed target" observables are still unacceptably large
- Improvement with respect to NNPDF2.1 collider fit thanks to inclusion LHC data
- \* ... things can only get better with more LHC data coming (W+c, low mass DY, photons, high pt Z/W ...)





### **NNPDF2.3** Phenomenology - parton luminosities

$$\Phi_{ij}\left(M_X^2\right) = \frac{1}{s} \int_{\tau}^{1} \frac{dx_1}{x_1} f_i\left(x_1, M_X^2\right) f_j\left(\tau/x_1, M_X^2\right)$$



- Reduction in uncertainty on gluon-gluon luminosity for larger final state invariant masses when going from NNPDF2.1 to NNPDF2.3
- \* NNPDF2.3 quark-antiquark luminosity at large invariant masses somewhat smaller than NNPDF2.1



### **NNPDF2.3** Phenomenology - W/Z production



- \* Mostly sensitive to quark parton luminosities
- \* Predictions from NNPDF2.3 sets are compatible with each other and with predictions obtained using the NNPDF2.1 global set
- \* Largest differences with collider only fit, although the latter has larger uncertainties



#### **NNPDF2.3** Phenomenology - top/Higgs production



- \* Mostly sensitive to quark parton luminosities
- \* Predictions from NNPDF2.3 sets are compatible with each other and with predictions obtained using the NNPDF2.1 global set
- \* Largest differences with collider only fit, although the latter has larger uncertainties



#### **NNPDF2.3** Conclusions

#### \* NNPDF2.3 is the **first PDF** fit including **LHC data**

- \* Development of the FastKernel method allowed for faster observables computation and improvements in the fitting methodology
- # Impact of LHC data is small but non-negligible
- \* Collider fit not yet competitive with global fit, but more data are coming
- \* ... we look forward to include more and more LHC data as they become available





## **Backup Slides**





#### **Distances** NNPDF2.3noLHC vs. NNPDF2.1



- # d~1 corresponds to statistically equivalent fits
- \* d = 10 indicates that a 1 $\sigma$  difference





#### **Distances** NNPDF2.3 vs. NNPDF2.1



- # d~1 corresponds to statistically equivalent fits
- \* d = 10 indicates that a 1 $\sigma$  difference





#### **Distances** NNPDF2.3noLHC vs. NNPDF2.3



- # d~1 corresponds to statistically equivalent fits
- \* d = 10 indicates that a 1 $\sigma$  difference

