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Introduction

Hadron colliders like the Large Hadron Collider (LHC) at CERN or the Tevatron at
Fermilab probe our understanding of the theory which describes the subnuclear inter-
action. For the past few decades, physicists have been able to describe with increasing
details the fundamental particles that constitute the Universe and the interactions be-
tween them. This understanding is encapsulated in the Standard Model of particle
physics, but there are still important gaps in our knownledge. The upcoming experi-
mental data from the LHC might produce unexpected results and unveil new scenarios
in our understanding of the model of elementary particles. However, the correct iden-
tification of any signal of new physics requires a careful assessment of the Standard
Model backgrounds. Given that the vast majority of events are due to strong interac-
tions, a deep understanding of the phenomenology of strong interactions is fundamen-
tal in order to fully exploit the physics potential of moderncolliders.

The theory which currently describes the strong interaction is the result of the assem-
bling of many theoretical ideas and experimental results. The search for such a theory
started half-century ago. In 1963, Gell-Mann, Ne’eman and Zweig proposed a model
based on symmetry principles which was able to make sense of the chaos caused by
the proliferation of new hadrons produced in nuclear experiments [1, 2, 3, 4]. In a few
words, they recognised that the known hadrons could be associated to some represen-
tations of the special unitarySU(3) group. This lead to the concept ofquarksas the
building block of hadrons. Mesons were expected to be quark-antiquark bound states,
while baryons were interpreted as bound states of three quarks. This "constituent"
quark model still successfully describes most of the qualitative features of the baryon
spectroscopy.

At that time it was not obvious that such a picture of strong interactions could succeed.
The deeply inelastic scattering experiments carried out inthe 60’s, probing the inner
structure of the nucleon with beams of highly energetic electrons, represented a rev-
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olution in the conception of the strong force. The astonishing result was that a much
larger than expected number of electrons was observed at large deflection angle. Feyn-
man gave a simple phenomenological explanation for this result: at the small distance
probed by the electrons, the nucleon has to be considered as agas of non–interacting
point–like particles, called partons [5]. The electron simply scatters elastically the
collinear components of the proton, each of them carrying a fractionx of the nucleon
momentum, such that

∑

partons

x = 1. (1)

According to this model, a hadron could be represented by mean of functions, the
so–called parton densities, representing the probabilitythat a parton of given kind
(or flavor) carries a fractionx of the longitudinal momentum of the hadron. In this
simple picture, the observed hadronic cross–section is simply given by the convolution
between the parton densities and point–like partonic crosssections, which assume free
partons. Therefore all the dynamical effect of strong interactions is contained in the
specific form of the parton densities.

Pretty soon after the formulation of the parton model, thesepartons were then identi-
fied with the quarks introduced by Gell–Mann and Zweig to interpret the spectroscopy
experiments. Partons were assigned spin 1/2 and electric charges of 2/3 and -1/3. This
gave rise of a series of sum rules relating parton densities of different hadrons, which
were experimentally satisfied. However, postulating the existence of “sea“ quarks,i.e.
of short living pairs of quark–antiquark in the nucleon during the collision, was not

sufficient to fulfil the sum rule Eq. (1). It was also necessaryto admit the existence in
the hadron of neutral particles, called gluons, which do notinteract with the electron
probes. At the same time, it was recognised that the quark model seemed to require
a new quantum number for the quarks, the colour. Originally introduced to solve a
problem of Fermi statistic for the spin one-half quarks in the∆++ baryon, the colour
provided a natural set of currents to which gluons might couple.

The assembling of the ideas and experimental evidences mentioned above gave rise
to the formulation of Quantum Chromo–Dynamics (QCD). Introduced in 1973, QCD
is the renormalisable non–abelian theory based on the groupSU(3) containing gluons
and quarks as elementary fields [6, 7, 8]1. The corresponding classical Lagrangian
which exhibits explicitly the SU(3) symmetry is given by theYang–Mill Lagrangian

Lclass =
∑

flavors

Ψ̄a (iγµD
µ − m)ab Ψb − 1

4
TrGA

µνG
µν
A , (2)

1For more references see Refs. [9, 10, 11] and references therein
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whereΨa are the quark fields,GA
µν is the field strength tensor derived from the gluon

fieldAA andDµ is the covariant derivative, defined in Appendix A.

This theory possesses a number of important properties. In the low–energy regime
it is strongly–interacting and produces an attractive force in a quark–antiquark and a
three–quarks system. On the other hand, it predicts theasymptotic freedom[13, 14],
according to which the coupling decreases as the energy increases, as it is shown in
Fig. 1.

The scale dependence of the coupling constant encoded in theβ function which has
the following perturbative expansion

β(αs) = − β0

4π

(
1 +

β1

4πβ0
αs +O(α2

s)

)
(3)

wherenf is the number of light active flavors and

β0 =
33− 2nf

3
(4)

β1 =
2(153− 19nf)

3
.



Neglectingβ1 and higher order coefficients, the leading–order solution for the running
of αs(Q

2) is given by

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)β0 log(Q2/µ2)
. (5)

Contrarily to what we have in QED, the coefficient of the expansion of theβ function
in a non–abelian theory like QCD are negative and this is whatmakesαs decrease as
the energy increases, Eq. (5).

An important consequence of asymptotic freedom is that strong cross sections are
computable in perturbation theory if a sufficiently high energy scale is involved in the
computation. This would still not be enough to apply the results of perturbative calcu-
lations on partons to the world of observed hadrons. We need two other fundamental
ingredients: the concept of infrared safety and the factorisation theorem. The former
guarantees the cancellation between the singularities arising at the boundary of the
phase space in each perturbative calculation and allows us to ignore the long–distance
effects into the perturbative calculations. On the other hand, the factorisation theo-
rem enables us to write down the hadronic cross–sections as convolutions between a
hard part computable in perturbative QCD and a low–energy non–perturbative part up
to O

(
Λ2
QCD/Q

2
)

corrections corresponding to higher–twist operators. Thelatter is
given by the parton distribution functions (PDFs). They cannot be derived from first
principles, but are process–independent and their scale dependence is predicted by
perturbative QCD. Therefore we may extract PDFs from the available experimental
data and evolve them to the scale of a new experiment for whichPDFs represent a
theoretical input. The kinematic plane(x,Q2) with the region which is going to be
explored by the LHC as compared to the region covered by some typical experiments
from which parton distribution functions are extracted is shown in Fig. 2. Parton
distributions and their uncertainties are fundamental inputs of any phenomenological
prediction at the LHC and at the Tevatron. More details on thecollinear factorisation
theorem and on the evolution of parton distribution functions are given in Chapters
2 and 5. In the latter a method for a fast computation of the parton evolution and
of the hadronic observables is described in details. An overview on how PDFs are
extracted from data and on the statistical topics involved in global analyses are given
in Chapter 3. In Chapter 4, the approach developed within theNNPDF collaboration
is explained in all details and the physical results are exposed. The method lead to
several phenomenological analyses which are discussed in Chapter 6.

In the real world, three of the six quarks present in Nature are light, while three of
them have a mass which is not negligible with respect to theΛQCD scale at which
the perturbative approach to QCD breaks down. The precise definition of the PDFs
and the formulation of the factorisation does depend on considerations about the rela-



Figure 2: This plot shows the kinematical coverage of the LHCwhen the centre–
of–mass energy will reach 14 TeV in the plane(x,Q2) compared to the kinematical
coverage of previous colliders.

tive magnitude of the scales involved in the process with respect to the quark masses
(mc,mb,mt). This is not a trivial issue because different regimes, depending on
whether a quark is considered light or heavy, correspond to different theories and re-
quire a suitable definition of the renormalised quantities.The general framework and
the definition of renormalisation schemes able to deal with this multi–scale problem
are given in the second part of Chapter 2.

As in perturbative QCD we model the hadron as an object constituted by massless par-
tons, it is not trivial to perform calculations of processesinitiated by a heavy quark.
The schemes elaborated in literature in order to perform such calculations exploit what
is already well–known about perturbative QCD with light quarks in the initial states
and heavy particles in the final states. In particular, thereare two extreme and comple-
mentary schemes which are generally employed depending on the relative size of the
heavy quark mass with respect to the hard scale of the process. In the so–called mass-
less scheme the heavy quark is treated as a parton in the initial state, while in the oppo-
site massive scheme the heavy quark is treated as a massive particle in the final state.
Both schemes present several advantages and disadvantages. In the massless scheme



theoretical calculations at next-to-leading orders are highly simplified and logarithmic
corrections associated to the collinear splitting of the heavy quarks are resummed to
all orders. However the calculation might be very inaccurate in kinematic regions
where the effect of the non-logarithmic terms are important. On the other hand, the
massive scheme does not resum the logarithmic corrections but it treats correctly the
leading–order kinematics and employs coherently the mass threshold effects. A de-
tailed analysis of their difference is presented in Chapter7. This study leads to a better
understanding of the size of the potentially large logarithms resummed by the DGLAP
equations and allows a systematic estimate of their impact.



Chapter 1
Perturbative Quantum
Chromo–Dynamics

In this chapter some essential features of perturbative QCDare discussed. The collinear
factorisation theorem is introduced by using the deep inelastic scattering process as a
paradigm. The flavor decomposition and the solution of the DGLAP equations are
described in detail. In the second part of the chapter, the discussion focuses on the de-
scription of a renormalisation scheme able to deal with the finite heavy quarks masses.
The deriving schemes used to perform calculations involving heavy quarks are then
reviewed.

1.1 The QCD improved parton model

Quantum Chromo–Dynamics (QCD) is the universally acceptedtheory of the strong
interactions. The success of the theory has been confirmed bythe comparison between
the experimental data collected in the last forty years and its predictions.
Although we cannot see directly the quarks and the gluons as we do with the other
elementary particles, their presence is unmistakably revealed in high energy interac-
tions as distinctive ”jets”,i.e. as a bunch of collimated hadrons. In Fig. 1.1 a typical
signature from the annihilation of electrons and positronsat the centre–of–mass en-
ergy of 91 GeV at LEP is shown. The signature can be interpreted as illustrated on the
right–hand side of the same figure: thee+e− pair annihilates into a quark–antiquark
pair which then ”hadronise” into the observed pencil–like jets. The same experimental
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Figure 1.1: Typical event ine+e− → hadrons with 2–jets in final state at LEP. Clear
evidence forqq̄ creation.

evidence was reached for the existence of gluon. In Fig. 1.2 a3–jets event ine+e−

collision is shown. The natural interpretation is drawn on the right of the experimental
trace: the event correspond to aqq̄g final state with subsequent hadronisation of the
quarks and gluon into hadronic jets. Detailed studies of theangular distribution of the
three jets confirm this picture, the spin of the underlying third jet being consistent with
one. This proves that the gluon is a vector–boson.
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Figure 1.2: Typical event ine+e− → hadrons with 3–jets in final state at LEP. Clear
evidence forqq̄g creation.
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The unique feature of the underlying Quantum Field Theory which makes the pertur-
bative approach applicable to QCD is the concept of asymptotic freedom. The strong
processes computable in perturbation theory are those which involve a high energy
scale so that the coupling is sufficiently small. Some examples which will be dis-
cussed in this thesis are: the deep inelastic scattering (DIS) of an electron off a proton,
where the hard scaleQ2 is given by the transferred momentum, and the production of
heavy particles, such as weak bosons, where the hard scale isgiven by the mass of the
produced particles.

Even though QCD is asymptotically free, the computation of any strong cross sec-
tion does involve non-perturbative contributions, since the initial and final states are
not the fundamental degrees of freedom of the theory but compound states of quarks
and gluons. An important property of QCD is the factorisation theorem, which ba-
sically enables us to separate in every process a hard part, computable in perturba-
tion theory, from a low energy one, which is process-independent and can be taken
as a phenomenological input. The latter, given by the PartonDistribution Functions
(PDFs), parametrise our ignorance on the inner structure ofthe nucleons. More de-
tails on the way in which PDFs are extracted from the existingdata and on the related
phenomenological issues are given in the next Chapter.

The possibility of separating long and short distance effects largely explains the suc-
cess of the parton model, a predecessor of QCD, introduced byFeynman and Bjorken
in the late Sixties [15]-[16]. It began as a quasi–classicalmodel for DIS, based upon
the idea that the hadron can be described as a bunch of collinear independent par-
tons, carrying a fraction of the total longitudinal momentum of the hadron, off which
a lepton can scatter via the exchange of a vector boson. Nowadays the parton model
is understood as the lowest order approximation of a perturbative QCD calculation.
To maintain the separation between long and short distance effects in the presence
of QCD corrections, one is obliged to make PDFs scale dependent, that is, functions
of bothx andQ2. The dependence of PDFs onQ2 has been confirmed and accu-
rately measured by experiments, especially by the large amount of data collected at
the HERA collider [17]. The dependence of PDFs on the scale can be understood
pictorially with the idea that the parton carries within it further daughter–partons and
that these are revealed when the energy of the probing vectorboson is increased. For-
tunately the scale dependence is predicted by perturbativeQCD and it is governed by
the DGLAP equations. The latter allow one to deduce PDFs at a given scale from a
set of PDFs extracted at any other given scale.

In the following sub–sections we first provide the Leading–Order picture of QCD
through the parton model description of Deep–Inelastic Scattering. From there we
give a heuristic development of the NLO perturbative QCD corrections to DIS and we
use it to discuss collinear factorisation. After that we focus on the DGLAP evolution



18 Chapter 1. Perturbative Quantum Chromo–Dynamics

equations by providing details on their solution. This is followed by a discussion
on how these equations resum large logarithmic enhancements to a cross section at
all orders in perturbative QCD. Finally, we show how the factorisation formalism is
applied to the vector production process in hadron–hadron collisions.

1.1.1 Deep Inelastic Scattering

Lepton–hadronscattering is the traditional method for probing the structure of hadrons
and the first testing ground of perturbative QCD [11] as well as having established the
first evidence of partons. It consists in the scattering of a high-energy charged lepton
off a hadron target as shown in Fig. 1.3:

l(k) + h(P ) −→ l′(k′) + X(PX).

At the leading order, it is the manifestation of the partonicsub–process:

l(k) + q(zP ) −→ l′(k′) + q′(p′),

where the quarkq carries a fractionz of the momentum of the incoming hadron. A
basic classification of the events is based on the nature of the boson exchanged by the
initial lepton and quark. In neutral current eventsl = l′ and the boson exchanged is
either a photon or aZ. In charged current events, characterised byl = e, µ, τ and
l′ = νe, νµ, ντ or vice versa, aW± boson is exchanged. If the initial lepton is a
neutrino, only weak interactions occur, making this class of measurements a useful
probe to disentangle the contributions from quarks and anti–quarks.

Figure 1.3: Schematic representation of deep–inelastic charged lepton–nucleon scat-
tering.
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If we label the momentum of the exchanged boson byqµ = kµ − k′µ, neglecting the
relatively small lepton masses, the standard kinematic variables are defined by

Q2 ≡ −q2 = −(k − k′)2 = +2ElEl′(1− cos θ)

ν ≡ (P · q)/MN = (El − El′), (1.1)

where the energies refer to the target rest frame andMN is the target mass. The
scaleQ2 characterises the resolving power of the probe, whileν represents the energy
transferred to the target hadron. Two other Lorentz–invariants, often used to define
the DIS kinematics, are the Bjorken–variablexB and inelasticityy, which take values
between 0 and 1

xB =
Q2

2MNν

y =
q · P
k · P =

El − El′

El
. (1.2)

Once the energy of the lepton–nucleon centre–of–massS is set, only two variables
out ofxB, y andQ2 are independent of each others, being

S = (P + k)2 =
Q2

xBy
+M2

N . (1.3)

The matrix element of the hadronic process may be written in terms of the leptonic
and hadronic currents as

M(lh → l′X) =
〈
l′|J l

µ|l
〉
glV

−gµν

q2 −M2
V

ghV
〈
X |J h

ν |h
〉
, (1.4)

whereMV is the mass of the exchanged vector boson,J l andJ h are respectively
the conserved leptonic and hadronic currents,ghV is the coupling between the hadron
and the vector boson andglV = k2V (V

2
lV + A2

lV ) is the electroweak coupling, whose
expression is shown in Table 1.1 for each type of vector boson. Also notice that the
propagator in Eq. (1.4) is implicitly defined in the Feynman gauge. Eq. (1.4) suggests
that the inclusive lepton–hadron scattering cross sectionmay be written in terms of
two tensorsLµν andHµν as

dσ(lh) =
1

4(k · P )

(glV ghV )
2

(Q2 +M2
V )

2
LµνH

µν(4π)
d3k′

2Ek′(2π)3
(1.5)
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Bosons kV VlV AlV

γ el 1 0
Z 1/(2 sin θW cos θW ) I l3 − 2el sin

2 θW -I l3
W± Vll′/(2

√
2 sin θW ) 1 -1

Table 1.1: Coupling of fermions to the weak bosons. Hereel is the electric charge
measured in unit of the positron charge,I l3 is the third component of the weak isospin,
+1/2 for up–type quarks or neutrinos and−1/2 for down–type quarks or charged
leptons. For charged current interactions involving quarks, the coefficientsVll′ of the
Cabibbo–Kobayashi–Maskawa matrix [18]-[19] are involved. The parametersin θW
is the Weinberg mixing angle.

which, evaluating the Jacobian between(El′ , cos θ) and(xB , Q
2) by mean of Eqs. (1.1)

and (1.2), becomes

dσ(lh)

dxBdQ2
=

Q2

2x2
B(k + P )2

(glV ghV )
2

(Q2 +M2
V )

2

1

4π
LµνH

µν (1.6)

with

Lµν =
1

2

〈
l|J l†

µ |l′
〉 〈

l′|J l
ν |l
〉

(1.7)

Hµν =
1

2

1

4π

∑

X

〈
h|J h†µ|X

〉 〈
X |J hν |h

〉
(2π)4δ(PX − k − P ). (1.8)

The leptonic tensorLµν is easily calculable,

Lµν =

[
kµk

′
ν + k′µkν − Q2

2
gµν + iClV ǫ

αβ
µν kαk

′
β

]
. (1.9)

The last term is associated to the parity violation of the weak interaction, while the
coefficient

ClV =
2AlV VlV

(V 2
lV +A2

lV )

depends only on the type of vector boson exchanged and can be read out of Table 1.1.
As QED does not violate parity,Clγ = 0. In Eq. (1.9) we have neglected the term
associated to the parity violation proportional to the masses of the leptons.

The hadronic tensor is harder to calculate. It is summed overall allowed final states
and by convention includes a factor(4π)−1 and an overall four-momentum conserving
δ–function. Since it is constructed from the only two available four–vectorsPµ and
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qµ and since it must be Lorentz–invariant, we may write down itsgeneral form as:

Hµν = −gµνF1 + (P · q)−1

[
PµP νF2 + iǫµναβP

αqβF3 + Pµqν(F4 + iF5)

+qµP ν(F4 − iF5) + qµqνF6

]
, (1.10)

whereFi ≡ Fi(x,Q
2) are the so–called structure functions. If the spin of the col-

liding particles is specified, there are extra terms involved. The general form of
the hadronic tensor for unpolarised scattering simplifies further if we impose time–
reversal invariance, which setsF5 = 0, and electro–magnetic gauge invariance, which
implies electro–magnetic current conservation,qµH

µν = 0 andHµνqν = 0. As a
consequence, the form of the hadronic tensor is further simplified to

Hµν =

(
−gµν +

qµqν

q2

)
F1 + (P · q)−1

(
Pµ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
F2

+i(P · q)−1ǫµναβ PαqβF3. (1.11)

In order to simplify the following calculations it is convenient to project out of the
hadronic tensor two combinations of structure functions, the transverse and longitudi-
nal components ind = (4 − 2ǫ) dimensions:

HT ≡ −gµνH
µν (1.12)

= (d− 2)
F2

2xB

(
1 +

(2xBMN)2

Q2

)
− (d− 1)

[
F2

2xB

(
1 +

(2xBMN )2

Q2

)
− F1

]

HL ≡ PµPνH
µν (1.13)

=
Q2

(2xB)2

[
F2

2xB

(
1 +

(2xBMN )2

Q2

)
− F1

](
1 +

(2xBMN )2

Q2

)
.

Combining Eqs. (1.5) and (1.11), we can write the general expression for the unpo-
larised and inclusive lepton–hadron scattering cross–section in terms of the structure
functionsFi as

d2σ(lh)

dxBdQ2
=

y

Q2

d2σ(lh)

dxBdy
(1.14)

=
(4π)αlV αhV

(Q2 +M2
V )2

[
y2F1 +

(
1− y − (xByMN)2

Q2

)
F2

xB
− ClV

(
y − y2

2

)
F3

]
,

whereαlV = g2lV /(4π) andαhV = g2hV /(4π).
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The information on the a priori unknown structure of the target as seen by the virtual
boson is carried by the structure functionsFi. They can only be functions ofQ2, xB or
y as well as the mass of the nucleon. In the parton model the structure functions have
a very simple expressions, since the hadron is described in terms of the probability
density distributions for the momentum fractions of its parton constituents

fi,h(z)dz = P(z′ ∈ [z, z + dz]) with i = q, q̄, g, (1.15)

which only depend on the hadron itself and are independent ofthe process. They also
do not depend on the scaleQ2. In this simple picture, which was then understood
as theQ2 → ∞ limit, the structure functions are observed to obey an approximate
scaling law

Fi(xB, Q
2,M2

N ) → Fi(xB). (1.16)

The hadron cross sectiondσ(lh) is then given by the sum of point–like quark or anti–
quark cross sectionsdσ̂(li) weighted by the functionsfi,h(z)

dσ(lh) =
∑

i=q,q̄,g

∫ 1

0

dz fi,h(z) dσ̂
(li)
(xB

z

)
, (1.17)

and the hadron tensor (1.8) can be written as a sum of partonictensorsdĤ(i)
µν

Hµν(P, q) =
∑

i=q,q̄,g

∫ 1

0

dz

z
fi,h(z) dĤ

(i)
µν (zP, q) . (1.18)

The same projections performed at the hadronic level in Eq. (1.13) can be done at
partonic level, just keeping in mind that the longitudinal component must be projected
by pµpν = z2PµPν and therefore

HT =
∑

i=q,q̄,g

∫ 1

0

dz

z
fi,h(z) dĤ

(i)
T (zP, q)

HL =
∑

i=q,q̄,g

∫ 1

0

dz

z3
fi,h(z) dĤ

(i)
L (zP, q) . (1.19)
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The projections of the partonic tensor are related to the partonic matrix elementsM
by the following relations

ĤT =
1

4πe2
(−gµν)

∫
dΦMµMν ,

ĤL =
1

4πe2
pµpν

∫
dΦMµMν , (1.20)

as it can be inferred from Eq. (1.6). From the above equationsone can easily derive
the expression of each structure function as a combination of PDFs, depending on the
nature of the exchanged boson. Indeed, inverting Eq. (1.13), and applying the parton
model factorisation, Eq. (1.18), one gets

F2(x)

x
=

1

(1− ǫ)
HT +

(3− 2ǫ)

(1− ǫ)

4z2

Q2
HL

=
∑

i=q,q̄,g

∫ 1

x

dz

z
fi,h

(x
z

)[ 1

(1− ǫ)
Ĥ

(i)
T (z) +

(3− 2ǫ)

(1− ǫ)

4x2

Q2
Ĥ

(i)
L (z)

]
,

F1(x) − F2(x)

2x
= −4x2

Q2
HL

=
∑

i=q,q̄,g

∫ 1

x

dz

z
fi,h

(x
z

) 4z2

Q2
dĤ

(i)
L (z). (1.21)

To be more explicit, we may consider the partonic processγ∗q → q. First we evaluate
the spin and colors averaged matrix element squared ind–dimensions, withd = (4−
2ǫ)

−gµν
∑

Mµ(γ∗q → q)Mν(γ∗q → q) = 2e2e2q(1 − ǫ)Q2. (1.22)

Integrating over the one–body phase space one obtains

−gµν

∫
dΦ1

∑
Mµ(γ∗q → q)Mν(γ∗q → q) = 2e2e2q(1− ǫ)Q2(2π)δ(p′2). (1.23)

Since the struck quark carries a fractionz of the momentum of the parent’s hadron
momentum

p′2 = (zP + q)2 =
Q2

xB
(z − xB) ⇒ δ(p′2) =

Q2

xB
δ(z − xB), (1.24)

which implies that the fraction of the momentum carried by the struck parton is equal
to the Bjorken-x. This is quite remarkable, namely a macroscopic parameter con-
trols the momentum of the parton involved in the process. As far as the longitudinal
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projection is concerned, for massless leptons it vanishes

qµqν
∑

Mµ(γ∗q → q)Mν(γ∗q → q) = 0. (1.25)

Finally, from Eqs. (1.19) and (1.21), one gets

F γ
2 (x) = x

∑

i=q,q̄

e2qfi,h(x)

xF γ
3 (x) = 0

2xF γ
1 (x) = F2(x). (1.26)

The last equality in Eq. (1.26) is the so–called Callan-Gross relation and it is a direct
consequence of the spin-1

2 property of the quarks.F1 and(F2 − 2xF1) correspond
respectively to the absorption of transversely and longitudinally polarised virtual pho-
tons. The combination

FL(x,Q
2) =

(
1 +

4M2
Nx2

Q2

)
F2(x,Q

2)−2xF1(x,Q
2) →Q2→∞ F2(x)−2xF1(x) (1.27)

is called longitudinal structure function. Structure function measurements show that
FL ≪ F2 confirming the spin-1/2 property of quarks.
The treatment ofZ exchange involves only minor modifications due to the different
coupling and the presence of a non–zero axial contribution.Keeping them into account
one ends up with the following expressions

FZ
2 (x) =

∑

i=q,q̄

xBi(Q
2)fi,h(x), (1.28)

xFZ
3 (x) =

∑

i=q

xDi(Q
2)
[
fi,h(x) − fī,h(x)

]
,

with

Bi(Q
2) = −2eiVeZViZPZ + (V 2

eZ + A2
eZ)(V

2
iZ +A2

iZ)P
2
Z , (1.29)

Di(Q
2) = −2eiAeZAiZPZ + 4VeZAeZViZAiZP

2
Z ,

PZ =
Q2

(Q2 +M2
Z)(4 sin

2 θW cos2 θW )
,

whereViZ andAiZ are respectively the vector and the axial couplings of Table1.1.
Finally the charged current contribution associated to theW+ exchangel+N → νX
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reads as

FW+

2 (x) = 2x
∑

i

[
Di,h(x) + Ūi,h(x)

]
(1.30)

xFW+

3 (x) =
∑

i

[
Di,h(x) − Ūi,h(x)

]
,

whereU includes all up–type quarks andD all the down–type quarks. For the ex-
change ofW−, the expression is the same as Eq. (1.31) whereU → D and vice
versa.

1.1.2 Next–to–leading order QCD corrections

The parton model existed before the formulation of QCD. As soon as QCD corrections
are added on top of tree-level processes, singularities appear in the calculation. In the
following we go through the calculation of the next–to–leading order QCD corrections
to the DIS process, performing all calculations ind = (4 − 2ǫ) dimensions. This
provides a simple ground where the collinear factorisationtheorem can be discussed
in more details. In the following we consider a process wherea virtual photon is
exchanged, given that only minor modifications are involvedif we were considering
a weak boson exchange. We further assume that ultra–violet singularities have been
already taken care of by the renormalisation of the bare constants of the theory.
At O(αs) two classes of contributions appear; the interference between the tree–level
amplitude (a) and the one–loop correction (b) have to be considered, together with
the emission of a real gluon at tree–level (c). Moreover, onehas to consider a process
initiated by a gluon which then splits into a pair of quark andanti–quark, the so–called
boson–gluon fusion process (d).

γ∗

q

q

(a)

γ∗

q

q

(b)

γ∗

q

q

g

(c)

γ∗

q

q

q

(d)

We first concentrate on theO(αs) contribution coming from the processqγ∗ → q at
one–loop and the same contribution at tree–level. The structure of the one–loop vertex
and the tree level diagram are the same, so, as we do in the renormalisation of the UV
divergencies to define the renormalised coupling, we define an effective vertex [11]

iΓµ = −ieeq

[
1− αs

4π
CF

(
4πµ

Q2

)ǫ
Γ(1− ǫ)

Γ(1− 2ǫ)

(
2

ǫ2
+

3

ǫ
+ 8 +

π2

3
+O(ǫ)

)]
. (1.31)
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The double pole inǫ originates from the region of the loop integration where the
exchanged virtual gluon is simultaneously soft and collinear to the massless quark
lines. As we are going to see explicitly, the singularity is cancelled by the analogous
contribution from the emission of one real gluon. This is an example of infrared
safety of QCD: virtual and real corrections cancel the infrared singularities. The KNL
theorem [20, 21] and its generalisation to QCD [22, 23] guarantees that what we have
seen in the case of DIS at next–to–leading order happens to all orders for any QCD
inclusive observable.

The calculation of the transverse component of the hadronictensor coming from this
virtual contribution is straightforward, it only requiresthe integration over the one–
body phase space as in Eq. (1.23) and the multiplication by the conventional factor
1/(4πe2), yielding

Ĥ
(γq)
T,virt = e2q(1− ǫ)δ(1− ξ) (1.32)

{
1− αs

2π
CF

(
4πµ2

Q2

)ǫ
Γ(1− ǫ)

Γ(1− 2ǫ)

(
2

ǫ2
+

3

ǫ
+ 8 +

π2

3

)
δ(1− ξ)

}
.

We now concentrate on the real contribution

γ∗(q) + q(p) → q(p′) + g(kg),

providing some more details on the calculation, which contains examples of all singu-
larities that we have to deal with. The square of the matrix element summed over the
polarisations of the outgoing lepton and averaged over the incoming spins and colors
is given by

∑

|M(γ∗q → q′g)|2 =

∣

∣

∣

∣

∣

q p′

kgp

+

∣∣∣∣∣

2

=

q kg

p′p

= 8NcCF e
2e2q(gsµ

ǫ)2
[
(1− ǫ)

(
kg · p′
kg · p

+
kg · p
kg · p′

)
+

Q2(p · p′)
(kg · p)(kg · p)

+ 2ǫ

]
.

The three terms above correspond to the emission of a gluon off the outgoing quark
(s–channel), the emission of the gluon off the incoming quark (t-channel) and the
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interference between the two contributions. To obtainĤ
(γq)
T , we need to integrate

over the two–body phase space of the final state particles,

Ĥ
(γq)
T,real =

1

4πe2

∫
dΦǫ

2

∑
|M(γ∗q → q′g)|2

= 4e2qαsCF

∫
dΦǫ

2

[
kg · p′
kg · p

+
kg · p
kg · p′

+
Q2(p · p′)

(kg · p)(kg · p)

]
, (1.33)

where the two–body phase spacedΦǫ
2 is evaluated in(4 − 2ǫ) dimensions. Looking

at the denominators of the terms appearing in the integrand,we see that there are two
kind of divergences: collinear, when the gluon is emitted parallel to the incoming or
outgoing lepton, and soft, when the energy of the gluon vanishes. In the partonic
centre–of–mass frame one may write explicitly the four-momenta of the particles in
terms ofs, the centre–of–mass energy in theγ∗–parton system,

ŝ = (zP + q)2 = Q2(1− ξ)/ξ, with ξ = xB/z

and the variablev related to the angleθ∗ between incoming and outgoing particles
in the centre–of–mass frame byv ≡ (1 + cos θ∗)/2. In terms of these variables,
Eq.(1.33) becomes

Ĥ
(γq)
T,real =

e2qαsCF

8π

(
2πµ2

√
ŝ

)2
(1− ǫ)

Γ(1− ǫ)
(1.34)

∫ +1

0

dv v−ǫ(1− v)−ǫ

{
(1− ǫ)

[
v

(1− ξ)
+

(1− ξ)

v

]
+

2ξ

(1− ξ)

(1− v)

v

}
.

where the soft gluon and the initial state collinear singularities manifest themselves
asξ → 1 andv → 0 respectively. The final state collinear singularity belongs to the
same class as the soft singularity because both of them implya zero–mass particle in
the final state. Indeed

(zP + q)2 = Q2 (1− ξ)

ξ
= (kg + p′)2 = 2(kg · p′).

The limit (kg · p′) → 0 is the same asξ → 1, both of them involving the kinematics
of the lower order scattering to which they can be associatedto.
Using the definition of the standard Eulerβ–function and the following identity

ξǫ

(1− ξ)ǫ
= −1

ǫ
δ(1− ξ) +

(
1

1− ξ

)

+

− ǫ

(
log(1− ξ)

1− ξ

)

+

+ ǫ
log ξ

1− ξ
, (1.35)
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we may solve the integration in Eq. (1.34) by expanding inǫ. We end up with

Ĥ
(γq)
T,real = e2q

αs

2π
CF

(
4πµ2

Q2

)ǫ

(1− ǫ)
Γ(1− ǫ)

Γ(1− 2ǫ)
{(

2

ǫ2
+

3

2ǫ
+

7

2

)
δ(1− ξ)− 1

ǫ

(1 + ξ2)

(1− ξ)+
+ (1 + ξ2)

(
log(1− ξ)

1− ξ

)

+

− 1 + ξ2

(1− ξ)
log ξ − 3

2

1

(1− ξ)+
+ 3− ξ +O(ǫ)

}
, (1.36)

where the plus–prescription is a distribution defined as

F (ξ)+ = F (ξ)− δ(1− ξ)

∫ 1

0

dy F (y). (1.37)

The double pole associated to the soft gluon singularity, asanticipate before, is can-
celled out by the analogous virtual soft singularity. We areleft with the single pole as-
sociated to the emission of gluons collinear to the incomingparton. To deriveF2, one
needs also the longitudinal component of the partonic tensor, which is non–singular
and easy to deduce. As in the leading–order calculation, it vanishes in the virtual
contribution, while for the real contribution, it is finite and is given by

Ĥ
(γq)
L,real =

1

4πe2

∫
dΦ2

∑
|pµMµ(γ∗q → q′g)|2

=
e2q
4

αs

2π
CF

Q2

ξ

(
4πµ2

Q2

ξ

1− ξ

)ǫ
Γ(2− ǫ)

Γ(2− 2ǫ)

=
e2q
4

αs

2π
CF

Q2

ξ
+O(ǫ). (1.38)

Summing up Eqs. (1.32) and (1.36) and combining them with Eq.(1.38), we can write
the structure functionsF2 andF1 as

F γq
2 (x) =

αs

2π

∫ 1

x

dξ

ξ
q

(
x

ξ

){
− P (0)

qq (ξ)

[
1

ǫ
− γE + log(4π)− log

(
Q2

µ2

)]

CF

[
1 + ξ2

1− ξ

(
log

(
1− ξ

ξ

)
− 3

4

)
+

5ξ + 9

4

]

+

}

F γq
1 (x) =

F γq
2 (x)

2x
− e2q

αs

2π

∫ 1

x

dξ

ξ
q

(
x

ξ

)
CF ξ. (1.39)
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whereP (0)
qq is the Altarelli–Parisi splitting function which universally describes the

splitting of a quark into a quark. Eq. (1.39) exhibits a singularity in ǫ which need
to be renormalised. In order to do that, we can regard the quark distributionq as
a d–dimensional bare distribution and therefore absorb the collinear pole into this
unmeasurable quantity defining a renormalised physical object as

qF (x, µF ) = q(x, ǫ)−αs

2π

∫ 1

x

dξ

ξ
q

(
x

ξ
, ǫ

)[
P (0)
qq (ξ)

(
1

ǫ
− log

(
µ2

µ2
F

)
+Rqq(ξ)

)]

(1.40)

The second term in Eq. (1.40) is divergent but, as we do when werenormalise the
UV divergencies, we can compensate this divergence with thedivergence of the bare
partonic distributionq(x, ǫ). In the same equation we introduced the scaleµF , the
factorisation scale by simply splitting the logarithm appearing in (1.39) as

log
Q2

µ2
= log

Q2

µ2
F

+ log
µ2
F

µ2
, (1.41)

and pushing the unphysical scaleµ into the bare parton distributions. We can picture
the redefinition of PDFs as follows. As the scale increases the photon starts to “see”
evidence for the point-like valence quarks within the proton. If the quarks were non-
interacting, no further structure would be resolved increasing the resolving scale: the
Bjorken scaling would set in, and the naive parton model would be satisfactory. How-
ever, QCD predicts that on increasing the resolution, one should see that each quark is
itself surrounded by a cloud of partons. The number of resolved partons which share
the proton’s momentum increases with the scale.
Of course in Eq. (1.40) there is an arbitrariness in the choice of the finite contribution
Rqq(ξ): different choices correspond to different factorisationschemes. For instance
two popular schemes take two opposite directions: in theMS scheme only the singu-
lar term plus some coefficients are absorbed into the PDF, while in the DIS schemes
all terms are absorbed into the PDF so thatF2(x,Q

2) = xe2qq
F,DIS(x,Q2), namely

Rqq = −γE + log(4π) MS scheme

Rqq = CF

[
1 + ξ2

1− ξ

(
log

(
1− ξ

ξ

)
− 3

4

)
+

5ξ + 9

4

]

+

DIS scheme

Therefore PDFs should not be regarded as physical quantities, since they depend on
the scheme used to define them. However, their convolution with the appropriate co-
efficient functions, evaluated in the same factorisation scheme, gives rise to physical,
measurable structure functions.
The calculation of the transverse and longitudinal components for the process initiated
by a gluonγ∗g → qq̄ follows the same lines as that forγ∗q → qg. We end up with
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the following expressions for the gluon contributions toF2 andF1

F γg
2 (x) =

αs

2π

∑

i=q,q̄

e2i

∫ 1

x

dξ

ξ
g

(
x

ξ

){
− P

(0)
gi (ξ)

[
1

ǫ
− γE + log(4π)− log

(
Q2

µ2

)]

+TR

[
[ξ2 + (1− ξ)2] log

(
1− ξ

ξ

)
− 1 + 8ξ(1− ξ)

]}

F γg
1 (x) =

F γq
2 (x)

2x
− αs

2π
TR

∑

i=q,q̄

e2i

∫ 1

x

dξ

ξ
g

(
x

ξ

)
4ξ(1− ξ). (1.42)

whereP (0)
gi is the Altarelli–Parisi splitting function which universally describes the

splitting of a gluon into a quark (or antiquark) of flavori. Analogously to what was
done in Eq. (1.40), we can define the finite gluon density as

gF (x,µF ) = g(x, ǫ)− αs

2π

∫ 1

x

dξ

ξ
g

(
x

ξ
, ǫ

)[
P (0)
gq (ξ)

(
1

ǫ
− log

(
µ2

µ2
F

)
+Rqg(ξ)

)]
,

(1.43)

where again the choice forRqg depends on the factorisation scheme.
Generalising the results obtained from the exchange of a photon to the exchange of
any vector boson, the NLO formula forF (V h)

1 , F (V h)
2 andF (V h)

3 in theMS scheme
reads

FJ (x,Q
2)

x
=

∫ 1

x

dξ

ξ

∑

i=q,q̄

g2V if
MS
i

(
x

ξ
, µ2

F

)[
δ(1− ξ) +

αs

2π

(
P (0)
qq (ξ) log

Q2

µ2
F

(1.44)

+CV i,MS
J (ξ)

)]
+ gMS

(
x

ξ
, µ2

F

)
αs

2π

[
P (0)
qg (ξ) log

Q2

µ2
F

+ CV g,MS
J (ξ)

]
,
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where,

CV q,MS
1 (ξ) =

1

2
CV q,MS

2 (ξ) − CF ξ,

CV q,MS
2 (ξ) = CF

1

2

[
1 + ξ2

1− ξ

(
log

(
1− ξ

ξ

)
− 3

4

)]
,

CV q,MS
3 (ξ) = CV q,MS

2 (ξ)− CF (1 + ξ),

CV g,MS
1 (ξ) =

1

2
CV g,MS

2 (ξ) − TF4ξ(1− ξ),

CV g,MS
2 (ξ) = TF ξ

[
[ξ2 + (1− ξ)2] log

(
1− ξ

ξ

)
− 1 + 8ξ(1− ξ)

]
,

CV g,MS
3 (ξ) = 0,

CV q,MS
i (ξ) = CV q̄,MS

i (ξ). (1.45)

The last identity is a direct consequence of charge conjugation. The corresponding
PDFs in theMS scheme at NLO are given by

qMS(x, µ2
F ) =

∑

i=q,g

∫ 1

x

dξ

ξ
fi

(
x

ξ
, ǫ

)[
δ(1− ξ)δqi − αs

2π
P

(0)
qi (ξ)

1

ǫ

(
4πµ2

µ2
F e

γE

)ǫ]

gMS(x, µ2
F ) =

∑

i=q,g

∫ 1

x

dξ

ξ
fi

(
x

ξ
, ǫ

)[
αs

2π
P

(0)
gi (ξ)

1

ǫ

(
4πµ2

µ2
F e

γE

)ǫ]
. (1.46)

1.1.3 DGLAP evolution equations

The PDFs which appear in Eq. (1.46) are not perturbatively calculable quantities, but
one has to extract them from experimental data within a chosen factorisation scheme.
Instead the structure functions are physical and measurable quantities which cannot
depend on the arbitrary factorisation scale introduced in the redefinition of PDFs. The
requirement that the physical cross section does not dependorder by order on the
factorisation scale, using renormalisation group techniques, leads to the well–known
Dokshitzer- Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [24, 25, 26]. Indeed,
settingµ = µF and differentiating Eq. (1.44) with respect tologµ, one ends up with
an equation for the scale dependence of PDFs of the form

µ2 ∂q(x, µ
2)

∂µ2
=

αs

2π

∫ 1

x

dξ

ξ

[
P (0)
qq (ξ)q

(
x

ξ
, µ2

)
+ P (0)

qg (ξ)g

(
x

ξ
, µ2

)]
+O(α2

s), (1.47)

which is the basic form of the DGLAP equations. The above derivation is valid only
at the lowest order in perturbation theory, but an all-orderproof is possible [27].
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The explicit calculation carried out in the previous section shows that, in the redefini-
tion of the quark distribution, one has to include the contributions from theq → qg and
theg → qq̄ splittings. Likewise the gluon involves contributions from the splitting of
q → gq, q̄ → gq̄ andg → gg. More generally, at any given order in perturbative QCD,
one has to consider all possible splittingsa → b(cd) and higher order vertexes. If one
takes for instance an initial quark, in the collinear limit,the radiation ofn−partons
out of the quark line needs to be considered,

γ∗ + q → q +

n∑

i=1

fi.

