NNPDF and The LHC: the way towards a reliable collider-only PDF fit

Alberto Guffanti

Niels Bohr International Academy & Discovery Center Niels Bohr Institute - Copenhagen

On behalf of

The NNPDF Collaboration

R. D. Ball, L. Del Debbio (Edinburgh), F. Cerutti, J. I. Latorre (Barcelona), S. Forte, J. Rojo (Milano), V. Bertone(Freiburg), M. Ubiali(Aachen)

LPCC Summer Institute on LHC Physics CERN

3415 data points (NLO fit) (3408 - LO and 3473 - NNLO)

[R. D. Ball et. al, arXiv:1101.1300] - **NLO** [R. D. Ball et. al, arXiv:1107.2652] - **LO/NNLO**

OBS	Data set		
Deep Inelastic Scattering			
F_2^d/F_2^p NMC-pd			
F_2^p	NMC, SLAC, BCDMS		
F_2^d	SLAC, BCDMS		
σ_{NC}^{\pm}	HERA-I, ZEUS (HERA-II)		
σ_{CC}^{\pm}	HERA-I, ZEUS (HERA-II)		
F_L	H1		
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS		
dimuon prod.	NuTeV		
F_2^c	ZEUS, H1		
Drell-Yan & Vector Boson prod.			
$d\sigma^{ m DY}/dM^2 dy$	E605		
$d\sigma^{\rm DY}/dM^2 dx_F$	E866		
W asymm.	CDF		
Z rap. distr.	D0/CDF		
Inclusive jet prod.			
Incl. $\sigma^{(jet)}$	CDF (k _T) - Run II		
Incl. $\sigma^{(jet)}$	D0 (cone) - Run II		

NNPDF2.1

... based on the NNPDF Methodology

Monte Carlo determination of errors

- No need to rely on linear propagation of errors
- Possibility to test for the impact of non gaussianly distributed errors
- Possibility to test for non-gaussian behaviour in fitted PDFs $(1 \sigma \text{ vs. 68\% CL})$

Neural Networks

• Provide an unbiased parametrization

• Stopping based on Cross-Validation

• Ensures proper fitting avoiding overlearning

NNPDF2.1

... including Heavy Flavour contributions (FONLL)

• We adopt the FONLL General Mass-Variable Flavour Number Scheme

[M. Cacciari, M. Greco and P. Nason, (1998)] [S. Forte, P. Nason E. Laenen and J. Rojo, (2010)]

- FONLL gives a prescription to combine FFN (Massive) and ZM-VFN (Massless) computations, at any given order, avoiding double counting.
- With available computations three implementations of FONLL are possibile:
 - FONLL-A: $\mathcal{O}(\alpha_s)$ Massless + $\mathcal{O}(\alpha_s)$ Massive (NLO fit)
 - FONLL-B: $\mathcal{O}(\alpha_s)$ Massless + $\mathcal{O}(\alpha_s^2)$ Massive
 - FONLL-C: $\mathcal{O}(\alpha_s^2)$ Massless + $\mathcal{O}(\alpha_s^2)$ Massive (NNLO fit)
- Fixed Flavour Number Scheme (3-, 4-, 5-) fits available.

NNPDF fits to reduced datasets

HERA-only fit

- HERAPDF is not the only fit based on HERA data only
- HERA-only fit uses the SAME settings of global fit
 - No restrictions on flavour separation
 - No assumptions on strangeness being proportional to non-strange sea
 - Same unbiased parametrization (259 parameters)

 Large uncertainties due to lack of experimental constraints and no ad-hoc parametrization choices

NNPDF fits to reduced datasets

Collider-only fit

- The fit we would love to have ...
 - Only high energy data: minimize effects of higher-twist contributions
 - Only proton data: no assumptions based on nuclear corrections models
- Based on HERA and Tevatron (inclusive jets and W/Z prduction) data

 LHC (and HERA-II combined) data are crucial in order to improve collider-only fit

Impact of NMC data on PDF determinations

... if you needed one more reason to love a collider-only fit

[R. D. Ball et al, arXiv:1102.3182v2]

- In arXiv:1101.5261, ABM suggested that the detailed treatment of NMC data has a sizable impact on PDF determinations and the Higgs cross-section at the Tevatron and the LHC.
- We addressed the question in the context of the NNPDF2.1 NLO and NNLO fits