A more accurate analysis reveals that collinear divergences arise only from the region
in which the transverse momenta of the radiated partons are strongly ordered:

|kT,n|2 ≫ |kT,n−1|2 ≫ ... ≫ |kT,1|2.

The computation of Feynman diagrams in the collinear limit leads to a squared ampli-
tude proportional to:

|Mn|2 ∼ (−1)n

n!

(αs

2π

)n
(
1

ǫ

(
Q2

µ2

)−ǫ
)n

Pi1,j1⊗Pi2,j2⊗ ...⊗Pin,jn⊗C(0),V q,

where⊗ is the shorthand notation for the convolution product of Eq.(1.47). Analo-
gously to the case of single emission, the collinear divergences can be absorbed into
redefinition of the quark distribution, leaving a logarithmic dependence on theµ scale
in the physical cross section:

σ(Q2) ∼
(αs

2π

)n
logn

(
Q2

µ2

)
. (1.48)

These logarithms are potentially dangerous because for a very largeQ2/µ2, the prod-
uctαs log(Q

2/µ2) might be ofO(1) thus spoiling the perturbative approach.

In what follows, I show that DGLAP equations take care of the problem due to the
large collinear logarithms because they resum to all ordersthem into the evolution of
parton distribution functions. In order to show it explicitly, in the following I sketch
the solution of the DGLAP equations at leading and next–to–leading orders. In the
presence ofnf active quark flavors, where the precise definition of active flavor is
going to be given in the following section, Eq. (1.47) is generalised to a system of
(2nf + 1) couple integro–differential equations of the form

d

dt

(
qi(x, t)

g(x, t)

)
=

αs(t)

2π

∫ 1

x

∑

j=q,q̄

dξ

ξ


Pij

(
x
ξ
, αs(t)

)
Pig

(
x
ξ
, αs(t)

)

Pgj

(
x
ξ
, αs(t)

)
Pgg

(
x
ξ
, αs(t)

)

⊗

(
qj(ξ, t)

g(ξ, t)

)
,
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(1.49)

wheret = log Q2

µ2 andαs(t) is the running coupling constant. Although PDFs are
non-perturbative objects, the evolution kernelsPij can be computed in perturbation
theory:

Pij(x, αs(t)) =
∞∑

n=0

(
αs(t)

2π

)n

P
(n)
ij (x). (1.50)

The coefficients of the expansion have been calculated perturbatively at next-to-leading
order [28] and more recently they have been computed up to theNNLO in αs [29, 30,
31]. At the leading-order they read

P (0)
qq (x) = CF

[
(1 + x2)

(1− x)+
+

3

2
δ(1− x)

]
, (1.51)

P (0)
qg (x) = TR

[
x2 + (1− x)2

]
,

P (0)
gq (x) = CF

[
1 + (1− x)2

x

]
,

P (0)
gg (x) = 2N

[
x

(1 − x)+
+

1− x

x
+ x(1− x)

]
+ δ(1 − x)

(11N − 4nfTR)

6
.

The leading order splitting functions can be interpreted asthe probability of finding a
parton of typei in a parton of typej with a fractionξ of the longitudinal momentum
of the parent parton and a transverse momentum squared much less thanµ2. The
interpretation as probabilities implies that the splitting functions are positive definite
for x < 1, and satisfy the sum rules

∫ 1

0

dxPqq(x) = 0,

∫ 1

0

dxx [Pqq(x) + Pgq(x)] = 0,

∫ 1

0

dxx [2nfPqg(x) + Pgg(x)] = 0, (1.52)

which correspond to quark number conservation and momentumconservation in the
splittings of the quark ad the gluon respectively.
The structure of the solution of these coupled integro-differential equations may be
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written as

fi(x,Q
2) =

∑

j

Γij(x, αs, α
0
s)⊗ fj(x,Q

2
0), (1.53)

wherefj(x,Q2
0) are the input PDFs, to be determined empirically,Γij(x, αs, α

0
s) are

the evolution factors. From now on, I use the shorthand notation

αs ≡ αs(Q
2), α0

s ≡ αs(Q
2
0). (1.54)

The evolution factors also satisfy evolution equations:

Q2 ∂

∂Q2
Γij(x, αs, α

0
s) =

∑

k

Pik(x, αs)⊗ Γkj(x, αs, α
0
s), (1.55)

with boundary conditionsΓij(x, α
0
s, α

0
s) = δijδ(1− x).

An efficient method to solve the DGLAP equations consists in defining particular lin-
ear combinations of the individual quark distributions in such a way that the(2nf +1)

equations (1.49) maximally decouple from each others. Indeed, from considerations
based on charge conjugation and flavour symmetry, it is possible to write downnf

non–singlet (NS) flavour combinations which evolve independently [32]

q±NS,ij = q±i − q±j ,

qvNS =

nf∑

i=1

q−i , (1.56)

whereq±i = qi ± qi. Only one combination of flavors is left which couples to the
gluon, the singlet combination,Σ, defined as

Σ =

nf∑

i=1

(qi + qi) . (1.57)
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A convenient basis, in presence ofnf = 6 active flavors, can be explicitly written as

V =

6∑

i=1

q−i , (1.58)

V3 = u− + d−,

V8 = u− + d− − 2s−,

V15 = u− + d− + s− − 3c−,

V24 = u− + d− + s− + c− − 4b−,

V35 = u− + d− + s− + c− + b− − 5t−,

T3 = u+ − d+,

T8 = u+ + d+ − 2s+,

T15 = u+ + d+ + s+ − 3c+,

T24 = u+ + d+ + s+ + c+ − 4b+,

T35 = u+ + d+ + s+ + c+ + b+ − 5t+,

whereV is the total valence,Vi areq−NS–like combinations andTi areq+NS–like com-
binations of the flavour distributions. In this basis, the DGLAP equations are simpli-
fied and, using the short–hand notation for the convolution product, they read

d

dt
q±,v
NS (x, t) = P±,v

NS ⊗ q±,v
NS (x, t) (1.59)

d

dt

(
Σ

g

)
(x, t) =

(
Pqq 2nfPqg

Pgq Pgg

)
⊗
(

Σ

g

)
(x, t). (1.60)

The combinationsVi andTj evolve according to Eq. (1.59) withP−
NS andP+

NS re-

spectively, while the total valenceV evolves withP v
NS . At LO P

(0),+
NS = P

(0),−
NS =

P
(0),v
NS = P

(0)
qq . At NLO P

(0),−
NS = P

(0),v
NS while the other splitting functions are differ-

ent. Starting fromO(α2
s) all splitting functions are different from each others. Having

solved the equations for theq±,v combinations, it is straightforward to invert the linear
system Eq. (1.58) and obtain the individual PDFs evolved at any scaleQ2.
Before solving the DGLAP equations it is useful to introducea technical tool. The ex-
pression for a physical observable consists of a convolution between a hard coefficient
function and parton distribution functions as in Eq. (1.44). A theorem states that the
convolution product of two functionsg andh can be turned into an ordinary product
by taking Mellin moments of the functions. Supposef = g ⊗ h, then the Mellin
transforms off is simply given by the ordinary product of the Mellin transform of g
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andh

M [f ] = M [g]M [h],

where the Mellin transform of a functionf is defined as

M [f ][N ] =

∫ 1

0

dy yN−1f(y). (1.61)

In Mellin space, the evolution equation for the evolution factor, Eq. (1.55), can be
written as

Q2 ∂

∂Q2
Γij(N,αs, α

0
s) =

∑

k

γik(N,αs) Γkj(N,αs, α
0
s) , (1.62)

whereΓij(N,αs, α
0
s) are the Mellin moments of thex–space evolution factor

Γij(N,αs, α
0
s) ≡

∫ 1

0

dxxN−1Γij(x, αs, α
0
s) , (1.63)

andγij are the anomalous dimensions, defined as the Mellin moments of the splitting
functionsPij(x):

γij(N,αs(t)) =

∫ 1

0

dxxN−1αs(t)

2π
xPij(x, αs(t)). (1.64)

Like the splitting functions, also the anomalous dimensions can be expanded in series
of αs as

γij(N,αs(t)) =

∞∑

n=0

(αs

2π

)n
γ
(n)
ij (N). (1.65)

Since splitting functions (and therefore anomalous dimensions) depend on the scale
only through the coupling constant, an easy way to solve Eq. (1.49) consists in differ-
entiating the above equation with respect toαs and rewrite it as

αs
∂

∂αs
Γij(N,αs, α

0
s) = −

∑

k

Rik(N,αs)Γkj(N,αs, α
0
s). (1.66)

where the matrixRij ≡ (R)ij has the perturbative expansion

R(N,αs) = R0(N) + αsR1(N) +O(α2
s). (1.67)
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The matrices in the expansion ofRij are recursively defined in terms of the coeffi-
cients in the perturbative expansion of the anomalous dimensions as

R0 ≡
γ(0)

β0
Rk ≡ γ(k)

β0
−

k∑

i=1

b1Rk−i , (1.68)

whereb1 ≡ β1/β0 andβi are the coefficients of the QCDβ−function defined in
Eq. (5).

The complete matrix of anomalous dimensionsγ, and thus the matricesR are in fact
almost completely diagonal: all the flavor nonsinglet and valence quark distributions
evolve multiplicatively, and only the singlet quark and gluon actually mix. Thus we
only need to solve Eq. (1.66) for the non–singlet scalar evolution factors and the two
by two singlet evolution matrix.

We consider first the simplest case of the evolution of flavor nonsinglet distributions:
the evolution factor then satisfies the simple first order equation

∂

∂ lnαs
ΓNS(N,αs, α

0
s) = −RNS(N,αs)ΓNS(N,αs, α

0
s). (1.69)

At LO the solution is trivial:

ΓNS,LO(N,αs, α
0
s) =

(
αs

α0
s

)−R
(0)
NS

, (1.70)

while at NLO we need to work a little harder: using Eq. (1.68) one finds

ΓNS,NLO(N,αs, α
0
s) = exp

{
−R

(1)
NS

b1
ln

(
1 + b1αs

1 + b1α0
s

)}(
αs

α0
s

)−R
(0)
NS

. (1.71)

This exact solution is equivalent up to subleading terms to the linearised solution

Γlin
NS,NLO(N,αs, α

0
s) =

(
1−R(1)NS(αs − α0

s)
)(αs

α0
s

)−R
(0)
NS

, (1.72)

which is in turn the exact solution to Eq. (1.69) withRNS = R
(0)
NS + αsR

(1)
NS.

Turning to the singlet sector, we need to solve Eq. (1.66) when R are two by two
matrices, corresponding to coupled singlet quarks and gluons:

∂

∂ lnαs
ΓS(N,αs, α

0
s) = −RS(N,αs)ΓS(N,αs, α

0
s). (1.73)
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At LO we can proceed by diagonalisation:

ΓS,LO(N,αs, α
0
s) ≡ L(N, αs, α

0
s) = e+(N)

(
αs

α0
s

)−λ+(N)

+ e−(N)

(
αs

α0
s

)−λ−(N)

,

(1.74)

where

λ±(N) =
1

2β0

[
γ(0)
qq (N) + γ(0)

gg (N)

±
√(

γ
(0)
qq (N)− γ

(0)
gg (N)

)2
+ 4γ

(0)
qg (N)γ

(0)
gq (N)

]
(1.75)

are the eigenvalues of the two by two matrixR(0)
S (N) of singlet anomalous dimen-

sions, and

e±(N) = ± 1

λ+(N)− λ−(N)
(R

(0)
S (N)− λ∓(N)I) , (1.76)

are the corresponding projectors. The full NLO solution is more complicated, and
must be developed recursively as a perturbative expansion around the LO solution
L(N, as, α0

s): writing

ΓS,NLO(N,αs, α
0
s) ≡ U(N,αs)L(N,αs, α

0
s)U(N,α0

s)
−1, (1.77)

whereU(N,αs)

U(N,αs) = 1+ αsU
(1)(N) + α2

sU
(2)(N) + · · · , (1.78)

solves Eq. (1.66) provided

U
(k) =

e−R̃(k)
e+

λ+ − λ− − k
+

e+R̃
(k)

e−
λ− − λ+ − k

− 1

k

[
e+R̃

(k)
e+ + e−R̃

(k)
e−
]
, (1.79)

where

R̃
(0) = R

(0)
S , R̃

(k) = R
(k)
S +

k−1∑

i=1

R
(k−i)
S U

(i) . (1.80)

By solving recursively Eqs. (1.79, 1.80) with the NLO approximation in Eq. (1.68),
the NLO evolution factor can be computed. Just as in the nonsinglet case, the exact
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NLO solution may be linearised to give

Γ
lin
S,NLO(N,αs, α

0
s) = L(N,αs, α

0
s) (1.81)

+αsU
(1)(N)L(N,αs, α

0
s)− α0

sL(N,αs, α
0
s)U

(1)(N),

which again is an exact solution to the truncated evolution equation, and equivalent to
the full solution Eq. (1.77) up to subleading terms.

Finally we want to see explicitly that the problem of the large collinear logarithms
is solved by the DGLAP evolution. Looking at Eq. (1.70), we can easily verify this.
SettingQ2

0 = µ2, it is straightforward to show that all the leading logarithms ofQ2/µ2

are resummed in the evolution factor:

ΓLO(N) = exp

[−γ(0)(N)

β0
log

αs(Q
2)

αs(µ2)

]

= exp

[−γ(0)(N)

β0
log

(
1− αs(Q

2)β0 log
Q2

µ2

)]

= exp

[
αs(Q

2)γ(0)(N) log
Q2

µ2

]

=

∞∑

n=0

(
αs log

Q2

µ2
γ(0)(N)

)n

, (1.82)

where we expanded inαs and used the LO running ofαs, Eq. (5). If higher terms in
the perturbative expansion of the anomalous dimension wereincluded, also sublead-
ing logarithms would be resummed. The inclusion of thep−th order in the expansion
of the anomalous dimension enables use to perform the resummation of NkLO loga-
rithms:

∼
∞∑

n=0

p∑

k=0

αn+k
s (t) logn

Q2

µ2
γ(k)(N).

1.1.4 Collinear factorisation Theorem

In the previous sections deep inelastic scattering at one-loop was discussed, showing
how it is possible to absorb the singularities arising from the emission of collinear par-
tons into a redefinition of the parton densities. The factorisation theorem of collinear
singularities states that it possible to write the hadroniccross section as a convolu-
tion between a partonic, process dependent, coefficient function and universal parton
distributions. Corrections to the leading–twist factorisation are suppressed by powers
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of Q2. In QCD, structure functions have ’higher–twist’ power corrections, which are
difficult to estimate quantitatively

Fi(x,Q
2) = F

(2)
i (x,Q2) +

F (4)(x,Q2)

Q2
+ . . . . (1.83)

In the above equation,(n) refers to the twist, defined as ”dimension minus spin”, of
the contributing operators. The factorisation of Eq. (1.91) includes only the twist–
2 operator. The power corrections due to higher order twistsare visible at low–Q2

structure functions data.

A rigorous proof of factorisation to all orders exists for deep inelastic scattering in
the context of the operator product expansion (for a review see Ref. [33]). In hadron–
hadron collisions, the analysis is more complicated since the question arises whether
the partons in hadronh1, through the influence of their colour fields, change the distri-
bution of partons in hadronh2, thus spoiling the simple parton picture. Factorisation
of the cross section into a pure short-distance contribution, computable in perturba-
tion theory and non-perturbative, but universal, parton distribution functions is more
complicated because of these colour correlations. Nevertheless it can be proved to all
orders for sufficiently inclusive observables [27].

As an illustrative example of how factorisation works also in inclusive hadronic pro-
cesses we consider the Drell–Yan production of aW boson. The Drell–Yan process
is the production of a high–mass lepton pair from the decay ofthe electroweak bo-
son produced in a hadron–hadron collision. Originally the most frequent Drell–Yan
event corresponded to the creation ofe+e− orµ+µ− pairs from the decay of a virtual
photon but, as energy of collisions increased, it includes the contribution fromZ ex-
change and alsoeνe andµνµ pairs coming fromW± decays. For the full computation
at NLO of theW± production, see Ref. [34]. Here we just sketch the calculation in
order to show the power of the factorisation theorem.
In the parton model picture the cross–section is simply given by

dσ(0)

dM2
W

(h1, h2 → W±) =

∫ 1

0

dx1

∫ 1

0

dx2

nf∑

i,j=1

gij,W fi(x1) f̄j(x2)

dσ̂(0)

dM2
W

(f1f̂2 → W±)
(
M2

W , τ̂
)

(1.84)



1.1. The QCD improved parton model 41

wherei, j runs overU, D̄ in case ofW+ production andD, Ū in case ofW− produc-
tion anddσ̂ is the partonic cross–section given by

dσ̂(0)

dM2
W

(f1f̂2 → W±) =
π

3

√
2GF |Vij |2δ(ŝ−M2

W ) ≡ σ̂
(0)
W±

M2
W

δ(1 − τ̂). (1.85)

In the above equationŝτ = M2
W /ŝ and ŝ = x1x2S. Plugging Eq. (1.85) into

Eq. (1.84) gives

dσ(0)

dM2
W

(h1, h2 → W±) =
σ̂
(0)
W±

M2
W

τ̂

∫ 1

τ̂

dx

x

nf∑

i,j=1

gij,W fi(x) f̄j(τ̂ /x) (1.86)

At the next–to–leading order there are basically two contributions. There is the gluon
bremsstrahlung correction to the lowest order process. Thecollinear singularity arises
when the gluon becomes parallel to one of the incoming quark or anti–quark. Because
of the KLM theorem, we know that soft singularities will be cancelled by the virtual
correction to the lowest order process. There is also the gluon initiated processgq →
W±q′. This will contain a collinear singularity when the scattered quark is parallel
to the incoming quark in the centre–of–mass frame. The calculation of the Feynman
amplitudes for these process is simplified by applying crossing symmetry to the DIS
matrix elements calculated above. The phase space is different, but it can be easily
evaluated, ending up with the following results:

dσ̂(1)

dM2
W

(qq̄ → W±g) =
σ̂
(0)

W±

M2
W

αs

2π

[

−2P
(0)
qq (τ̂)

(

1

ǫ
− 4π − γE + log

(

Q2

µ2

))

+ Cqq′ (τ̂)

]

dσ̂(1)

dM2
W

(qg → W±q) =
σ̂
(0)

W±

M2
W

αs

2π

[

−P
(0)
qg (τ̂ )

(

1

ǫ
− 4π − γE + log

(

Q2

µ2

))

+ Cqg(τ̂)

]

,

(1.87)

where we encounter the collinear1/ǫ pole accompanied by the finite coefficients that
we already found in Eqs. (1.39, 1.42). The coefficient functionsCqq′ andCqg can be
explicitly written as

Cqq′(z) = CF

[
4(1 + z2)

(
log(1− z)

1− z

)

+

− 2
1 + z2

1− z
log z +

(
2π2

3
− 8

)
δ(1− z)

]
,

Cqg(z) = TR

[
2[z2 + (1− z)2] log

(
(1− z)2

z

)
+ 3 + 2z − 3z2

]
. (1.88)
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The NLO cross section for hadron–hadron collisions may be written as

dσ(1)

dM2
W

(h1, h2 → W+) =

∫ 1

0

dx1

∫ 1

0

dx2 gij,W (1.89)

nf∑

i,j=1

[
fi(x1) f̄j(x2) + f̄i(x1) fj(x2)

]

[
dσ̂(0)

dM2
W

(f1f̄2 → W+) +
dσ̂(1)

dM2
W

(f1f̄2 → W+g)

]
+

nf∑

i=1

[fi(x1) g(x2) + g(x1) fi(x2)]
dσ̂(1)

dM2
W

(fg → W+f).

In case ofW− production, the structure is the same, wheref → f̄ . The structure
of Eq. (1.90) is very similar to the corresponding expressions that arose in the NLO
description of the DIS structure functions, Eqs. (1.39, 1.42). Introducing theMS
PDFs defined in the previous section for the DIS process in Eq.(1.46), we obtain a
finite expression for the NLOW+ production

dσ(1)

dM2
W

=
σ̂
(0)

W+

M2
W

∫ 1

ρ

dx1

x1

∫ 1

x1ρ

dx2

x2

nf∑

i,j=1

gij,W (1.90)

[
fMS
i (x1, µ

2
F ) f̄

MS
j (x2, µ

2
F ) + f̄MS

i (x1, µ
2
F ) f

MS
j (x2, µ

2
F )
]

[
δ(1− τ̂) +

αs

2π

(
2P (0)

qq (τ̂) log

(
Q2

µ2
F

)
+ Cqq′(τ )

)]
+

nf∑

i=1

gij,W
[
fMS
i (x1, µ

2
F ) g

MS
j (x2, µ

2
F ) + gMS(x1, µ

2
F ) + fMS

i (x2, µ
2
F )
]

[
αs

2π

(
2P (0)

qg (τ̂) log

(
Q2

µ2
F

)
+ Cqg(τ )

)]

whereρ is the ratio between the hard scale of the processM2
W and the centre-of-

mass energys. The power of the factorisation is that essentially the separation of
the cross section into long–distance scale–dependent PDFsand short–distance coeffi-
cient functions will treat in the same way the collinear singularities arising at NLO,
independently of the considered process.
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1.2 Heavy quarks

In the previous section we have seen that factorisation theorem enables one to write
a wide class of relevant cross–sections characterised by a large scaleQ2 in terms of
perturbatively calculable quantities and a limited set of non perturbative quantities that
must be obtained from experiments. In this section I treat the case of cross–sections
involving heavy quarks. Since in the framework of perturbative QCD we model the
hadron as an object constituted by massless partons, calculations of processes involv-
ing heavy quarks require particular care. They are typically handled by combining
perturbative QCD calculations with light quarks in the initial states and calculations
of heavy particles in the final states. The combination of thetwo ingredients depends
on the mass of the heavy quark with respect to the other scalesinvolved in the consid-
ered process.

Processes involving heavy quarks are a good example of multi–scale processes. To be
precise, we define a heavy quark to be one whose massMQ is large enough that the
effective coupling at the scale of a heavy quark massαs(MQ) is in the perturbative
region. With this definition, the charm, bottom and top quarks are heavy quarks. Ifnl

is the number of light quarks, andnf the total number of quarks, in the present state
of knowledge of QCD,nl = 3 andnf = 6.

Whenever a cross–section is characterised by two scales, say the hard scaleQ2 and
the mass of a heavy quarkM2

Q, perturbative calculations typically present both loga-
rithms and powers of the ratio of the scalesM2

Q/Q
2. These contributions may spoil

the accuracy of the calculation. As we have seen in the previous section, defining a
heavy quark parton density would automatically resum the logarithms to all orders in
perturbative QCD via the DGLAP evolution equations. However this approach is only
adequate at high energies where the mass of the heavy quark issmall with respect to
the typical scale of the process. In a small or intermediate regimes, it ignores power
suppressed contributions. On the other hand, a calculationwhere the heavy quark
appears only as a final state ignores the logarithms and it is valid only at a relatively
small scale. This kind of situation requires an adequate treatment for the mass of the
heavy quark which ought to be valid in all cases, whenQ2 ≪ M2 as well as when
Q2 ∼ M2 andQ2 ≫ M2.

In this section I first present the Collins–Wilczek and Zee (CWZ) renormalisation
scheme [35], which shows explicit decoupling of the heavy quarks at low energies.
Then I give some details about its application to QCD and discuss the matching condi-
tions between different sub–schemes associated to different number of active partons.
To conclude, I mention the main characteristics of the schemes proposed to deal with
heavy quark masses in perturbative calculations.
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1.2.1 CWZ renormalisation scheme

A detailed explanation of the renormalisation scheme proposed by Collins–Wilczek
and Zee [35] is given in Chapter 8 of Ref. [36]. In this sectionI summarise the toy
model described in Ref. [36] in order to show that the CWZ scheme exhibits explicit
decoupling. Later I show that the same scheme may be applied to QCD in presence of
one or more heavy quarks [37].

Let us consider aΦ3 scalar theory with two fields ind = 6 dimensions. Letφ be a
light– field of massm andΦ a heavy–field of massM . If we impose the symmetry
underΦ → −Φ, the Lagrangian density of the theory can be written as

L =
(∂φ)2

2
+
(∂Φ)2

2
−m2φ

2

2
−M2Φ

2

2
−µ3−d/2

[
g1

φ3

6
+ g2

φΦ2

2

]
+ Lc.t., (1.91)

whereLc.t. includes the counterterms which cancel the divergences of the bare quan-
tities of the theory. It can be explicitly written as

Lc.t. = (Zl − 1)
(∂φ)2

2
+ (Zh − 1)

(∂Φ)2

2
− [m2(Zm − 1) +M2ZmM ]

φ2

2
(1.92)

−[M2(ZM − 1) +m2ZMm]
Φ2

2
− µ3−d/2

[
(g1B − g1)

φ3

6
+ (g2B − g2)

φΦ2

2

]
.

In the above Lagrangian density I have ignored the linear term that is typically intro-
duced in order to cancel the tadpoles.

According to the decoupling theorem, phenomena on energy scales much less thanM
are described by an effective low–energy theory whose Lagrangian has the form

Leff = z
(∂φ)2

2
−m∗2z

φ2

2
− µ3−d/2g∗z3/2

φ3

6
+ Leff,c.t., (1.93)

where the counterterms Lagrangian has a similar structure as the one of Eq. (1.92)
with only light fields included.

To prove the decoupling theorem, we have to show thatm∗, g∗ andz might be cho-
sen so that the Green functions ofφ obtained from the effective Lagrangian differ
from those obtained in the full Lagrangian only by termsO(p/M), wherep are the
external momenta to the Green functions. TheMS renormalisation scheme does not
correspond to the right choice. On the contrary a zero–momentum subtraction scheme
(BPH) exhibits explicit decoupling. In the proof we consider only the LO (a) and
NLO diagrams (b,c,d) shown below. The argument can be generalised to higher or-
ders [36]. We consider only those Feynman amplitudes with external light fields and
internal heavy fields, because those are the only ones which might contribute to the
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renormalisation of the couplings of the effective Lagrangian with terms depending on
the mass of the heavy fields which are present only in the full Lagrangian.

(a) (b) (c) (d)

It is straightforward to show that, forM2 → ∞ as the external momenta are fixed, the
graphs(a) and(b) are suppressed by powers ofM2. Indeed, in graph(a) each of then
internal heavy quark line contributes with a propagator∼ 1/(p2 −M2) which, in the
M2 → ∞ limit gives a power–suppressed contribution∼ 1/(M2)n. Analogously,
in the diagram(b), the four point loop amplitude is not divergent and, in the limit
M2 → ∞, we can ignore the momenta of the external particles ending up with a
contribution

Γ2 = g42

∫
d6k

(2π)6
1

(k2 −M2)4
∝ 1

M2

which vanishes asM2 → ∞. If we were considering its leading contribution, it would
be an effective four–point vertex. The non–renormalisability of the coupling is tied to
the negative power ofM2.

Diagrams(c) and (d) are divergent. The divergent three–point function(c), being
p1, p2 andp3 the incoming momenta andk the loop momentum, can be written in
d = 6− 2ǫ dimensions as

Γ3 = g32

∫
ddk

(2π)d
µ9−3d/2

[(k + p1)2 −M2 + iε][(k − p2)2 −M2 + iε][k2 −M2 + iε]
(1.94)

= 2ig32

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddk

(2π)d
µ9−3d/2

[k2 −M2 + x(p21 + 2kṗ1) + y(p22 − 2k · p2) + iε]3

= g32
Γ(ǫ)

(4π)2
µǫ

∫ 1

0

dx

∫ 1−x

0

dy

(
M2 − p21x(1− x)− p22y(1− y)− 2xyp1p2

4πµ2

)ǫ

.

The divergence in Eq. (1.94) may be normalised in several ways. In theMS scheme
one subtracts only the pole in1/ǫ and the associatedγE + log(4π) finite terms. The
key point is that the subtraction in theMS scheme is independent of the mass of the
particles involved in the process. In this way the renormalised three–point function is
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given by

RMS(Γ3) = i
g32

(4π)2

[
log

(
M2

µ2

)
+O

(
p2i
M2

)]
. (1.95)

For largeM this gives a logarithmic correction to the effective coupling constant ac-
cording to

z3/2g∗ = g1 −
g32

2(4π)2
log

(
M2

µ2

)
+O(g5). (1.96)

Instead, in the zero–momentum subtraction scheme, we get

RZM (Γ3) = g32
Γ(ǫ)

(4π)2
µǫ

∫ 1

0

dx

∫ 1−x

0

dy (1.97)

[(
M2 − p21x(1− x)− p22y(1− y)− 2xyp1p2

4πµ2

)ǫ

−
(

M2

4πµ2

)ǫ
]

= g32
µǫ

(4π)2

∫ 1

0

dx

∫ 1−x

0

dy

(
1− p21

M2
x(1− x)− p22

M2
y(1− y)− 2xy

p1p2
M2

)
= O

(
p2

M2

)

and therefore the renormalised effective coupling would not depend on the mass of
the heavy fields if not by power–suppressed terms

z3/2g∗ = g1 +O(p2/M2). (1.98)

The same can be shown for the two–point function in the diagram (d). In theMS

subtraction scheme, we obtain the following renormalisation conditions:

z = 1− g22
768π3

log
M2

µ2
+O(g4)

zm∗2 = m2 − g22M
2

128π3

(
log

M2

µ2
− 1

)
+O(g4), (1.99)

and consequently we have to fine–tunem in order to get a finite value form∗ in
the limit M2 → ∞. Instead, in the zero–momentum subtraction scheme, one gets
RZM (Γ4) = O(p2/M2) and therefore

z = 1 +O(p2/M2)

zm∗2 = m2 +O(p2/M2), (1.100)
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i.e. we see a manifest decoupling of the low–energy effective theory with respect to
Φ.

The idea of Ref. [35] is to define a renormalisation scheme which combines the de-
sirable features of the zero–momentum subtraction renormalisation and those of the
MS schemes. The reason why BHP alone is less convenient is related to the treatment
of the infrared divergencies and to the largelog(m2/p2) which appear in the calcula-
tions whenp2 ≫ m2. TheMS scheme is far more convenient at high–energies. The
idea then consists in using theMS scheme for high–momentum calculations, where
all masses are neglected, while employing a mixed scheme at low–momentum, where
MS is applied to all graphs containing only light fields, while the BPH is applied to
all graphs containing at least one heavy line.

In the intermediate region between masses, the operators evolve according to the
renormalisation group equations as the scaleµ varies. In the CWZ scheme the renor-
malisation group coefficients are mass–independent and thus renormalisation–group
equations are highly simplified. Moreover it can be demonstrated that this scheme
does not introduce extra infrared divergencies and that it preserves gauge invariance.

These features make the CWZ scheme particularly suitable todeal with calculations
involving heavy quarks. Indeed, if we consider processes inwhich all external mo-
mentum scales are much smaller than the masses of the heavy quarks, we can omit all
graphs containing heavy quark lines and only make a power–suppressed error. Fur-
thermore, given that the CWZ scheme reduces to theMS renormalisation scheme at
high energy, the same holds in the opposite situation when the masses of heavy quarks
are negligible with respect to the high scale of the process.In that case the quark is
considered a massless parton and the renormalisation groupequations keep the same
form as in theMS scheme, with the only difference that the total number of flavors is
substituted by the number of light flavors.

The application of the CWZ scheme to QCD [37] requires to generalise what we have
discussed until now to a theory where more than one heavy fieldis considered. First of
all it is useful to specify the notation: bynA we refer to the number of active flavors,
i. e. of all flavors which are light with respect to the hard scale of the processQ2. By
definitionnA ≥ nl. The CWZ renormalisation and factorisation scheme appliedto
QCD consists then in series of sub–schemes labelled by the number of active flavors.
Therefore, in order to define the parton densities and the coupling, the number of active
flavors used in the definition must be specified. In each sub–scheme characterised by
nA active flavors

- Graphs that contain only gluons or active quarks are renormalised byMS coun-
terterms.
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- Graphs with external non–partonic lines (like leptons or vector bosons) are
renormalised byMS counterterms.

- Graphs whose external lines are gluons or active quarks butwhich have internal
heavy quark lines are renormalised by zero-momentum subtraction.

- Heavy quark masses are defined as pole masses, defined as the position of the
pole in the quark propagator in perturbation theory.

These rules apply in the renormalisation of the strong coupling constant, of the parton
densities and fragmentation functions. As a consequence, whennA = nf the scheme
coincides with theMS scheme. Moreover it has the advantage that evolution equa-
tions for the coupling and parton densities are the same as for QCD with nA flavors
and pureMS subtraction.

The term ”variable flavor number scheme” (VFNS) refers to thesequence of sub–
schemes that we just described. It is typically implementedby usingMS evolution
with a number of active flavors that varies as one crosses the boundariesµ ∼ MQ,
whereMQ is the mass of one of the heavy quarks. Thus, for a given scaleµ, all quarks
with mass less thanµ are treated as partons and have associated QCD–evolved parton
distributions. The heavy quark parton distributionfQ vanishes whenµ2 < M2

Q
1.

If for simplicity we consider only the first threshold, corresponding to the charm mass,
at first sight this approach might be confused with the so–called intrinsic charm ap-
proach, where the charm quark appears in the initial state and it is considered as a part
of the hadronic wave function. However the two approaches are completely different.
In the VFNS charm (or any other heavy quark) is treated in a similar way to a mass-
less parton but the fixed–order perturbation theory (FOPT) calculation performed in a
3 flavors scheme, where the charm appears only as a final state,imposes some condi-
tions on the charm–quark density in the VFN scheme. These conditions, also called
matching–conditions, do not exist in the intrinsic charm approach, where the charm
density is just an arbitrary function fitted to experimentaldata2. What we have said
for the charm density holds for all heavy flavor densities. The (nA + 1)–th distribu-
tion is determined by matching the FOPT calculation innA flavors with the(nA + 1)

calculation in the massless limit.

These conditions between schemes with differentnA derived from the FOPT calcu-
lations are just a case of a transformation between different renormalisation and fac-
torisation schemes. The matching conditions for parton distribution functions can be

1Even if commonly the VFN scheme is implemented by choosing the matching point and the switching
point between sub–schemes to be equal to the relevant heavy quark mass, this choice is not essential. The
difference in theoretical predictions due to the scale is ofhigher order inαs with respect to the order of the
calculation.

2The possibility of having an intrinsicc distribution has been studied for instance in Ref. [38]
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found in Ref. [39]. They have the form

f
(nA+1)
i (x, µ2) =

∫ 1

x

dy

y

∑

j=q,q̄,g

Kij

(
x

y
,
M2

nA+1

µ2
, α(nA)

s

)
f
(nA)
j (x, µ2). (1.101)

The functionsKij can be expressed as an expansion in terms ofαs with coefficients
which are polynomial inlog(M2

nA+1/µ
2). They are known up to two loops for the

parton densities [39]. In Eq. (1.101)i runs over all quarks, light and heavy, while the
sum overj runs only on the gluon and the light quarks. This means that the heavy
quark parton density in the(nA + 1)–scheme is expressed in terms of the light den-
sities, which physically means that the heavy quark PDFs is generated perturbatively
at threshold. If there were also an intrinsic heavy–flavor contribution, the sum on the
right–hand side of the equation would extend also to the intrinsic heavy–flavors.

The same relation between sub–schemes are imposed to the strong coupling constant.
Theβ function coefficients in Eq. (5) depend on the number of flavors and, ifnf is
interpreted as the number of active flavors at a given scale, theβ coefficients are given
for the coupling of an effective theory in whichnA flavors are considered light and the
heavy flavors decouple from the theory. The coupling for the theory withnA o flavors
and the one for the theory with(nA+1) flavors are related by an equation of the form

α(nA+1)
s (µ2) = α(nA)

s (µ2)

(
1 +

∞∑

n=1

n∑

l=0

cnl[α
(nA)
s (µ2)]n logl

(
µ2

M2
nA+1

))
, (1.102)

where massMnA+1 is the mass of thenA + 1–th quark. The matching coefficients
are known up ton = 4, see for instance Ref. [40]. At leading order inαs it is easy to
derive the coefficientc10. Indeed

α(nA+1)
s (µ2) = αs(M

2
nA+1)(1 + αs(M

2
nA+1)b0(nA + 1) log(M2

nA+1/µ
2)) +O(α2

s)

α(nA)
s (µ2) = αs(M

2
nA+1)(1 + αs(M

2
nA+1)b0(nA) log(M

2
nA+1/µ

2)) +O(α2
s)

⇒ α(nA+1)
s (µ2) = α(nA)

s (µ2) +
α
2,(nA)
s (µ2)

6π
log

(
M2

nA+1

µ2

)
+O(α3

s),

(1.103)

where we used the definition ofb0(n) = (33 − 2n)/12π. From Eq. (1.103) we
observe thatα(nA+1)

s (M2
nA+1) = α

(nA)
s (M2

nA+1) + O(α3
s) and that the matching

between quantities in the subschemes withnA and(nA + 1) active flavors does not
involves large logarithms of masses, provided that the renormalisation/factorisation
scaleµ is of order the mass of the(nA + 1)–th quark.
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1.2.2 Heavy quark mass schemes

Theoretical predictions in QCD have been performed according to a variety of schemes
for dealing with the heavy quark masses. A proper treatment of heavy flavors is essen-
tial for precision measurements at hadron colliders, especially in global QCD analy-
ses. Recent studies show that theW andZ productions at the LHC are sensitive to
detailed features of PDFs which depend on heavy quark mass effects [41, 42, 43].
The theoretical framework described in the previous section is conceptually simple.
However its implementation in the calculation of processesinvolving heavy quarks
requires attention to a number of details, both kinematicaland dynamical, that may be
implemented in different ways leading to different schemes. In this section I identify
the different but self–consistent choices that can be made by briefly outlining differ-
ences and similarities.

For sake of illustration let us write down the general pQCD factorisation for high–
energy hard processes, exemplified in the inclusive DIS structure functionsFi(x,Q

2)

as

Fi(x,Q
2) =

nf,i∑

a=1

nf,f∑

b=1

∫ 1

χ

dξ

ξ
fa(ξµ)C

a
b,λ

(
χ

ξ
,
Q

µ
,
mQ

µ
, αs(µ)

)
, (1.104)

wherea runs over the partons in the initial state,b over the partons in the final states
andmQ the masses of the heavy quarks.

FFNS The conceptually simplest way for taking into account heavyquark mass ef-
fects is the fixed–flavor number scheme (FFNS) in which all flavors belowmQ

are treated as massless and they are the only ones which enterin the DGLAP
evolution equations and in the running of the coupling constant. The heavy
quarks enter only in the massive computation of the coefficient functions. For
Q = c, b, t the fixed number of light flavors isnl = 3, 4, 5 respectively; the
indexa in Eq. (1.104) runs from 1 tonl, while the indexb run from 1 to the
total number of known flavors,nf = 6.

Historically, higher-orderO(α2
s) computations of the heavy quark production

were all performed in the FFNS [44]. These calculations provide reliable results
when the scale of the process is of the order ofmQ compared to the conven-
tional massless calculations. However, at any finite order in a perturbative cal-
culation, the FFNS results become increasingly unreliableas the scale becomes
large compared tomQ: the Wilson coefficients at ordern contain logarithmic
terms of the formαn

s logm(Q/mQ), wherem = 1, ..., n which might spoil the
perturbative expansion. Thus, even if allnl-flavor FFNS are mathematically
equivalent, in practice, the 3-flavor scheme yields the mostreliable results in
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the regionQ ∼ mc, the 4-flavor scheme in the regionmc ≤ Q ≤ mb, the 5-
flavor scheme in the regionmb ≤ Q ≤ mt, and, if needed, the 6-flavor scheme
in Q ≥ mt.

This naturally leads to the formulation of the variable flavor number schemes (VFNS)
which consists of a sequence ofnf -flavor FFNS, each in its region of validity, con-
sistently matched at the transition points. There are several ways of implementing a
VFNS.

ZMVFNS The simplest way for implementing the VFNS in parton analyses is the
so–called zero–mass variable flavor number scheme (ZMVFNS). In this scheme
all quarks are treated as massless. Heavy quarks are absent below threshold and
they are radiatively generated at threshold by the subprocessg → QQ̄ with
mQ = 03. The ZMVFNS is therefore a combination of masslessMS schemes
characterised by different numbers of light flavorsnl. Basically the only mass
effects are due to the change of number of flavors in the QCDβ function and
in the anomalous dimensions as one crosses the heavy quark thresholds. The
coefficient functions are calculated under the assumption that all active partons
are massless, with the associated singularities subtracted in theMS scheme

Ca
b,λ

(
χ

ξ
,
Q

µ
,
mQ

µ
, αs(µ)

)
= Ca

b,λ

(
χ

ξ
,
Q

µ
, 0, αs(µ)

)

MS

.

Their expressions are the usual massless coefficient functions which are well–
known to NNLO in the QCD couplingαs for DIS and Drell-Yan processes, and
to NLO for many other processes. Hence, due to the simplicityof its imple-
mentation, till a few years ago this scheme was the most broadly used in parton
analyses.

However this scheme neglects terms above threshold which are proportional to

powers of
m2

Q

Q2 , thereby losing accuracy for scales close to the thresholds. This
does not depend uniquely on the fact thatO(m2

Q/Q
2) terms are neglected in the

coefficient function, but also on the approximate treatmentof the phase space.
Indeed in Eq. (1.104) botha andb run over all active parton flavors at scale
µ. This convention is problematic since the initial state sumruns over the ac-
tive parton flavors, while the sum overb involves summation over physical final
states. This leads to inconsistencies for the conventionalZMVFNS calculation.
For example, consider a typical small-x kinematic configuration, sayx = 10−4

andQ = 3 GeV, corresponding to virtual Compton scattering centre-of-mass

3This is implemented through a step evolution from the initial scale to the final one passing through the
thresholds. Regardingc, b andt as “heavy” implies that they may be computed perturbatively, if no intrinsic
heavy flavor combinations are assumed.
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(CM) energyW =
√
Q2(1− x)/x = 300 GeV. Since the factorisation scale is

smaller than the bottom quark massmb, the bottom quarkb in this calculation
scheme is not counted as an active parton; thus the final-state parton flavor sum-
mation does not includeb, whence instead bottom quarks are easily produced
at this centre–of–mass energy, as is indeed experimentallyobserved. Finally
another problem in the ZMVFN scheme is related to the scalingvariable. In
the conventional formulation of the ZMVFN scheme, the extreme of integration
in Eq. (1.104)χ is identified with the BjorkenxB . Since this integral origi-
nates from summing over final-state phase space of real particles, this practice
leads to violation of Lorentz kinematics in the case of heavy-flavor production.
For instance, in neutral-current DIS atQ ∼ mb andW ∼ 2mb, this calcula-
tion scheme will predict similar contributions fromb quark production andd
sea quark production (since ZM hard matrix elements are flavor-independent),
whereas, in fact, this kinematical regime is below theb-production threshold,
and thed scattering cross section is much less suppressed than theb one. It
follows that, by extending the lower bound of the convolution integral toxB in
Eq. (1.104), the ZM formalism grossly overestimates the contributions from the
region of phase space near the physical thresholds.

I-ZMVFNS In order to overcome the inconsistencies of the ZM formalismmen-
tioned above, while preserving the simplicity of its coefficient functions, in
Ref. [45] an intermediate-mass scheme has been proposed. Itmay be consid-
ered either as an improved ZM formulation (I-ZMVFNS) which corrects the
kinematic treatment of the final phase space or as a simplifiedgeneral–mass
VFNS. The improvement over the ZM scheme is achieved by replacing the the
lower limits of the convolution integral in Eq. (1.104) withthe equivalent rescal-
ing variable

χ(x,Q2) = xB(1 +M2
f /Q

2), (1.105)

whereM2
f indicate the total mass of the final states. The choice of thisvari-

able restricts the phase space to the physically allowed region. It is shown in
Ref. [45] that there are some subtleties related to the definition of χ and a flex-
ible rescaling variableζ that generalises the mass-dependent rescaling variable
of Eq. (1.105) is proposed and discussed. Moreover in the same reference it is
shown that global analysis carried out in the I-ZMVFNS can approximate the
general–mass scheme results quite well, both in terms of theresulting PDFs,
and in terms of predictions of standard observable at the LHC.

If the advantage of the ZM and the I-ZM schemes is the simplicity of their imple-
mentation and their consistent resummation of large logarithms ofO(Q2/m2

Q), nev-
ertheless they do not fully implement the effect of the heavyquark masses. For this
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reason, schemes which interpolate smoothly between the FFNS, which gives a correct
description of the threshold region, and ZM-VFNS which accounts for large energy
logarithms, have been formulated: they are the so–called general–mass VFN schemes
(GMVFNS). Here we briefly describe the available formulations.

ACOT: A technique for the inclusion of mass-suppressed contributions, built upon
the CWZ renormalisation scheme [35], was developed long agoand it is the so–
called ACOT scheme [46]. It provides a mechanism to incorporate the heavy
quark masses in theoretical calculations both kinematically and dynamically.
It yields the complete quark mass dependence from the low to high energy
regimes; formQ ≫ Q it ensures manifest decoupling, and in the limitmQ ≪ Q

it reduces precisely to theMS scheme without any finite renormalisation term.
The key ingredient provided by the ACOT procedure is the subtraction term, the
third diagram in Fig. 1.4, which removes the “double counting” arising from the
regions of phase space where the LO and NLO contributions overlap. Specifi-
cally, in the case shown in Fig. 1.4, the subtraction term is given by

σSUB = fg ⊗ P̃g→Q ⊗ σQV →Q, (1.106)

whereσSUB represents a gluon emitted from a proton (fg) which undergoes
a collinear splitting to a heavy quark(P̃g→Q) convoluted with the LO quark-
boson scatteringσQV →Q. Here,P̃g→Q(x, µ) =

αs

2π log(µ2/m2
c)Pg→c(x) where

Pg→c(x) is the usualMS splitting kernel.

+ −

Figure 1.4: Schematic representation of the ACOT scheme implementation at NLO in
the heavy quark production process.

Several variants of this method were subsequently proposed, such asS-ACOT [47]
and ACOT-χ [48, 49]. The former was formulated after observing that the
heavy quark mass could be set to zero in certain pieces of the hard scattering
terms without any loss of accuracy. For instance, in the NLO calculation of
the process illustrated in Fig.1.4, one can setmQ = 0 for both the LO terms
(QV → Q) and the NLO quark-initiated terms (both the realQV → Qg and
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the virtualQV → Q) as this involves an incoming heavy quark. One can also
setmQ = 0 for the subtraction terms as this has an on-shell cut on an inter-
nal heavy quark line. Hence, the only contribution which requires calculation
with mQ retained is the NLOgV → QQ̄ process, drawn in the second diagram
in Fig. 1.4. Instead the ACOT-χ scheme is a modified version of the ACOT
scheme obtained by rescalingxB → χ, whereχ2 is defined in Eq. (1.105) [48].
The factor(1 + (Mf )

2/Q2) represents a kinematic suppression factor which
suppresses the heavy quark production relative to the lighter quarks.

Figure 1.5: Calculation of DIS heavy quark production for a variety of schemes: LO
representsQV → Q process. NLO includes theO(α1

s) processes in the massless
approximation. In the FFNS the heavy quark PDF is set to zero and it only receives
contributions fromgV → QQ̄. ACOT and S-ACOT are described in the text. Taken
from Ref. [50].

In Fig. 1.5 the shapes of charm structure functionF c
2 (x, µ), computed in a va-

riety of scheme and perturbative orders, are compared. Thiscomparison has
been performed in Ref. [50]: LO represents theO(α0

s)QV → Q process. NLO
includes theO(α1

s) processes (primarilygV → QQ̄) in the massless approxi-
mation. In the FFNS the heavy quark PDF is set to zero; hence, at O(α1

s) this
only receives contributions fromgV → QQ̄. The ACOT and S-ACOT schemes
are virtually identical—the curves are indistinguishablein this plot. Finally, the
implementation of theχ-prescription for the S-ACOT scheme provides some
additional suppression in the regionµ ∼ mQ.

TR: An alternative method, sometimes called Thorne–Roberts (TR), was introduced
in Ref. [51] as an alternative to ACOT [46] with more emphasison correct
threshold behaviour. Like the ACOT scheme it is based on there being two dif-
ferent regions separated by a transition point, by default set about the value of
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Figure 1.6: Diagrammatic comparison of TR and ACOT type schemes for the case of
DIS. This diagram is schematic to emphasise the similarities and differences. Taken
from Ref. [50].

the heavy quark mass. In Ref. [50] a diagrammatic comparisonbetween the two
approaches is displayed, Fig. 1.6, which helps in illuminating several aspects of
the TR scheme. At a fixed ordern in perturbation theory, the difference be-
tween ACOT and TR amounts to adding differentO(αn+1

S ) higher order terms,
therefore the difference is reduced as one increases the order of our perturba-
tion theory. At LO,α0

S , when the heavy quark PDF is an “active” parton, the
LO contribution isγ + Q → Q. However, when the heavy quark PDF is not
an “active” parton the LO contribution vanishes. For the ACOT scheme, no
higher order terms are added to this results. For the TR scheme, a portion of
the γg → QQ̄ contribution is added; forµ < mQ the full γg → QQ̄ term
is included, and forµ > mQ the γg → QQ̄ term frozen atµ = Q to avoid
any difficulty with large logarithms of the formln(mQ/µ). Consequently, in
theµ < mQ region, the TR scheme yields a finite LO result while the ACOT
scheme yields zero. While both schemes formally agree atO(α0

S), theO(α1
S)

terms can be important, particularly in theµ < mQ region. At NLO, for the
low µ region we now includeγg → QQ̄ as well as theγ +Q → Q process. At
NLO the ACOT scheme obtains a finite result in the regionµ < mQ. For the
TR scheme, in addition to the terms present in the ACOT scheme, a portion of
theγg → gQQ̄ contribution is added; again, forµ > mQ theγg → gQQ̄ term
is frozen atµ = Q. As before, both the TR scheme and ACOT scheme formally
agree atO(α1

S), but they will differ by the NNLOO(α2
S) terms.

The TR scheme achieves in practice the same highest asymptotic order as ACOT
by some modeling of terms belowQ2 = m2

Q which become (relatively) unim-
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portant at highQ2. These terms are allowed due to the fact that in the PDFs
matching conditions there is an arbitrariness related to the definition of the
heavy quark coefficient functions. Asm2

Q/Q
2 → 0 all VFNS coefficient func-

tions must tend to the masslessMS-scheme limit, but at finiteQ2 there is a
freedom in the heavy quark coefficient functions. In the TR scheme [51] the
approach is to make a choice where all coefficient functions obey the correct
thresholdW 2 ≥ 4m2

Q for heavy quark pair production. This was first imposed
by defining the heavy quark coefficient functions such that the evolution of the
observableσ, ∂σ/∂ logQ2, is continuous order-by-order at the transition point.
However, it results in expressions which become increasingly complicated at
higher order. In Ref. [52] the correct threshold behaviour was achieved by us-
ing the simple approach of replacing the limit ofx for convolution integrals with
χ, defined in Eq. (1.105). In the case that the heavy flavour coefficient functions
are just the massless ones with this restriction one obtainsthe S-ACOT(χ) ap-
proach. A very similar definition for heavy flavour coefficients was adopted in
Ref. [52], resulting in the TR′ scheme, and extended explicitly to NNLO.

FONLL : A somewhat different technique for the inclusion of heavy quark effects,
the so-called FONLL method, was introduced in Ref. [53] in the context of
hadroproduction of heavy quarks. The FONLL method only relies on stan-
dard QCD factorisation and it involves calculations with massive quarks in the
decoupling scheme of Ref. [35] and with massless quarks in the MS scheme.
The name FONLL is motivated by the fact that the method was originally used
to combine a fixed (second) order calculation with a next-to-leading log one;
however, the method is entirely general, and it can be used tocombine consis-
tently a fixed order with a resummed calculations to any orderof either. The
application of the FONLL scheme to deep–inelastic structure functions was re-
cently presented in Ref. [54]. The method is based upon the idea of looking
at both the massless and massive scheme calculations as power expansions in
the strong coupling constant, and replacing the coefficientof the expansion in
the former with their exact massive counterpart in the latter, when available. In
Ref. [54] three FONLL scheme implementations have been proposed: scheme
A, where one uses the NLO massless scheme calculation, matched with the
LO (i.e. O(αs)) massive scheme calculation; scheme B, where one uses the
NLO massless scheme calculation, matched with the NLO (i.e.O(α2

s)) massive
scheme calculation; and scheme C, where one uses the NNLO massless scheme
calculation, matched with the NLO massive scheme calculation. Moreover, in
order to suppress higher order contribution arising in the subtraction term near
the threshold region, two prescriptions are proposed. One consists in damping
the subtraction term by a threshold factor which differs from unity by power–
suppressed terms; the other consists in using a rescaling variable such as the
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one defined in Eq. (1.105). Both prescription introduce terms which are for-
mally subleading with respect to the order of the calculation, therefore they do
not change its nominal accuracy, but they may in practice improve the perturba-
tive stability and smoothness of the results.

Thanks to its simplicity, the FONLL method provides a framework for under-
standing differences between other existing approaches, and for a study of the
effect of different choices in the inclusion of subleading terms. It is easily seen
that the scheme A in the FONLL calculation should be equivalent to the S-
ACOT scheme. If aχ-scaling prescription is applied to all terms computed
in the massless approximation, scheme A should become equivalent to the S-
ACOT-χ prescription. A benchmark comparison presented at the Les Houches
workshop [55] confirms this statement in a quantitative way.By adopting com-
mon settings the heavy quark structure functionsF2c andFLc, as implemented
in the ACOT, TR and FONLL schemes, have been computed and compared. In
Fig. 1.7 the S-ACOT, ACOT and FONLL-A computations for theF c

2 structure
function are compared. It is clear that, without applying any threshold or rescal-
ing prescription, the S-ACOT and the FONLL-A schemes are exactly equiva-
lent. On the other hand the difference between the full ACOT and the S-ACOT
scheme vanishes forQ2 ∼ 10 GeV2, as it should be, given that they differ only
by mass–suppressed terms. Scheme C should again be equivalent to a NNLO

Figure 1.7:TheF2c structure function forQ2 = 4 (left) and 10 (right) GeV2 in the FONLL
scheme A (plain) compared to the Simplified ACOT (S-ACOT) andfull ACOT schemes. Taken
from Ref. [54].

generalisation of the S-ACOT scheme. Scheme B instead does not correspond to
any S-ACOT calculation. It is more reminiscent of the TR method, where at the
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NLO level the full NLO massive result is also used4. However from Figs. 1.8 no
obvious similarities can be identified between the two families of schemes, nei-
ther at NLO nor at NNLO at smallQ2. Clearly the difference between schemes
decrease whenQ2 is increased. Furthermore it was observed that, switching off
the threshold prescriptions in both cases, FONLL-A gets rather close to TR’ at
NLO and FONLL-C gets rather close to TR’ at NNLO.

Figure 1.8:TheF2c structure function forQ2 = 4 (top) and 10 (bottom) GeV2 in FONLL
and in TR′, both for the NLO schemes (left plots) and for the NNLO schemes (right plots). In
both cases the default threshold prescriptions are used:χ-scaling for TR′ and a damping factor
for FONLL. Taken from Ref. [54].

4This is only true atQ2 = m2
c , since in the TR method the higher order term in the massive calculation

is frozen at threshold.



Chapter 2
Parton Distribution Functions

In this chapter several aspects of the determination of parton distribution functions
are explored. Starting from an historical overview of the method for extracting PDFs
from experimental data, I emphasise the progress that has been made, not only due
to the increased theoretical and experimental accuracy butalso due to the refinement
of the statistical tools used. I describe both experimentaland theoretical inputs of the
so–called global analyses and the statistical issues associated to the determination of
a set of functions from a finite number of data points. Then some of the delicate as-
pects related to the determination of the best–fit in a space of functions are discussed,
especially the inclusion of the normalisation uncertainties. I show that an improper
treatment of normalisation uncertainties might lead to a bias and propose a prescrip-
tion able to eliminate the latter. The final section is devoted to the description of the
several benchmark studies which have been recently performed in order to clarify the
differences between various approaches used to fit PDFs in a simplified context where
common settings are used.

2.1 Global QCD analyses

Parton Distribution Functions are universal, process–independent, non–perturbative
quantities which must be extracted at a given scale from comparison to the available
experimental data. They are then evolved by mean of the DGLAPequations to another
scale where they are used as an input for theoretical predictions. Any calculation of
cross sections with hadrons in the initial states involves the choice of a set of PDFs,

59
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as well as the experimental simulations performed by mean ofMonte Carlo event
generators.

The needs of precision physics at hadron colliders have determined a revolution in the
approach to the determination of PDFs over the last few years. While the Tevatron has
been providing data for a variety of hard hadronic processeswhich establish the valid-
ity of collinear factorisation and parton universality to the level of precision physics,
the LHC requires a precision approach to the structure of thenucleon in the context of
searches for new physics. Given that the uncertainty of PDFsrepresents the dominant
systematic uncertainty in the theoretical prediction of some key processes at the LHC,
such as the production of electroweak bosons, a reliable knowledge of their errors is
essential for the full exploitation of the LHC physics potential.

At a very early stage [56, 57, 58], parton distributions weredetermined through a
combination of general physical principles (as embodied insum rules), model as-
sumptions and the first crude experimental information coming from Bjorken scaling
and its violation. These determinations aimed to show the compatibility of the data
with the partonic interpretation of hard processes. Thanksto a second generation of
high–precision DIS and hadron collider experiments, QCD gradually evolved towards
being viewed as precision physics. This required an approach to parton densities de-
termination based on the next-to-leading order theory (in order to have perturbative
uncertainties under control), and also based on fairly wide“global” sets of data of a
varied nature, in order to minimise as much as possible the role of theoretical prej-
udice in the determination of the shape of the parton distributions. Next-to-leading
order parton sets became standard analysis tools and were constantly updated. In
particular, the wealth of data from the HERA collider [17] led to a considerable ex-
tension of the kinematic region over which parton distributions could be determined,
along with a substantial improvement in accuracy.

With parton distributions becoming a tool for precision physics, it became important
to be able to assess accurately the uncertainty on any given parton set. The procedure
for estimating the PDFs uncertainties was progressively refined and more data were
included into the analyses. There are currently at least four global sets of parton dis-
tributions with uncertainties available and constantly updated by the CTEQ–TEA [59,
60, 41, 61, 62], MRST–MSTW [63, 64, 65, 66, 43], NNPDF [67, 68,69, 70, 71] and
Alekhin–ABKM [72, 73, 74, 75] groups. There are many similarities in the approach
of the first two collaborations, both in the choice of the parametrisation and in the
determination of PDFs uncertainties. The ABKM collaboration uses the same kind of
fixed functional parametrisation for parton densities but asomewhat different proce-
dure in the determination of the error. The NNPDF collaboration adopts a radically
different approach, which is going to be described in Chap. 4. On the other hand,
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among the non–global analyses, there are the PDF sets determined by the H1-ZEUS
collaboration from the self–consistent and accurate HERA data [17].

2.1.1 Experimental input

The essential input for a global QCD analysis comes from experimental data. In prin-
ciple, one would like to include as many experimental datasets as possible in order
to maximally constrain PDFs. However the complexity of eachdataset makes the
application of standard statistical tools difficult and thedifferences between datasets
pose a challenge for global analyses. First of all, when manydatasets of the same
or similar processes are included, they may not be consistent according to standard
statistical tests, even if the individual ones appear to be self-consistent. Besides some
experiments are performed using different nuclear targets. Although the assumption
of incoherent scattering off individual partons inside thenucleus is valid as a first
approximation, nuclear effects might significantly affectthe analysis and theoretical
calculations of nuclear correction factors are model-dependent, hence often controver-
sial. On the other hand, there are issues related to the kinematic cuts in variablesQ2

andW 2 = Q2(1−x)/x. Although in principle one would like to have a range as wide
as possible, there are some restrictions that must be taken into account: theory and ex-
periments should be compared only where the theory is expected to be reliable and
this implies that some kinematic region must be excluded, typically the data whose
Q2 < 2 GeV2 andW 2 . 10 GeV2.

To give an idea of the wide range of potential experiments available for global QCD
analysis, in Tab. 2.1 we list the typical input data, the measured physical observables
and the PDFs constrained by each of them. The datasets listedin Tab. 2.1 cover a
wide kinematical range and each of them has different features. The HERA experi-
ments are high statistics, high precision experiments. They consist of many hundreds
of data points with statistical and systematic errors of only a few percents. The com-
bined H1–ZEUS data of neutral and charged current reduced cross sections improve
on the accuracy of the separate H1 and ZEUS separate datasets, due to the cross–
calibration between detectors. HERA data are mostly at low–x, while fixed target
data, like NMC, BCDMS and SLAC, cover a higher–x region. Even if the latter have
considerably lower statistics and often large systematic errors, their inclusion enables
one to disentangle isospin triplet and isospin singlet contributions due to the com-
bination of deuteron and proton data. Moreover charged current scattering data from
charged lepton beams and neutrino scattering data disentangle the quark and antiquark
distributions. On top of these data, H1 and ZEUS have also provided some measure-
ments ofF2,c andF2,b which help in constraining the charm and bottom distributions.



62 Chapter 2. Parton Distribution Functions

Experiment Observable Constrain Ref.
DIS experiments

SLAC F e−p
2 , F e−d

2 medium–,large–x q, q̄, g [76]
BCDMS Fµp

2 , Fµd
2 medium–,large–x q, q̄, g [77, 78]

NMC Fµp
2 , Fµd

2 medium–,large–x q, q̄, g [79]
Fµp
2 /Fµd

2 large–x dv/uv ratio [80]
E665 Fµp

2 , Fµd
2 medium–,large–x q, q̄, g [81]

H1,ZEUS F e±p
2 , σ̃NC,e± , σ̃CC,e± small–x qq̄, dv [17]

and small–,medium–x g

F e±,p
2,c , F e±,p

2,b c, b [82]
FL small–x g [83]

HERAI-AV σ̃NC,e± , σ̃CC,e± all x qq̄ small–x g [84]
ZEUS-H2 σ̃NC,e− , σ̃CC,e− medium–,large–x qq̄ [85]

CCFR F
ν(ν̄)
2,3 medium–x uv + dv [86]

σ̃ν(ν̄),c strange sea,s, s̄ [87]
CHORUS σ̃ν(ν̄) medium–,large–x q, q̄, g [88]

NuTeV F
ν(ν̄)
2,3 medium–,large–x q, q̄, g [89]

σ̃ν(ν̄),c strange sea,s, s̄ [89]
Fixed Target Drell-Yan production

E605 d2σCu

dM2dy q̄, g [90]

E772 d2σCu

dM2dy q̄, g [91]

E866 d2σp,d

dM2dxF
q̄, g [92, 93]

d2σd

dM2dxF
/ d2σp

dM2dxF
ū, d̄ [94]

Collider vector boson production

CDF σW+−σW−

σW++σW− large–x u/d ratio [95]
dσZ

dy u, d [96]

D0 dσZ

dy u, d [97]
Collider inclusive jet production

H1, ZEUS DIS+jet data medium–x g [98]
CDF σjet,inc large–x g [99]
D0 σjet,inc large–x g [100]

Table 2.1: Table of the experimental datasets and of the measured observables in-
cluded in a typical global QCD analyses of parton distribution functions.
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On the other hand, the dimuon data from the CCFR and NuTeV collaborations help in
constraining the strange sea, as it will be discussed in Chap. 6.

If DIS data provide important constraints to the quarks and anti–quark distributions,
as well as to the gluon at medium and small–x, there are other regions of the PDF
space which need to be constrained by the hadronic data. Drell–Yan data, like the
fixed–target E605, E772 and E866 experiments help in disentangling the anti–quark
contributions. On the other hand, the collider vector bosonproduction data helps in
constraining theu/d ratio at high–x and theu andd distributions. Finally collider jet
data cover a broad range inx andQ2 by themselves and are particularly important in
the determination of the high–x gluon distribution.

2.1.2 Theoretical input

There are several sources of uncertainty in a parton analysis, which may be divided in
two classes: those associated to the experimental errors and those due to the so–called
theory errors, which depend on the theoretical inputs of theanalysis. It is important
to remark that the error bands associated to the PDFs do not include the theoretical
error1. The latter may induce systematic shifts in the central values and the error
bands.

The main theoretical inputs to global analyses are the perturbatively calculated hard
cross sections, along with the QCD evolution equations which control the scale de-
pendence of the PDFs. TheMS scheme is used almost universally but some PDFs
are also available in the DIS scheme. One of the main theoretical errors comes from
the higher–order contributions. Most global PDF analyses are carried out at NLO.
Recently, the DGLAP evolution kernels have been calculatedat NNLO [30, 31], al-
lowing a full NNLO evolution to be carried out, and parton sets at NNLO are avail-
able [43, 74]. However, not all processes in the global fits, and specifically the inclu-
sive jet production, are available at NNLO. Thus, current NNLO global PDF analyses
are still approximate.

Other sources of possible large corrections to the standardQCD parton model formula
may come from the lack of resummation of logarithms arising at the boundaries of
the phase space, from effects beyond the standard DGLAP expansion, from power–
law corrections like higher–twists, target–mass corrections and, if applicable, nuclear
corrections.

Another significant source of theoretical error is the treatment of the heavy quark
masses. The various schemes for including their effect in a global analysis have been

1The inclusion of the theoretical uncertainty in the standard PDF uncertainty bands has been broadly
discussed but there is no agreement about its precise definition. For a broader discussion see Refs. [64, 101]
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described in the previous chapter. Here I summarise the heavy quark schemes used by
the parton fitting collaborations in their most recent analyses.

• The ABKM collaboration has recently released three sets of NLO and NNLO
PDFs evaluated in a FFNS withnf = 3, 4, 5 [102]. The set withnf = 4 is
obtained by using the set withnf = 3 as input and using the Buza–Matiounine–
Smith–van Neerven matching conditions of Ref. [39] atQ2 = m2

c . Analogously
thenf = 5 set is obtained from the 4–flavors PDFs.

• While the ACOT scheme [46] was formulated long time ago, it was first used
for an actual general-purpose global parton fit only recently, in Refs. [49, 41].
All previous CTEQ analyses were performed in the ZMVFNS, even if the full
ACOT scheme had been used in specific studies in the CTEQ HQ series of fits,
HQ4 [103], HQ5 [104] and HQ6 [49].

• The Thorne Roberts (TR) scheme [51] was used in MRST global analyses up
to MRST 2004 [65]. The TR′ scheme [52] was first used in the MRST 2006
analysis [66], and has been used in all subsequent MSTW analyses [43].

• The FONLL GM-VFN scheme [53, 54] is currently being implemented in the
NNPDF family of fits [105], which up to now have been obtained in the
ZMVFNS [68, 70, 71].

On top of the mentioned theoretical errors there are theoretical assumptions, implicit
in the choice of the parametrisation and in the flavour decomposition. In principle
one should parametrise and extract all the(2nf + 1) independent parton distributions
by fitting observables from experimental data involving different linear combinations
of PDFs. In practice, however, one has to rely on some assumptions since the avail-
able data cannot constrain all of them. For example, an approximation used in early
fit consisted in considering the seāu = d̄, due to the lack of experimental infor-
mation. For the same reason, until a few years ago, the strange valence distribution
(s−s) was typically set to zero. Nowadays the availability of Drell–Yan and as well as
charged–current and the dimuon production data, allows to disentangle the sea quarks
contribution and to determine independentd̄, ū, s, s̄ distributions.

The choice of the parametrisation is another crucial point [106]. In principle, since
PDFs represent our ignorance of the non-perturbative nucleon structure, there should
be complete freedom in choosing their parametric form. However, in order to carry
out a parton fit, one needs to choose a particular functional form for the PDFs at the
initial scale. The typical approach adopted by most of the PDFs fitting collaborations
consists in setting a functional parametrisation which takes into account some handle
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we have on PDFs behaviour; the standard parametrisation hasa form such as

fi(x,Q
2
0) = a0 x

a1 (1− x)a2P (x, a3, a4, ...),

where for some PDF combinations the normalisation parametersa0 are typically de-
termined by imposing the momentum and valence sum rules. Thefactora1 is moti-
vated by physics considerations in the smallx limit where the powera1 has a Regge
interpretation. The factora2 is motivated by physical considerations in the limitx → 1

which is the resonance region where PDFs are supposed to be zero; its value can be
related to the quark counting rules [107]. However it is unclear to what value ofQ2

these considerations should apply and therefore such predictions can only be taken as
a rough guide for the values to be expected. Finally the function P (x) is a smooth
polynomial function inx which interpolates between the small-x and the large-x re-
gions.

The functional form has to be flexible enough to accommodate observed experimental
data without introducing a theoretical bias. Given that theflexibility is intrinsically
related to the number of parameters, the latter should be large enough. However,
adding more parameters to the parametrisation might complicate the fitting procedure
due to the lack of experimental constraints.

Another issue is related to the question: how do we estimate the error associated to
the choice of a particular functional form? Are the results independent on its choice?
This kind of question cannot be easily addressed within the framework of the tradi-
tional parton analysis. In Chap. 4 we will see that in the NNPDF approach, where a
more general parametrisation than the simple polynomial one is used, this question
may be easily addressed. Another attempt in this direction has been performed in the
recent HERAPDF analysis [108], where in addition to the model uncertainty a new
error contribution is introduced resulting from the parametrisation choice. Alterna-
tive parametrisations leading to good fit quality but peculiar behaviour at large–x are
used to estimate the parametrisation uncertainties. An envelope of these fit solutions is
built, which is added in quadrature to the contributions of the experimental and model
uncertainties, as it is shown in Fig. 2.1.

2.1.3 Fitting procedure

When performing a global fit one needs a criterion for evaluating the ”goodness of fit”
for a particular set of PDFs. All experimental uncertainties are generally assumed to
be Gaussian. Then the least squares method estimates the quality of the fit by mean of
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Figure 2.1: The parton distribution functions from HERAPDF1.0,xU , xuv, xŪ , xD,
xdv, xS = 2x(U− + D−) andxg, atQ2 = 10 GeV2. The experimental, model and
parametrisation uncertainties are shown separately. Taken from Ref [108].
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theχ2 function [109]. If only statistical errors are included, the latter is defined as

χ2 ({f}) =
Ndat∑

i=1

(
F

(exp)
i − F

(theo)
i ({f})

)2

σ2
i,stat

. (2.1)

whereF (exp)
i is the experimental measurement of some observableF ,F (theo)

i ({f}) is
the theoretical prediction as a function of the initial scale PDFs{f}, hence function of
the parameters~a which describe the set of parton distributions, andσi,stat is the total
uncorrelated statistical uncertainty. The parameters~a are determined by minimising
theχ2, i.e. one wants to determine the set of parameters~a0 which satisfy the condition

χ2
(
~a0
)
≡ min~a

[
χ2 (~a)

]
. (2.2)

The sum in quadrature of statistical and systematic uncertainties is an acceptable ap-
proximation only if statistical errors are dominant and correlations negligible. How-
ever the statistical accuracy of current data is much higherthan it used to be, and the
experimental groups provide the contributions from the different sources of system-
atic errors along with the experimental data; this leads to consider the effects of the
correlated systematic uncertainties. This can be done by using the explicit form of
the experimental covariance matrix, which collects all information about statistical,
systematic and normalisation uncertainties. The latter isdefined as

[cov]ij =

(
Nc∑

l=1

σi,lσj,l +

Na∑

n=1

σi,nσj,n +

Nr∑

n=1

σi,nσj,n + δijσ
2
i,s

)
F

(exp)
i F

(exp)
j ,(2.3)

wherei andj run over the experimental points,F (exp)
i andF (exp)

j are the measured
central values, and the various uncertainties, given as relative values, are:σi,l, theNc

correlated systematic uncertainties;σi,n, theNa (Nr) absolute (relative) normalisation
uncertainties;σi,s the statistical uncertainty.

With this definition, theχ2 which is minimised during the fitting procedure is given
by

χ2 (~a) =

Ndat∑

i,j=1

(
F

(exp)
i − F

(theo)
i (~a)

) [
cov−1

]
ij

(
F

(exp)
j − F

(theo)
j (~a)

)
. (2.4)

A special treatment is required for the normalisation and multiplicative uncertainties
which, as we are going to see in Sect. 3.2, should be treated separately from other
systematic errors in order to avoid systematic biases.
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2.1.4 Determination of errors

Until a few years ago, only the central values were provided and errors on PDFs were
estimated by varying some sets of parameters, or comparing different determinations.
They were generally considered to be negligible in comparison to other sources of
theoretical or experimental error. Now, the simultaneous progress in higher-order
theoretical calculations and experimental results requires a realistic estimate of the
error of the released PDF sets. Indeed, all modern parton fitting collaborations provide
a set of PDFs at the initial scale and their errors.

The determination of the PDFs error is a difficult problem, not only because of the
difficulties in collecting and propagating uncertainties contained in large experimental
covariance matrices, but also because a PDF set is a set of functions that should be
inferred from a finite amount of data points. Therefore one isfaced with the problem of
constructing a probability measure in a space of functions.The mean of an observable
O depending on a set of PDFs{f} would then be given by

〈O[{f}]〉 =
∫

[Df ]O[{f}]P [{f}], (2.5)

whereO[{f}] is the value ofO based on the PDF set{f} andP [{f}][Df ] is the
probability density measure in the space of PDFs.

A technique for estimating the probability densityP [{f}][Df ] and to deduce the er-
rors and the correlation of quantities depending on PDFs is provided by the use of
Monte Carlo (MC) methods. Using random sampling,i.e. a MC evaluation of the
integral which appears in Eq. (2.5), these methods succeed in calculating such integral
without relying on Gaussian approximations or linearisations of uncertainties. The
underlying idea is that, if a sufficiently high number of PDFsreplicas is generated
according toP [{f}][Df ], the integral of Eq. (2.5) can be approximated by the sum

〈O[{f}]〉 ≃ 1

Nrep

Nrep∑

i=1

O[fi], (2.6)

wherei runs over the members of the Monte Carlo ensemble. In the original work
where this technique was presented, Ref. [110], the probability densityP [{f}][Df ],
was projected from the functional space of all possible functional forms assumed
by the parton densities into theNpar–dimensional space of parameters character-
ising the chosen functional form; the initial probability density is then a function
P(a)d~a, with ~a ≡ a1, a2, ..., aNpar . The space of parameters is sampled by gener-

ating a Monte Carlo ensemble consisting ofNrep random sets of parameters{~a}(k),
k = 1, 2, ..., Nrep distributed according toP [~a]. However, while this can be numeri-



2.1. Global QCD analyses 69

cally implemented, the limitations of the method proposed in Ref. [110] and developed
in Ref. [111] are related to the generation of the Monte Carloensemble. Indeed, the
sampling of the parameter space{~a}(k) is not particularly efficient due to the presence
of many flat directions, which would require the generation of very large ensembles
which cannot be used for practical purposes. In the NNPDF approach [67, 68, 70, 71]
this problem is solved by generating the Monte Carlo ensemble in the space of the
experimental data included into the fit rather than in the space of parameters, as dis-
cussed in detail in Chap. 4.

The most widely used approach in the PDF fitting community is the Hessian method.
A detailed description can be found in Refs. [112, 63]. Givena set ofNpar parameters
~a determining the PDFs at the initial scale, one first determines the best fit parameters
~a0 from the minimisation of the fully correlatedχ2. Then, in order to estimate the as-
sociated uncertainty, one assumes that the deviation inχ2 from the minimum valueχ2

0

is quadratic in the deviation of the parameters specifying the input parton distributions
~a from their values at the minimum~a0 and assumes that

∆χ2 ≡ χ2 − χ2
0 ∼

Npar∑

i=1

Npar∑

j=1

Hij

(
ai − a0i

) (
ai − a0j

)
, (2.7)

whereH is the Hessian matrix, defined as

Hij =
∂2χ2 (~a)

∂ai∂aj
. (2.8)

Hij has a complete set ofNpar orthonormal eigenvectorsvjk with eigenvaluesεk

Npar∑

j=1

Hij (~a) vjk = εkvik i, k = 1, . . . , Npar . (2.9)

The eigenvectors provide a natural basis to express arbitrary variations about the min-
imum. One has to take into account that since variations in some directions in the
parameter space lead to deterioration of the quality of the fit far more quickly than
others, the eigenvaluesεk span several orders of magnitude and therefore the diago-
nalisation might be hard, especially when the fully correlatedχ2 involves large co-
variance matrices. In terms of the diagonalised set of parameters defined with respect
to the eigenvectorsvij

zi =

√
εi
2

∑

j

(aj − a0j)vij (2.10)
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Figure 2.2: A schematic representation of the transformation from the PDFs parameter
basis to the orthonormal eigenvector basis defined in Eq. (2.9). Taken from Ref. [113]

one obtains∆χ2 =
∑

z2i , i.e. the surfaces of constantχ2 are spheres in the~z space
of radius

√
∆χ2. The diagonalisation procedure is illustrated in Fig. 2.2.If one then

considers an observableO depending on PDFs{f}, hence on the parameters~a, in the
neighbourhood of the global minimum, assuming the first termof the Taylor–series
expansion ofO gives an adequate approximation, the deviation ofO from its best
estimate is given by∆O = O − O0 ≈ ∑

i Oizi with Oi ≡ ∂O/∂zi|~0. For a given
tolerance∆χ2 the uncertainty on the physical observable can be evaluatedby the
simple formula

(∆O)2 = ∆χ2
∑

i

O2
i =

∑

i

(O(S+
i )−O(S−

i ))2 (2.11)

where in the above equalityOi is evaluated by finite difference andS±
i are PDF sets

which correspond to two points in the~z parameter space specified by

z±j = ±δij
√

∆χ2/2,

as one can see in Fig. 2.2. Thus, with the calculation of the Hessian matrix and its
eigenvectors, one obtains(2Npar +1) sets of parton distributions,S0, S

±
1 , · · · , S±

Npar

from which one can evaluate the uncertainties of PDFs themselves and of the observ-
ables depending on them by using the master formula, Eq. (2.11).

Possible drawbacks of this method are the assumption that the linearised approxi-
mation in error propagation is valid, and the introduction of non-standard tolerance
criteria∆χ2 > 1 which does not allow to give a statistically rigorous meaning to the
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resulting uncertainties. Indeed results depend on the choice of the tolerance
√

∆χ2,
which is the allowed variation inχ2. Textbook statistics implies that, if the measure-
ments belong to experimental sets which are compatible witheach others, one should
have∆χ2 = 1. However it has been argued that a higher value is required inorder to
keep into account the inconsistencies between datasets included into a global analysis.
The CTEQ collaboration has investigated this problem in detail [114]. They consider
that the choice∆χ2 = 1 is not a reasonable tolerance on a global fit with about 2000
data points from diverse sources, with theoretical and model uncertainties which are
hard to quantify and experimental uncertainties which may not be Gaussianly dis-
tributed. They have tried to formulate a more reasonable setting for the toleranceT
by estimating the range of overallχ2 along each of the eigenvector directions within
which a good fit to all datasets (within 90% C.L.) can be obtained, and then averaging
the ranges over theNpar eigenvector directions. According to this studyT ∼

√
100.

The MRST collaboration suggested a slightly smaller value for T ∼
√
50 confirmed

by a similar analysis performed by the ZEUS collaboration [115]. More recently, the
MSTW collaboration has substituted the choiceT =

√
50 by a new procedure which

enables adynamicdetermination of the tolerance for each eigenvector direction, by de-
manding that each dataset must be described within its one-sigma (or 90% C.L.) limits
according to a hypothesis-testing criterion, after rescaling theχ2 for each dataset so
that the value at the global minimum corresponds to the most probable value. Appli-
cation of this procedure to the MSTW benchmark fit givesT ∼ 3 for 1σ uncertainties
andT ∼ 5 for 90% C.L. uncertainties. Nevertheless the use ofT > 1 is still contro-
versial given that there is no rigorous statistical proof for the criterions adopted to esti-
mate it. The introduction of a tolerance larger than one is equivalent to the PDG error
rescaling procedure for dealing with incompatible datasets and practically corresponds
to inflate the experimental and PDFs uncertainties by a factor

√
∆χ2/2.7 [109].

Another technique for estimating PDFs errors which does notrely on the quadratic
approximation of theχ2 is the Lagrange multiplier method. The technique has been
applied in literature to determine the PDFs induced uncertainties on several physical
observables [63, 116]. However it is not practical for global fits of parton distributions
since it depends on the considered physical observable and is not handy for an external
user.

2.2 Normalisation uncertainty

Within the context of global analyses the treatment of normalisation uncertainties be-
comes relevant. Indeed, when combining datasets from independent experiments it is
necessary to take into account the overall normalisation uncertainty associated with
each experiment: an experiment with large normalisation uncertainty should con-
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tribute less to the fit than one with a small uncertainty. Normalisation uncertainties are
usually multiplicative, in the sense that each data point within the set has a normalisa-
tion uncertainty proportional to the measurement at that point. All these normalisation
uncertainties are however correlated across the whole set of data points.

Fitting the data by using the complete covariance matrix, Eq. (2.3), leads to a sub-
stantial bias in the fitted value due to the fact that smaller data points are assigned a
smaller uncertainty than larger ones [117]. This problem isusually avoided by using
the “penalty trick”: the normalisation of each dataset is treated as a free parameter
to be determined during the fit, within a range restricted by the quoted experimental
uncertainty. While this method gives correct results when fitting data from a single
experiment, in Ref. [118] we showed that it remains biased when used in fits which
combine several different datasets. In the same Ref. the so–called “t0-method” was
introduced, which provides a completely unbiased and rapidly convergent method for
including the normalisation uncertainties in a fit.

Before proceeding, I define a simplified notation. In this section I consider a simple
situation, where we haven measurementsmi of a single observablet with experi-
mental uncertainties given by the covariance matrix[cov]ij which takes the form of
Eq. (2.3). With this notation, the fully correlatedχ2 reads

χ2(t) =
n∑

i=1

(t−mi)(cov
−1)ij(t−mj) (2.12)

and thus the least squares estimate fort is given by

t =

∑n
i,j=1(cov

−1)ijmj∑n
i,j=1(cov

−1)ij
(2.13)

and its variance is found through

Vtt =

(
1

2

∂2χ2

∂t2

)−1

=
1∑n

i,j=1(cov
−1)ij

. (2.14)

The features of the results obtained with this method dependon the choice of function
which is minimised in order to determine the best–estimate of t.

2.2.1 The D’Agostini bias and the penalty trick

When datasets have overall multiplicative uncertainties,such as normalisation uncer-
tainties there are biases arising from the rescaling of errors [117]. The analysis in
Ref. [118] shows that with the Monte Carlo method the effect of this bias starts when
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more than one experiment is considered, while in the Hessianmethod the bias is there
also in the case of a single experiment. Here we only considerthe Hessian approach
in a very simple model of a single experiment with only two data points. In this case
the covariance matrix is simply given by

(covm)ij =

(
σ2
1 + s2m2

1 s2m1m2

s2m1m2 σ2
2 + s2m2

2

)
, (2.15)

wheres2 is the normalisation uncertainty of the considered experiment. Therefore the
χ2 Eq. (2.12) is

χ2
m(t) =

(t−m1)
2(σ2

2 +m2
2s

2) + (t−m2)
2(σ2

1 +m2
1s

2)− 2(t−m1)(t−m2)m1m2s
2

σ2
1σ

2
2 + (m2

1σ
2
2 +m2

2σ
2
1)s

2
.