Impact of NMC data on PDF determinations

... if you needed one more reason to love a collider-only fit

[R. D. Ball et al, arXiv:1102.3182v2]

- In arXiv:1101.5261, ABM suggested that the detailed treatment of NMC data has a sizable impact on PDF determinations and the Higgs cross-section at the Tevatron and the LHC.
- We addressed the question in the context of the NNPDF2.1 NLO and NNLO fits

Standard Candles measurements might soon have the ability to discriminate among theory predictions

PDF4LHC

$t\bar{t}$ production

- $\sigma_{t\bar{t}}$ correlated to all PDFs
- $\sigma_{t\bar{t}}$ sensitive probe of gluon
- Gluon strongly correlated to α_S

LHC 7 TeV, HATHOR + VRAP, mt = 172 GeV

Reweighting NNPDFs

Assessing the impact of new data on PDF fits

[R. D. Ball et al., arXiv:1012.0836]

- The N_{rep} replicas of a NNPDF fit give the probability density in the space of PDFs
- Expectation values for observables computed as

$$\langle \mathcal{F}[f_i(x, Q^2)]
angle = rac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\Big(f_i^{(net)(k)}(x, Q^2)\Big)$$

- (... the same is true for errors, correlations, etc.)
- We can **assess the impact** of including **new data** in the fit updating the probability density distribution without refitting.

Reweighting NNPDFs

Assessing the impact of new data on PDF fits

According to Bayes Theorem we have

 $\mathcal{P}_{\text{new}}(\{f\}) = \mathcal{N}_{\chi} \mathcal{P}(\chi^2 | \{f\}) \mathcal{P}_{\text{init}}(\{f\}), \quad \mathcal{P}(\chi^2 | \{f\}) = [\chi^2(\mathbf{y}, \{f\})]^{\frac{n_{dat} - 1}{2}} e^{-\frac{\chi^2(\mathbf{y}, \{f\})}{2}}$

Averages over the sample are now weighted sums

$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = \sum_{k=1}^{N_{rep}} w_k \mathcal{F}\left(f_i^{(net)(k)}(x, Q^2)\right)$$

where the weights are

$$w_{k} = \frac{\left[\chi^{2}(y, f_{k})\right]^{\frac{n_{dat}-1}{2}} e^{-\frac{\chi^{2}(y, f_{k})}{2}}}{\sum_{i=1}^{N_{rep}} \left[\chi^{2}(y, f_{i})\right]^{\frac{n_{dat}-1}{2}} e^{-\frac{\chi^{2}(y, f_{i})}{2}}}$$

W lepton asymmetry data at the LHC

$$A'_{W} = \frac{\sigma(pp \to W^+ \to l^+\nu_l) - \sigma(pp \to W^- \to l^-\bar{\nu}_l)}{\sigma(pp \to W^+ \to l^+\nu_l) + \sigma(pp \to W^+ \to l^-\bar{\nu}_l)}$$

- ATLAS: muon charge asymmetry (31pb⁻¹) [ArXiv:1103:2929]
- CMS: muon charge asymmetry (36pb⁻¹) [ArXiv:1103:3470]
- LHCb: preliminary forward W muon charge asymmetry (16.5pb⁻¹), not corrected for FSR

$$A'_{W} \sim \frac{u(x_1, M_W^2)\bar{d}(x_2, M_W^2) - d(x_1, M_W^2)\bar{u}(x_2, M_W^2)}{u(x_1, M_W^2)\bar{d}(x_2, M_W^2) + d(x_1, M_W^2)\bar{u}(x_2, M_W^2)}$$

The W lepton asymmetry data at LHC

χ^2 /d.o.f.	NNPDF2.1	CT10w	MSTW08
ATLAS	0.7	0.8	3.2
CMS $e^- p_T > 25$ GeV	1.9	0.8	2.4
CMS $e^- p_T > 30$ GeV	1.7	1.2	2.5
CMS $\mu p_T > 25$ GeV	1.3	0.5	1.1
CMS $\mu p_T > 30$ GeV	0.8	0.6	1.3

Theory predictions computed using DYNNLO at NLO

[ArXiv:0903.2120]