(2.16)

Minimising thisχ2-function with respect tot yields

t =
m1/σ

2
1 +m2/σ

2
2

1/σ2
1 + 1/σ2

2 + (m1 −m2)2s2/σ2
1σ

2
2

=
w

1 + (m1 −m2)2s2/Σ2
, (2.17)

wherew is the weighted mean

w ≡ Σ2
n∑

i=1

mi

σ2
i

Σ =
n∑

i=1

1

σ2
i

(2.18)

with n = 2.

It follows that, whenm1 6= m2 ands 6= 0, the result fort has a downward shift with
respect to the unbiased resultw. That this shift is a bias can be seen for instance by
considering the simple caseσ1 = σ2 = σ. Then Eq. (2.17) gives

t =
m̄

1 + 2r2s2m̄2/σ2
= m̄(1− 2r2s2m̄2/σ2 +O(r4)). (2.19)

where we have defined

m̄ ≡ 1

2
(m1 +m2), r ≡ m1 −m2

m1 +m2
. (2.20)

Thus simply minimising theχ2 of Eq. (2.12) with the fully correlated covariance
matrix leads to a central value which is shifted downwards: for a sufficiently large
s2/σ2 one can get an average which is lower than either of the two values which are
being averaged, so one concludes that the result is biased. The variance oft is afflicted
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by the same downward bias with respect to the expectedΣ2 + s2w2(1 + r2) result.

Vtt =
Σ2 + s2w2(1 + r2)

1 + r2s2w2/Σ2
. (2.21)

This is usually referred as the “d’Agostini bias”, after Ref. [117] where it was stud-
ied and explained. It can be shown that this bias gets worse asthe number of data
points increases. The origin of this bias is clear: smaller values ofmi have a smaller
normalisation uncertaintymis, and are thus preferred in the fit.

The standard way to include normalisation uncertainties inthe Hessian approach by
avoiding the d’Agostini bias consists of including the normalisations of the datani as
parameters in the fit, with penalty terms to fix their estimated value close to one with
variances2i . This is usually referred as the “penalty trick”. In Ref. [118] it is shown
that, while it gives correct results for a single experiment, when used to combine
results from several experiments it is biased.

In order to show this explicitly, here we first consider a single experiment, with diago-
nal covariance matrix, but now with an overall normalisation uncertainty with variance
s2. The value oft according to the penalty trick is obtained by minimising theerror
function

EHess(t, n) =

n∑

i=1

(t/n−mi)
2

σ2
i

+
(n− 1)2

s2
. (2.22)

where the last term is called the penalty term. The parameters t andn are determined
by minimising this error function: minimising with respectto t givest = nw, with
w as defined in Eq. (2.18), while minimisation with respect ton fixes n = 1. To
compute the error on the fitted quantity in this approach, oneneeds to evaluate the
Hessian matrix:

V −1 =
1

2

(
∂2χ2

∂t2
∂2χ2

∂t∂n
∂2χ2

∂n∂t
∂2χ2

∂n2

)
=

1

Σ2

(
1 −t

−t Σ2/s2 + t2

)
. (2.23)

The covariance matrix is obtained by invertingV −1. In this way one recovers

Vtt = Σ2 + s2w2 , (2.24)

i.e. the result is unbiased. However if we turn to the more complex situation where
we have several data points from different experiments, andthus with independent
normalisations,ni = 1 ± si, we see that the penalty trick leads to a result which is



2.2. Normalisation uncertainty 75

2 4 6 8 10 12 14
x

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

cHxL

Self Consistent CovMat

D'Agostini bias

Penalty Trick

2 4 6 8 10 12 14
x

-4

-3

-2

-1

0

1

2

vHxL

Self Consistent CovMat

Penalty Trick

Figure 2.3:The “bias” functionsc(x) for the central value (left plot) andv(x) for the variance
(right plot), corresponding to the results obtained when the d’Agostini bias is present, using
the penalty trick, and using the self-consistent covariance matrix method. The unbiased result
corresponds toc = v = 0.

biased when all uncertainties are equal. To see it explicitly, we set up the error function

EHess(t, ni) =

n∑

i=1

(t/ni −mi)
2

σ2
i

+

n∑

i=1

(ni − 1)2

s2i
, (2.25)

where now there is a separate penalty term for each of the normalisations to be fitted.
The minimum is obtained for

t =

∑n
i=1

mi

niσ2
i∑n

i=1
1

n2
iσ

2
i

, (2.26)

ni = 1 +
s2i t

n2
iσ

2
i

(
t

ni
−mi

)
. (2.27)

These(n + 1) equations are complicated nonlinear relations which must be solved
for t andni. However it is possible to find solutions for certain specialcases, which
are sufficient to show that the approach is biased. In Ref. [118] two special cases are
considered: the case of only two experiments withσ1 = σ2 ≡ σ ands1 = s2 = s

and the case of only two experiments where the normalisationerror dominates, i.e.
si ≫ σi. In both cases, it is shown that one gets a biased result for both central value
and variance of the quantityt. This bias is more subtle than the d’Agostini bias, since
it is caused by nonlinearities in the error function rather than by a consistent bias in the
variances. It can thus have either sign, depending on the relative weight of statistical
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and normalisation uncertainties. The bias may be written inthe form

t = m̄
(
1 + c(

σ2

s2m̄2
)r2 +O(r4)

)
, (2.28)

Vtt =
1

n
σ2 +

1

n
s2m̄2

(
1 + r2 + v(

σ2

s2m̄2
)r2 +O(r4)

)
, (2.29)

with the functionsc andv given by

c(x) =
x− 2

(x+ 1)2
, v(x) = −4

(2x− 1)2

(x+ 1)3
. (2.30)

The unbiased results would correspond toc = v = 0. The d’Agostini–biased results
can also be cast in the form of Eqs. (2.28, 2.29), but now withc(x) = −2/(x + 1),
v(x) = 0 (since in this case the variance is unbiased atO(r2)). The “bias” functions
c(x) andv(x) for these two cases are compared in Fig. 2.3. Thanks to the penalty
trick, the bias in the central value is generally less severe, but the variance is now also
biased.

A possible way out, alternative to the penalty trick of the previous section and based
on a covariance matrix approach, was suggested by d’Agostini in Ref. [117], which is
indicated in Fig. 2.3 as the self–consistent covariance matrix; however in Ref. [118]
we showed that this method leads to results which are similarto those found using the
penalty trick: for one experiment there is no bias, but for several experiments a bias
arises. In the next section, we will present a new method which is free of multiple
solutions, is unbiased when uncertainties are equal, but which also correctly weights
the different experiments according to their normalisation uncertainties when these
are unequal.

2.2.2 The t0 method

The biases found in the previous section come from the fact that theχ2(t) function
used in the fitting is no longer a quadratic function of the observablet being fitted,
and thus the distribution ofexp(−χ2

t (t)/2) is no longer Gaussian. The dependence
of the covariances of the data ont2 distorts the shape of theχ2, and thus introduces a
bias. The idea proposed in Ref. [118] in order to avoid this isto hold the covariance
matrix fixed when performing the fitting. One can do this by evaluating the covariance
matrix using some fixed valuet0 rather thant. The value oft0 can then be tuned
independently to be consistent with the value oft obtained from the fit. The basic idea
is then to determinet0 self–consistently in an iterative way.
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I now show that this procedure gives unbiased results for equal normalisation uncer-
tainties. Here I concentrate on the Hessian method; a more general discussion can be
found in Ref. [118]. I also show that the iterative determination of t0 converges very
rapidly, and thus that the method is also practical.

In the case of a single experiment, in place of Eq. (2.12) the covariance matrix pro-
posed in Ref. [118] is chosen to be

(covt0)ij = (cov)ij + t20s
2, (2.31)

wheret0 should be viewed as a guess fort, to be fixed beforehand. In a Hessian
approach theχ2 is then

χ2
t0(t) =

n∑

i,j=1

(t−mi)(cov
−1
t0 )ij(t−mj), (2.32)

and minimisation is trivial:

t =

∑n
i,j=1(cov

−1
t0 )ijmj∑n

i,j=1(cov
−1
t0 )ij

, (2.33)

while

Vtt =
1∑n

i,j=1(cov
−1
t0 )ij

. (2.34)

For the special case in which the data have uncorrelated statistical errors only we
recovert = w, independent of the value chosen fort0, while

Vtt = Σ2 + s2t20. (2.35)

This reduces to Eq. (2.24), but only if we tunet0 = t.

When we haven independent experiments (each with one data point), the covariance
matrix proposed in Ref. [118] is given by

(covt)ij = (σ2
i + s2i t

2
0)δij , (2.36)

so theχ2 is now

χ2 =
n∑

i=1

(t−mi)
2

σ2
i + s2i t

2
0

, (2.37)
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whence we have the single solution

t =

∑n
i=1

mi

σ2
i +s2i t

2
0∑n

i=1
1

σ2
i +s2i t

2
0

, (2.38)

and

Vtt =
1∑n

i=1
1

σ2
i +s2i t

2
0

. (2.39)

For the special casesi = s, σi = σ, these reduce tot = m̄ andVtt =
1
n (σ

2 + s2t20)

as they should: the fit is unbiased, and the variance is correctly estimated provided
only thatt0 = t. The same can be shown in the case when normalisation uncertainties
dominate. The result may be generalised to any general situation that one has to deal
with when performing a parton fit [118].

For this reason thet0-covariance matrix Eq. (2.31) gives aχ2 function that can be used
to obtain unbiased fits, witht0 controlling the relative balance between statistical and
normalisation errors, both in the Hessian and Monte Carlo method. The remaining
difficulty with this approach is thatt0 is not determined self–consistently within the
minimisation, but rather must be fixed beforehand. Clearly if the value chosen is
incorrect, this may itself lead to an incorrect fit.

However, the dependence ont0 is rather weak. That this is the case is qualitatively
clear: firstlyt0 only determines the uncertainties, so an error we make int0 is a second
order effect; furthermore all dependence ont0 cancels when all themi are equal, when
σi andsi are equal, or when normalisation errors dominate over statistical, or indeed
vice versa. In Ref. [118] this is proved in a quantitative way.

It follows thatt0 can be determined iteratively: a first determination oft is performed
with a zeroth–order guess fort0, such as, for example,t0 = 0. The result fort thus
obtained is used ast0 for a second iteration, and so on. In Ref. [118] the method
was applied to the NNPDF1.2 parton fit [70], showing that thisprocedure converges
rapidly: two iterations were sufficient to get a stable result.

So far we have taken a naive approach, in which we constructedleast squares esti-
mators, and minimised them with respect to the theoretical predictiont. To conclude,
it is interesting to consider instead how we might constructa likelihood function for
the measurements and normalisations, and thus whether any of the above mentioned
estimators are maximum likelihood estimators.

Consider for definiteness the case of several experiments, with measurementsmi and
variancesσi. In presenting the measurements in this form, there is an underlying
assumption that the measurements are Gaussian. The likelihood is then simply de-
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fined as the probability that the measurements take the observed values given a certain
theoretical valuet for such measurements:

P (m|t) = N exp
(
− 1

2

n∑

i=1

(mi − t)2

σ2
i

)
, (2.40)

whereN is some overall normalisation factor for the probability, dependent onσi but
not onmi or t. Of course this probability is justN exp(− 1

2χ
2(t)), so the maximum

likelihood estimator is found by minimising theχ2, i.e. it is the same as the least
squares estimator.

Now consider what happens when there are also normalisationuncertaintiesni with
variancessi. In the absence of further information it is natural to assume these are
also Gaussian. Furthermore they are clearly entirely independent of the measurement
uncertainties, since the physics involved in determining the normalisation is generally
quite independent of that related to the measurementsmi or indeed the theoretical
valuet. Thus the total likelihood should factorise:P (m,n|t) = P (m|t)P (n). The
maximum likelihood estimators obtained fromP (m,n|t) andP (m|t) should thus be
the same.

The adoption of the fully–correlatedχ2-function, assumes for the likelihood

Pm(m|t) = N exp
(
− 1

2

n∑

i=1

(mi − t)2

σ2
i + s2im

2
i

)
. (2.41)

This is incorrect, because it is no longer Gaussian inmi, and indeed not even properly
normalised (to normalise it,N must depend ont, and then maximisingPm(m|t) is
no longer the same as minimising theχ2). Thus the fully–correlatedχ2-function is
not a maximum likelihood estimator, principally because the probability distribution
it assumes is skewed by the normalisation uncertainties.

Similarly the Hessian method with penalty trick, by adopting the error function Eq.(2.25),
assumes for the likelihood

Pn(m,n|t) = N exp
(
− 1

2

n∑

i=1

[ (mi − t/ni)
2

σ2
i

+
(ni − 1)2

s2i

])
. (2.42)

This is also incorrect, because now the likelihood, while Gaussian inmi, is not Gaus-
sian inni, and furthermore cannot be factorised into a productP (m|t)P (n). Once
again it is not properly normalised:N must depend ont. So this too does not give
us a maximum likelihood estimator. The main problem here is that, since the model
for the likelihood does not factorise, the assumption of a common theoretical result
t introduces artificial correlations between the normalisation measurementsni; this
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leads to biases since these measurements are in principle completely independent.
This is why the penalty trick, while giving correct results for a single experiment with
only one overall normalisation uncertainty, fails when applied to several independent
experiments.

Finally consider thet0–method discussed in this section, which takes as its starting
point theχ2-function Eq.(2.37). Here the assumption for the likelihood is

Pt0(m|t) = N exp
(
− 1

2

n∑

i=1

(mi − t)2

σ2
i + t20s

2
i

)
(2.43)

This is now correct: it is Gaussian inmi, properly normalised, and all we have to
do to make sure we get the correct answer is chooset0 consistently. Note that it can
alternatively be formulated as

Pt0(m,n|t) = N exp
(
− 1

2

n∑

i=1

[ (mi − t/n0)
2

σ2
i + t20s

2
i

+
(ni − n0)

2

s2i

])
. (2.44)

This is rather like the penalty trick Eq.(2.42), but with theni in the first term replaced
with its best estimaten0, just as in going fromm-cov Eq.(2.41) tot0-cov Eq.(2.43) we
replacemi in the denominator with our best estimatet0. Note of course that actually
n0 = 1: this is the natural choice for presenting the data that all experimentalists
choose. Eq.(2.44) is also a good definition of the likelihood: it is Gaussian in both
mi andni, the normalisation is determined quite independently oft, and it factorises
correctly into the productPt0(m|t)P (n). Thus when we minimise with respect tot,
Pt0(m|t) andPt0(m,n|t) give the same maximum likelihood estimator fort, as they
should.

Since thet0-method yields the maximum likelihood estimator, it possesses all the nice
asymptotic properties of maximum likelihood estimators: in particular it is consistent
and unbiased.

To demonstrate the practical application of thet0-method, in Ref. [70] the method was
implemented it in the NNPDF1.2 parton fit [70]. This confirmedthe rapid convergence
of the technique, showed that the inclusion of normalisation uncertainties can lead to a
small improvement in the quality of the fit through the resolution of tensions between
datasets, and moreover that where these tensions are significant this can lead to a
subsequent reduction in PDF uncertainties, as it is shown inChap. 4.
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2.3 Benchmark fits

In this section I present several benchmarks studies performed in the past years in
order to clarify some of the aspects involved in the fitting ofparton distribution func-
tions. In order to disentangle them, common theoretical andmodel settings are adopted
in order to better assess the differences between differentprocedures. Here I present
some benchmarks whose aim is to comprehend the study of the statistical consistency
of a parton determination under the inclusion of new data (HERA–LHC and H1–
NNPDF benchmarks), the difference between Monte Carlo and Hessian approaches
(H1 benchmark) and the impact of the parametrisation choice(H1–NNPDF bench-
mark).

2.3.1 HERA–LHC benchmarks

One of the main drawbacks of the analyses based on the fixed functional form parametri-
sation and the use of the Hessian method, is that sometimes the addition of new ex-
perimental data to the fit, therefore the increase of information, leads to an increase
rather than to a decrease of the PDFs error bands because the new data require the use
of a more general parametrisation. This makes a statisticalinterpretation of the uncer-
tainty bands on parton distribution difficult. The issue wasraised for the first time in
Ref. [101] in the context of a benchmark analysis performed by the MRST [119] and
the Alekhin [73] collaborations.

In order to compare the two parton determination procedures, the same datasets, the
same cuts and theoretical prescriptions were used. To be conservative only the data in
Tab. 2.2 were included in both fits and cuts ofQ2 = 9GeV2 andW 2 = 15GeV2 were
applied in order to avoid the influence of higher twist. Both the Alekhin and MRST

dataset Data points Observable Ref.
ZEUS97 206 F p

2 [120]
H1lowx97 77 F p

2 [121]
NMC 95 F p

2 [79]
NMC_pd 73 F d

2 /F
p
2 [80]

BCDMS 322 F p
2 [77]

Total 773

Table 2.2: Data points used in the HERA–LHC benchmark after kinematic cuts of
Q2 > 9 GeV2 andW 2 > 15 GeV2 are applied.

benchmark partons are determined by using the Hessian method with ∆χ2 = 1 and
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parametrising PDFs at the starting scaleQ2
0 = 1 GeV2 according to the following

functional form:

x fi(x,Q
2
0) = Ai(1− x)bi(1 + ǫix

0.5 + γix)x
ai . (2.45)

Four independent input PDFs (u andd valence, the sea and the gluon) are parametrised
at the initial scale, the light sea asymmetry is set to zero (ū = d̄) and there is no
independent strange PDFs, which is rather set to be a fixed fraction of the non–strange
sea (s(x,Q2

0)+ s̄(x,Q2
0) = 0.5[ū(x,Q2

0)+ d̄(x,Q2
0)]); finally ǫi andγi set to zero for

the sea and gluon distributions. Hence, there is a total of 13free PDF parameters plus
αs(MZ) (which is fitted as a free parameter) after imposing sum rules. The common
theoretical assumptions are

- NLO perturbative QCD in theMS renormalisation and factorisation scheme;

- zero-mass variable flavour number scheme with quark massesmc = 1.5 GeV

andmb = 4.5 GeV;

- momentum and valence sum rules imposed;

- iterated solution of evolution equations.

The only differences lies in the treatment of the errors, since all details on correlations
between errors is included for the Alekhin fit while in the MRST fit the correlations
are only partially included.

From the plots in Fig. 2.4 the generally good agreement between the parton distri-
butions derived in the two fits is apparent. However the comparison between the
benchmark partons and the published partons from a global fitis more problematic. If
the statistical analysis is correct, the benchmark partonsshould agree with the global
partons within their uncertainties, which they do not, as one can see in Fig. 2.5. The
disagreement is remarkable, not only in the extrapolation region, where no data con-
strain the PDFs behaviours, which are hence driven by theoretical prejudice in the
absence of a flexible enough parametrisation, but also in thedata region. It is also
striking that the uncertainties in the two sets are rather similar despite the fact that the
uncertainty on the benchmark partons is obtained from allowing ∆χ2 = 1 in the fit
while that for the MRST01 partons is obtained from∆χ2 = 50. Moreover the un-
certainty in the benchmark gluon is much smaller than in the MRST01 gluon, despite
the much smaller amount of low-x data in the fit for the benchmark partons. This
comes about as a result of the lack of flexibility in the benchmark parametrisation of
the gluon.
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Figure 2.4: Left plot:xdV (x) atQ2 = 20 GeV2 from the MRST benchmark partons
compared to the one from the Alekhin benchmark partons. Right plot: xg(x) atQ2 =
20 GeV2 from the MRST benchmark partons compared to the one from the Alekhin
benchmark partons. Taken from Ref. [101].
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The fact that partons extracted using a very limited datasetare completely incompat-
ible with those obtained from a global fit, even allowing for the uncertainties, implies
that the inclusion of more data from a variety of different experiments moves the cen-
tral values of the partons in a manner indicating either thatthe different experimental
data are inconsistent with each other, or that the theoretical framework is inadequate
for correctly describing the full range of data. This clearly illustrates the problems in
determining the true uncertainty on parton distributions.

In order to understand such behaviour, a similar exercise was performed again in
Ref. [122]. Here the comparison is extended to include a NNPDF fit and the recent
MSTW 2008 fit. As far as the MSTW analysis is concerned, the benchmark analysis
is much more closely aligned to the global analysis than was the case for the previous
benchmark compared to the MRST global analysis. Indeed the MSTW08 analysis has
several features which are different with respect to MRST2001. First of all the in-
put parametrisation includes three additional free parameters associated with(d̄ − ū)

and four additional free parameters associated with strangeness, giving a total of 20
eigenvectors, seven more than in MRST01. The choice of tolerance,T =

√
∆χ2,

that in MRST01 was set to one for 1σ uncertainties and to
√
50 for a 90% confidence

level (C.L.) uncertainty band, has been substituted by a newprocedure described in
Sect. 3.1.4. The NNPDF approach instead is going to be discussed in details in the
next chapter. Here it is important to outline that, being based on the Monte Carlo
determination of PDFs uncertainties and on the use of a redundant parametrisation
provided by neural networks, it does not have to introduce any tolerance and the PDFs
parametrisation used for the benchmark and the global fits are the same.

In Ref. [122] it is shown that the PDFs from the NNPDF and MSTW benchmark
fits are compatible, especially in the data region, whereas in the extrapolation region
there are some discrepancies. Differences are also sizeable in the estimation of un-
certainties, probably due to the differences in parametrisation. Here we are mainly
interested in the comparison betwen the benchmark and the global fits for each of
the two collaborations. In Fig. 2.6 the NNPDF benchmark fit iscompared to the
NNPDF1.0 reference fit of Ref. [68] (NNPDF global), while in Fig. 2.7 the MSTW
benchmark fit is compared to the MRST01 [119] (MRST global) and MSTW08 [43]
global fits (MSTW global). For NNPDF, global and benchmark fits remain com-
patible within their respective error bands. The NNPDF benchmark fit has a sizeably
larger error band than the reference, as one would expect from a fit based on a smaller
set of (compatible) data. For MSTW, we first notice that the MSTW benchmark set
has larger uncertainty bands than the MRST benchmark set andthan each of the sets
obtained from global fits. Consequently, the MSTW benchmarkPDFs are generally
more consistent with the MSTW global fit sets than the corresponding comparison
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Figure 2.6: Comparison of the NNPDF benchmark and NNPDF1.0 reference fits for
theu-valence (left) andd-valence (right) atQ2 = 20 GeV2.

between MRST benchmark PDFs and global fit PDFs shown in Ref. [101], largely
due to the more realistic uncertainties in the MSTW benchmark. Unlike the NNPDF
group, the MSTW group sees some degree of incompatibility between the benchmark
PDFs and the global fit PDFs for the valence quarks, particularly in the case of the
down valence, see Fig. 2.7.

2.3.2 H1 benchmark: determination of uncertainties

In this section we present another benchmark based on the H1–2000 parton fit [123].
It compares a new version of this fit, in which uncertainty bands are determined using
a Monte Carlo method introduced in Ref. [110], to the reference fit, where uncertainty
bands are obtained using the standard Hessian method. The main motivation of this
benchmark is to study the impact of possible non-Gaussian behaviour of some exper-
imental uncertainties and, more generally, the dependenceon the error treatment.

As we discussed in Sect. 3.1, standard error estimation of PDFs relies on the as-
sumption that all errors follow Gaussian statistics. However, this assumption may
not always be correct. Some systematic uncertainties such as luminosity and detector
acceptance follow rather a log-normal distribution [101].Compared to the Gaussian
case, the lognormal distribution which has the same mean androot mean square, is
asymmetric and has a shifted peak. The non-Gaussian behaviour of the experimental
uncertainties could lead to an additional uncertainty of the resulting PDFs.
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Figure 2.7: Comparison of the MSTW benchmark and MRST/MSTW global fits for
theu-valence andd-valence atQ2 = 20 GeV2. All uncertainties shown correspond
to 1σ bands.

In the Monte Carlo (MC) method presented earlier one does nothave to rely on the
Gaussian distribution of the uncertainties. The MC technique consists in generating
replicas of the initial datasets which have the central value of the experimental observ-
ables, fluctuating within its systematic and statistical uncertainties taking into account
all point to point correlations. Various assumptions can beconsidered for the error
distributions. When dealing with the statistical and pointto point uncorrelated errors,
one could allow each data point to randomly fluctuate within its uncorrelated uncer-
tainty assuming either Gaussian, lognormal, or any other desired form of the error
distribution.

The MC method is tested by comparing the standard error estimation of the PDF
uncertainties with the MC techniques by assuming that all the errors (statistical and
systematic) follow Gaussian (normal) distribution. The good agreement between the
methods is manifest in the left–hand side plot in Fig. 2.9. Assuming only a Gaussian
distribution of all errors, the results agree well with the standard error estimation.

In the same analysis two cases are considered, which may represent most faithfully
the error distributions: a lognormal distribution for the luminosity uncertainty and the
rest of the errors are set to follow the Gaussian shape, versus a lognormal distributions
for all the systematic errors and the statistical errors areset to follow the Gaussian
distributions. The results of this comparison, shown in Fig. 2.8, shows that for the
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Figure 2.8: Comparison between errors on PDFs obtained via standard error calcu-
lation (black) where Gauss assumption is used, and errors obtained via Monte Carlo
method (red) where luminosity uncertainty is allowed to fluctuate according to log-
normal distributions and all the other uncertainties follow the Gaussian distribution
(left), and where all the systematic uncertainties are allowed to fluctuate according
to lognormal distributions (right). Only the gluon PDF is shown, where the errors are
larger. The green lines show the spread of theN individual fits. Taken from Ref. [101]

precise H1 HERA-I data the effect of using a lognormal distribution is similar to using
pure Gaussian distribution case.

2.3.3 H1-NNPDF benchmark: dependence on parametri-
sation

The third benchmark is a further elaboration on the benchmark presented in the pre-
vious subsection, extended to include the NNPDF fit, which also uses a Monte Carlo
method for error esteem. The main purpose of this benchmark is to compare two fits
(H1 and NNPDF) which have the same error treatment but different parton parametri-
sations. The inclusion in this benchmark of the NNPDF fit is also interesting because
it allows a comparison of a fit based on a very consistent set ofdata coming from the
H1 collaboration only, to fits which include all DIS datasets.

This analysis is based on all the DIS inclusive data by the H1 collaboration from the
HERA-I run. A kinematic cut ofQ2 > 3.5 GeV2 is applied to avoid any higher twist
effect. The data points used in the analysis are summarised in Table 2.3.
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dataset Data points Observable Ref.
H197mb 35 σ̃NC,+ [121]
H197lowQ2 80 σ̃NC,+ [121]
H197NC 130 σ̃NC,+ [124]
H197CC 25 σ̃CC,+ [124]
H199NC 126 σ̃NC,− [125]
H199CC 28 σ̃CC,− [125]
H199NChy 13 σ̃NC,− [125]
H100NC 147 σ̃NC,+ [123]
H100CC 28 σ̃CC,+ [123]
Total 612

Table 2.3: Data points used in the H1 benchmark after kinematic cuts ofQ2 >
3.5 GeV2.

The theoretical assumptions are similar to those set in the HERA–LHC benchmark.
Both the H1 and NNPDF methodologies are based on the Monte Carlo method to de-
termine uncertainties. They differ in the way PDFs are parametrised: H1 parametrises
PDFs according to a polynomial functional form which describes five independent
PDFs with 10 free parameters after sum rules are imposed. NNPDF parametrises each
independent parton distribution by a neural network characterised by a large number
of parameters, 37 for each PDF, therefore34 · 4 = 136 parameters in total.

In Ref. [122] the results of the NNPDF benchmark are comparedto the NNPDF1.0
reference fit results. The general features of the benchmarkare analogous to those
of the HERA–LHC benchmark discussed in the previous section, with some effects
being more pronounced because the benchmark dataset is now even smaller. However
here we focus on the comparison between H1 and NNPDF benchmark fits with the
purpose of understanding the impact of the respective methodologies.

The quality of the two fits is comparable, the differences inχ2 being compatible with
statistical fluctuations. In the region where experimentalinformation is mostly con-
centrated, specifically for theuv distribution over all thex-range and for thēd and the
dv distributions in the small-x range, the results of the two fits are in good agreement,
though the H1 uncertainty bands are generally smaller.

In the region where experimental information is scarce or missing, sizable differences
are found. Specifically, in these regions NNPDF uncertainties are generally larger than
H1 bands: the width of the uncertainty band for the H1 fit varies much less between
the data and extrapolation regions than that of the NNPDF benchmark. Also, the H1
central value always falls within the NNPDF uncertainty band, but the NNPDF central
value tends to fall outside the H1 uncertainty band wheneverthe central values differ
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Figure 2.9: Left: The Monte Carlo set of gluon PDFs for the H1 benchmark. The
comparison between the standard error calculations and theGaussian error distribution
for the gluon PDF shows a good agreement. Green lines represent the spread of Monte
Carlo generated allowances for the errors, and the red linesare the RMS of this spread.
The black lines correspond to the standard error calculations of the PDF errors. Right:
The Monte Carlo set of gluon PDFs for the NNPDF benchmark. Thered lines show
the1σ contour calculated from the Monte Carlo set. Taken from Ref.[122]

significantly. In Fig. 2.9 the respective full Monte Carlo PDF sets in the case of the
gluon distribution is shown. It shows that the NNPDF parametrisation has a greater
flexibility than the fixed functional form used by the HERAPDFcollaboration.
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Chapter 3
The NNPDF approach to parton
fitting

In this chapter I present the determination of the nucleon parton distributions from
the analyses performed within the NNPDF collaboration overthe last three years. The
general aim of the NNPDF approach is to determine objectively both the value and the
uncertainty of a set of functions from a discrete set of many independent (and possibly
incompatible) experimental measurements. This is achieved thanks to the combination
of several ingredients which I describe in details in the first part of the chapter: the
Monte Carlo sampling of the space of data, the redundant parametrisation provided by
Neural Networks and the fitting strategy based on a cross–validation method.

I then turn to present the results obtained in the recent NNPDF analyses. On top of
the results on the shapes and the uncertainties of PDFs, I discuss the compatibility
between datasets, the statistical consistency of the results and their phenomenologi-
cal relevance. All results are compared to other recent parton sets, differences and
similarities are discussed. To conclude, I give an outlook of the upcoming analyses.

3.1 The NNPDF method

Even though over the last decade a huge progress has been madein the determina-
tion of sets of parton distributions with uncertainties [59, 41, 62, 63, 111, 75, 42, 43],
many of the problems raised in Ref. [110] are still only partly solved. In particular, the
benchmark comparisons presented in Sect. 3.3 have shown that the partonic uncertain-

91
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ties are not easily interpreted in a statistical sense, given that they are to a significant
amount determined by theoretical or phenomenological expectations. The results of
the benchmark might be the consequences of incompatibilities between data or of in-
adequacy of the theory used to describe them or of both of them. The standard parton
determination method based on fitting a particular functional form does not seem to
be sufficiently flexible to ascertain whether this is the case, or whether the difficulties
are due to an intrinsic limitation of the methodology.

Moreover, whereas uncertainty bands for parton determinations based on restricted
data sets [75] are obtained by using standard error propagation of 1σ contours, those
for global fits which include a large variety of data [59, 63] are obtained on the basis
of a tolerance, determined by studying the compatibility ofthe data with each other
and with the underlying theory. The question whether this factor is necessary and
how it can be derived in a consistent way has been raised in several occasions [101,
126]. In particular, given that the effect of this toleranceis equivalent to multiplying
experimental errors by a factor between four and six, the useof the tolerance might
inflate the error of PDFs in regions where data do constrain them.

The drawbacks of the traditional method to extract PDFs havestimulated the formu-
lation of alternative approaches. The one developed by the NNPDF collaboration has
proved to be successful and to provide a statistically–sound determination of Parton
Distribution Functions. The method is based on a Monte Carloapproach, with neural
networks used as unbiased interpolants: the use of neural networks provides a robust
and flexible parametrisation of the parton distributions atthe initial scale, while the use
of the Monte Carlo sampling allows to evaluate all quantities, such as the uncertainty
or the correlation of PDFs, in a statistically-sound way.

A schematic representation of the NNPDF approach is given inFig. 3.1. It involves
two stages. First one generates a Monte Carlo ensemble of replicas of the original data
points included into the fit. The ensemble is generated with the probability distribution
of the data and contains all the available experimental information. It must be large
enough that the statistical properties of the data are reproduced to the desired accuracy.
Each element in the Monte Carlo set is a replica of the experimental data and contains
as many data points as are originally available. Whether thegiven ensemble has the
desired statistical features can be verified by means of statistical standard tests by
comparing quantities calculated from it with the original properties of the data.

In the second stage, a set of parton distributions is constructed from each replica of the
data. Each independent PDF at a given scale is parametrised by an individual neural
network. Physical observables are computed from parton distributions by evolving
the initial scale parton distributions to the scales of the experimental measurements by
using the DGLAP evolution equations. Physical observablesare computed by convo-
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Figure 3.1: Schematic representation of the NNPDF approach.

luting the evolved parton distributions with hard partoniccross sections. The best fit
set of parton distribution is determined by comparing the theoretical computation of
the observable for a given PDF set with their replica experimental values by evaluating
a suitable figure of merit. Both the minimisation and the determination of the best–fit
in a big space of parameters such as the one spanned by the neural network parameters
are delicate issues that I am going to describe in details in the next section.

The ensemble of these best fit PDFs, which contains as many elements as the number
of replicas of the data that were generated, is the final result of the parton determina-
tion. The experimental values in each replica will fluctuateaccording to their distri-
bution in the Monte Carlo ensemble and the best fit PDFs will fluctuate accordingly
for each replica. Even though individual PDF replicas mightfluctuate significantly,
averaged quantities like central value and 1σ error bands are smooth inasmuch as the
size of the ensemble increases. This is shown in Fig. 3.2 where the shape of individual
replicas and the error band computed for two sets of 25 and 100replicas of the gluon
PDF in Ref. [68] are displayed.

An important feature of the approach is that many issues of parton determination can
be addressed using standard statistical tools. For example, the stability of results upon
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Figure 3.2: Sets of 25 replicas (left) and 100 replicas (right) of the gluon distribution
at the initial scaleQ2

0 = 2 GeV2 from Ref. [68]. The solid red (dark) lines show the
average and1σ intervals computed from the given sets.

a change of parametrisation can be verified by computing the distance between results
in units of their standard deviation. An advantage of the Monte Carlo approach is that
it is no more difficult to do this for uncertainties, correlation coefficients or even more
indirect quantities, than it is for central values of physical observables. Likewise, it is
possible to verify that fits performed by removing data from the set have wider error
bands but remain compatible within these enlarged uncertainties, and so forth. The
reliability of the results can thus be assessed directly.

In the next subsections I describe in detail each of the main ingredients of the NNPDF
method and I show the improvements that have been performed along with the subse-
quent analyses.

3.1.1 The Monte Carlo sampling of the probability density

Given a PDF or a quantity depending on PDFsO({fi}), its average is given by
the integration in the functional spaceV ({fi}) spanned by the parton distributions,
weighted by a suitably defined probability measure of all possible functions describ-
ing PDFs at a reference scale:

〈O〉 =

∫

V

dP [{fi}]O({fi}). (3.1)

In the NNPDF approach the probability measure is represented by a Monte Carlo
sample in the space of PDFs defined in two steps: first the generation of an ensemble
of replicas of the original data set, such that it reproducesthe statistical distribution
of the experimental data, followed by its projection into the space of PDFs through
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the fitting procedure. Notice that all theoretical assumptions represent a prior for the
determination of such probability measure.

The ensemble in the space of data has to contain the availableexperimental informa-
tion. In practice, most data are given with multigaussian probability distributions of
statistical and systematic errors, described by a covariance matrix and a normalisation
error. In such cases this is the distribution that will be used to generate the pseudodata.
However, any other probability distribution can be used if and when required by the
experimental data1. The statistical sample in the space of data is obtained by gen-
eratingNrep artificial replicas of data points following a multi-Gaussian distribution
centred on each data point with the variance given by the experimental uncertainty.
More precisely, given a data pointF (exp)

I,p ≡ FI(xp, Q
2
p) we generatek = 1, . . . , Nrep

artificial pointsF (art)(k)
I,p as follows

F
(art)(k)
I,p = S

(k)
p,NF

(exp)
I,p

(
1 +

Nc∑

l=1

r
(k)
p,l σp,l + r(k)p σp,s

)
, k = 1, . . . , Nrep , (3.2)

where

S
(k)
p,N =

Na∏

n=1

(
1 + r(k)p,nσp,n

) Nr∏

n=1

√
1 + r

(k)
p,nσp,n. (3.3)

The variablesr(k)p,l , r(k)p , r(k)p,n are all univariate Gaussian random numbers that generate
fluctuations of the artificial data around the central value given by the experiments.
For each replicak, if two experimental pointsp andp′ have correlated systematic
uncertainties, thenr(k)p,l = r

(k)
p′,l, i. e. the fluctuations due to the correlated systematic

uncertainties are the same for both points. A similar condition on r
(k)
p,n ensures that

correlations between normalisation uncertainties are properly taken into account.

It is possible to define appropriate statistical estimatorsable to quantify the accuracy
of the statistical sampling obtained from a given ensemble of replicas [67]. They are
defined in Appendix B. In Fig. 3.3, I show the scatter plot for mean values and errors
evaluated and averaged over all the PDFs, for a sample of 10, 100 and 1000 replicas. It
is clear that 10 replicas are enough to reproduce the centralvalues within 1% accuracy
and that one needs 100 replicas for reaching the same accuracy in the evaluation of
uncertainties. Using these estimators, one may verify thata Monte Carlo sample of
pseudo-data withNrep = 1000 is sufficient to reproduces also the correlations of
experimental data with a 1% accuracy for all experiments. Asan example, results

1For instance in Chap. 3 it was observed that for the precise H1HERA-I data lognormal and Gaussian
distributions produce similar results.
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for the estimators computed from a sample ofNrep = 1000 replicas are shown in
Table 3.1 for some of the data sets included into the NNPDF fits.

Figure 3.3: Scatter plot for mean values and errors evaluated and averaged over all
the ensemble of MC replicas of the data according to the statistical estimators defined
in Appendix B. Results are shown for a sample of 10, 100 and 1000 replicas in the
NNPDF1.2 analysis.

3.1.2 The Neural Network parametrisation

The Monte Carlo technique adopted to propagate the experimental error into the space
of PDFs is completely independent of the method used to parametrise parton distri-
butions; it might well be used along with polynomial functional forms [101]. On the
other hand, in order to get a faithful determination of parton distributions, one ought to
make sure that the chosen functional form is redundant enough not to introduce a the-
oretical bias which would artificially reduce parton uncertainty in regions where data
do not constrain enough PDFs. There are several ways for obtaining such a redundant
parametrisation. One may use some clever polynomial basis,or more refined tools
such as the self–organising maps [127]. Our choice was to adopt a Neural Networks
parametrisation.

Neural Networks provide a redundant and minimally biased parametrisation of PDFs,
the only theoretical assumption being smoothness, thanks to the flexibility and adapt-
ability of their functional form. They represent one of the most successful and mul-
tidisciplinary subjects [128]. The birth of the artificial neural network goes back to a
mathematical model formulated in 1943 for reproducing someof the characteristics
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Experiment NMC NMC-pd SLAC BCDMS〈
PE

[〈
F (art)

〉
rep

]〉

dat

9.0 ·10−5 1.8 ·10−5 3.1 ·10−4 1.3 ·10−3

r
[
F (art)

]
1.000 1.000 1.000 1.000〈

PE

[〈
σ(art)

〉
rep

]〉

dat

1.5 ·10−3 4.2 ·10−3 3.1 ·10−3 4.0 ·10−3

〈
σ(exp)

〉
dat

0.0147 0.0170 0.0104 0.0698〈
σ(art)

〉
dat

0.0146 0.0171 0.0104 0.0692

r
[
σ(art)

]
1.000 0.998 0.998 0.999〈

ρ(exp)
〉
dat

0.033 0.165 0.312 0.470〈
ρ(art)

〉
dat

0.033 0.176 0.311 0.463

r
[
ρ(art)

]
0.963 0.988 0.987 0.994〈

cov(exp)
〉
dat

6.52·10−6 4.39·10−5 3.07·10−5 2.90·10−5

〈
cov(art)

〉
dat

6.78·10−6 4.73·10−5 3.03·10−5 2.82·10−5

r
[
cov(art)

]
0.989 0.984 0.988 0.999

Table 3.1:Statistical estimators for the Monte Carlo artificial data generation withNrep =
1000. PE stands for percentage error andr is the scattering correlation. The definition of these
statistical estimators is given in Appendix B.

of the synaptic connections of the brain [129]. Nowadays applications of artificial
neural networks are widely used in many different contexts.An artificial neuron is
defined as a processing element whose stateξ at the timet can assume two different
values:ξ(t) = 1, if it is firing, or ξ(t) = 0, if it is at rest. The state of thei-th unit,
ξi(t), depends on the inputs coming from the otherN−1 neurons through the discrete
dynamical equation

ξi(t) = g




N∑

j=1

ωijξj(t− 1)− θi


 , (3.4)

where the weightsωij represent the strength of the synaptic coupling between thej-th
and thei-th neurons,θi is the threshold which must be overtaken to activate the signal,
andg is the activation function. The latter is typically boundedeither in the interval
[0, 1] or [−1, 1]. If it is of the form of theΘ step function

g(h) = Θ(h) ≡
(
0 if h ≤ 0 ,

1 if h > 1

)
,



98 Chapter 3. The NNPDF approach to parton fitting

Figure 3.4: Schematic structure of a multi–layer feed-forward neural network.

the activation is said to be discrete. If the functions is forinstance the sigmoid function

g(h) =
1

1 + e−h
, (3.5)

which satisfies

lim
h→∞

g(h) = Θ(h) (3.6)

the activation function is said to be continuous. It has beenshown that any continu-
ous function can be uniformly approximated by a continuous neural network having
only one infinitely large internal layer, and with an arbitrary continuous sigmoid non-
linearity [130].

The particular kind of neural network that we use in our analysis is the so-called
multilayer feed-forward neural networks or perceptron, shown in Fig. 3.4. The first
layer is the input one, where the input patterns are introduced into the rest of the
network. In the NNPDF fits, the input parameters arex and log(x). The latter has
been introduced for optimising the computation. Between the input layer and the
output one, proportional to the initial scale PDF, there areone or more hidden layers
of neurons evaluating the functiong of the weighted sum of their inputs, which, in turn,
are sent forward to the following layer and so on, until the output level is reached. For
illustrating purposes, we consider a three–layer neural network. When an input vector
ξ is introduced to the network, the states of the hidden neurons acquire the values

σi = g

(
n1∑

k=1

ω
(2)
ij ξk − θ

(2)
j

)
, j = 1, . . . , n2 ; (3.7)
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the output of the network is the vectorζ whose components are given by

ζi = g




n1∑

j=1

ω
(3)
ij σj − θ

(3)
i


 , i = 1, . . . , n3 . (3.8)

Generally, if one hasL layers withn1, . . . , nL units respectively, the state of the
multilayer perceptron is established by recursive relations

ξ
(l)
i = g




nl−1∑

j=1

ω
(l−1)
ij ξ

(l−1)
j − θ

(l)
i


 , i = 1, . . . , nl , l = 2, . . . , L , (3.9)

whereξ(l) represents the state of the neurons in thelth layer,ω(l)
ij the weights between

units in the(l− 1)th and thelth layers, andθ(l)i the threshold of theith unit in thelth

layer. Then the input is the vectorξ(1) and the output the vectorξ(L). The number of
parameters for a given architecture, beingl the number of layers andn(l) the number
of units in each layer, is

Npar =

l−1∑

j=1

n(j + 1) [1 + n(j)] . (3.10)

As an example, one can write explicitly the functional form for a 1–2–1 network,
having one single input, one output and one intermediate layer with only two neurones,
thus determined by 7 parameters, as

ξ
(3)
1 =

1

1 + e
θ
(3)
1 − ω

(2)
11

1+e
θ
(2)
1 −ξ

(1)
1 ω

(1)
11

− ω
(2)
12

1+e
θ
(2)
2 −ξ

(1)
1 ω

(1)
21

.

The explicit functional form may be written for any other architecture, just yielding a
more complicated expression.

In the NNPDF approach, each of the independent PDFs in the evolution basis intro-
duced in Eq. (1.58) is parametrised using a multi-layer feed-forward neural network
supplemented with a polynomial preprocessing. In Tab. 3.2,the independent combi-
nations of PDFs and their parametrisations are shown. In thefirst parton analysis [68],
only five out of thirteen partonic distribution were considered to be independent of
each others, basically the light up and down quarks and the corresponding anti–quarks
and the gluon. The other PDFs were determined by mean of some flavor assump-
tions: the strange sea was assumed to be proportional to the non–strange sea and to
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f(x) Parametrisation Architecture Npar

Singlet Σ(x) NNΣ 2-5-3-1 37
Gluon g(x) NNg 2-5-3-1 37

Total Valence V (x) ≡∑i f
v
i (x) NNV 2-5-3-1 37

Triplet T3(x) ≡ u+(x)− d+(x) NNT3 2-5-3-1 37
Sea Asymmetry ∆S(x) ≡ d̄(x)− ū(x) NN∆ 2-5-3-1 37
Total strangeness s+(x) ≡ (s(x) + s̄(x))/2 NNs+ 2-5-3-1 37
Strange valence s−(x) ≡ (s(x)− s̄(x))/2 NNs− 2-5-3-1 37

Table 3.2:Neural Network parametrisation of parton distributions inthe NNPDF analyses. In
Ref. [68] only the first five parton distributions were considered to be independent, the last two
were added in Ref. [69] and in all subsequent analyses.

be symmetric. These assumptions were a source of bias in the determination of par-
ton densities. Since the second analysis of Ref. [69], an independent parametrisation
for the strange and anti–strange distribution was added. Inall the analyses that we
published until now, the zero mass variable flavor number (ZM-VFN) scheme to in-
corporate the effects of the heavy quarks. Details about treatment of the heavy quarks
in the past and future analyses is discussed in the next section. The neural networks we
use are chosen to have all the same architecture, namely 2–5–3–1. This corresponds
to 37 free parameters for each PDF, i.e. a total of 185 free parameters in Ref. [68]
and 259 free parameters in Ref. [69] and therein. This numberis to be compared
to less than a total of 30 free parameters for parton fits basedon standard functional
parametrisations [59, 63, 75]. The use of a redundant architecture reduces a priory the
possibility of a functional bias. Lack of bias will be checked a posteriori. In the next
section I show that results are independent of the choice of architecture.

Neural networks can accommodate any functional form, provided they are made of
a large number of layers and sufficient time is used to train them. Nevertheless, it is
customary to use preprocessing of data to subtract some dominant functional depen-
dence. Then, smaller neural networks can be trained in a shorter time to deal with the
deviations with respect to the dominant function. In the NNPDF fits, we use prepro-
cessing to divide out some of the asymptotic small– and large–x behaviour of PDFs.
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PDF [mmin,mmax] [nmin, nmax] r
[
χ2,m

]
r
[
χ2, n

]

Σ(x,Q2
0) [2.55, 3.45] [1.05, 1.35] -0.018 0.131

g(x,Q2
0) [3.55, 4.45] [1.05, 1.35] -0.002 0.050

T3(x,Q
2
0) [2.55, 3.45] [0, 0.5] -0.023 -0.130

VT (x,Q
2
0) [2.55, 3.45] [0, 0.5] 0.003 -0.068

∆S(x,Q
2
0) [12, 14] [−0.95,−0.65] 0.000 -0.069

s+(x,Q2
0) [2.55, 3.45] [1.05, 1.35] 0.021 -0.055

s−(x,Q2
0) [2.55, 3.45] [0, 0.5] -0.027 -0.015

Table 3.3: The range of random variation of the large-x and small-x preprocessing expo-
nentsm andn used in the NNPDF20 analysis [71]. The last two columns give the correlation
coefficient defined in Eq. (3.13) between theχ2 and respectively the large– and small–x pre-
processing exponents.

The input PDF basis can be thus written in terms of neural networks as

Σ(x,Q2
0) = (1− x)mΣx−nΣNNΣ(x) ,

V (x,Q2
0) = AV (1− x)mV x−nV NNV (x) ,

T3(x,Q
2
0) = (1− x)mT3x−nT3NNT3(x) , (3.11)

∆S(x,Q
2
0) = A∆S

(1− x)m∆S x−n∆SNN∆S
(x) ,

g(x,Q2
0) = Ag(1− x)mgx−ngNNg(x)

s+(x,Q2
0) = (1− x)ms+ x−n

s+NNs+(x),

s−(x,Q2
0) = (1− x)

m
s− x−n

s−NNs−(x)− saux(x,Q
2
0),

where

saux(x,Q
2
0) = As−

[
xr

s− (1− x)ts−
]
. (3.12)

The relative normalisation of the neural networks is set by imposing the momentum
sum rules as it is explained in Sect. 3.1.6.

In Ref. [68] the exponents of the preprocessing functions were kept fixed to a given
value and the independence of the choice of the pre–processing was verified a pos-
teriori. However, in Ref. [69] and henceforth we avoided possible bias related to
this choice. We reached a greater stability by exploring a large space of preprocessing
functions: a randomised range of variation of preprocessing exponents was introduced
in the fit. The range of preprocessing exponents used in the most recent fit [71] is
shown in Table 3.3.
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A way for verifying the explicit independence of results on preprocessing exponents
within the ranges defined in Table 3.3 was introduced in Ref. [70] by evaluating the
correlation between the value of a given preprocessing exponent and the associated
value of theχ2 computed between thek–th net and experimental data. The correlation
coefficient is defined as follows: considering for definiteness the large–x preprocess-
ing exponent of the singlet PDFΣ(x,Q2), one has

r
[
χ2,mΣ

]
≡
〈
χ2mΣ

〉
rep

−
〈
χ2
〉
rep

〈mΣ〉rep
σ2
mΣ

. (3.13)

This provides the variationδχ2 as the large–x exponentδmΣ is varied around its
mean value. The correlations was found to be very weak as it isshown in the last
two columns of Table 3.3. Theχ2(k) for the individual replicas is only marginally
affected. This validates quantitatively the stability of the results with respect to the
preprocessing exponents.

3.1.3 Figure of merit and t0 algorithm

The figure of merit for fitting of the neural networks on the individual replicas is the
error function, defined in Ref. [67] as

E(k) =
1

Ndat

Ndat∑

i,j=1

(
F

(art)(k)
i − F

(net)(k)
i

)((
c̃ov(k)

)−1
)

ij

(
F

(art)(k)
j − F

(net)(k)
j

)
,

(3.14)

where the valueF (net)
i of the observable corresponding to thei−th data point is

computed from the PDFs by evolving PDFs to the scale of the measurements and
convoluting them with the coefficient functions. The error function is similar to the
χ2 per degree of freedom defined in Eq. (2.4). However, the errorfunction measures
the quality of the fit of each set to its corresponding replica, while theχ2 measures the
quality of the fit of each set to the experimental data. Moreover the covariance matrix
employed̃cov(k) is different from the one defined in Eq. (2.3).

Indeed, as it was discussed in Chap. 3, the treatment of normalisation uncertainties
needs some care: including normalisation uncertainties inthe covariance matrix would
lead to a fit that is systematically biased to lie below the data [117]. The way this
problem was handled up to the NNPDF1.2 fit [68, 70], consistedin including normal-
isation uncertainties by rescaling all uncertainties, i.e. by constructing for each replica
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the modified covariance matrix̃cov(k)ij appearing in Eq. (3.14) as

c̃ov
(k)
ij = cov(k)ij ≡

(
Nc∑

l=1

σ(k)
i,lσ

(k)
j,l + δij

(
σ(k)

i,s

)2
)
FiFj , (3.15)

with the statistical uncertaintiesσp,s and each systematic uncertaintyσp,l being rescaled
by a factor which depends on the considered replica(k), according to

σ
(k)
i,s = S

(k)
i,Nσi,s , σ

(k)
i,l = S

(k)
i,Nσi,l , l = 1, . . . , Nc . (3.16)

and thus

cov(k)ij = cov(exp)ijS
(k)
i,NS

(k)
j,N . (3.17)

Therefore the experimental correlation matrix without normalisation uncertainties needs
to be evaluated only once, given that it does not depend on thereplica, whilecov(k)ij
is obtained by multiplying by the normalisation factorsS

(k)
i,N andS(k)

j,N for each replica.
If within an experiment all sets have only a common global normalisation uncertainty,
the rescaling is an overall multiplicative factor.

However we figured out that this method is only accurate when all normalisation un-
certainties have a similar size, as it is discussed in Chap. 3. In Ref. [71] an improved
treatment of normalisation uncertainties was implemented. Following Ref. [118], the
covariance matrix for each experiment is computed from the knowledge of statistical,
systematic and normalisation uncertainties as follows:

c̃ovij = (covt0)ij ≡
(

Nc∑

l=1

σi,lσj,l + δijσ
2
i,s

)
FiFj

+

(
Na∑

n=1

σi,nσj,n +

Nr∑

n=1

σi,nσj,n

)
F

(0)
i F

(0)
j , (3.18)

where now the matrix does not depend on the replicak, i andj run over the experi-
mental points andF (0)

i , F (0)
j are the corresponding observables iteratively determined

from some previous fit. As it was shown in Chap. 3, the convergence of the iterative
procedure is very fast and the final values ofF

(0)
i used in Eq. (3.18) do not differ

significantly from the final fit results.
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3.1.4 Genetic algorithm minimisation

The error function Eq. (3.14) can be minimised with a varietyof techniques, in-
cluding standard steepest–descent in the space of parameters. Due to the non–local
nature of the error function and the complex structure of theparameter space, genetic
algorithms [131] turn out to be the most efficient method. Themain advantage of
genetic algorithms is that they work on a population of solutions, rather than tracing
the progress of one point through parameter space. Thus, many regions of parameter
space are explored simultaneously, thereby lowering the possibility of getting trapped
in local minima.

The state of the neural network is represented by the vector

nn =
(
nn1, nn2, . . . , nnNpar

)
. (3.19)

where each elementnni corresponds either to a weightω(l)
ij or to a thresholdθi, and

Npar indicates the total number of parameters determining the output of the networks.
The initial set of parameters is chosen at random. At each iteration of the minimisa-
tion, usually referred as generation, a set ofNmut copies of the vectornn is generated.
TheNmut mutants are obtained by replacing one or more randomly chosen elements
of the state vectornn by a new value according to the rule

nnk → nnk + η

(
r − 1

2

)
, (3.20)

wherer is a uniform random number between 0 and 1. This step is referred as mutation
andη, the mutation rate, is a free parameter of the algorithm.

Once the set of different mutants is generated, the vector orthe set of vectors with
lowest values of the error Eq.( 3.14) are selected out of the total population ofNmut

individuals, and used to replace the original vector. This choice might be replaced by
other methods based on probabilistic selection. However wehave found no advan-
tage in using probabilistic methods for the selection of thebest mutant. The selection
of the copy with the lowest figure of merit is best suited for our strategy. With this
choice the genetic algorithm produces a monotonically decreasing profile of the figure
of merit. The procedure is iterated until the vector with thesmallest value of the error
function meets a suitable convergence criterion, to be discussed in the next subsec-
tion. However, in order to avoid unacceptably long fits, whena very large number of
iterationsNmax

gen is reached, training is stopped anyway. This leads to a smallloss of
accuracy of the corresponding fits which is acceptable provided it only happens for a
small fraction of replicas.
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Genetic algorithms are controlled by some parameters, likethe mutation rate, that
may be tuned in order to optimise the efficiency of the whole minimisation procedure.
In order to avoid the local minima and increase the training speed, the most obvi-
ous improvement consists in introducing multiple mutations η → ηi with different
probabilitiesρi with i = 1, ..., Nmultmut. We verified that this produces a significant
improvement of the convergence rate [67].

Further improvements were introduced in Refs. [68, 71]. Thefirst of these was to al-
low, for each PDFj = 1, . . . , Npdf , different values of the mutation ratesηi,j . This is
motivated by the fact that each PDF functionality is different, and thus best approached
using a specific learning rate. Furthermore, as training proceeds, all mutation rates are
adjusted dynamically as a function of the number of iterationsNite

ηi,j = η
(0)
i,j /N

rη
ite . (3.21)

In order to optimally span the range of all possible beneficial mutations the exponent
rη was randomised between 0 and 1 at each iteration of the genetic algorithm. An
analysis of the values ofrη for which mutations are accepted in each generation re-
veals a flat profile: both large and small mutations are beneficial at all stages of the
minimisation. We also tuned the number of mutants dependingon the stage of the
training. When the number of generations is smaller thanNmut

gen , we use a large pop-
ulation of mutantsNa

mut ≫ 1, while afterwards we use a much reduced population
N b

mut ≪ Na
mut. The reason for this procedure is that at early stages of the minimi-

sation it is beneficial to explore as large a parameter space as possible, thus we need
a large population. Once we are closer to a minimum, a reducedpopulation helps in
propagating the beneficial mutations to further improve thefitness of the best candi-
dates.

Finally, in order to deal more efficiently with the needs of fitting data from a wide va-
riety of different experiments and different data sets within an experiment, we adopt
a weighted fitting technique, following an earlier study in Ref. [67]. The aim of the
technique is to let the minimisation procedure converge rapidly towards a configura-
tion for which the finalχ2 is even among all the experimental sets. Weighted fitting
consists of adjusting the weights of the data sets in the determination of the error func-
tion during the minimisation procedure according to their individual figure of merit:
data sets that yield a large contribution to the error function get a larger weight in the
total figure of merit. The function which is minimised is thus

E
(k)
wt =

1

Ndat

Nsets∑

j=1

p
(k)
j Ndat,jE

(k)
j , (3.22)
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η
(0)
i,Σ η

(0)
i,g η

(0)
i,T3

η
(0)
i,VT

η
(0)
i,∆S

η
(0)
i,S+ η

(0)
i,S−

[10, 1] [10, 1] [1, 0.1] [1, 0.1] [1, 0.1] [5, 0.5] [1, 0.1]

Nwt
gen Nmut

gen Nmax
gen Esw Na

mut N b
mut Nupdate

10000 2500 30000 2.6 80 10 10

Table 3.4:Parameter values for the genetic algorithm adopted in Ref. [71].

whereNdat,j is the number of data points of thej−th set andE(k)
j the error function

defined in Eq. (3.14) but restricted to the points of thej−th dataset. The weightsp(k)j

are determined as

p
(k)
j =

(
E

(k)
j

E
(k)
max

)2

, (3.23)

with E
(k)
max being the highest among theE(k)

j at the given GA generation. Their values
are updated everyNupdate generations, with defaultNupdate = 10.

In Ref. [71] and therein, a slightly different way of determining the weightsp(k)j was

adopted. In Eq. (3.23)E(k)
max is replaced byEtarg

j . The idea is the following: in the

beginning of the fit, target valuesEtarg
j for the figure of merit of each experiment are

chosen. Then, at each generation of the minimisation, the weights of individual sets
are updated using the conditions

1. If E(k)
j ≥ Etarg

j , thenp(k)j =
(
E

(k)
j /Etarg

j

)2
,

2. If E(k)
j < Etarg

j , thenp(k)j = 0 .

Hence, sets which are far above their target value will get a larger weight in the fig-
ure of merit. On the other hand, sets which are below their target are likely to be
already learnt properly and thus are removed from the figure of merit which is being
minimised. However, everyNite iterations, the figure of merit associated to the sets
removed from the minimisation is computed and, if the latterhas deteriorated, these
sets are put back into the global figure of merit. The determination of the target values
Etarg

j for all the sets which enter into the fit is an iterative procedure that works as

follows. We started with allEtarg
j = 1 and proceeded to a first very long fit. Then,

we use the outcome of the fit to produce a first nontrivial set ofEtarg
j values. This

procedure is iterated until convergence. In practice, convergence is very fast. This
implementation of targeted weighted training is such that the error function of each
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dataset tends smoothly to its “natural” value, that is,p
(k)
j → 1 as the minimisation pro-

gresses. Those sets which are harder to fit are given more weight than the experiments
that are learnt faster.

As an illustration of the procedure, I show in Fig. 3.5 thep
(k)
j weight profiles as

a function of the number of genetic algorithm generations for some sets of a given
replica. Note how, at the early stages of the minimisation, sets which are harder to
learn, such as BCDMSp or NMC-pd are given more weight than therest, while at the
end of the weighted training epoch all weights are eitherp

(k)
j ∼ 1 or oscillate between

0 and 1, a sign that these sets have been properly learnt.

 1

 2

 3

 4

 5

 6

 100  200  500  1000  2000  5000  10000

p(
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Genetic Algorithms generation

HERAI-NCep
CDFjets
NMC-pd

BCDMSp

Figure 3.5:Illustration of the weighted training in one particular replica. Individual weights
for each dataset converge to a value ofpi which is close to 1 as the training progresses. Only
the behaviour of representative datasets is shown here.

An important feature of weighted training is that weights are given to individual
datasets and not just to experiments. This is motivated by the fact that typically each
dataset covers a distinct, restricted kinematic region. Hence, the weighting takes care
of the fact that the data in different kinematic regions carry different amounts of in-
formation and thus require unequal amounts of training. This procedure poses the
problem that different sets coming from the same experimentare correlated with each
others and these correlations are neglected in the evaluation of Eq. (3.22). For this
reason, the targeted weighted training epoch lasts forNwt

gen generations, unless the to-
tal error function Eq. (3.14) is above some thresholdE(k) ≥ Esw. If it is, weighted
training continues untilE(k) falls below the threshold value. Afterwards, the error
function is just the unweighted error function Eq. (3.14) computed on experiments.
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It is in this final training epoch that a dynamical stopping ofthe minimisation is acti-
vated, as I discuss in the next section. Going through a final training epoch with the
unweighted error function is in principle important in order to eliminate any possi-
ble residual bias from the choice ofEtarg

i values in the previous epoch. However, in
practice this safeguard has little effect, as it turns out that all weights tend to unity
at the end of the targeted weighted training epoch as they ought to [71]. The whole
procedure ensures that a uniform quality of the fit for all datasets is achieved, and that
the fit is refined using the correct figure of merit which includes all the information on
correlated systematics.

The final choices of the parameters of the genetic algorithm discussed in this section
which have been adopted in the NNPDF2.0 parton determination are summarised in
Table 3.4.

3.1.5 Determination of the optimal fit

The very large and redundant parametrisation of the initialscale PDFs requires a de-
tailed analysis of the fitting strategy. On top of devising analgorithm to fit neural
network PDFs, one has to deal with the fact that any redundantparametrisation may
accommodate not only the smooth shape of the true underlyingPDFs, but also fluctu-
ations of the experimental data. The best fit then is not givenby the absolute minimum
of the likelihood. When dealing with quantities with some built–in smoothness, such
as physical cross sections, this procedure does not producethe optimal fit. Indeed,
even for fully compatible data, independent measurements of the same quantity at the
same point will fluctuate within the uncertainty of the measurement. If fitted by maxi-
mum likelihood, such independent measurements will automatically be combined into
their weighted average [132]. However, if two independent measurements are per-
formed of the same observable, but measured at very close values of the underlying
kinematic variables: for example the structure functionF (x,Q2) at the sameQ2 and
two different but close valuesx. Then a fit which goes through the central values of
both measurements might be possible, but in the limit in which the two measurement
are performed at infinitesimally close points this would correspond to a discontinuous
behaviour of the observable, which is unphysical. This problem is exacerbated in the
case of incompatible measurements. Instead, the best fit should be characterised by a
value of theχ2 which is equal to the value expected on the basis of the fluctuations
of the data, beyond which the figure of merit improves only because one is fitting the
statistical noise in the data.

In order to determine this value, a strategy was developed inRef. [67], based on the
cross-validation method used quite generally in neural network studies [133]. Namely,
PDFs are trained on a fraction of the data and validated on therest of the data. Training
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is stopped when the quality of the fit to validation data (i.e.the data which are not used
in the training) deteriorates while the quality of the fit to training data keeps improving.
This corresponds to the overlearning regime where neural networks start to fit random
fluctuations rather than the underlying physics. The methodis made possible by the
availability of a very large and mostly compatible set of data, and it guarantees that the
best fit does not attempt to reproduce random fluctuations of the data. The method also
handles incompatible data, by automatically tolerating fluctuations in the data even
when they are larger than the nominal uncertainty, wheneverfitting these fluctuations
would not lead to an improvement of the global quality of the fit.

The application of the cross–validation method in the NNPDFfits has been described
in details in Refs. [68, 67]. For each replica the data set is partitioned into training and
validation subsets with fractionf (j)

tr andf (j)
val = 1−f

(j)
tr of the data points respectively.

The values of the fractions can in general be different for each datasetj. The points in
each set are chosen randomly out of the total dataset. This random partitioning of the
data is different for each replica. The same value of the training fraction for all data
sets is taken,f j

tr = f j
val =

1
2 , i.e. randomly for each replica, half of the points of each

set belong to the training set and half to the validation set.The division is performed
set by set in order to make sure that all data sets (and thus essentially all kinematic
regions) are represented in the training and validation sets for each replica.

The fit is then performed on the data in the training set, and the figure of merit in
both sets is monitored. Whereas usually, when using a genetic algorithm, the figure of
merit cannot increase during the minimisation, with the weighted training algorithm
discussed earlier the value of the figure of merit during minimisation oscillates due
to the updating of the weights. In order to avoid spurious stopping induced by these
oscillations, the monitored error functions are computed as moving averages over a
given number of iterations, namely

〈Etr,val(j)〉 ≡
1

Nsm

j∑

l=j−Nsm+1

Etr,val(l) . (3.24)

Minimisation is stopped when〈Eval(j)〉 in the validation set (not used for fitting)
stops decreasing. This is illustrated in Fig. 3.6, where themoving averaged training
and validation error functions are plotted as a function of the number of generations
for one particular replica of the NNPDF2.0 reference fit. Overlearning is apparent as
beyond the stopping point the training figure of merit keeps decreasing steadily while
the validation flattens out and actually rises by a small amount. The stopping criteria
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Figure 3.6: Training and validation error functions as a function of the number of
iterations for one of the replicas in the reference fit. The stopping region is zoomed
on the right–hand side plot.

are then satisfied if the averaged training error function isdecreasing

rtr =
〈Etr(j)〉

〈Etr(j −∆smear)〉
< 1− δtr , (3.25)

while the averaged validation error function increases

rval =
〈Eval(j)〉

〈Eval(j −∆smear)〉
> 1 + δval . (3.26)

The parametersδtr, δval set the accuracy to which the increase and decrease is required
in order to be significant. The values of the stopping parameters must be determined
by analysing the behaviour of the fit for the particular dataset which is being used for
neural network training. As an illustration of how this is done in practice, we show
in Fig. 3.7 the averaged training and validationEtr/val ratios Eqs. (3.25, 3.26) for a
given replica and different values of the smearing lengthNsmear. For this particular
replica the training has been artificially prolonged beyondits stopping point. From
Fig. 3.7 it is apparent that while the training ratio satisfies rtr < 1 always, i.e. that
Etr continues to decrease, after a given number of generations we haverval > 1,
which then oscillates above and below 1: this is the sign thatwe have entered an
‘overlearning’ regime and minimisation needs to be stopped.

The optimal values of the stopping parameters are chosen to be small enough that
overlearning is avoided, but large enough that the fit does not stop on statistical fluctu-
ations. The latter condition can be met only if the value ofNsmear is large enough, but
if Nsmear is too large stopping becomes very difficult and the first condition cannot be
met. In practice, as explained in Ref. [71], a set of 100 replicas with very long training
is generated, and for each value ofNsmear a range of values ofδtr andδval has been
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Figure 3.7:The training (left) and validation (right) ratios (defined in Eqs.(3.25, 3.26)) for a
particular replica, as a function of the number of genetic algorithms generations, for various
choices of the smearing parameterNsmear = ∆smear. The valueNsmear = ∆smear = 200 is
used in the reference fit (see Table 3.5).

Nsmear ∆smear δtr δval Ethres Nmax
gen

200 200 10−4 3 10−4 6 30000

Table 3.5:Parameter values for the stopping criterion in the NNPDF2.0analysis [71].

tried out until an optimal set of values which satisfies all the above criteria has been
found. The final values of the parameters used in Ref. [71] arelisted in Table 3.5.

In order to check the consistency of the whole procedure, in Ref. [71] a set of 100
replicas from a fit with the same settings as the final reference fit but with no stop-
ping and a large maximum number of genetic algorithm generationsNmax

gen = 50000

was produced. This set of 100 replicas allowed us to verify that the targeted weighted
training and stopping criterion do not bias the fitting procedure and that the stopping
criterion does not introduce underlearning by stopping thefit at a time when the qual-
ity of the fit is still improving. We verified that, while the averageχ2 for this fit is
only marginally better than that of the reference fit, some experiments do show signs
of overlearning, with an accordingly lower value of the contribution to theχ2 . This is
illustrated in Fig. 3.8, where theE(k)

i profiles for two particular experiments (NMC-
pd and E605) and replicas taken from this fit without stoppingis shown. In the first
training epoch, in which the weighted training Eq. (3.22) isactivated, one can see
oscillations, but the downwards trend is clearly visible. Once targeted weighted train-
ing is switched off, minimisation proceeds smoothly, and wesee in the two cases that
after a given number of genetic algorithms generations we enter in overlearning. For
the two experiments the typical overlearning behaviour, characterised by the fact that
the validationE(k)

tr is rising while the trainingE(k)
val is still decreasing, sets in at about

15000 generations. This is the point where dynamical stopping avoids overlearning.
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Figure 3.8: Two typical examples of overlearning behaviour, extractedfrom a fit with the
same settings as the final reference fit of the NNPDF2.0 analysis [71] but with no stopping
and a large maximum number of genetic algorithm generationsNmax

gen = 50000. The right
plot shows the overlearning of the E605 experiment observedin one particular replica, and the
left plot corresponds to the NMC-pd experiment. Note that inthese fits weighted training is
switched off atNwt

gen = 10000.
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Figure 3.9: Distribution of the parameters of the neural network describing theT3

parton densities at the initial scaleQ2
0 = 2 GeV2 over the final ensemble of 1000

fitted initial parametrisations in the NNPDF2.0 analysis [71].

A final remark. The set of neural nets at stopping provides ourbest fit, but it is other-
wise impossible to endow the best fit values of their parameters with a physical inter-
pretation. In fact, since the nets are redundant, the valuesof most of these parameters
is unconstrained or zero. This is visible in Fig. 3.9, where the distribution of neural
network weights at stopping for 100 replicas of the triplet neural networkT3(x,Q

2
0)

is displayed. The well-balanced distribution of weights around zero shows that the
individual neurons in the neural network operate in their natural range of sensitivity.
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3.1.6 Positivity constraints and sum rules

In parton fits general theoretical constraints can be imposed during the minimisation
procedure, thereby guaranteeing that the fitting procedureonly explores the subspace
of acceptable physical solutions.

Valence and momentum sum rules are enforced in the NNPDF approach [68] by con-
straining the relative normalisation of PDFs. For four of the basis PDF parametrisa-
tions defined in Eq. (3.11), namelyg, V ,∆S ands+, an overall normalisation constant
is factored out. The value of this constant is determined by requiring that the valence
and momentum sum rules be satisfied. The valence sum rules

∫ 1

0

dxu−(x) = 2

∫ 1

0

dx d−(x) = 1 (3.27)

fix the value of the total valence and sea asymmetry normalisations to be

AV =
3

∫ 1

0 dx [(1− x)mV NNV (x)/xnV ]
,

A∆S
=

1−
∫ 1

0
dx [(1− x)mT3NNT3(x)/x

nT3 ]

2
∫ 1

0 dx [(1− x)m∆SNN∆S
(x)/xn∆S ]

, (3.28)

while the momentum sum rule

∫ 1

0

dxx (Σ(x) + g(x)) = 1, (3.29)

constrains the normalisation of the gluon density

Ag =
1−

∫ 1

0
dx x [(1 − x)mΣNNΣ(x)/x

nΣ ]
∫ 1

0 dx x [(1 − x)mgNNg(x)/xng ]
. (3.30)

In the same way, the contributionsaux(x,Q2
0) is introduced in order to enforce the

strange valence sum rule; the constantAs− is fixed by requiring

∫ 1

0

dx s−(x) = 0, (3.31)

which gives the condition

As− =
Γ (rs− + ts− + 2)

Γ (rs− + 1)Γ (ts− + 1)

∫ 1

0

dx (1− x)
m

s− x−n
s−NNs−(x). (3.32)
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The sum rules requiress− to change sign at least once. This way of implementing
the sum rule is designed in order to ensure that this crossinghappens naturally in the
valence region, rather than in some contrived way outside the data region where the
shape ofs− is completely unconstrained. To this purpose, the exponents rs− , ts−

are chosen in such a way thatsaux(x,Q
2
0) peaks in the valence region, and that the

small–x and large–x behaviour ofs−(x,Q2
0) are not controlled by thesaux(x,Q2

0)

contribution. In practice the latter condition is enforcedby requiringrs− ≥ −ns−

andts− ≥ ms− , while the former is enforced by lettingrs− = ts−/k, which sets the
maximum ofsaux(x,Q2

0) at x = 1
k+1 . We then choosets− = 3.5, and takek as a

uniformly distributed random number in the rangek ∈ [1, 3]. The consequences of
this very flexible implementation of the strangeness valence sum rule will be discussed
in Chap. 6.

Besides direct experimental information and momentum sum rules, a further con-
straint on the input PDFs comes from the requirement of positivity. Indeed, even
though PDFs are not positive-definite beyond LO, cross sections must remain pos-
itive, and this constrains the set of admissible PDFs [134].The implementation of
positivity constraints is nontrivial, because in principle one should require positivity
of all observables, regardless of the fact that they are measurable in a realistic experi-
ment. In practice, in Ref. [71] we imposed positivity ofFL(x,Q

2), which constrains
the gluon and the singlet PDFs at small–x, as well as that of the dimuon cross section
d2σν,c/dxdy [70], which constrains the strange PDFs. Positivity ofFL(x,Q

2) is im-
plemented in the range10−9 ≤ x ≤ 0.005 and that of the dimuon cross section in
10−9 ≤ x ≤ 0.5, in both cases at the initial evolution scaleQ2 = 2 GeV2. This is
done because, if positivity is enforced at low scales, it will be preserved by DGLAP
evolution.

In the NNPDF approach, positivity constraints on relevant physical observables are
imposed during the genetic algorithm minimisation using a Lagrange multiplier, which
strongly penalises those PDF configurations which lead to negative observables. There-
fore, due to positivity constraints, the minimised error function Eq. (3.14) (or Eq. (3.22)
in the weighted training epoch) is modified as follows

E(k) → E(k) − λpos

Ndat,pos∑

i=1

Θ
(
−F

(net)(k)
i

)
F

(net)(k)
i , (3.33)

whereNdat,pos is the number of pseudodata points used to implement the positivity
constraints and we chooseλpos ∼ 1010 as its associate Lagrange multiplier. The
impact of the positivity constraints is going to be quantified in Sect. 4.2.
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3.1.7 Distances

An important feature of the NNPDF approach is that many issues of parton deter-
mination can be addressed using standard statistical tools. For example, the stability
of results upon a change of parametrisation or upon the preprocessing range, as well
as the difference introduced by a change in the fitting strategy, or by the addition of
new data, can be verified by computing the distance between results in units of their
standard deviation.

Given two sets ofN (1)
rep andN (2)

rep replicas, one is often interested in knowing whether
they correspond to different instances of the same underlying probability distribution,
or whether instead they come from different underlying distributions. For finiteN (i)

rep

this question can only be answered in a statistical sense. Tothis purpose, one may
define the square distance between two estimators based on the given samples as the
square difference between the estimators divided by its expectation value, i.e. divided
by the corresponding standard deviation. By construction,the expectation value of
the distance is one. Note that asking whether two PDF determinations come from the
same underlying distribution is much more restrictive thanasking whether they are
consistent within uncertainties. For instance in the case of a pair of PDF determina-
tions, such that the data–set on which one of the two is based is a subset of the dataset
of the other, and such that all data are consistent with each other, these two deter-
minations will clearly not come from the same underlying distribution, because the
distribution of PDFs obtained from the wider data–set will have smaller uncertainty.
However, if the data are consistent they will remain nevertheless consistent within
uncertainties.

Given a set ofN (k)
rep replicasq(k)i of some quantityq, the estimator for the expected

(true) value ofq is the mean

〈q(k)〉(i) =
1

N
(i)
rep

N(i)
rep∑

i=1

q
(k)
i . (3.34)

The square distance between the two estimates of the expected value obtained from
setsq(1)i , q(2)i is then

d2
(
〈q(1)〉, 〈q(2)〉

)
=

(
〈q(1)〉(1) − 〈q(2)〉(2)

)2

σ2
(1)[〈q(1)〉] + σ2

(2)[〈q(2)〉]
(3.35)

where the variance of the mean is given by

σ2
(i)[〈q(i)〉] =

1

N
(i)
rep

σ2
(i)[q

(i)] (3.36)
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in terms of the varianceσ2
(i)[q

(i)] of the variablesq(i) (which a priori could come from
two distinct probability distributions). The expressionsthat we use for estimating the
variance of the mean and the distance between variances are provided in Appendix B.

By construction, the probability distribution for the distance coincides with theχ2

distribution with one degree of freedom, and thus it has mean〈d〉 = 1, andd ∼< 2.3 at
90% confidence level. However the accuracy in the determination of the expectation
value scales as1/

√
Nrep, so if the underlying probability distributions are different

the distance will grow as
√
Nrep in the largeNrep limit. In this limit (in which the

central values of the underlying distribution are accurately estimated by mean over the
replica sample) the distance between central values is given by the distance rescaled
by
√
Nrep: if N (1)

rep = N
(2)
rep = Nrep, then

δ(σ2
(1), σ

2
(2)) ≡

1√
Nrep

d(σ2
(1), σ

2
(2)) (3.37)

provides (in the largeNrep) limit, the difference between central values in units of the
standard deviation. It follows that because of the halving of the size of the sample
required for averaging as discussed above, for all distances shown in the next section,
and computed withNrep = 100 replicas, one sigma corresponds tod =

√
50 ≈ 7.

3.2 Results

The viability of the method discussed in this chapter was originally demonstrated in
the determination of the structure functionF2(x,Q

2) of the proton and neutron from
its direct measurement [135, 136]. It was then applied to problems of increasing dif-
ficulty. In Ref. [67] it was used to provide the determinationof a single parton distri-
bution (theT3(x) distribution), thereby addressing the issue of determining a quantity
which is not measured directly, but rather related through theory to an experimental
observable. Eventually a full analysis of the DIS data was published [68], followed by
the study of the strange content of the proton [69, 70].

However, the requirements of precision physics are such that it is mandatory to ex-
ploit all the available information in PDFs determinations. DIS data are insufficient
to determine accurately many aspects of PDFs, such as the flavour decomposition of
the quark and antiquark sea or the gluon distribution, especially at large–x. For this
reason in the recent NNPDF2.0 global fit [71], on top of all thedata used in the pre-
vious analyses, Drell–Yan and inclusive jet data have been included. Furthermore
the separate ZEUS and H1 datasets have been replaced with theHERA-I combined
dataset [84]. The dataset used in this parton determinationis thus comparable in vari-
ety and size to that used by the current state–of–the–art PDFs determination, namely
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CTEQ6.6 [42] and MSTW08 [43]. All NNPDF parton sets are available through the
LHAPDF interface [137].

In this section, rather than reporting all results of Refs. [68, 69, 70, 71], I select some
results and collect them in thematic subsections. The aim isto show that PDFs de-
termined using the NNPDF methodology enjoy several desirable features: the Monte
Carlo behaves in a statistically consistent way, given thatuncertainties scale as ex-
pected with the size of the sample; results are demonstrablyindependent of the parton
parametrisation; PDFs behave as expected upon the additionof new data, i. e. un-
certainties expand when data are removed and shrink when they are added unless the
new data is incompatible with the old; results are even stable upon the addition of
new independent PDF parametrisations. To conclude I discuss the role of the theoret-
ical uncertainty and give an overview of the next sets which we are going to be made
available, namely a refined analysis where the effect of the mass of the heavy quarks
is included in a general mass scheme and the NNLO analysis.

3.2.1 Experimental data and physical observables

In this section I present the datasets included in the NNPDF analyses [68, 70, 71]
and the corresponding observables. The kinematical regioncovered by these data in
shown in Fig. 3.10. The covariance matrix of each experimentincluded in the fit is
computed from knowledge of statistical, systematic and normalisation uncertainties
provided by the experimental collaboration. Whenever the correlated systematics are
not provided, the statistical and systematic errors are summed in quadrature and the
covariance matrix is diagonal.

The first set of PDFs determined with the NNPDF approach [68] was based on a
comprehensive set of experimental data from deep-inelastic scattering with various
lepton beams and nucleon targets. To keep higher–twist corrections under control,
only data withQ2 > 2GeV2 andW 2 > 12.5GeV2 are retained. The DIS data
shown in Fig. 3.10 are those actually used in the analysis. Since the kinematic cuts we
use are not too conservative, we supplemented our fits with target mass corrections, as
it is discussed in Chapter 5.

These data include the proton and deuteron structure functions, defined in Eq. (1.21),
determined in fixed-target experiments by the BCDMS [77, 78]and NMC [80, 79]
collaborations. They provide information on the valence region of parton distributions
and help in disentangling isospin triplet and isospin singlet contribution. They are
supplemented with data on the structure functions from SLAC[76] which, though
rather older and less precise, improve the kinematic coverage in the large–x region.
When available, the ratioF d

2 /F
p
2 is included, which benefits from cancellations in the
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Figure 3.10: Experimental data which enter the NNPDF2.0 analysis. For hadronic data,
the values ofx1 andx2 determined by leading order partonic kinematics (Eqs. (3.40), (3.41)
and (3.48)) are plotted.

correlated systematic uncertainties. Altogether these data cover the middle- to large-
x and smallerQ2 region of the kinematical range, corresponding to the lower-right
corner in Fig. 3.10.

Collider experiments have explored a larger kinematical range in great detail. Neutral
and charged current reduced cross sections, defined in Eq. (1.15), from the H1 [121,
124, 125, 123] and ZEUS [120, 138, 139, 140, 141, 142] collaborations were used in
the first analyses [68, 69, 70]. Both neutral and charged current scattering data from
charged lepton beams and neutrino scattering data enable usto disentangle the quark
and antiquark distributions. In the most recent NNPDF2.0 analysis [71] these data
were replaced by the combined HERA–I data [84]. They have a better accuracy than
the one expected on purely statistical grounds from the combination of previous H1
and ZEUS data, because of the reduction of systematics from the cross-calibration of
the two experiments. These data are given with 110 correlated systematics and three
correlated procedural uncertainties, which we fully include in the covariance matrix.
These HERA data sets yield information in a much wider regionof the(x,Q2) plane,
in both the small-x and the large-Q2 directions. The data forFL that have recently
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appeared in Ref. [83] and the measurements of neutral current and charged current
deep-inelastic cross sections by the ZEUS experiment basedon HERA-II data [85,
143] are also included. TheFL measurement is a rather small data set, but it provides
an important direct measurement ofFL.