Inclusion of the LHC W lepton asymmetry data (PRELIMINARY)

- ATLAS and CMS data compatible with data included in global analysis
- The provide important constraint to PDFs in the small medium-*x* region
- Significant uncertainty reduction

ATLAS $N_{\rm eff} = 928, \chi^2_{\rm d.o.f.} : 0.69 \rightarrow 0.65$ CMS ($p_T' > 25$ GeV) $N_{\rm eff} = 554, \chi^2_{\rm d.o.f.} : 1.41 \rightarrow 0.74$ CMS ($p_T' > 30$ GeV) $N_{\rm eff} = 717, \chi^2_{\rm d.o.f.} : 0.98 \rightarrow 0.72$

Q

Combining Tevatron and LHC data (PRELIMINARY)

LOG scale

driven by Tevatron data

- Direct probe of qg luminosity
- Constraint on medium-x gluon ...
 complementary to inclusive jets
- Possible "problems" ... but concentrated in the small-p_⊥ region

Measurements by ATLAS and CMS should be soon finalized

Prompt photons at the LHC

Theoretical setup: JETPHOX NLO + NNPDF2.1

- JETPHOX 1.3.0 NLO pQCD code [Guillet-Arleo]
- NNPDF2.1 (100 replicas) interfaced via LHAPDF5.8.5
- BFG-II parton-to-photon FFs (but suppressed by isolation cuts).
- All scales set to default: $\mu_{R} = \mu_{F} = \mu_{FF} = E_{T}^{\gamma}$
- Exp. kinematics+isolation cuts & p_T binnings for 30 systems: 100 replicas direct-γ NLO: ~7h CPU / 1M evts (~5 days for 20 Mevts !) 100 replicas frag-γ NLO: ~10h CPU / 1M evts (~1 week for 20 Mevts !)

×30 !

David d'Enterria (CERN)

- NNPDF2.1 "reweighting technique":
- (1) $d\sigma_{\text{NLO}}/dp_{\text{T}}$ for 100 (or 1000) replicas: NNPDF21_100.LHgrid
- (2) χ^2 analysis $d\sigma_{_{\rm EXP}}/dp_{_{\rm T}} d\sigma_{_{\rm NLO}}/dp_{_{\rm T}}$ for each replica.
- (3) Obtain associated "weight" $w_k = \frac{(\chi_k^2)^{n/2-1}e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N}\sum_{k=1}^N (\chi_k^2)^{n/2-1}e^{-\frac{1}{2}\chi_k^2}}.$
- (4) Obtain reweighted PDF replicas: $\langle \mathcal{O} \rangle_{\text{new}} = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k]$

[R.D.Ball et al. NPB 849 (2011) 112]

EPS-HEP'11, Grenoble, July'11

12/20

A. Guffanti (NBIA & Discovery Center)

Prompt photons at the LHC

A. Guffanti (NBIA & Discovery Center)

18/22

Prompt photons at the LHC

χ^2 world γ -data vs NNPDF replicas

 χ²/ndf distribution of 100 replicas for each one of 30 systems: (syst.+stat. uncertainties in quadrature. Lumi not considered)

Inclusive Jet data at the LHC

• Larger impact expected on gluon in medium-x region ($0.05 \le x \le 0.2$)

 Inconsistencies among PDF fits in this region might be resolved by precise data ... uncertainties dominated by systematics

A. Guffanti (NBIA & Discovery Center)

W polarization measurement

- Can we learn something more looking at *W* polarization?
- CMS measurement available but still uncorrected for: background subtraction, efficiency, resolution.
- NLO calculation implemented in BLACKHAT (thanks to Daniel for running the code for us)

LHC4PDFs

... the data we would love to have

- Medium- and large-x gluon
 - Prompt photons
 - Inclusive Jets
 - *t*-quark distributions (p_{\perp}, y) ?

• Light flavour separation at medium- & small-x

- Low-mass Drell-Yan
- Z rapidity distribution
- W(+jets) asymmetry

Strangeness & Heavy Flavours

- *W* + *c*
- Z + c, $\gamma + c$
- *Z* + *b*

... and if we could have them as **APPLGRID or FastNLO grids** ... that would be really sweet! ;)

A. Guffanti (NBIA & Discovery Center)

NNPDF & The LHC