In order to control the valence–sea (or quark–antiquark) separation, we also included
neutrino DIS data. Specifically, we use the large, up-to-date, and consistent set of
neutrino and antineutrino scattering data by the CHORUS collaboration [88]. These
data have a similar kinematic coverage to the fixed target charged lepton DIS data2. In
the NNPDF1.2 fit [70] the analysis supplemented by data on deep-inelastic neutrino
production of charm from NuTeV [89, 144] (dimuon data, henceforth) which give us
a handle on the strange distribution, whose determination was the main goal of the
paper [70]. NuTeV dimuon data overlap with the rest of fixed target experiments,
providing information of the proton strangeness forx ∼> 10−2. The charm production
cross section is obtained from the published NuTeV neutrinodimuon production cross
sections [144] as

1

Eν

d2σν(ν̄),c

dx dy
(x, y,Q2) =

1

〈Br (D → µ)〉 · A (x, y, Eν)

1

Eν

d2σν(ν̄),2µ

dx dy
(x, y,Q2), (3.38)

where〈Br (D → µ)〉 is the average branching ratio of charmed hadrons into muons
andA (x, y, Eν) is a bin-dependent experimental acceptance correction. More de-
tails are provided in Sect. 6.1, where the study of the strange content of the proton is
discussed.

In the NNPDF2.0 PDF determination three classes of hadronicprocesses were in-
cluded into the fit: Drell–Yan production in fixed target experiments, collider weak
vector boson production, and collider inclusive jet production.

The fixed–target Drell-Yan data included in the NNPDF2.0 fit are E605 and E866.
The former provides the absolute cross section for DY production from a proton beam
on a copper target [90]. The double differential distribution in the rapidityy and the
invariant mass of the Drell-Yan lepton pair,M2, is given. E886, also known as NuSea,
is based on the experimental set-up of E605. The absolute cross section measurements
on a proton target is described in Refs. [92, 93], while the cross section ratio between
deuteron and proton targets can be found in Ref. [94]. Doubledifferential distributions
in FeynmanxF andM are provided. For both experiments systematic and statistical
errors are added in quadrature, since the correlation matrix is not provided by exper-
imentalists. Fixed target Drell-Yan data from the E772 experiment [91] and from the
deuteron data of E866 [92, 93] are not included. They have been shown to have poor
compatibility with other Drell-Yan measurements [75] and thus do not add additional

2The CHORUS data, as well as the NuTeV, the E605 and the E886 data, refer to a nuclear target rather
than a proton target, therefore they might be affected by theeffect of nuclear corrections. However we
do not include them in our default fit, since the study of theireffect in the analysis that we performed in
Ref. [70] reveals that their effect is smaller than the PDF uncertainty, about 1-2%
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information to the global PDF analysis. The double–differential distribution inM and
either the rapidity of the pairy or FeynmanxF is defined in terms of the hadronic
kinematics as

y ≡ 1

2
ln

q0 + qz
q0 − qz

; xF ≡ 2qz√
s
, (3.39)

where
√
s is the hadron–hadron centre-of-mass energy,q is the four-vector of the

Drell-Yan pair andqz is its projection on the longitudinal axis. At leading order, the
parton kinematics is entirely fixed in terms of hadronic variables by

x0
1 =

√
τey =

M√
s
ey , x0

2 =
√
τe−y =

M√
s
e−y , (3.40)

or equivalently

x0
1 =

1

2

(
xF +

√
x2
F + 4τ

)
, x0

2 =
1

2

(
−xF +

√
x2
F + 4τ

)
. (3.41)

The corresponding inverse relations are

τ = x0
1x

0
2; M2 = sx0

1x
0
2 (3.42)

and

y =
1

2
ln

x0
1

x0
2

; xF ≡ x0
1 − x0

2. (3.43)

At leading order, they or xF Drell-Yan differential distribution is given by

dσ

dM2dy
(y) =

4πα2

9M2s

∑

i

e2i [qi(x1)q̄i(x2) + q̄i(x1)qi(x2)] , (3.44)

dσ

dM2dxF
(y) =

1

x0
1 + x0

2

dσ

dM2dy
(y), (3.45)

where the dependence onM2 is made implicit,α is the fine–structure constant andei
the quark electric charges.

The weak boson production data included in the NNPDF2.0 fit are the D0 and CDF
Z rapidity distribution and the CDFW boson asymmetry. The D0Z rapidity distri-
bution measurement was performed at Tevatron Run II and is described in Ref. [96].
It gives theZ/γ∗ rapidity distribution in the range71 ≤ Mee ≤ 111 GeV3. The

3The contribution from theZ0/γ∗ interference terms is well below the experimental uncertainties and
it is neglected
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CDFZ rapidity distribution is analogous to its D0 counterpart, and it is described in
Ref. [97]. At leading order, the parton kinematics is given in Eqs. (3.39, 3.43), and the
differential distribution is given by

dσ

dy
=

πGFM
2
V

√
2

3s

∑

i,j

cij [qi(x1)q̄j(x2) + q̄i(x1)qj(x2)] , (3.46)

where the PDFs are evaluated atMV , which denotes eitherMW or MZ ; the elec-
troweak couplings are defined in Tab. 1.1.

The CDFW boson asymmetry measurement, also performed at Tevatron Run II, is
described in Ref. [95]. The physical observable is the rapidity asymmetry

A (yW ) ≡ dσW+

/dyW − dσW−

/dyW
dσW+/dyW + dσW−/dyW

. (3.47)

Because of the lack of a fast analytic implementation, we do not include lepton–level
data, such as the TevatronW asymmetries described in Refs. [145, 146, 147], which
have been included in recent parton fits [43, 148] usingK–factors. However a study
on the inclusion of these data through reweighting is presented in Chap. 6.

Finally also the inclusive jet production cross section as afunction of the transverse
momentumpT of the jet for fixed rapidity bins∆η are included. The leading–order
parton kinematics is fixed by

x0
1 =

pT√
s
eη , x0

2 =
pT√
s
e−η, (3.48)

while a simple leading–order expression for the cross–section is not available because
of the need to provide a jet algorithm. Both the CDF Run II —kT algorithm data and
D0 Run II — midpoint algorithm data are included. The former are obtained using
the kT algorithm withR = 0.7. The dataset and the various sources of systematic
uncertainties have been described in Ref. [99]. We choose touse thekT algorithm
measurements rather than the cone algorithm measurements [149], since the latter
are not infrared safe. Data atR = 0.7 are preferable to available measurements
at R = 0.5 or R = 1 since at Tevatron energiesR = 0.7 optimises the interplay
between sensitivity to perturbative radiation and impact of non-perturbative effects
like Underlying Event [150, 151].

The data is provided in bins of rapidity∆η and transverse momentumpT . The kine-
matical coverage can be seen in Fig. 3.10. The D0 data is obtained using the MidPoint
algorithm withR = 0.7. The dataset and the various sources of systematic uncer-
tainties have been described in Ref. [100]. While the MidPoint algorithm is infrared
unsafe, the effects of such unsafety in inclusive distributions are smaller than typical
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χ2
tot 1.21

〈E〉 ± σE 2.32± 0.10
〈Etr〉 ± σEtr 2.29± 0.11
〈Eval〉 ± σEval

2.35± 0.12
〈TL〉 ± σTL 16175± 6257〈
χ2(k)

〉
± σχ2 1.29± 0.09〈

σ(exp)
〉
dat

(%) 11.4〈
σ(net)

〉
dat

(%) 6.0〈
ρ(exp)

〉
dat

0.18〈
ρ(net)

〉
dat

0.54

Table 3.6:Table of statistical estimators for NNPDF2.0 reference fit [71] with Nrep = 1000
replicas. The total average uncertainty is given in percentage. All statistical estimators are
defined in Appendix B.

uncertainties [152] and thus it is safe to include this dataset into the analysis. The data
is provided in bins of rapidity∆η and transverse momentumpT .

3.2.2 Statistical features and data compatibility

The set of fitted parton distribution functions at the initial scale provides an ensemble
of parton distributions from which we can study the quality of the fit and the compati-
bility between different data–sets. As an example, I summarise the statistical features
of the NNPDF2.0 analysis [71] in Table 3.6. Theχ2

tot estimates the quality of the
fit and refers to the best fit PDF set, given by the average over theNrep replicas. The
quality of the fit has improved in comparison to NNPDF1.2 [70]despite the widening
of the data–set to also include hadronic data. This is mainlydue to the improvement in
the minimisation and stopping algorithm previously discussed. The valueχ2

tot = 1.21

has a small Gaussian probability and it is quite unlikely as astatistical fluctuation.
It suggests experimental uncertainties might be underestimated at the 10% level, or
that there might be theoretical uncertainties of the same order. This appears consistent
with the expected accuracy of a NLO treatment of QCD, and the typical accuracy with
which experimental uncertainties are estimated.

The distribution of theχ2(k) and of the error functionE(k) computed for each replica
are displayed in Fig. 3.11. Note thatE(k) andχ2(k) differ because in the former each
PDF replica is compared to the data replica it is fitted to, while in the latter it is com-
pared to the actual data, and also because of the different treatment of normalisation
uncertainties. The means of theχ2 and theE distributions differ by about one unit,
consistently with the expectation that the best fit correctly reproduces the underlying
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Figure 3.11:Distribution ofχ2(k) (left), E(k)
tr of the training set (centre) and of the training

lengths (right) over the sample ofNrep = 1000 replicas.

true behaviour about which data fluctuate, with replicas further fluctuating about data.
The average training length〈TL〉 (expressed as a number of generations of the ge-
netic algorithm) given in Table 3.6 and its distribution displayed in Fig. 3.11 show
that, while most of the replicas fulfil the stopping criterion, a small fraction (∼ 12%)
of them stop at the maximum training lengthNmax

gen , thereby causing some loss of
accuracy in outlying fits. We have checked that, asNmax

gen is raised, more and more
of these replicas would stop, and that the loss of accuracy due to our choice of value
of Nmax

gen is very small. Finally, as in the previous NNPDF determinations, the uncer-
tainty of the fit, as measured by the average standard deviation 〈σ〉 is rather smaller
than that of the data: 6.0% vs. 11.4%. The uncertainty reduction shows that the PDF
determination is combining the information contained in the data into a determination
of an underlying physical law.

To study the consistency between data sets, one has to look atthe statistical estimators
shown in Tab. 3.7, and at the histogram ofχ2 values for each experimental data–set
shown in Fig. 3.12, where the unweighted average

〈
χ2
〉
sets

≡ 1
Nset

∑Nset

j=1 χ2
set,j and

standard deviation over datasets are also shown. From the histogram, no evidence of
any specific dataset being clearly inconsistent with the other is seen, and the distri-
bution of values looks broadly consistent with statisticalexpectations, with about five
datasets withχ2 at more than one but less than two sigma from the average. Also, we
see no obvious difference or tension between hadronic and DIS datasets. Clearly, the
χ2 values for some experiments if taken at face value have low Gaussian probabilities
(though only one, namely NMC, has a probability less than 0.01%). However, they
appear to be stable upon the inclusion of new data, thus suggesting a lack of tension
between different datasets. For instance, theχ2 value of the NMC data is very close
to that of Refs. [68, 70]: this value thus appears to reflect the internal consistency of
these data, not their consistency with other data.

Theχ2 of the HERA-I combined data isχ2 = 1.14, somewhat larger that the value
found when fitting the separate ZEUS and H1 data. The value comes from averaging
the relatively largeχ2 ∼ 1.3 for the very precise NC positron dataset, with a low value
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χ2 ∼ 0.6 for CC electron data. The reasons for this distribution of values are unclear,
however, we note that also in NNPDF1.2 [70] theχ2 of the CC datasets was typically
smaller than the average as well. We note also that the same pattern ofχ2 among
the different datasets has been obtained within the framework of the HERAPDF1.0
analysis of these combined HERA-I dataset [84]. The CDF direct W−asymmetry
measurements haveχ2 = 1.85. The poor compatibility of these data with the rest of
the global fit data was also noted in the global analysis of Ref. [153]. The quality of the
fit to Z rapidity distribution data at the Tevatron differs widely between experiments:
while an excellent fit is obtained for D0 data, CDF data are notso well described.
This suggests that there might be problems of internal consistency between the two
experiments. A similar pattern was observed in the MSTW08 global fit [43]. Note that
these datasets have a very moderate impact on the global fit, as theχ2 of these data is
essentially the same in NNPDF2.0 and in NNPDF1.2, where theyare not fitted.
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Experiment χ2 〈E〉
〈

σ(exp)
〉

dat
(%)

〈

σ(net)
〉

dat
(%)

〈

ρ(exp)
〉

dat

〈

ρ(net)
〉

dat
NMC-pd 0.99 2.05 1.8 0.5 0.03 0.36

NMC 1.69 2.79 4.9 1.7 0.16 0.77
SLAC 1.34 2.42 4.2 1.9 0.31 0.84

BCDMS 1.27 2.40 5.7 2.6 0.47 0.55
HERAI-AV 1.14 2.25 7.5 1.3 0.06 0.44
CHORUS 1.18 2.32 14.8 12.8 0.09 0.38
FLH108 1.49 2.51 71.9 3.3 0.65 0.68

NTVDMN 0.67 1.90 21.1 14.6 0.03 0.63
ZEUS-H2 1.51 2.66 13.6 1.2 0.29 0.58
DYE605 0.88 1.85 22.6 8.3 0.47 0.75
DYE866 1.28 2.35 20.8 9.1 0.20 0.45

CDFWASY 1.85 3.09 6.0 4.3 0.52 0.72
CDFZRAP 2.02 2.96 11.5 3.5 0.83 0.65
D0ZRAP 0.57 1.65 10.2 3.0 0.53 0.69

CDFR2KT 0.80 2.22 23.0 5.2 0.78 0.67
D0R2CON 0.93 1.92 16.2 6.0 0.78 0.64

Table 3.7:Same as Table 3.6 for individual individual experiments. Note that experimental
uncertainties are always given in percentage. All statistical estimators are defined in Appendix
B.

Finally, in Ref. [71] we have checked that if we run a very longfit without dynamical
stopping, theχ2 of the experiments whose values exceed the average by more than
one sigma does not improve significantly. This shows that thedeviation of theseχ2

values from the average is not due to underlearning.

3.2.3 Parton Distributions

In this section I show the results obtained in the various NNPDF analyses relative to
the shape and the error of the parton distribution functions. I compare the results of
the NNPDF fits to each others and to the MSTW and CTEQ parton fits. All PDF
combinations are defined as in Eq. (1.58). The uncertainty bands shown are 1σ.

In Fig. 3.13 the predictions for some of the parton densitiesextracted in the subsequent
analyses are shown. The statistical consistency of the NNPDF approach is apparent.
The inclusion of new data reduces the uncertainty of the PDFsin regions were the
new data provide further constraints, however leaving themcompatible with the PDFs
previously determined. For instance the gluon at large–x is much more constrained
by the jet data, however at small–x it remains basically unconstrained by data and the
green and blue bands look the same. The uncertainty of the valence–like PDFs is also
greatly reduced by the inclusion of the Drell-Yan data. Notice that the sea asymmetry,
whose sign was not determined in absence of these data, is naturally constrained to
be positive just due to their inclusion. The consistency is facilitated by the fact that in
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the subsequent analysis the same parametrisation and the same statistical features are
employed.
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Figure 3.13: The gluonxg(x) (top), the tripletxT3(x) (middle) and the sea asymmetry
x∆S(x) (bottom) at the initial scaleQ2

0 = 2 GeV2 from the NNPDF2.0 analysis. Both the
PDFs (left) and their absolute uncertainties (right) are shown, compared to the previous NNPDF
releases NNPDF1.0 [68] and NNPDF 1.2 [71].

The NNPDF2.0 PDFs are also compared to those extracted in theCTEQ6.6 [42] and
MSTW08 [43] analyses. These next–to–leading order parton fits contain the same
amount of experimental information, the only difference being in the different treat-
ment of the heavy quark masses. In Fig. 3.14 we see that most NNPDF2.0 uncertain-
ties are comparable to the CTEQ6.6 and MSTW08 ones; there arehowever some in-
teresting exceptions. The uncertainty on strangeness, which NNPDF2.0 parametrises
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Figure 3.14:The gluonxg(x) (top), the total strangenessxS+(x) (middle) and the triplet
T3(x) (bottom) at the initial scaleQ2

0 = 2 GeV2 from the NNPDF2.0 analysis. Both the
PDFs (left) and their absolute uncertainties (right) are shown, compared to MSTW08 [43] and
CTEQ6.6 [42] PDFs.

with as many parameters as any other PDF, is rather larger than those of MSTW08
and CTEQ6.6, in which these PDFs are parametrised with a verysmall number of pa-
rameters. The NNPDF2.0 uncertainty on total quark singlet (which contains a sizable
strange contribution) is also larger. The uncertainty on the small–x gluon is signifi-
cantly larger than that found by CTEQ6.6, but comparable to that of MSTW08, which
has an extra parameter to describe the small–x gluon in comparison to CTEQ6.6.
The uncertainty on the triplet combination is rather smaller in NNPDF2.0 than either
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MSTW08 or CTEQ6.6, largely due to the impact of Drell-Yan data, which are found
to be completely consistent with DIS data within our NLO treatment.

An important advantage of the Monte Carlo method used in the NNPDF approach to
determine PDF uncertainties is that, unlike in a Hessian approach, one does not have
to rely on linear error propagation. For instance it is possible to test for non-Gaussian
distribution of the fitted PDFs even though our starting dataand data replicas are
Gaussian distributed. A simple way for doing that is to compute a 68% confidence
level (C.L.) for it (which is straightforwardly done in a Monte Carlo approach), and
compare the result to the standard deviation. In Fig. 3.15 this comparison is shown for
some NNPDF2.0 PDFs at the initial scale as a function ofx. The plots show that, in the
extrapolation region for most PDFs deviations from Gaussian behaviour are sizable.
This is especially noticeable for the gluon at small–x, and for the quark singlet and
total strangeness both at small and large–x. However, in Ref. [71] is shown that in the
regions in which the PDFs are constrained by experimental data the standard deviation
and the 68% confidence levels coincide to good approximation, thus suggesting a
Gaussian behaviour.
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Figure 3.15:Comparison of 68% confidence level and 1σ intervals for the gluon (left) and the
total strangeness (right). The PDFs have been determined inthe NNPDF2.0 analysis [71] at the
initial scaleQ2

0 = 2 GeV2.

Deviations from Gaussian behaviour are sometimes related to positivity constraints
Eq. (3.33): for instance positivity ofFL and the dimuon cross–section limits the possi-
bility for the small–x gluon and strange sea PDFs respectively to go negative, thereby
leading to an asymmetric uncertainty band. In order to assess quantitatively the effect
of the positivity constraints, in Fig. 3.16 PDFs with uncertainties determined as 68%
C.L. with and without positivity constraints are compared.We see that positivity of
FL(x,Q

2) leads to substantial uncertainty reduction in the small-x gluon. Note that
there is nevertheless a kinematic region in which the gluon goes negative by a small
amount, thoughFL remains positive. Also, removing positivity of the dimuon cross
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section would lead to a much softer strange sea at small-x with rather larger uncer-
tainties. This in turn leads to a softer small-x singlet, also with larger uncertainties.
This is due to the fact that belowx ∼< 0.01, where no neutrino data are available, posi-
tivity is the only constraint on the total strangenesss+. It is also interesting to observe
that positivity also has the effect of stabilising the replica sample: indeed, the 68%
confidence levels computed without positivity display somevisible fluctuations which
would only be smoothed out by using a significantly wider replica sample. These fluc-
tuations are absent when positivity is imposed, meaning that such wide fluctuations in
individual replicas are removed by the constraint.
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Figure 3.16:Gluon (left) and total strangeness (right) PDFs determinedin the NNPDF2.0
analysis [71] at the initial scaleQ2

0 = 2 GeV2 with and without positivity constraints. All
uncertainty bands are determined as 68% confidence levels. PDFs not shown here are not
affected by the positivity constraints.

3.2.4 Stability

An advantage of the NNPDF approach is that various features of the PDF set can be
assessed using standard statistical tools. In this section, we assess the stability of the
fit and the reliability of the error estimate by discussing three examples

1. the stability upon the choice of parametrisations originally presented in Ref. [68].

2. the stability upon the addition of unconstrained parametrisations presented in
Ref. [69].

3. the detailed comparison between the NNPDF1.2 and NNPDF2.0 fits, by vary-
ing one by one each of the procedural aspects and computing the distances pre-
sented in Ref. [71].
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In the first analysis, I show the dependence of results on the architecture of the neu-
ral networks. Specifically, we reduced the architecture from 2–5–3–1 to 2–4–3–1,
thereby decreasing the number of parameters of each PDF from37 to 31, the total
number from 185 to 155. In Fig. 3.17 the best–fits and the errorbands for the gluon
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Figure 3.17:Comparison of best–fit gluon (top) and total valence (bottom) at the initial scale
Q2

0 = 2 GeV2 obtained in the NNPDF1.0 analysis [68] with two different architectures: 2–4–
3–1 (left) and 2–5–3–1 (right).

and the total valence distributions obtained with the the two different architectures are
shown. The plots suggest a remarkable independence of the parametrisation. In or-
der to quantify this statement, the distance between the twoensembles obtained with
different parametrisations has to be evaluated. Results are given in Table 3.8. The dis-
tances confirm the result: fluctuations are at most at the 2σ level in poorly controlled
quantities, such as the value of the light quark sea asymmetry in the extrapolation re-
gion or the uncertainty on the triplet combination in the extrapolation region, which in
the NNPDF1.0 analysis [68] is poorly constrained due to the lack of Drell–Yan data.
Results are indeed independent of the number of parameters.

In the second analysis I show the results obtained in the NNPDF1.1 fit [69]. The
latter is not much useful for practical purposes, however itprovides a proof of the
consistency of the whole NNPDF procedure. In the NNPDF1.1 analysis, the strange
parton distributionss± = s ± s̄ were parametrised by two independent neural net-
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Data Extrapolation
Σ(x,Q2

0) 5 10−4 ≤ x ≤ 0.1 10−5 ≤ x ≤ 10−4

〈d[q]〉 0.98 1.25
〈d[σ]〉 1.14 1.34

g(x,Q2
0) 5 10−4 ≤ x ≤ 0.1 10−5 ≤ x ≤ 10−4

〈d[q]〉 1.52 1.15
〈d[σ]〉 1.16 1.07

T3(x,Q
2
0) 0.05 ≤ x ≤ 0.75 10−3 ≤ x ≤ 10−2

〈d[q]〉 1.00 1.11
〈d[σ]〉 1.76 2.27

V (x,Q2
0) 0.1 ≤ x ≤ 0.6 3 10−3 ≤ x ≤ 3 10−2

〈d[q]〉 1.30 0.90
〈d[σ]〉 1.10 0.98

∆S(x,Q
2
0) 0.1 ≤ x ≤ 0.6 3 10−3 ≤ x ≤ 3 10−2

〈d[q]〉 1.04 1.91
〈d[σ]〉 1.44 1.80

Table 3.8:Distance between results obtained from a sets of 100 PDFs with neural network
architecture 2-5-3-1 and a sets of 100 PDFs with neural network architecture 2-4-3-1.

works, instead of being taken to be proportional to the lightantiquark distribution as
in NNPDF1.0. However, the dataset is the same as for NNPDF1.0: so thes+ distri-
bution is only very weakly constrained, and thes− is essentially unconstrained by the
the data. The only weak constraint to the strangeness is given by the CHORUS and the
HERA charged–current data as well as by the strange valence sum rule. Nevertheless,
when results of this pair of fits are compared, they show remarkable stability, despite
the fact that each neural network is parametrised by a very redundant set of parameters
(the addition of two neural nets results in the addition of 74extra free parameters in
the fit). In Fig. 3.18 I show the results from the NNPDF1.1 analysis for theΣ(x), g(x),
s+(x) ands−(x) distributions compared to NNPDF1.0. We can see that the central
values for both PDFs are reasonably close between NNPDF1.0 and NNPDF1.1, thus
ensuring the validity of the flavour assumptions in the former case. Moreover, the
parton distributions which are unaffected by the addition of independent strange de-
grees of freedom (such as the gluon) are unchanged, and the only marked effect of the
independent parametrisation of strangeness is an increase, by about a factor two, of
the uncertainty on the total valence quark distribution (V = u − ū + d − d̄ + s − s̄

). Remarkably, statistical analysis of the NNPDF1.0 set alone was already sufficient
to show that the uncertainty on this combination was underestimated [68]. The other
PDFs are fairly stable, which is an important result since both two new input PDFs
and a randomisation of the preprocessing have been incorporated in the new analy-
sis. A comparable increase in uncertainty is observed in theextrapolation region of
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Figure 3.18:The NNPDF1.1 [69] singlet (top left), gluon(top right), total strangeness (bottom
left) and strange valence (bottom right) compared to the NNPDF1.0, CTEQ66 and MRST01
sets.

Σ(x), which can be attributed to the extra flexibility induced by the presence of the
independents+(x) PDF.

In the third part of this section, starting from NNPDF1.2, weperform a series of fits
in which the procedural aspects are varied in succession, followed by another series
of fit where new datasets are introduced one by one. At each step in this procedure
we examine the general features of the fit by evaluating the quality of the fit, which is
shown in Table 3.9, and computing the distances with respectto the precedent fit.

• Effect of the improved genetic algorithm and stopping criterion (IGA).
The improvement in neural network training described in Section 4.1 leads to a
significant improvement in fit quality, as one can see in Table3.9: each replica
fits better the corresponding data replica (lower〈E〉), and also each replica neu-
ral network is more efficient in subtracting the statisticalnoise from data (lower
〈χ2 (k)〉), thereby leading to a better global fit (lowerχ2

tot). The improvement
is due to the improvement in fit quality of fixed–target DIS experiments (NMC,
BCDMS and CHORUS) are known to have a certain amount of data inconsis-
tency [136, 68, 154], without change in fit quality for other experiments: this
means that the new algorithm is more efficient in leading to a balanced fit qual-
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Fit NNPDF_ 1.2 1.2+IGA 1.2+IGA+t0 2.0 DIS 2.0 DIS+JET 2.0

χ2
tot 1.32 1.16 1.12 1.20 1.18 1.21

〈E〉 2.79 2.41 2.24 2.31 2.28 2.32
〈Etr〉 2.75 2.39 2.20 2.28 2.24 2.29
〈Eval〉 2.80 2.46 2.27 2.34 2.32 2.35〈
χ2(k)

〉
1.60 1.28 1.21 1.29 1.27 1.29

NMC-pd 1.48 0.97 0.87 0.85 0.86 0.99
NMC 1.68 1.72 1.65 1.69 1.66 1.69
SLAC 1.20 1.42 1.33 1.37 1.31 1.34

BCDMS 1.59 1.33 1.25 1.26 1.27 1.27
HERAI 1.05 0.98 0.96 1.13 1.13 1.14

CHORUS 1.39 1.13 1.12 1.13 1.11 1.18
FLH108 1.70 1.53 1.53 1.51 1.49 1.49

NTVDMN 0.64 0.81 0.71 0.71 0.75 0.67
ZEUS-H2 1.52 1.51 1.49 1.50 1.49 1.51
DYE605 11.19 22.89 8.21 7.32 10.35 0.88
DYE866 53.20 4.81 2.46 2.24 2.59 1.28

CDFWASY 26.76 28.22 20.32 13.06 14.13 1.85
CDFZRAP 1.65 4.61 3.13 3.12 3.31 2.02
D0ZRAP 0.56 0.80 0.65 0.65 0.68 0.47

CDFR2KT 1.10 0.95 0.78 0.91 0.79 0.80
D0R2CON 1.18 1.07 0.94 1.00 0.93 0.93

Table 3.9: Statistical estimators for the sequence of fits that take from NNPDF1.2 to
NNPDF2.0. The estimators shown for NNPDF1.2 are as in Tab. 5-6 of Ref. [70] and those
for NNPDF2.0 are as in Tab. 3.6–3.7. Estimators are shown forthe total datasets in the upper
part of the table, while the lower part of the table shows theχ2 for each individual experimental
dataset. Values of theχ2 for data not included in any given fit are shown in italic; the totalχ2

tot

shown in the first line does not include the contribution fromthese data. The value of theχ2 in
the HERAI line refers in the first three columns of the table tothe weighted sum of the H1 and
ZEUS data, and in the latter three columns to the combined dataset, according to which data
has been included in the fit.
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ity between experiments, without some data being underlearnt while others are
overlearnt. The IGA affects essentially all PDFs by reducing their uncertainties,
the two fits are always consistent at the 1σ level.

• Impact of the treatment of normalisation uncertainties.
The previous fit is modified by implementing the improved treatment of the nor-
malisation uncertainties described in Chap. 3. A small but noticeable improve-
ment in the quality of the fit is observed (the totalχ2 going from 1.16 to 1.12).
The latter is mostly due to the improved description of the fixed–target DIS
experiments. The distances between this fit and the previousone, which only
differ in the treatment of normalisation uncertainties, are displayed in Fig. 3.19.
The PDFs which are mostly affected are the small–x singlet and gluon and the
triplet distributions.
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Figure 3.19: Distances between the PDFs obtained in a fit withimproved genetic al-
gorithm (IGA) and a fit with IGA + improved treatment of normalisation uncertainties
(IGA+t0). The distances are shown in linear (left) and logarithmic (right) scales for
the central values (top) and the1σ uncertainties.

• Impact of the combined HERA-I data.
The previous IGA+t0 fit is modified by replacing the ZEUS and H1 data with
the new combined HERA-I [84]. This fit is now identical to the NNPDF2.0
fit, but with only DIS data included (NNPDF2.0-DIS). The inclusion of the
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very precise HERA-I data leads to a slight deterioration of fit quality (the to-
tal χ2 going from 1.12 to 1.20) which remains however still better than that of
NNPDF1.2. This deterioration is concentrated in the HERA data themselves,
with the quality of the fit to all other data unchanged. This suggests good consis-
tency of the HERA and fixed target data, but with the accuracy of the combined
HERA-I data now exceeding the accuracy of the theory used to describe them
in NNPDF2.0: for instance the lack of inclusion of charm masscorrections, but
also possibly deviations from NLO DGLAP at small–x, or possible evidence for
NNLO corrections at largerx. A particularly interesting aspect of this fit is that
the quality of the fit to Drell-Yan data (not fitted), which waspoor in all previ-
ous fits, improves considerably, especially for theW asymmetry. This suggests
that the accuracy of the charged–current data in the HERA-I combined set is
now sufficient to provide some handle on the flavour decomposition of the sea
at large–x which is only weakly constrained by neutral current DIS data, and
strongly constrained by DY data. The distances between these fits is shown in
Fig. 3.20: the impact of the combined HERA data is a moderate but generalised
improvement in accuracy at small–x.
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Figure 3.20:Distances between the PDFs obtained with a IGA+t0 fit of Fig. 3.19 and a fit
in which the separate H1 and ZEUS data are replaced by the combined HERA-I DIS data
(NNPDF2.0 DIS). The distances are shown in linear (left) andlogarithmic (right) scales for the
central values (top) and the1σ uncertainties.
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• Impact of jet data.
The addition of jet data to the 2.0-DIS fit leaves the quality of the global fit
unchanged. This demonstrates the perfect compatibility ofjet data with DIS
data: in fact, the quality of the fit to jet data was quite good even in all previous
fits, in which they were not included in the fitted data–set. The distance between
the 2.0-DIS and 2.0-DIS+JET fits, displayed in Fig. 3.21, shows that these data
affect almost only the gluon, as one would expect [155], leading to a better
determination at medium– and large–x. This is shown in Fig. 3.22, where the
gluons of 2.0-DIS and 2.0-DIS+JET are compared.
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Figure 3.21:Distances between the PDFs obtained from a NNPDF2.0 DIS fit ofFig. 3.20
and those obtained from a fit in which jet data are also included (NNPDF2.0 DIS+JET). The
distances are shown in linear (left) and logarithmic (right) scales for the central values (top) and
the1σ uncertainties.

• Impact of Drell-Yan data.
The addition of Drell-Yan data to the 2.0-DIS+JET fit leaves the quality of the
global fit unchanged. Taken together with the previous comparison of the 2.0-
DIS and 2.0-DIS+JET data, this shows that DIS data and hadronic data are fully
compatible, and furthermore the two classes of hadronic data included here, DY
and inclusive jets, are compatible with each other. Minor incompatibilities only
appear within each dataset (typically due to some subset of data points or, in the
case of Drell-Yan to the CDF W asymmetry and Z rapidity distribution data).
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Figure 3.22:Comparison between the gluon density at the initial scaleQ2
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(left) and large (right)x obtained from NNPDF2.0 DIS fit of Fig. 3.20 and a fit in which jetdata
are also included (NNPDF2.0 DIS+JET) (the distances are shown in Fig. 3.21).

However, the quality of the fit to Drell-Yan data was generally poor when they
were not included in the fit, due to the fact that they are sensitive to the sepa-
ration of individual flavours at large–x which is only very weakly constrained
by other data. The distances between the 2.0-DIS+JET and thefull NNPDF2.0
fits, displayed in Fig. 3.23, show the sizable impact of the Drell-Yan data on all
valence–like PDF combinations at medium and large-x: the triplet, the valence,
the sea asymmetry and the strangeness asymmetry. The significant improve-
ment in accuracy on all these PDFs is apparent in Fig. 3.22. The remarkable
improvement in the accuracy of the determination of the strangeness asymme-
try s−(x) will turn out to have relevant phenomenological implications for the
so–called NuTeV anomaly, as I discuss in Chap. 6.

3.2.5 Theoretical uncertainty and outlook

In the determination of PDFs, all systematic uncertaintiesin the data have been ac-
counted for in the Monte Carlo data generation: they are thenpropagated through the
fitting procedure onto the ensemble of fitted PDFs. Therefore, error bands already
include both statistical and systematic uncertainties of the data. On top of these, how-
ever, there are the theoretical uncertainties mentioned inChap. 3, which might cause
systematic shifts in PDFs central values and uncertainties.

The two main sources of theoretical uncertainties in the NNPDF analyses are related
to the fact that they are performed at NLO, and thus they neglect effects at NNLO and
beyond, and to the approximate zero–mass (ZM) scheme used todeal with the finite
masses of the heavy quarks.
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Figure 3.23: Distances between the PDFs obtained from the NNPDF2.0 DIS+JET fit of
Fig. 3.21 and the reference NNPDF2.0 fit (Drell-Yan data alsoincluded). The distances are
shown in linear (left) and logarithmic (right) scales for the central values (top) and the1σ un-
certainties.

A way for estimating the theoretical error due to higher–order contributions in per-
turbation theory consists in varying the factorisation andrenormalisation scales. In
order to combine PDFs and scale variation uncertainties we could produce several
sets with varyingµF andµR and combine the obtained ensembles according to the
method proposed in Ref. [156] to combine PDFs andαs uncertainties. The latter is
going to be described in details in Sect. 6.2. Another possible method would consist
in taking these scales as random variables distributed betweenµ/k andkµ, wherek
sets their variation range, and letting them fluctuate between replicas. Such analysis
has not been performed yet, but it represents an interestingpossibility to be explored
in the near future. Notice that the same procedure might be applied to estimate the
uncertainty related to all parameters which enters into a PDF determination, such as
the values of the masses of the heavy quarksmc,mb andmt.

A less accurate way to assess the uncertainties related to higher perturbative orders
has been adopted in Ref. [68]. The reference NNPDF1.0 NLO fit was compared to
the fit repeated at LO. The comparison is displayed in Fig. 3.25. It shows that the size
of the uncertainties remains essentially unchanged. Furthermore, all central values of
the LO fit vary by an amount which is compatible with statistical fluctuations, with the
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Figure 3.25:Comparison of the NLO NNPDF1.0 fit [68] and LO fit results for the gluon (left)
and quark singlet PDFs (right).

exception of the singlet and gluon shown in figure, which varyby about 2-3σ. This
is expected due to the fact that the gluon contribution to DIScoefficient functions
only starts at NLO. On the other hand, the quality of the fit deteriorates significantly
when using LO theory, as we might also expect. This comparison suggests that in the
NNPDF1.0 analysis the theoretical uncertainties due to lack of inclusion of NNLO



140 Chapter 3. The NNPDF approach to parton fitting

corrections are negligible on the scale of statistical uncertainties. This conclusion is
based on the observation that NNLO corrections to all PDFs are known to be smaller
than the typical NLO corrections (i.e. the NLO-LO difference) in the nonsinglet sec-
tor [157, 66] and the observation that the latter corrections are already smaller than
the statistical uncertainty by a factor of two. A more accurate analysis, which is in
preparation in the context of the definition of a suitable LO parton fit able to match the
requirements of the LO Monte Carlo event generators, refersto the most up–to–date
NNPDF2.0 reference fit [71] and will enable us to draw more detailed conclusions.

Another source of theoretical uncertainty is the treatmentof the heavy quark masses.
The theoretical framework has been extensively discussed in Chap. 2. All publicly
available NNPDF analyses are performed according to the ZM–VFN scheme, with the
exception of the dimuon data, for which the prediction is evaluated in the improved
ZM scheme. This approximate treatment of the heavy quark masses introduces a
shift in theoretical predictions that ought to be quantified. Indeed the latter might
be responsible for the differences in the predictions obtained for some LHC standard
candle processes when compared to those obtained with otherparton sets including
a GM–VFNS in their analyses4. To improve over the zero–mass approximation, in
the upcoming NNPDF2.1 release [105], a general mass scheme is implemented, in
particular the FONLL scheme [54]. For the time being, only preliminary results based
on a fit to the NNPDF2.0 dataset [71], supplemented by charm structure function data
F c
2 (x,Q

2) are available. In Fig. 3.26 a preliminary comparison of the singlet and
gluon PDFs at the initial evolution scaleQ2

0 = 2 GeV2 in NNPDF2.1 and NNPDF2.0,
normalised to the NNPDF2.0 central values is displayed. It shows that the inclusion of
heavy quark mass effects leads to a increase in the singlet atmedium and small-x, as
well as to a marked increase in the small-x gluon. However differences appear to be
within the PDF uncertainty bands. This preliminary analysis implies that heavy quark
mass effects should modify the NNPDF2.0 predictions for LHCobservables by 1σ or
so at most. The results still need to be validated and are going to be made publicly
available soon.

Further possible sources of theoretical uncertainty, which would be intersting to assess
in future studies, include effects related to large– and small–x resummation of the
perturbative expansion, higher twist corrections, and nuclear effects.

4For a comparison of standard candle predictions, see Chap. 6.



3.2. Results 141

x
-410 -310 -210 -110

) 02
 (

x,
 Q

Σx

0.7

0.8

0.9

1

1.1

1.2

1.3

Ratio to NNPDF2.0

NNPDF2.0

NNPDF2.1 (TMP) 

Ratio to NNPDF2.0

x
-410 -310 -210 -110

) 02
xg

 (
x,

 Q

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Ratio to NNPDF2.0

NNPDF2.0

NNPDF2.1 (TMP) 

Ratio to NNPDF2.0

Figure 3.26:The ratio of the preliminary NNPDF2.1 Singlet (left plot) and gluon PDFs (right
plot) to the respective NNPDF2.0 ones, at the initial evolution scaleQ2

0 = 2 GeV2. Error bands
are normalised to the NNPDF2.0 central value.
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Chapter 4
The FastKernel Method

A global analysis of Parton Distribution Functions involves the significant complica-
tion of dealing with the coupled evolution of a full set of parton distributions. Being
PDFs extracted from many different experiments, one has to combine the evolved par-
ton distributions with their coefficient functions for a wide set of different observables.
In parton fits, this computation aims to be as fast and accurate as possible.

The hybridx–N space solution of the DGLAP evolution equations was introduced in
Ref. [67], for the evolution of a single non–singlet parton density. Here I describe the
method elaborated for extending this formalism to the case of coupled evolution of a
full set of PDFs. Furthermore, the FastKernel method is formulated. The latter, using
higher order polynomial interpolations, yields a fast and accurate evolution of PDFs
and a fast computation of Drell–Yan observables. The latterallows us to deal with
the computation of hadronic observables at next–to–leading order without relying on
anyK–factor approximation. The accuracy of the partonic evolution is tested against
other evolution codes and the precision of the computation of the NLO order Drell–
Yan distributions is assessed.

4.1 Hybrid x-N space solution of DGLAP equa-
tions

The perturbative computation of physical observables involves the evolution of PDFs
up to the scale of the measurements and their convolution with the hard cross-sections.
One way of speeding up the computation of the observables during a PDF fit was

143
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introduced in Ref. [67] and adopted since the earliest NNPDFfits. The main advantage
is that each of the two computations can be optimised separately from a numerical
point of view. In particular, one may use a Mellin-space approach to solve evolution
equations, but adoptx-space parametrisation of PDFs. Moreover evolution kernels
may be pre-computed, benchmarked, and stored once and for all before the fitting
procedure.

In this section I discuss details of the method and its application to the computation of
DIS observables in Refs. [67, 68]. In the next section I introduce an improved faster
method which enabled us to broaden the analysis by includinghadronic observables.

4.1.1 Leading-twist factorisation and evolution

Deep inelastic observablesFI(x,Q
2) may always be expressed at leading twist as a

convolution of parton distributionsfj(x,Q2) and hard coefficient functions
CIj(x, αs(Q

2)), computed in perturbation theory, as it was shown in Eq. (1.44):

FI(x,Q
2) =

∑

j

CIj(x, αs(Q
2))⊗ fj(x,Q

2), (4.1)

where⊗ denotes the usual convolution product. The labelI refers to the considered
observable, which may be a structure function or a reduced cross-section, whilej runs
over parton distribution functions. The scale dependence of the parton distribution
functions is given by the renormalisation group, or DGLAP equations

Q2 ∂

∂Q2
fi(x,Q

2) =
∑

j

Pij(x, αs(Q
2))⊗ fj(x,Q

2), (4.2)

wherePij are the Altarelli-Parisi splitting functions, explicitlygiven at leading–order
in Eq. (1.51). The structure of the solution of these coupledintegro-differential equa-
tions may be written as

fi(x,Q
2) =

∑

j

Γij(x, αs, α
0
s)⊗ fj(x,Q

2
0), (4.3)

wherefj(x,Q2
0) are the input PDFs andΓij(x, αs, α

0
s) are the evolution factors. From

now on, I use the shorthand notation introduced in Eq. (1.54), αs ≡ αs(Q
2) α0

s ≡
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αs(Q
2
0). Substituting Eq. (4.3) into Eq. (4.1)

FI(x,Q
2) =

∑

jk

CIj(x, αs)⊗ Γjk(x, αs, α
0
s)⊗ fk(x,Q

2
0)

=
∑

j

KIj(x, αs, α
0
s)⊗ fj(x,Q

2
0), (4.4)

where the hard kernel

KIj(x, αs, α
0
s) =

∑

k

CIk(x, αs)⊗ Γkj(x, αs, α
0
s), (4.5)

is the convolution between evolution factors and coefficient functions and may be
computed in perturbation theory.

Performing many nested convolutions is numerically rathertime consuming. However
the hard kernels Eq. (4.5) are independent of the particularset of input PDFs adopted,
and may thus be calculated only once and stored.

4.1.2 Calculating the evolved x–space PDFs

The QCD evolution equations are most easily solved using Mellin moments [32], as
all the convolutions become simple products, and the equations may be solved in a
closed form. In Sect. 2.1.3 theN -space solution of the DGLAP evolution equation
is explicitly written up to next–to–leading order and may beeasily generalised to
higher orders. Given the explicit expression for theN–space evolution kernels and for
the hard kernels, the problem is reduced to the computation of the Mellin inversion
integral.

Thex–space evolution factors are obtained by taking the inverseMellin transforms of
the solutions obtained in Eqs. (1.71, 1.77):

Γ(x, αs, α
0
s) =

∫

C

dN

2πi
x−NΓ(N,αs, α

0
s). (4.6)

On the other hand, thex–space hard kernels are obtained by taking the inverse Mellin
transforms of the product between theN–space evolution kernels and the Mellin mo-
ments of the coefficient functions, Eq. (1.45)

Γ(x, αs, α
0
s) =

∫

C

dN

2πi
x−NΓ(N,αs, α

0
s)C(N,αs). (4.7)
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In what follows, I explicitly consider the inversion ofΓ evolution factors, but the same
considerations hold for the hard kernelsK.

The numerical computation of the Mellin inversion integralis delicate, because the
oscillatory behaviour of the integrand at large-x is not damped by multiplication by
an initial PDF. This problem is mitigated by a suitable choice of the integration path
C. One possible choice [67, 68, 70, 71] is the Talbot path, drawn in Fig. 4.1, which
goes around the singularities atN = 0,−1,−2, .... It is defined by the condition

N(θ) = rθ

(
1

tan θ
+ 1

)
− π ≤ θ ≤ π, (4.8)

wherer is a constant corresponding to the intercept of the curve on the real axis. To

-3 -2 -1 1

-2

-1

1

2
N

Figure 4.1: The path in the complex N-space followed by the Talbot integration path,
Eq. (4.8) for r = 1.

further improve the numerical efficiency the Fixed Talbot algorithm can be used [158],
where the integral is replaced by the sum

Γ (x) =
r

M

[
1

2
Γ (N = r) x−r +

M−1∑

k=1

Re
[
x−N(θk)Γ (N (θk)) (1 + iσ (θk))

]]
,

(4.9)

where

σ (θ) ≡ θ + (θ/ tan θ − 1) / tan θ,

θk = kπ/M , andr = 2M/ (5 ln 1/x). As shown in Ref. [158],M yields the relative
accuracy, i.e. the number of accurate digits. Sixteen digits are more than enough to
achieve an accuracy ofO(10−6) in the inversion. For the singlet evolution the Talbot
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path must displaced by one unit to the right

ΓS(x, αs, α
0
s) =

∫

C+1

dN

2πi
x−N

ΓS(N,αs, α
0
s) = x

∫

C

dN

2πi
x−N

ΓS(N−1, αs, α
0
s),

(4.10)

since now the singularities are atN = 1, 0,−1, . . ..
However all splitting functions, except the off-diagonal entries of the singlet matrix,
diverge whenx → 1; this implies that the evolution kernelsΓ(x, αs, α

0
s) will likewise

be divergent asx → 1, and must thus be interpreted as distributions. Specifically, one
may define

Γ
(+)
NS (x, αs, α

0
s) = ΓNS(x, αs, α

0
s)−GNS(αs, α

0
s)δ(1− x) , (4.11)

Γ
(+)
S (x, αs, α

0
s) = ΓS(x, αs, α

0
s)−GS(αs, α

0
s)x

−1δ(1− x) , (4.12)

where

GNS(αs, α
0
s) =

∫ 1

0

dxΓNS(x, αs, α
0
s) = ΓNS(N,αs, α

0
s)|N=1, (4.13)

GS(αs, α
0
s) =

∫ 1

0

dxxΓS(x, αs, α
0
s) = ΓS(N,αs, α

0
s)|N=2, (4.14)

are all finite constants. The convolutions Eq. (4.3) may thenbe evaluated as

fi(x,Q
2) = GNS(αs, α

0
s)fi(x,Q

2
0) +

∫ 1

x

dy

y
Γ
(+)
NS (y, αs, α

0
s)fi

(
x

y
,Q2

0

)

=

(
GNS(αs, α

0
s)−

∫ x

0

dy ΓNS(y, αs, α
0
s)

)
fi(x,Q

2
0)

+

∫ 1

x

dy

y
ΓNS(y, αs, α

0
s)

(
fi

(
x

y
,Q2

0

)
− yfi(x,Q

2
0),

)
. (4.15)

for nonsinglet distributionsfi. Similarly

fS(x,Q
2) = GS(αs, α

0
s)fS(x,Q

2
0) +

∫ 1

x

dy

y
Γ
(+)
S (y, αs, α

0
s)fS

(
x

y
,Q2

0

)

=

(
GS(αs, α

0
s)−

∫ x

0

dy yΓS(y, αs, α
0
s)

)
fS(x,Q

2
0)

+

∫ 1

x

dy

y
ΓS(y, αs, α

0
s)

(
fS

(
x

y
,Q2

0

)
− y2fS(x,Q

2
0)

)
, (4.16)
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for singlet distributionsfS, where now all integrals converge and can be computed
numerically.

The solution of the evolution equations through the determination ofx−space evolu-
tion factors, Eqs. (4.15, 4.16), is particularly efficient because of the universality of the
evolution factors, i.e., their independence of the specificboundary condition which is
being evolved. In this way the evolution factors can be pre-computed and stored, and
then used during the process of parton fitting without havingto recompute them each
time.

4.1.3 LH benchmark

During the PDF fitting procedure, a given PDF set must be evolved many times up to
the fixed values of(x,Q2) at which data are available. For each(x,Q2) the numerical
determination of the right–hand side of Eqs. (4.15, 4.16) involves the evaluation of
two contributions: the first requires the multiplication ofthe PDF by a predetermined
constant(G(αs, α

0
s)−

∫ x

0
dy Γ(y, αs, α

0
s)); while the second requires a convolution of

the predetermined evolution factorΓ(y, αs, α
0
s) with the subtracted PDF, and thus the

numerical evaluation of the integral overy.

In Refs. [67, 68], the numerical integration is performed using aNquad−point Gaus-
sian integration in each of the2Niter+1 − 1 intervals in which the integration range
(x, 1) of y is divided. The total number of points used to perform the convolutions in
y is given by

Npt = Nquad

(
2Niter+1 − 1

)
, (4.17)

and the values ofy are determined accordingly, for each given value ofx.

The accuracy of the PDF evolution code has been cross-checked against the Les
Houches PDF evolution benchmark tables [126, 101]. Those tables were obtained
from a comparison of theHOPPET[159] andPEGASUS [32] evolution codes, which
arex−space andN−space codes respectively. In order to perform a meaningful com-
parison, the iterated solution of theN−space evolution equations is used, Eqs. (1.71,
1.77), and the same initial PDFs and the same running coupling are used, following
the procedure described in detail in Refs. [101, 126].

In Table 4.1 the relative differenceǫrel for various combinations of PDFs between
the NNPDF evolution and the benchmark tables of Refs. [101, 126] at NLO in the
ZM-VFNS, for two different values ofNiter, is shown. In the upper part of the ta-
ble Niter = 6, that is, each convolution integral is performed with approximately
500 points. This choice leads to an accuracy which is enough to reproduce the Les
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x ǫrel (uv) ǫrel (dv) ǫrel (Σ) ǫrel
(
d̄+ ū

)
ǫrel (s+ s̄) ǫrel (g)

Niter = 6

10−7 2.2 10−5 8.1 10−6 4.9 10−6 1.5 10−5 1.2 10−6 2.2 10−5

10−6 6.3 10−6 3.2 10−6 9.8 10−6 1.1 10−5 5.4 10−6 3.0 10−6

10−5 1.8 10−5 1.4 10−5 8.3 10−6 3.0 10−6 3.6 10−6 1.4 10−6

10−4 3.1 10−5 1.6 10−5 3.6 10−5 4.3 10−5 3.3 10−5 3.2 10−5

10−3 1.8 10−6 1.2 10−5 5.9 10−6 5.8 10−6 8.9 10−6 3.6 10−6

10−2 2.8 10−5 1.5 10−5 4.7 10−5 4.3 10−5 4.6 10−5 8.2 10−5

0.1 3.2 10−6 1.3 10−5 3.0 10−6 9.4 10−6 2.1 10−5 5.1 10−7

0.3 1.9 10−6 2.4 10−5 6.5 10−6 1.0 10−5 3.2 10−6 2.6 10−6

0.5 1.70 10−5 1.3 10−5 1.5 10−5 1.3 10−5 3.0 10−6 3.5 10−6

0.7 7.0 10−5 8.0 10−6 5.9 10−5 8.9 10−6 2.4 10−5 9.9 10−6

0.9 1.4 10−5 6.2 10−6 1.3 10−5 7.4 10−4 1.8 10−3 5.1 10−5

Niter = 4

10−7 4.2 10−2 4.5 10−2 5.1 10−2 5.1 10−2 5.1 10−2 5.1 10−2

10−6 1.6 10−2 1.8 10−2 2.4 10−2 2.3 10−2 2.4 10−2 2.5 10−2

10−5 4.9 10−3 4.4 10−3 8.7 10−3 8.3 10−3 8.7 10−3 9.6 10−3

10−4 2.3 10−3 2.2 10−3 3.9 10−3 3.7 10−3 3.9 10−3 4.4 10−3

10−3 1.1 10−3 6.7 10−4 3.5 10−3 3.0 10−3 3.4 10−3 4.6 10−3

10−2 1.5 10−3 8.5 10−4 3.4 10−3 2.7 10−3 3.7 10−3 5.5 10−3

0.1 3.9 10−6 1.3 10−5 4.3 10−6 1.1 10−5 2.4 10−5 1.0 10−4

0.3 1.9 10−6 2.6 10−5 6.6 10−6 1.610−5 5.9 10−6 7.1 10−7

0.5 1.6 10−5 1.1 10−5 1.4 10−5 2.0 10−5 5.8 10−6 3.3 10−5

0.7 6.8 10−5 1.2 10−5 5.7 10−5 6.5 10−6 4.6 10−5 3.4 10−5

0.9 1.4 10−5 5.1 10−5 1.6 10−5 6.4 10−4 1.7 10−3 1.2 10−4

Table 4.1:Comparison of the accuracy of our PDF evolution with respectto the Les Houches
benchmark tables for different PDF combinations at NLO in the ZM-VFNS. We show results
for two values ofNiter, which define the number of points over which the Gaussian integrations
are performed, as discussed in the text. The number of Gaussian points in each interval is set to
Npts = 4.

Houches tables withO
(
10−5

)
precision for all values ofx, which is the nominal

precision of the agreement betweenHOPPET andPEGASUS. In the lower part of Ta-
ble 4.1 the accuracy results for the actual parameters whichare used in the NNPDF1.0
fit [68] are shown. An integration with 128 points, corresponding toNiter = 4, pro-
vides a sufficient accuracy, considering the typical sizes of both experimental and
theoretical uncertainties.

The main point to keep in mind is that in this approach, for each measurement evalu-
ated at a different value ofx, the grid determined by the distribution of the Gaussian
points is different. Therefore, the computational cost increases linearly with the num-
ber of data points included in the analysis. This slows down the fitting procedure and
makes it practically impossible if a double convolution is involved, as in the com-
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putation of Drell–Yan or Jet observables. This problem is solved by the FastKernel
method, discussed in Sect. 5.2, where instead the same grid is used independently of
x.

4.1.4 Hard cross-sections and physical observables

To determine the input PDFs, we must compare the predictionsobtained with them to
the experimental data. This involves convolution of the evolved PDFs with the hard
coefficient functions defined in Eq. (4.1). This may be done most efficiently by pre-
computing the hard kernels Eq. (4.5), which may then be convoluted with the initial
PDFs as in Eq. (4.4). In Mellin space

KIj(N,αs, α
0
s) =

∑

k

CIk(N,αs)Γkj(N,αs, α
0
s), (4.18)

so the most efficient procedure is to computeKIj(N,αs, α
0
s), and invert the Mellin

transform using a formula corresponding to Eq. (4.10), i.e.

KIj(x, αs, α
0
s) =

{∫
C

dN
2πix

−NKIj(N,αs, α
0
s), if j = T, V,

x
∫
C

dN
2πix

−NKIj(N − 1, αs, α
0
s) if j = Σ, g.

(4.19)

The convolutions may then be performed using formulae similar to those used in
Eqs. (4.15, 4.16), writingFI(x,Q

2) =
∑

j FIj(x,Q
2), for the nonsinglet contri-

butions (i.e.j = T, V )

FIj(x,Q
2) =

(
κIj(αs, α

0
s)−

∫ x

0

dy KIj(y, αs, α
0
s)

)
fj(x,Q

2
0)

+

∫ 1

x

dy

y
KIj(y, αs, α

0
s)

(
fj

(
x

y
,Q2

0

)
− yfj(x,Q

2
0),

)
.(4.20)

while for the singlets (i.e.j = Σ, g)

FIj(x,Q
2) =

(
κIj(αs, α

0
s)−

∫ x

0

dy yKIj(y, αs, α
0
s)

)
fIj(x,Q

2
0)

+

∫ 1

x

dy

y
KIj(y, αs, α

0
s)

(
fj

(
x

y
,Q2

0

)
− y2fj(x,Q

2
0)

)
,(4.21)
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where

κIj(αs, α
0
s) =

{∫ 1

0 dxKIj(x, αs, α
0
s) = KIj(N,αs, α

0
s)|N=1, if j = T, V,

∫ 1

0
dxxKIj(x, αs, α

0
s) = KIj(N,αs, α

0
s)|N=2, if j = Σ, g,

(4.22)

are all finite constants. The convolutions in Eqs. (4.20, 4.21) are evaluated in the same
way as those in Eqs. (4.15, 4.16), i.e. with all the kernels pre-computed.
As an illustration, let us consider one of the observables fitted, the neutral current DIS
reduced cross section, given by

σ̃NC,e± = FNC
2 (x,Q2)∓ Y−

Y+
xFNC

3 − y2

Y+
FNC
L , (4.23)

with Y± = 1 ± (1 − y)2. In the above equationFNC
i is given by the sum of theF γ

i

andFZ
i , whose leading–order expression are defined in Eqs. (1.26, 1.29) respectively.

In terms of the PDF evolution eigenstates Eq. (1.58)

FNC
2 = x{E+

S Σ+ E+
NS(T3 +

1

3
(T8 − T15) +

1

5
(T24 − T35))}, (4.24)

FNC
3 = E−

S V + E−
NS(V3 +

1

3
(V8 − V15) +

1

5
(V24 − V35)), (4.25)

where the charge coefficients

E+
S =

5

18
+ 1

2 (Bu +Bd), E+
NS =

1

6
+ 1

2 (Bu −Bd),

E−
S = 1

2 (Du +Dd), E−
NS = 1

2 (Du −Dd), (4.26)

are combination of the coefficientsBi andDi defined in Eq. (1.30). In perturbative
QCD the reduced cross sections are written as

σ̃NC,e± = x{(Cs
2,q − y2

Y+
Cs

L,q)⊗ E+
S Σ + Eg(C2,g − y2

Y+
CL,g)⊗ g

+(C2,q − y2

Y+
CL,q)⊗ (E+

NS(T3 +
1
3 (T8 − T15) +

1
5 (T24 − T35))),

∓Y−

Y+
C3,q ⊗ (E−

S V + E−
NS(V3 +

1
3 (V8 − V15))), } (4.27)

whereV24 = V35 = V , and

Eg = 〈e2q〉+ 〈B2
q 〉, (4.28)
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〈B2
q 〉 = 1

nf

nf∑

i=1

Bi =





1
3 (Bu + 2Bd) , if nf = 3,
1
2 (Bu +Bd) , if nf = 4,
1
5 (2Bu + 3Bd) , if nf = 5,
1
2 (Bu +Bd) , if nf = 6.

(4.29)

In terms of hard kernels, the cross section is given by

σ̃NC,e± = x{KNC,Σ ⊗ Σ0 +KNC,g ⊗ g0 +KNC,+ ⊗ (T3,0 +
1
3 (T8,0 − T15,0))

∓KNC,V ⊗ V0 ∓KNC,− ⊗ (V3,0 +
1
3 (V8,0 − V15,0))}, (4.30)

where in Mellin space

KNC,Σ(N) = (Cs
2,q(N) − y2

Y+
Cs

L,q(N))E+
S Γqq

S (N) + Eg(C2,g(N)

− y2

Y+
CL,g(N))Γgq

S (N) + 1
5
(C2,q(N)

− y2

Y+
CL,q(N))E+

NS(Γ
24,q
S (N) − Γ35,q

S (N)),

KNC,g(N) = (Cs
2,q(N) − y2

Y+
Cs

L,q(N))E+
S Γqg

S (N) + Eg(C2,g(N)

− y2

Y+
CL,g(N))Γgg

S (N) + 1
5
(C2,q(N)

− y2

Y+
CL,q(N))E+

NS(Γ
24,g
S (N)− Γ35,g

S (N)),

KNC,+(N) = E+
NS(C2,q(N) − y2

Y+
CL,q(N))Γ+

NS(N),

KNC,V (N) = E−

S
Y−

Y+
C3,q(N)Γv

NS(N)

KNC,−(N) = E−

NS
Y−

Y+
C3,q(N)Γ−

NS(N). (4.31)

The same procedure has been applied to all other DIS observables included in the fit.

4.1.5 Target Mass Corrections

Among the theoretical errors discussed in Chap. 3, there arehigher twists and target
mass corrections. The former are related to the power suppressed termsO(1/Q2)

which are ignored in the leading–twist picture of the factorisation theorem. Physical
observables are computed using the leading twist perturbation theory, and higher twist
corrections are kept under control by the choice of a relatively high kinematic cut, as
discussed in Chap. 4. Target mass corrections (TMCs) instead keep into account the
finite mass of the target in a fixed–target experiment, which is explicitly written in
Eq. (1.15) in the terms proportional toM2

N . Often the mass of the nucleon is ignored
in the computation of the structure functions, but this approximation is accurate only
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for Q2 ≫ M2
N , which is not always true, especially when the mass of the target is

large.

Since the corrections due to the finite mass of the target are of purely kinematic origin
and can be determined exactly [160], we can easily include them in the computation of
DIS observables. One way to implement them, as in Ref. [68], consists in rearranging
the target mass correction so that it is explicitly factorised into the hard kernel, and can
thus be pre-computed along with the perturbative evolutionand coefficient functions.

As an example, let us consider the structure functionF2(x,Q
2). From Eq. (4.19) of

Ref. [160],F̃2 at twist four is given in terms of the leading twistF2 by

F̃2(ξ,Q
2) =

x2

τ3/2
F2(ξ,Q

2)

ξ2
+ 6

M2
N

Q2

x3

τ2
I2(ξ,Q

2), (4.32)

where

τ = 1 +
4M2

Nx2

Q2
, ξ =

2x

1 +
√
τ
, (4.33)

MN is the mass of the target, and

I2(ξ,Q
2) =

∫ 1

ξ

dz

z2
F2(z,Q

2). (4.34)

Taking Mellin transforms with respect toξ we get

F2(ξ,Q
2) =

∑

j

∫

C

dN

2πi
ξ−NC2,j(N,αs)fj(N,Q2), (4.35)

while

I2(N,Q2) =

∫ 1

0

dξ ξN−1

∫ 1

ξ

dz

z2
F2(z,Q

2),

=

[
ξN

N

∫ 1

ξ

dz
F2(z,Q

2)

z2

]1

0

+
1

N

∫ 1

0

dξ ξN−2 F2(ξ,Q
2),

=
1

N
F2(N − 1, Q2),

so

I2(ξ,Q
2) =

∫

C+1

dN

2πi

ξ−N

N
F2(N−1, Q2) =

1

ξ

∫

C

dN

2πi

ξ−N

N + 1
F2(N,Q2). (4.36)
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Now, by substituting Eqs. (4.35, 4.36) into Eq. (4.32) we obtain

F̃2(ξ,Q
2) =

∫

C

dN

2πi
ξ−N

(
x2

τ 3/2ξ2
+

6M2
N

Q2

x3

ξτ 2

1

(N + 1)

)∑

j

C2,j(N,αs)fj(N,Q2).

(4.37)

We can reinterpret the factor in front ofC2,j(N,αs) as the new target mass corrected
coefficient function:

C̃2,j(N,αs, τ) =
(1 + τ1/2)2

4τ3/2

(
1 +

3
(
1− τ−1/2

)

N + 1

)
C2,j(N,αs). (4.38)

The target mass corrected hard kernel is then simply

K̃F2,j(ξ, αs, α
0
s) =

∑

k

∫

C

dN

2πi
ξ−N C̃2,k(N,αs, τ)Γkj(N,αs, α

0
s). (4.39)

The same procedure may be applied to find the target mass corrections to theF3 and
FL structure functions. ForF3 we have

F̃3(ξ,Q
2) =

x

τ

F3(ξ,Q
2)

ξ
+

4M2
N

Q2

x2

τ3/2

∫ 1

ξ

dz

z
F3(z,Q

2), (4.40)

whence we deduce the target mass corrected coefficient function

C̃3,j(N,αs, τ) =
1 + τ1/2

2τ

(
1 + 2

1− τ−1/2

N

)
C3,j(N,αs), (4.41)

and thusK̃3,j(ξ, αs, α
0
s) using an equation analogous to Eq. (4.39). Finally,

F̃L(x,Q
2) = FL(x,Q

2)+
x2(1− τ)

τ3/2
F2(ξ,Q

2)

ξ2
+2

M2
N

Q2

x3(3− τ)

τ2
I2(ξ,Q

2), (4.42)

whence

C̃L(N,αs) = CL(N,αs) +

(1 + τ 1/2)2(1− τ )

4τ 3/2

(
1− (3− τ )(1 + τ 1/2)

4τ 2

1

N + 1

)

×C2(N,αs). (4.43)

Note that in the limitM2
N/Q2 → 0, τ → 1, ξ → x, and thereforẽCI,j(N,αs, τ) →

CI,j(N,αs), andK̃I,j(ξ, αs, α
0
s) → KI,j(x, αs, α

0
s) for each ofI = 2, 3, L.
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The implementation of target mass corrections sketched above easily matches the
approach based on the Mellin space computation of the hard kernel and the pre–
computation of theirx–space Mellin transform. The effect of the inclusion of target
mass corrections is most enhanced at smallQ2 and largex, as expected, yielding a
contribution of 3-4% at most.

4.2 The FastKernel method

The method described earlier requires a specific grid for each different experimental
measurement performed at a different value ofx. For hadronic observables, which
depend on two PDFs, a double convolution must be performed. The main bottleneck
of the method is the computation of these convolutions, which might end up being too
slow for a parton fit. In the FastKernel method, introduced inRef. [71], the convolu-
tion is sped up by means of the use of interpolating polynomials, thereby leading to
both fast evolution and fast computation of all observablesfor which the kernels have
been determined.

The introduction of the FastKernel method in the NNPDF2.0 analysis enabled us to
use in the fit an exact computation of the Drell–Yan (DY) process, which in other
current global PDF fits [42, 43] is instead treated using aK–factor approximation to
the NLO (and even NNLO) result, due to lack of a fast–enough implementation.

Several tools for fast evaluation of hadronic observables have been developed re-
cently, based on an idea of Ref. [161]. These have been implemented for the case
of jet production and related observables in the FastNLO framework [162]. More re-
cently, the general–purpose interface APPLGRID based on the same idea has been
constructed [163]. Also, the method has been used in the fastx–space DGLAP evolu-
tion code HOPPET [159]. The FastKernel method developed in Ref. [71] is based on
similar ideas, and it allows for the first time the fast and accurate computation of fixed
target Drell–Yan and collider weak boson production cross sections.

In the following section I present a description of the new strategy used to solve the
PDF evolution equations in the NNPDF20 analysis [71]. Then Iturn to the associ-
ated technique to compute DIS structure functions. FinallyI discuss how analogous
techniques can be used for the fast and accurate computationof hadronic observables.
Although the method is completely general, for simplicity Irestrict the discussion to
the Drell–Yan process, since for inclusive jets FastNLO will be used instead [162].
As far as notation is concerned, in the following I use the index I to denote both
the kinematical variables which define an experimental point (x,Q2) and the type of
observable, while in the previous sectionI was only labelling observables.
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4.2.1 Fast PDFs evolution

We have seen that, ifΓjk is the matrix of DGLAP evolution kernels and(xI , Q
2
I)

defines the kinematics of a given experimental point, one maywrite the PDF evolved
from a fixed initial scaleQ2

0 to the scale of the experimental point as a convolution
between the evolution kernels and the initial scale PDFs, Eq. (4.3). In the method
drawn in Sect. 5.1, the integral in Eq. (4.3) was performed numerically by means of a
Gaussian sum on a grid of points distributed betweenxI and 1, chosen according to
the value ofxI . The point here is to use instead a single grid inx, independent of the
xI value. I label the set of points in the grid asxα byα = 1, ..., Nx, with

xmin ≡ x1 < x2 < ... < xNx−1 < xNx
≡ 1.

Having chosen a grid of points, we define a set of interpolating functionsI(α) such
that:

I(α)(xα) = 1

I(α)(xβ) = 0 , β 6= α

Nx∑

α=1

I(α)(y) = 1 , ∀y. (4.44)

An illustrative example is given by the basis of functions drawn in Fig. 4.2 and defined
as

E(α)(y) =
y − yα−1

yα − yα−1
θ[(yα−y)(y−yα−1)]+

yα+1 − y

yα+1 − yα
θ[(yα−y)(y−yα+1)].

(4.45)

Each functionE(α) has a triangular shape centred inxα and it vanishes outside the
interval(xα−1, xα+1). For anyy, only two triangular functions are non zero and their
sum is always equal to one.

With a general interpolation basis, PDFs at the initial scale can be approximated as

fk(y,Q
2
0) ≡ f0

k (y) =

Nx∑

α=1

f0
k (xα) I(α)(y) +O[(xα+1 − xα)

p] , (4.46)
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Figure 4.2: Set of interpolating triangular basis functions. The corresponding analyti-
cal form is given in Eq. (4.45).

wherep is the lowest order neglected in the interpolation. Plugging Eq. (4.46) into
Eq. (4.3) and dropping for simplicity the dependence onQ2

0 andQ2
I , the latter becomes

fj(xI , Q
2
I) ≡ fj(xI) =

Npdf∑

k=1

Nx∑

α=1

f0
k (xα)

∫ 1

xI

dy

y
Γjk

(
xI

y

)
I(α)(y)

+O[(xα+1 − xα)
p]

fj(xI) =

Npdf∑

k=1

Nx∑

α=1

σ̂Ij
αk f

0
k (xα) +O[(xα+1 − xα)

p], (4.47)

where

σ̂j
αk(xI , Q

2
0, Q

2
I) ≡ σ̂Ij

αk =

∫ 1

xI

dy

y
Γjk

(
xI

y

)
I(α)(y). (4.48)

In Eq. (4.48)I specifies the data point,α runs over the points in thex–grid and(j, k)
run over the PDFs that evolve coupled to each others. Having precomputed thêσIj

αk

coefficients for each pointI, the evaluation of the PDFs only requiresNx evaluations
of the PDFs at the initial scale, independent of the point at which the evolved PDFs
are needed, thereby reducing the computational cost of evolution.
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Figure 4.3: Set of interpolating Hermite cubic functions inthe [0,1] interval.

If the interpolation is performed on a more complicated set of functions than the
triangular basis Fig. 4.2, better accuracy can be obtained with a smaller number of
points and thus the computational cost may be further reduced. For PDF evolution, in
Ref. [71] the cubic Hermite interpolation drawn in Fig. 4.3 are used. With this choice,
for each intervaly ∈ [xα, xα+1) the function to be approximated can be written as

f0
k (y) = h00(t)f

0
k (xα) + h10(t)hαmα + h01(t)f

0
k (xα+1) + h11(t)hαmα+1

+O[(xα+1 − xα)
4],

where

hα = g(xα+1)− g(xα), t =
g(y)− g(xα)

hα
, (4.49)

andg(y) is a monotonic function in [0,1] which determines the distribution of points in
the interval (linear, logarithmic, etc.);mα andmα+1 are derivatives of the interpolated
function at the right and left–hand side of the interval, which can be defined as finite
differences:

mα =





f0
k(xα)−f0

k(xα−1)
2hα−1

+
f0
k (xα+1)−f0

k(xα)
2hα

, for 2 ≤ α ≤ Nx − 1
f0
k(xα+1)−f0

k(xα)
hα

, for α = 1
f0
k(xα)−f0

k(xα−1)
hα−1

, for α = Nx.

(4.50)
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Finally the functionsh are the 3rd–order polynomials drawn in Fig. 4.3 and defined as

h00(t) = 2t3 − 3t2 + 1 = (1 + 2t)(1− t)2 (4.51)

h10(t) = t3 − 2t2 + t = t(t− 1)2

h01(t) = −2t3 + 3t2 = t2(3 − 2t)

h11(t) = t3 − t2 = t2(t− 1)

Collecting all terms, Eq. (4.49) becomes

f0
k (y) = f0

k (xα−1)A
(α)(y) + f0

k (xα)B
(α)(y) + f0

k (xα+1)C
(α)(y) (4.52)

+f0
k (xα+2)D

(α)(y) +O[(xα+1 − xα)
4].

Hence the function, at any given pointy is obtained as a linear combination off0 at
the four nearest points in the grid. The coefficients of such combination are given by:

A(α)(y) =

{
0, for α = 1

−h10(t)
hα

hα−1
, for α 6= 1

(4.53)

B(α)(y) =





h00(t)− h10(t)− h11(t)
2 , for α = 1

h00(t)− h10(t)
2

(
1− hα

hα+1

)
− h11(t), for α = Nx − 1

h00(t)− h10(t)
2

(
1− hα

hα+1

)
− h11(t)

2 , for α 6= 1, Nx − 1

C(α)(y) =





h01(t) +
h11(t)

2

(
1− hα

hα+1

)
+ h10(t), for α = 1

h01(t) + h11(t) +
h10(t)

2 , for α = Nx − 1

h01(t) +
h11(t)

2

(
1− hα

hα+1

)
+ h10(t)

2 , for α 6= 1, Nx − 1

D(α)(y) =

{
0, for α = Nx − 1

h11(t)
hα

2hα+1
, for α 6= Nx − 1

Substituting Eq. (4.53) into the integral for the evolutionof the PDFs and labelling by
ξ the index such that

xξ ≤ xI < xξ+1,
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theσ̂ coefficients are rewritten as:

σ̂Ij
αk =















































































































∫ xξ+1
xI

dy
y

Γjk

(

xI
y

)

A(ξ)(y), for α = ξ,
∫ xξ+1
xI

dy
y

Γjk

(

xI
y

)

B(ξ)(y)

+θ(Nx − (ξ + 2))
∫ xξ+2
xξ+1

dy
y

Γjk

(

xI
y

)

A(ξ+1)(y), for α = ξ + 1,
∫ xξ+1
xI

dy
y

Γjk

(

xI
y

)

C(ξ)(y)

+θ(Nx − (ξ + 2))
∫ xξ+2
xξ+1

dy
y

Γjk

(

xI
y

)

B(ξ+1)(y)

+θ(Nx − (ξ + 3))
∫ xξ+3
xξ+2

dy
y

Γjk

(

xI
y

)

A(ξ+2)(y), for α = ξ + 2,

θ(Nx − (I − 1))
∫ xα−1
xα−2

dy
y

Γjk

(

xI
y

)

D(α−1)(y)

+θ(Nx − α)
∫ xα

xα−1

dy
y

Γjk

(

xI
y

)

C(α−1)(y)

+θ(Nx − (α+ 1))
∫ xα+1
xα

dy
y

Γjk

(

xI
y

)

B(α)(y)

+θ(Nx − (α+ 2))
∫ xα+2
xα+1

dy
y

Γjk

(

xI
y

)

A(α+1)(y), for ξ + 3 ≤ α ≤ Nx + 1,

0 for α < ξ.

(4.54)

Despite the complicated bookkeeping, these expressions can be easily pre–computed
and input into the fit.

A final remark: because of the divergent behaviour of thex–space evolution kernel
in x = 1, as we have already seen in Eq. (4.11), the integrals including xI in the
integration interval need to be regularised iny ∼ xI . If one considers for instance
the first integral ofA(α) in Eq.(4.54), one may perform the same subtraction as in
Eqs. (4.11) in order to have a finite expression of all precomputed coefficients:

∫ xξ+1

xI

dy
y
Γjk

(
xI

y

)
A(ξ)(y)

=
∫ xξ+1

xI

dy
y
Γjk

(
xI

y

) (
A(ξ)(y) − xI

y
A(ξ)(xI)

)
+ A(ξ)(xI)

∫ xξ+1

xI

dy
y2 Γjk

(
xI

y

)

=
∫ xξ+1

xI

dy
y
Γjk

(
xI

y

) (
A(ξ)(y)− xI

y
A(ξ)(xI)

)
+ A(ξ)(xI)

∫ 1

xI/xξ+1
dz Γjk(z)

=
∫ xξ+1

xI

dy
y
Γjk

(
xI

y

) (
A(ξ)(y)− xI

y
A(ξ)(xI)

)

+A(ξ)(xI)
[
Γjk(N)

∣∣
N=2

−
∫ xI/xξ+1

0
dz Γjk(z)

]
. (4.55)

As a result all̂σ are regularised; they can be stored once and for all for each experi-
mental point, as they do not depend on the PDF at the initial scale.

4.2.2 Accuracy of the fast PDFs evolution

The accuracy of the PDF evolution code described above, has been determined by
benchmarking against the Les Houches PDF benchmark tables.In Table 4.2 the rela-
tive difference for various combinations of PDFs between our PDF evolution and the
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benchmark tables of Ref. [101] at NLO in the ZM–VFNS, for three different grids
is shown. In each grid, the interval[xmin, 1] is divided into a logarithmic region at
small–x and a linear region at medium–, high–x. The choice of a relatively small
grid of 50 points leads to reproducing the Les Houches tableswith an accuracy of
O(10−5), more than enough for the precision phenomenology one aims to and better
than the accuracy displayed in Table 4.1.

4.2.3 Fast computation of DIS observables

Using the strategy described in the previous section, one can easily write down the
expressions for the DIS observables included in the fit and show explicitly how their
computation works on the interpolation basis. The basic idea is that, starting with
the standard factorised expression, the coefficient functionCIk may be absorbed into
a modified evolution kernelKIj, defined in Eq. (4.5). The kernel acts on thej–th
PDFs at the initial scale, and it is an observable–dependentlinear combination of
products of coefficient functions and evolution kernels, asit has been shown in the
explicit example of the neutral current reduced cross section, Eq. (4.31). Substituting
Eq. (4.47) into the expression for the observable, the latter can be written as:

σDIS
I (xI , Q

2
I) =

Npdf∑

j=1

Nx∑

α=1

f0
j (xα)

∫ 1

xI

dy

y
KIj

(
xI

y

)
I(α)(y) (4.56)

=

Npdf∑

j=1

Nx∑

α=1

f0
j (xα) σ̂

I
αj +O[(xα+1 − xα)

p],

where

σ̂I
αj(xI , Q

2
0, Q

2
I) ≡ σ̂I

αj =

∫ 1

xI

dy

y
KIj

(
xI

y
, αs(Q

2
I), αs(Q

2
0)

)
I(α)(y). (4.57)

Now the only index running over the PDF basis isj because the other indexk is
contracted in the definition ofK.

Consider for example the expression for the deuteron structure function. We can write
down explicitly the terms of Eq. (4.57) as:

F d
2 (xI , Q

2
I) =

Nx∑

α=1

σI
α10 f10(xα)+σI

α1 f1(xα)+σI
α2 f2(xα)+O[(xα+1−xα)

p],

(4.58)
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x (30 pts) erel(uv) erel(dv) erel(Σ) erel(g)

1 · 10−7 2.5 · 10−4 3.5 · 10−4 2.1 · 10−4 2.1 · 10−4

1 · 10−6 1.6 · 10−3 1.5 · 10−3 2.3 · 10−4 2.5 · 10−4

1 · 10−5 1.5 · 10−3 1.4 · 10−3 2.5 · 10−4 2.8 · 10−4

1 · 10−4 6.5 · 10−4 5.1 · 10−4 3.0 · 10−4 3.4 · 10−4

1 · 10−3 6.5 · 10−4 4.7 · 10−4 3.4 · 10−4 3.9 · 10−4

1 · 10−2 1.4 · 10−3 1.9 · 10−3 3.4 · 10−4 5.3 · 10−4

1 · 10−1 7.0 · 10−4 1.0 · 10−3 1.1 · 10−4 4.1 · 10−4

3 · 10−1 1.9 · 10−5 8.6 · 10−5 1.3 · 10−5 5.8 · 10−5

5 · 10−1 1.5 · 10−4 1.8 · 10−4 1.0 · 10−4 1.1 · 10−4

7 · 10−1 3.8 · 10−4 3.9 · 10−5 3.1 · 10−4 2.8 · 10−4

9 · 10−1 8.5 · 10−3 9.5 · 10−2 3.4 · 10−3 2.0 · 10−2

x (50 pts) erel(uv) erel(dv) erel(Σ) erel(g)

1 · 10−7 2.1 · 10−4 2.3 · 10−4 2.7 · 10−5 4.7 · 10−6

1 · 10−6 8.9 · 10−5 8.4 · 10−5 3.0 · 10−5 2.1 · 10−5

1 · 10−5 9.3 · 10−5 6.0 · 10−5 2.3 · 10−5 2.0 · 10−5

1 · 10−4 4.5 · 10−5 2.8 · 10−5 4.4 · 10−5 4.2 · 10−5

1 · 10−3 3.0 · 10−5 1.7 · 10−5 4.0 · 10−5 3.5 · 10−5

1 · 10−2 7.9 · 10−5 6.8 · 10−5 4.5 · 10−5 5.8 · 10−5

1 · 10−1 1.7 · 10−4 2.1 · 10−4 1.6 · 10−5 3.9 · 10−5

3 · 10−1 9.1 · 10−6 3.9 · 10−5 1.1 · 10−5 1.9 · 10−7

5 · 10−1 2.4 · 10−5 2.2 · 10−5 2.2 · 10−5 2.2 · 10−5

7 · 10−1 9.1 · 10−5 1.5 · 10−5 7.8 · 10−5 1.2 · 10−4

9 · 10−1 1.0 · 10−3 3.3 · 10−3 8.0 · 10−4 2.8 · 10−3

x (100 pts) erel(uv) erel(dv) erel(Σ) erel(g)

1 · 10−7 3.2 · 10−5 5.0 · 10−5 5.4 · 10−6 2.0 · 10−5

1 · 10−6 2.6 · 10−6 1.3 · 10−6 5.7 · 10−6 5.9 · 10−6

1 · 10−5 1.1 · 10−5 2.2 · 10−5 3.7 · 10−6 1.0 · 10−5

1 · 10−4 1.8 · 10−5 3.3 · 10−6 1.3 · 10−5 6.9 · 10−6

1 · 10−3 1.3 · 10−6 4.9 · 10−6 4.7 · 10−6 7.7 · 10−6

1 · 10−2 1.6 · 10−5 1.7 · 10−5 4.8 · 10−6 1.1 · 10−6

1 · 10−1 3.4 · 10−5 2.9 · 10−5 8.7 · 10−6 2.1 · 10−6

3 · 10−1 2.0 · 10−6 2.5 · 10−5 7.9 · 10−6 3.9 · 10−6

5 · 10−1 1.7 · 10−5 1.3 · 10−5 1.7 · 10−5 3.1 · 10−5

7 · 10−1 7.1 · 10−5 8.3 · 10−6 6.3 · 10−5 1.3 · 10−4

9 · 10−1 3.9 · 10−5 3.8 · 10−4 2.5 · 10−5 1.7 · 10−3

Table 4.2: Relative accuracy of FastKernel evolution compared to the Les Houches
benchmark tables for PDFs evolved to the scaleQ2 = 104 GeV2. The interpolation is
performed on cubic Hermite polynomials and the grid is composed of 30 points (top),
50 points (middle), or 100 points (bottom), distributed logarithmically in the small–x
region and linearly in the medium– and large–x region.
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with

σα10 =
∫ 1

xI

dy
y

1
18 (C2,q ⊗ Γ−)

(
xI

y

)
I(α)(y)
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[
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(
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) (
xI

y

)
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) (
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y

)
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(
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) (
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y

)
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(
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) (
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y

)
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) (
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y

) ]
I(α)(y)

σα2 =
∫ 1

xI
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(
C2,q ⊗ Γ15,q

) (
xI

y

)
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30

(
C2,q ⊗ Γ24,g

) (
xI
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)
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(
C2,q ⊗ Γ35,g

) (
xI
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)
+ 5
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(
C2,q ⊗ ΓS,qg

) (
xI

y

)

−cg(nf )
(
C2,g ⊗ ΓS,gg

) (
xI

y

) ]
I(α)(y) (4.59)

where all kernels and coefficient functions are defined in Ref. [68] andf0
10 = T8,0,

f0
1 = Σ0 andf0

2 = g0, in the evolution basis of Eq. (1.58). The same procedure may
be applied to any other DIS observable and similar expressions are obtained.

4.2.4 Fast computation of hadronic observables

The FastKernel implementation of hadronic observables requires a double convolu-
tion of the coefficient function with two parton distributions. We could follow the
same strategy used for DIS: construct a kernel for each observable and each pair of
initial PDFs, and then compute the double convolution with asuitable generalisation
of the method introduced in Sect. 4.2.3. However, for hadronic observables, we adopt
a somewhat different strategy, which allows us to treat in a more symmetric way pro-
cesses for which a fast interface already exists (such as jets) and those (such as DY)
for which we have to develop our own interface. Namely, instead of including the co-
efficient function into the kernel according to Eq. (4.57), we compute the convolution
Eq. (4.1) using the fast interpolation method.

To see how this works, let us consider first the case of a process with only one parton
in the initial state. Starting from Eq. (4.1), we can projectthe evolved PDFfk onto an
interpolation basis as follows:

σDIS
I (xI , Q

2
I) =

Npdf∑

k=1

Ny∑

α=1

fk(yα, Q
2
I)

∫ 1

xI

dy

y
CIk

(
xI

y
, αs(Q

2
I)

)
Iα(y)

+ O[(yα+1 − yα)
q], (4.60)
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whereq indicates the first order neglected in the interpolation of the evolved PDFs.
This defines another grid of points,{yα}, upon which the coefficients can be pre–
computed before starting the fit:

∫ 1

xI

dy

y
CIk

(
xI

y
, αs(Q

2
I)

)
Iα(y) ≡ Cα

Ik. (4.61)

If, on top of this interpolation, we interpolate the parton distributions at the initial
scale on the{xα} grid as we did in the previous subsection, we get

σDIS
I (xI , Q

2
I) =

Npdf∑

k=1

Ny∑

α=1

fk(yα, Q
2
I)C

α
Ik +O[(yα+1 − yα)

q] (4.62)

=

Npdf∑

k,n=1

Ny∑

α=1

Nx∑

β=1

Cα
Ik σ̂

α,I
βkn f0

n(xβ)

+ O[(yα+1 − yα)
q(xβ+1 − xβ)

p].

Notice that the two interpolations are independent of each other. The number of points
Nx andNy in each grid, the interpolating functions, and the interpolation ordersp and
q are not necessarily the same.

We now may apply this to the rapidity–differential Drell–Yan cross section to exem-
plify the procedure. The NLO cross section is given by

dσDY

dQ2
IdYI

=
4πα2

9Q2
Is

Nq∑

j=1

e2j

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2 (4.63)

{[
qj(x1, Q

2
I)q̄j(x2, Q

2
I) + qj(x2, Q

2
I)q̄j(x1, Q

2
I)
]
(Dqq(x1, x2, YI))

+g(x1, Q
2
I)
[
qj(x2, Q

2
I) + q̄j(x2, Q

2
I)
]
(Dgq(x1, x2, YI))

+g(x2, Q
2
I)
[
qj(x1, Q

2
I) + q̄j(x1, Q

2
I)
]
(Dqg(x1, x2, YI))

}
,

where the coefficient functions can be found in Refs. [164, 165].

For each point of the interpolation grid, we define a set of two–dimensional interpo-
lating functions as the product of one–dimensional functions defined in Eq. (4.44):

I(α,β)(x1, x2) ≡ I(α)(x1)I(β)(x2). (4.64)
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The product of two functions can be approximated by means of these interpolating
functions as

f(y1)h(y2) =

Ny∑

α,β=1

f(y1,α)h(y2,β) I(α,β)(y1, y2)

+ O[(y1,α+1 − y1,α)
q(y2,β+1 − y2,β)

q]. (4.65)

Applying Eq. (4.65) to the PDFs in Eq. (4.64), we get

dσDY

dQ2
IdYI

= n(Q2
I)

Nq∑

j=1

e2j

Nx∑

α,β=1

[
qj(y1,α)q̄j(y2,β) + q̄j(y1,α)qj(y2,β)

]
(4.66)

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2I(α,β)(x1, x2)D
qq(x1, x2, YI)

+
[
g(y1,α)(qj(y2,β) + q̄j(y2,β))

] ∫ 1

x0
1

dx1

∫ 1

x0
2

dx2I(α,β)(x1, x2)D
gq(x2, x1, YI)

+
[
g(y1,α)(qj(y2,β) + q̄j(y2,β))

] ∫ 1

x0
1

dx1

∫ 1

x0
2

dx2I(α,β)(x1, x2)D
gq(x1, x2, YI)

+O[(y1,α+1 − y1,α)
q(y2,β+1 − y2,β)

q],

where at next–to–leading orderDqg(x1, x2, YI) = Dgq(x2, x1, YI). Therefore, we
can define

C
(α,β)
I,ij ≡

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2I(α,β)(x1, x2)D
ij(x1, x2, YI), (4.67)

wherei, j run over the non–zero combinations ofq, q̄ andg. By substituting them into
Eq. (4.67), we end up with the expression

dσDY

dQ2
IdYI

= n(Q2
I)

Nq∑

j=1

e2j

Ny∑

α,β=1

C
(α,β)
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+C
(α,β)
I,gq [g(y1,α)(qj(y2,β) + q̄j(y2,β))]

+C
(α,β)
I,qg [(qj(y1,α) + q̄j(y1,α))g(y2,β)]

+O[(y1,α+1 − y1,α)
q(y2,β+1 − y2,β)

q] , (4.68)
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which is the analogue of Eq. (4.60) for a hadronic observable. The physical basis{q}j
and the evolution basis{f}j are related by a matrixA:

qj = Ajrfr q̄j = Ājsfs .

Each PDFf is evolved at the physical scale of the process, and the evolution matrixΓ
which relates the initial scale PDFs to the evolved ones is

fr(x,Q
2) = Γrn(x,Q

2
0, Q

2)⊗ fn(x,Q
2
0).

Therefore Eq. (4.68) becomes

dσDY

dQ2
IdYI

= n(Q2
I)

Nq∑

j=1

e2j

Ny∑

α,β=1

Npdf∑

r,s=1

C
(α,β)
I,qq (AjrĀjs + ĀjrAjs) fr(y1,α)fs(y2,β)

+
[
C

(α,β)
I,gq δr2(Ajs + Ājs) + C

(α,β)
I,qg (Ajr + Ājs)δq2

]
(4.69)

× fr(y1,α)fs(y2,β) +O[(y1,α+1 − y1,α)
q(y2,β+1 − y2,β)

q].

Defining

crs ≡
Nq∑

j=1

e2j(AjrĀjs + ĀjrAjs) (4.70)

drs ≡
Nq∑

j=1

e2j
[
δr2(Ajs + Ājs) + (Ajr + Ājr)δs2

]

and applying Eq. (4.47) to the evolved PDFs, we end up with a result which is similar
to Eq. (4.63):

dσDY

dQ2
IdYI

= n(Q2
I)

Nx∑
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Npdf∑

l,m=1

[ Ny∑
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(α,β)
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γrl σ̂
β,I
δsm (4.71)

+[drsC
(α,β)
I,gq + dsrC

(α,β)
I,qg ]σ̂α,I

γrl σ̂
β,I
δsm

]
f
(0)
l (x1,γ)f

(0)
m (x2,δ)

+O[(y1,α+1 − y1,α)
q(y2,β+1 − y2,β)

q(x1,γ+1 − x1,γ)
p(x2,δ+1 − x2,δ)

p].

In order to define the coefficients in Eq. (4.71), we have to make an explicit choice of
an interpolating basis. For the interpolation of the evolved PDFs we use the triangular
interpolating basis drawn in Fig. 4.2 and defined in Eq. (4.45). Projecting the PDFs
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on the triangular basis,we get

q(y) =

Nx∑

α=1

q(yα)E
(α)(y) +O[(yα+1 − yα)

2]

and define

C
(α,β)
K,ij =

∫ 1

x0
1

dx1

∫ 1

x0
2

dx2 E
(α)(x1)E

(β)(x2)D
(K)
ij (x1, x2), (4.72)

whereK indicates the perturbative order andi, j run over the non–zero combinations
of q, q̄ andg. To be more explicit, defining the indexξ andζ in such a way that

xξ < x0
1 < xξ+1 xζ < x0

2 < xζ+1, (4.73)

we can give the precise definition of the NLO coefficients:

C
(α,β)
K,ij =







































∫ xα+1
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1

dx1

∫ xβ+1

x0
2

dx2 E(α)(x1)E(β)(x2)D
(K)
ij (x1, x2), α = ξ, ξ + 1, β = ζ, ζ + 1

∫ xα+1

x0
1

dx1

∫ xβ+1

xβ−1 dx2 E(α)(x1)E(β)(x2)D
(K)
ij (x1, x2), α ≤ ξ + 1, β ≥ ζ + 2,

∫ xα+1
xα−1

dx1
∫ xβ+1

x0
2

dx2 E(α)(x1)E(β)(x2)D
(K)
ij (x1, x2), α ≥ ξ + 2, β ≤ ζ + 1,

∫ xα+1
xα−1

dx1
∫ xβ+1
xβ−1

dx2 E(α)(x1)E(β)(x2)D
(K)
ij (x1, x2), α ≥ ξ + 2, β ≥ ζ + 2,

0 α ≤ ξ − 1, β ≤ ζ − 1.

The expression for the LO is trivial, given thatD
(0)
qq̄ (x1, x2) = δ(x1−x0

1)δ(x2−x0
2).

The FastKernel method for hadronic observables is easily interfaced to other existing
fast codes, such as FastNLO for inclusive jets [162], by simply using FastKernel for
the interpolation at the initial scale and parton evolution, and exploiting the existing
interface for the convolution of the evolved PDF with the appropriate coefficient func-
tions. In the particular case of the inclusive jet measurements used in the present anal-
ysis, the analogues of the coefficientsC

(α,β)
I,ij in Eq. (4.71) can be directly extracted

from the FastNLO precomputed tables through its interface,although in such case the
relevant PDFs combinations are different than those of the DY process Eq. (4.68).

4.2.5 FastKernel benchmarking

It is straightforward to extend the FastKernel method described in the previous sec-
tion to all fixed–target DY and collider vector boson production datasets using the
appropriate couplings and PDF combinations.
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In order to assess the accuracy of the method, I have benchmarked the results obtained
with our code to those produced by an independent code [166] which computes the
exact NLO cross sections for all relevant Drell–Yan distributions. The comparison is
performed by using a given set of input PDFs and evaluating the various cross–sections
for all observables included in the NNPDF20 [71] fit in the kinematical points which
correspond to the included data.

The benchmarking of the FastKernel code for the Drell–Yan process has been per-
formed for the following observables:

• The rapidity andxF distributions and asymmetries for fixed target Drell–Yan in
pp and pCu collisions (E605 and E866 kinematics)

• TheW rapidity distribution and asymmetries at hadron colliders(Tevatron kine-
matics)

• TheZ rapidity distribution at hadron colliders (Tevatron kinematics)

The results of this benchmark comparison are displayed in Fig. 4.4, where the relative
accuracy between the FastKernel implementation and the exact code is shown for all
data points included in the NNPDF2.0. This accuracy has beenobtained with a grid
of 100 points distributed as the squared root of the logarithm fromxmin to 1.

It is clear from Fig. 4.4 that with a linear interpolation performed on a 100–points grid,
we get a reasonable accuracy for all points, 1% in the worse case, which is suitable
because the experimental uncertainties of the available datasets are rather larger. This
accuracy can be improved arbitrarily by increasing the number of data points in the
grid, with a very small cost in terms of speed: this is demonstrated in Fig. 4.5, where
we show the improvement in accuracy obtained by using a grid of 500 points.
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Figure 4.4:Relative accuracy for NLO Drell–Yan rapidity distributions using the FastKernel
method, compared to the code of [166], as a function of rapidity y. Each point corresponds to
the kinematics of a data point included in the NNPDF2.0 fit. The accuracy refers to a grid of
100 points distributed as the squared root of the logarithm fromxmin to 1.
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Figure 4.5:Same as Fig. 4.4, for 40 points in the kinematical range covered by the data points
included in the NNPDF2.0 fit, using a grid of 500 points distributed as the squared root of the
logarithm fromxmin to 1.
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Chapter 5
Application of the NNPDF
method to phenomenology

In this chapter I illustrate three phenomenological studies carried out by exploiting the
NNPDF method. First I present the determination of the strange content of the proton
formulated in the NNPDF1.2 analysis. With PDF uncertainties under control, detailed
precision physics studies become possible: the NNPDF1.2 parton analysis leads at
the same time to the solution of the NuTeV anomaly and to the precise determination
of the |Vcs| and|Vcd| elements of the CKM matrix. Secondly, I discuss the effect of
the combined PDF and strong coupling uncertainties and their impact on the standard
candle processes at the LHC. Finally I introduce a reweighting technique which allows
us to include new experiments into the NNPDF analyses without need of refitting; in
particular this method is applied to the inclusion ofW lepton asymmetry data.

5.1 The strange content of the proton

The determination of the strange and anti–strange quark distributions of the nucleon is
of considerable phenomenological interest, because many final states in the Standard
Model and beyond couple directly to strangeness. For instance the determination of
the electroweak mixing angle by the NuTeV collaboration might provide evidence for
physics beyond the Standard Model and is very sensitive to the strange content of the
nucleon [167, 168].

However, neutral-current deep-inelastic scattering, which constitutes the bulk of the
data which is used for parton determination, have minimal sensitivity to flavour sep-

171



172 Chapter 5. Application of the NNPDF method to phenomenology

aration, and no sensitivity at all to the separation of quarkand antiquark contribu-
tions. As a consequence, until very recently in parton fits, such as CTEQ6.5 [41],
MRST2006 [66] and NNPDF1.0 [68], the strange and anti–strange quark distributions
were assumed to be equal and proportional to the total light antiquark sea.

This situation has recently changed, due to the availability of a wider set of inclusive
neutrino DIS scattering data [169, 88] and, more importantly, of data for deep-inelastic
neutrino and anti-neutrino production of charm [89, 170, 171] (“dimuon” data), which
is directly sensitive to the strange and anti–strange parton distributions. Indeed, from
Eq. (3.38) we see that the measured dimuon cross–section is proportional to the charm
production cross–section. The latter is given by

σ̃ν(ν̄),c(x, y,Q2) ≡ 1

Eν

d2σν(ν̄),c

dx dy
(x, y,Q2) (5.1)

=
G2

FMN

2π(1 +Q2/M2
W )2

[((
Y+ − 2M2

Nx2y2

Q2
− y2

)(
1 +

m2
c

Q2

)
+ y2

)

×F
ν(ν̄),c
2 (x,Q2)− y2F

ν(ν̄),c
L (x,Q2)± Y− xF

ν(ν̄),c
3 (x,Q2)

]
,

where

Q2 = 2MNEνxy, Y± = 1± (1− y)2. (5.2)

We refer to Chap. 2 and 4 for the definition of all kinematical quantities involved in
the above equation. The charm production cross–section is determined by the charm
structure functionsF ν(ν̄),c

2 ,F ν(ν̄),c
L andxF ν(ν̄),c

3 , which in the quark model are given
by

F ν,c
2 (x,Q2) = xF ν,c

3 (x,Q2) (5.3)

= 2x
(
|Vcd|2 d(x) + |Vcs|2 s(x) + |Vcb|2 b(x)

)
, (5.4)

F ν̄,c
2 (x,Q2) = −xF ν̄,c

3 (x,Q2)

= 2x
(
|Vcd|2 d̄(x) + |Vcs|2 s̄(x) + |Vcb|2 b̄(x)

)
,

with F
ν(ν̄),c
L = 0. It is clear from the above equation that the dimuon cross–section

provides a direct constraint on the strange and anti–strange distributions. It may be
explicitly shown that the same constraint, even if weaker, is given by the charged–
current observables [68].

As a consequence, dedicated analyses of the strange quark distribution have been per-
formed [172, 173, 62, 174], and independent parametrisations of the strange and anti–
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strange distributions have been included in most recent parton fits [43]. However, the
method of parton determination used in these analyses, based on fitting the parame-
ters of a fixed functional form, is known to be hard to handle when experiments are
relatively unconstraining. Indeed, it is not uncommon thatthe addition of new ex-
perimental information to a parton fit of this kind, actuallyleads to an increase rather
than to a decrease of uncertainty bands , because the new datarequire the use of a
more general parametrisation. For this reason in most parton fits [43, 42] the strange
is parametrised by a very restrictive functional form, which might bias the result and
artificially reduce its uncertainty. In conclusion, the scarceness of the experimental
information on these quantities, makes it difficult to separate the genuine information
from theoretical bias.

The methodology developed by the NNPDF collaboration is particularly able to deal
with this kind of issues. This methodology is largely free ofbias related to parton
parametrisation, and handles in a satisfactory way incomplete information, contra-
dictory data, and the addition of new data within a single framework. Indeed, in
the NNPDF1.1 analysis [69], 74 free parameters were introduced to parametrise the
strange and anti–strange parton distributions and, even ifthey were basically uncon-
strained by data, results are statistically consistent.

In the NNPDF1.2 parton determination [70], we added the dimuon data to the global
deep-inelastic scattering dataset on which the NNPDF1.0 and NNPDF1.1 fits were
based, and constructed a new parton set including a determination of the strange
and anti–strange distributions. In Fig. 5.1 and 5.2 thes±(x,Q2

0), s(x,Q
2
0) and

s̄(x,Q2
0) strange PDFs are shown at the input scale and compared to the most re-

cent CTEQ6.6 [42] and MSTW08 [43] sets, as well as to the NNPDF1.0 set [68].
Whereas the CTEQ collaboration has not performed a full determination of thes−

uncertainty band, a study of the dependence of the best-fits− on assumptions on its
functional form was performed in Ref. [62]. We see that in thedata regionx ∼> 0.03

all determinations ofs± agree, however the NNPDF1.2 has a much larger uncertainty
than other existing determinations.

The origin of this can be understood by looking at Fig. 5.3, where 25 randomly cho-
sen replicas out of the full NNPDF1.2 set are displayed, and the mean and standard
deviation computed from them: the large uncertainty is a consequence of the great
flexibility afforded by the neural network parametrisation. This is particularly no-
ticeable in the case ofs−, which must have at least one node because of the sum
rule Eq. (3.31): individual replicas cross thex–axis in different places, with different
sign (from positive to negative or conversely), and some replicas have more than one
crossing. It is interesting to observe that the “neck” in theuncertainty ons− around
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Figure 5.1: From top to bottom, the strange C-even and C-odd combinations s+(x,Q2
0),

s−(x,Q2
0) PDFs, plotted at the initial scaleQ2

0 = 2 GeV2 versusx on a on a log (left) or lin-
ear(right) scale, computed from the NNPDF1.2 set ofNrep = 1000 replicas. The NNPDF1.2
result is compared to the MSTW08 [43] and CTEQ6.6 [42] globalfits. Fors− some of the
results from obtained the CTEQ6.5s strangeness series [62]are also shown.
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Figure 5.2:Same as Fig. 5.1 with stranges(x,Q2
0) (top) and anti–strangēs(x,Q2

0) (bottom)
PDFs plotted at the initial scaleQ2

0 = 2 GeV2.
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Figure 5.3:A set of randomly chosenNrep = 25 replicas of the strange PDFss+(x,Q2
0)

(left), s−(x,Q2
0) (right) out of the full set of Fig. 5.1, and the PDFs computed from them.

x ≈ 0.1 corresponds to the value ofx at which the crossing is most likely to occur.
The role played by the valence sum rule Eq. (3.31) in determined these features of
the strangeness asymmetrys− can be elucidated by repeating the fit without imposing
it. The results, displayed in Fig. 5.4, show that, even without the sum rule constraint,
many replicas still cross thex–axis.
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out of the full set of Fig. 5.1, and the PDFs computed from them. Here sum rule Eq. (3.31) is
not imposed during the fitting procedure. Both small–x (left) and large–x (right) regions are
shown.
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Figure 5.5:xs+(x,Q2
0) (top),xs−(x,Q2

0) (bottom) PDFs combinations (left) and their abso-
lute uncertainties (right), plotted at the input scaleQ2

0 = 2 GeV2 versusx, computed from
the NNPDF1.2 set ofNrep = 1000 replicas. The NNPDF2.0 [71], NNPDF1.2 [70] and
NNPDF1.0 [68] distributions and their absolute errors are compared.

In the NNPDF2.0 analysis, the Drell-Yan data have been addedin the fit. They provide
a strong constraint to the valence–type PDFs, as it was shownin Chap. 4. On the other
hand, the new parton distributions remain consistent with those determined in the
previous analysis. The same holds for thes±, as it is shown in Fig. 5.5.
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Figure 5.6:Probability distribution ofKS (left) andRS (right) atQ2 = 20 GeV2 computed
from the reference set ofNrep = 1000 NNPDF1.2 PDF replicas. The region filled in black
corresponds to the central 68% confidence interval,KS

(
Q2 = 20GeV2

)
= 0.71+0.19

−0.31
stat

andRS

(
Q2 = 20GeV2

)
= 0.006 ± 0.045stat .

This might have a strong impact in all analyses presented in Ref. [70]. For this reason,
in what follows, I refer to the NNPDF1.2 results and, when available, I show how they
are modified by using the NNPDF2.0 parton set as an input distribution.

5.1.1 Implications for LHC observables

The main interesting features of the strange distributionsfor phenomenological appli-
cations are the momentum fractions, defined as

[
S±] (Q2) ≡

∫ 1

0

dxx s±(x,Q2) , (5.5)

with similar definitions for moments of other PDF combinations, and in particular
their ratio to the light sea and the light valence momentum fractions:

KS(Q
2) ≡

∫ 1

0
dx x s+

(
x,Q2

)
∫ 1

0 dx x
(
ū (x,Q2) + d̄ (x,Q2)

) =
[S+][
Ū + D̄

] , (5.6)

RS(Q
2) ≡ 2

∫ 1

0
dxxs−(x,Q2)

∫ 1

0 dxx (u−(x,Q2) + d−(x,Q2))
= 2

[S−]

[U− +D−]
. (5.7)

In parton fits where the strange content of the proton is determined by flavor assump-
tions, these quantities are assumed to be fixed at the starting scale(KS(Q

2
0) ≈ 0.5,

RS(Q
2
0) = 0).
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The value and uncertainty on these quantities can be determined from the NNPDF1.2
set by performing averages over PDFs replicas. The probability distribution ofKS at
Q2 = 20 GeV2 is shown in Fig. 5.6, and turns out to be quite far from Gaussian. This
is not unexpected, given that the denominator in Eq. (5.6) can assume rather small val-
ues. Therefore, we compute the 1σ uncertainty as a central 68% confidence integral,
namely requiring the two outer tails of the probability distribution (lighter blue region
in Fig. 5.6) to correspond to 16% probability each, with the central value still given
by the average. The median of the probability distribution is equal toKmed

S = 0.59,
significantly different from the average because of the asymmetry.

In the case of the strange momentum asymmetryRS the denominator is fixed by
knowledge of the valence content of the nucleon, which is known quite accurately:
hence we expect the uncertainty to be symmetric and dominated by the uncertainty
of the numerator. Indeed, as we see in Fig. 5.6 the probability distribution forRS

turns out to be approximately Gaussian so that the uncertainty computed from its
central 68% confidence essentially coincides with the standard deviation of the distri-
bution, while its central value and uncertainty are essentially proportional to those of
the strangeness asymmetry[S−].

In Ref. [71] the addition of fixed–target Drell–Yan data leadto significantly stricter
constraints on the shape of the strange distributionss±(x), as it is shown in Fig. 5.5:
the new determination ofs+ and especiallys− at large–x have a much reduced uncer-
tainty in the NNPDF2.0 analysis. As a consequence, the strange momentum fraction
and strangeness asymmetry atQ2 = 20 GeV2 are

KS =

{
0.71+0.19

−0.31

stat ± 0.26syst (NNPDF1.2)

0.503± 0.075stat; (NNPDF2.0)
(5.8)

RS =

{
0.006± 0.045stat ± 0.010syst (NNPDF1.2)

0.019± 0.008stat (NNPDF2.0),
(5.9)

i.e. the PDF uncertainty onKS is reduced by more than a factor two, while that
on RS is reduced by a factor 5, with all results consistent within uncertainties. The
systematic uncertainty is determined by keeping into account several factors like the
effect of the heavy quark masses, which in the NNPDF1.2 analysis is included only in
the computation of the dimuon cross–section by using the Improved ZM-VFN scheme.
On top of that we considered the effect of nuclear corrections, estimated by repeating
the fit with CHORUS and NuTeV data corrected using the de Florian-Sassot [175]
and HKN07 [176] models. Finally we considered the effect of the momentum sum
rules by repeating a fit without including them. As it is show in Tab. 5.1, the effect
of any of these systematics is rather moderate, even if very conservatively estimated.
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KS (mean) RS

Reference 0.71+0.19
−0.31 (6± 45) · 10−3

ZM-VFN 0.47+0.10
−0.20 (8± 39) · 10−3

Nuclear - dFS03 0.74+0.21
−0.40 (12± 48) · 10−3

Nuclear - HKN07 0.68+0.24
−0.29 (0± 40) · 10−3

LO 0.61+0.33
−0.22 (1± 38) · 10−3

No strange SR 0.62+0.20
−0.21 (17± 32) · 10−3

Table 5.1:The strange relative total and valence momentum fractionsKS andRS , Eqs. (5.6,
5.7), at the scaleQ2 = 20 GeV2. The first row gives the value computed from the reference
NNPDF1.2 set ofNrep = 1000 replicas, while the other rows give results from sets ofNrep =
100 replicas each obtained from alternative fits discussed in text. All uncertainties are 1σ or
68% central confidence intervals.

Moreover even in a fit in which the sum rule Eq. (3.31) is not imposed the result
changes very little. In the NNPDF2.0 analysis we have made noattempt to provide a
new determination of systematic theoretical uncertainties onKS andRS by assuming
that they should be similar to those determined in Ref. [70].
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Figure 5.7:Distribution ofKS atQ2 = 20 GeV2 computed from the reference set ofNrep =
1000 NNPDF1.2 (left) and NNPDF2.0 (right) PDF replicas. The central region corresponds to
the 68% confidence interval.

The distribution ofKS values for 1000 NNPDF2.0 replicas is shown on the right–hand
side of Fig. 5.7. The narrower distribution which one gets inthe NNPDF2.0 analysis
is closer to Gaussian and no difference is found between the 68% confidence level and
(symmetric) 1σ intervals. This is most likely related to the results of Chap. 4, where it
was shown that in the data region PDFs uncertainties are basically Gaussian, and that
they start deviating from the Gaussian behaviour only in theextrapolation region. The
strange distribution being much more constrained by data inthe NNPDF2.0 fit, this
might provide an explanation for what is observed in Fig. 5.7.
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Analysis Reference KS [S−] · 103
NNPDF1.2 [70] 0.71+0.19

−0.31 0.5± 8.6
NNPDF2.0 [71] 0.503± 0.075 3.3± 1.5

MSTW08(*) [43] 0.56± 0.03 1.4± 1.2
Tung:2006tb(*) [42] 0.72± 0.05 1.2± 1.2

AKP08 [174] 0.59± 0.08 1.0± 1.3

Table 5.2:The relative strange momentum fractionKS

(
Q2 = 20GeV2

)
Eq. (5.6) and the

strangeness momentum asymmetry
[
S−
] (

Q2 = 20GeV2
)

Eq. (5.5), as determined from var-
ious parton sets. All uncertainties correspond to 68% confidence levels. For the sets marked
by (*) the value for

[
S−
]
(Q2) is obtained evolving the published value toQ2

ref = 20 GeV2

through NLO perturbative evolution.

Results are summarised in Table 5.2, along with the results found using other parton
sets. The NNPDF1.2 uncertainty is much larger than that found in other fits, for the
reasons discussed above. Note that, however, all values areessentially consistent with
the simple assumptionKS = 0.5 used in older parton fits. In the same table the second
moment for the strange valence, proportional to theRS coefficient is shown. Results
when necessary are evolved to a common scale, exploiting thefact that at NLO[S−]

evolves multiplicatively. In this case, too, the NNPDF1.2 uncertainty is much larger
than that obtained in other fits: while for all other sets, including NNPDF2.0, there is
an indication that a positive value of[S−] is favoured (all results being nevertheless
compatible with zero), this indication loses its significance in our analysis due to the
very large uncertainty.

Now we look at the phenomenological implications of the NNPDF1.2 analysis, as
studied in Ref. [177]. We first studied the sensitivity of theZ/W ratio

rZW ≡ σZ/(σW+ + σW− )

to the uncertainty in the strange distribution. This observable is particularly inter-
esting since PDF uncertainties are greatly reduced when considering the ratio of two
cross-sections, and thus provides an excellent candidate for a measurement of the
LHC luminosity. However, as it was shown in Ref. [42], although the impact of the
uncertainties on theW andZ cross sections due to the strange PDF are rather small
on their own, the ratiorZW has a greater sensitivity to the strange uncertainty in the
region0.01 < x < 0.05 because PDF uncertainties do not completely cancel in the
ratio. Therefore,rZW is potentially affected by the larger uncertainty of strange PDF
found in the NNPDF1.2 analysis with respect to other parton densities determina-
tions. The NNPDF 1.2 prediction for the ratiorZW and the associated correlation1

ρ [σ(Z), σ(W±)] are given in Tab. 5.3, together with the results obtained using the

1Ref. [42] instead uses the notationcosϕ to denote the correlation between two PDFs/observables.
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NNPDF1.2 NNPDF1.0
rZW 0.0961± 0.0005 0.0965± 0.0003

ρ [σ(Z), σ(W±)] 0.976 0.994
CTEQ6.6 CTEQ6.5

rZW 0.0964± 0.0004 0.0957± 0.0002
ρ [σ(Z), σ(W±)] 0.983 0.994

Table 5.3:Comparison of the values for the ratio of the Z and W cross sections at the LHC as
well as their associated correlationρ

[
σ(Z), σ(W±)

]
, Eq. 5.10, computed with different PDF

sets. Again, all numbers shown correspond to
√
s=14 TeV.

NNPDF1.0, CTEQ6.5 and CTEQ6.6 sets. In the Hessian approach, the correlation
between the two observables considered,σ(W±) andσ(Z), is computed using the
method described in Ref. [42]. In the Monte Carlo approach, the corresponding ex-
pression is given by

ρ
[
σ(Z), σ(W±)

]
=

〈
σ(Z)σ(W±)

〉
rep

− 〈σ(Z)〉rep
〈
σ(W±)

〉
rep√

〈σ(Z)2〉rep − 〈σ(Z)〉2rep
√

〈σ(W±)2〉rep − 〈σ(W±)〉2rep
, (5.10)

where the averages are performed over theNrep replicas of the NNPDF sets. In
Fig. 5.8 we compare theσZ -σW 1σ correlation ellipses for the NNPDF1.2, NNPDF1.0,
CTEQ6.6 and CTEQ6.5 sets. We note that, despite the fact thatthe error band on
the strange parton densities is in general much larger for the NNPDF1.2 set than for
CTEQ6.6, the uncertainty on the ratiorZW is of the same size. This is a consequence
of the fact that, as previously mentioned, this ratio is mostly correlated to the strange
PDFs in a limited region of relatively smallx, where the NNPDF1.2 and CTEQ6.6
uncertainties ons+ are roughly of the same size. This might be due to the fact that
the NuTeV dimuon data, which constrains the strangeness in the two analyses, covers
precisely the kinematical range relevant forrZW . As the error on the WZ ratio is
small despite the much larger strangeness uncertainties, this is a hint for its validity as
a standard candle.

The situation could be different in the differential rapidity distribution. Indeed, while
the total cross-sections probe mostly the central rapidityregion, at forward rapidities
one might expect differences. In order to check this, in Fig.5.9 the rapidity distribution
of the ratiorZW

drZW

dy
(y) ≡ dσZ(y)/dy

dσW (y)/dy
(5.11)

is shown together with the associated PDF uncertainties. Weobserve a sizeable in-
crease in the PDF uncertainty from NNPDF1.0 to NNPDF1.2 at forward rapidities
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Figure 5.8:Comparison of theW andZ one sigma correlation ellipses at the LHC obtained
from different fits: NNPDF 1.2 (green), NNPDF 1.0 (blue), CTEQ 6.6 (red) and CTEQ 6.5
(purple).

due to the increase of the strange PDF uncertainties at small-x as compared to other
sets. However in the central region, which provides the dominant contribution torZW ,
the uncertainties of CTEQ6.6 and NNPDF1.2 turn out to be comparable, confirming
the agreement of PDF uncertainties shown in Table 5.3.

To conclude, I present another analysis carried out in Ref. [177], focused on a LHC
process which in principle could be used to measure the strange PDF, which at the
moment is poorly constrained in the regionx < 10−2 [70]. This process is theWc

associated production. The associated production of a vector boson and a charm quark
at hadronic colliders is directly sensitive to the strange sea PDF. The dominant pro-
duction channel forWc production isgq → Wc, with q a down-type quark. As in
the case of neutrino dimuon production, the down and bottom initiated contributions
are suppressed with respect to the strange one by the smallness of the corresponding
CKM matrix elements, and therefore at LO, neglecting CKM mixing, the cross section
is proportional to the strange PDF. For this reason, the associatedW and charm pro-
duction looks like a promising channel for providing a direct constraint on the strange
PDF at the energy scale ofMW , one order of magnitude above the typical energy of
the NuTeV dimuon data. For this reason, in the past it has beenproposed as a can-
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Figure 5.9:Left: the differential rapidity distribution of the ZW ratio, defined in Eq. 5.11. The
very small PDF uncertainties are not shown. Right: the relative PDF uncertainties inrZW , as a
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didate for constraining the strange PDF at the Tevatron and the LHC colliders [62].
In Ref. [177] we revisited this proposal by comparing our theNNPDF predictions
for the totalWc cross section with recent measurements at the Tevatron and giving
predictions for the LHC.

The CDF experiment has published a measurement of theWc production cross sec-
tion, obtained using∼ 1.8 fb−1 of pp collisions at

√
s = 1.96 TeV [178]. A NLO

prediction for this observable can be obtained easily usingthe MCFM [179, 180] code.
The result of the CDF collaboration measurement is

σWc(pTc > 20GeV, |ηc| < 1.5) × BR(W → lν) = 9.8± 3.2pb, (5.12)

to be compared with the NLO prediction obtained using MCFM and the NNPDF 1.2
set:

σWc(pTc > 20GeV, |ηc| < 1.5)×BR(W → lν) = 10.11±1.24(PDF)+0.74
−0.92(scale) pb,

(5.13)

where the first error is the one coming from PDF uncertaintiesand the second one is
due to the variation of the renormalisation and factorisation scales in the perturbative
computation. The expected precision of the experimental result, when extrapolated to
the full Run II dataset (∼ 6−7 fb−1), is∼ 15%, comparable to the present uncertainty
on the theoretical prediction. The theoretical uncertainty at the Tevatron is dominated
by PDF uncertainties, with a sizeable contribution from scale dependence.

In order to investigate the possibility of using this very same channel as a strangeness
constraint at the LHC, we also computed theWc cross section for the LHC assuming
a centre of mass energy of 14 TeV and standard(ν, pT ) cuts both for the charm quark
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and the leptons coming from theW decay. The result that we obtain is

σWc(pTc > 20GeV/c, |ηc| < 4.)×BR(W → lν) = 631±46(PDF)+38
−63(scale) pb . (5.14)

It shows that the uncertainty on the theoretical predictiondue to scale variations, and
thus to higher order corrections, is comparable to the uncertainty due to the strange
PDFs. The result seems to suggest that, contrarily to what isfound in Ref. [62], where
theoretical uncertainties were not considered, it might bedifficult to use this process
to constrain PDFs. Unless scale uncertainties can be reduced by higher order compu-
tations or by a better understanding of the charm mass treatment2, the theoretical error
limits the usefulness ofWc production as a constraint for the strangeness distributions.

In the comparison with other parton analyses we need to keep into account that there
are significant sources of systematics. The most relevant ofthose, especially in the
Wc analysis, is the effect of the heavy quark mass. The treatment of heavy quark
mass effects entails various ambiguities related to the prescription used to deal with
subleading terms [181]. In our case, a source of systematicsis due to the approximate
treatment of the charm mass.

5.1.2 Solving the NuTeV anomaly

The coupling which controls neutral current neutrino DIS depends on the electroweak
mixing angle, which can thus be extracted from its experimental measurement. Specif-
ically, in the parton model theθW electroweak mixing angle can be related to the
experimentally measurable Paschos-Wolfenstein ratio

RPW ≡ σ(νN → νX)− σ(ν̄N → ν̄X)

σ(νN → ℓX)− σ(ν̄N → ℓ̄X)
(5.15)

=
1

2
− sin2 θW +

[
(
[
U−
]
−
[
D−
]
) + (

[
C−
]
−
[
S−
]
)

[Q−]

1

6

(
3− 7 sin2 θW

)
]

,

where[S−] is the strange valence momentum fraction Eq. (5.5),[U−], [D−] and[C−]

the valence momentum fractions of other quark flavors, and[Q−] ≡ ([U−]+[D−])/2.

The experimental determination in Ref. [167]

sin2 θW

∣∣∣
NuTeV

= 0.2277±0.0014stat±0.0009sys = 0.2277±0.0017tot , (5.16)

is obtained using Eq. (5.15) under the assumption that for anisoscalar nucleon target
[U−] − [D−] = 0 and under the assumption of vanishing charm and strange valence

2This is discussed in Chap. 7
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[C−]=[S−]=0. With these assumptions the term in square brackets in Eq. (5.15) van-
ishes. The result Eq. (5.16) disagrees at the 3σ level with the value determined in
global precision electroweak fits, such as [182, 183]

sin2 θW

∣∣∣
EWfit

= 0.2223± 0.0003 . (5.17)

Possible explanations for this include nuclear effects, electroweak corrections, QCD
corrections, and physics beyond the standard model [168]. However, one may also
question the validity of the assumption of the vanishing of the contribution in square
brackets in Eq. (5.15). The possibility that[U−]−[D−] 6= 0 for NuTeV iron target due
to isospin violation induced by QED evolution effects was discussed in Ref. [184]: it
could easily explain about a third of the observed discrepancy.

In the NNPDF1.2 analysis, isospin symmetry is assumed, and furthermore[C−] = 0.
We are then left with the correction

δs sin
2 θW = −RS

1

6

(
3− 7 sin2 θW

)
, (5.18)

with RS defined in Eq. (5.7). Using the value ofRS Eq. (5.9), obtained at the typical
scaleQ2 = 20 GeV2 of the NuTeV data we obtain

δs sin
2 θW = −0.001± 0.011PDFs ± 0.002th, (5.19)

where the theoretical uncertainty comes from the effects discussed in the previous
section and summarised in Table 5.1, and it is not to be confused with the experimental
systematics in the NuTeV measurement Eq. (5.16).

Even neglecting these theoretical uncertainties, the additional PDF uncertainty due to
strangeness alone is thus about twice the observed discrepancy in sin2 θW. Applying
the correction Eq. (5.19) the NuTeV result becomes

sin2 θW

∣∣∣
NuTeV

= 0.2263± 0.0014stat ± 0.0009sys ± 0.0107PDFs. (5.20)

We concluded therefore that the apparent inconsistency between the NuTeV measure-
ment and the global electroweak fit disappears once the uncertainty on the strange
distribution is properly taken into account.

In the previous section, we showed how, due to the addition ofhadronic data, the deter-
mination of[S−] in the NNPDF2.0 analysis [71] is much more precise, see Eq. (5.9).
It is natural to ask what is the implication of this reduced uncertainty on the NuTeV
analysis. The results shown in Fig. 5.10 are striking: the NuTeV determination of the
Weinberg angle [171], using the values ofRS Eqs. (5.9), is compared to the result
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Figure 5.10:Determination of the Weinberg angle from the uncorrected NuTeV data [171],
with

[
S−
]

correction using NNPDF1.2 (Eq. (5.9)) and NNPDF2.0 (Eq. (5.9)) results, and
from a global electroweak fit [182]. Note that only statistical uncertainties are included in
the NNPDF2.0 correction.

of a global electroweak fit [182]. The two corrected values, unlike the uncorrected
NuTeV value, are in perfect agreement with the electroweak fit and with each oth-
ers. However, the uncertainty on the Weinberg angle with NNPDF1.2 correction is
considerably larger than the uncertainty after NNPDF2.0 correction.

5.1.3 Precise determination of |Vcs| and |Vcd|

Neutrino DIS data, and especially dimuon data, can be used toperform direct mea-
surements of electroweak parameters [185, 186]. However the potential precision of
these measurements can be spoiled by PDF uncertainties. Indeed the uncertainties on
the strange distributions are quite large, typically larger by almost one order of mag-
nitude than those found in previous global fits. In this section I show that, in spite of
the large uncertainties found in the NNPDF1.2 analysis, in Ref. [70] we provided the
most precise direct determination of the CKM matrix element|Vcs| within a single
experiment. We also provided a determination of|Vcd| with an accuracy consistent
with previous results from neutrino data. These results arepossible because PDF un-
certainties are free from parametrisation bias, thus they may be disentangled from the
uncertainty on the physical parameters.
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The CKM matrix elements [18]-[19] control the strength of the coupling of various
partons to neutrinos, as it is shown in Table 1.1. Since the CDHS studies [187], neu-
trino DIS has been used as a means to directly determine them:the parton–model
expressions for the neutrino and anti-neutrino dimuon production Eqs. (5.3, 5.5) pro-
vide two equations which relate two experimentally measurable cross sections to the
two unknowns|Vcd| and|Vcs|.

However, these equations also contain as unknowns the second moments of the light
quark PDFs (the total cross section is proportional to the second moment of the PDF).
With the assumptionS− ≈ 0 [187, 188, 189], the linear combinationF ν,c

2 − F ν̄,c
2

only depends on the|Vcd| and theu andd valence components, which are well mea-
sured by other experiments, so it can be used to determine|Vcd|. On the other hand,
the orthogonal combinationF ν,c

2 + F ν̄,c
2 depends on the|Vcs|/|Vcd| ratio, but also on

KS , as can be seen from Eq. (5.6), and thus it can only be used to determine the com-
bination|Vcs|KS . Indeed, the PDG quotes a value of|Vcd| = 0.23 ± 0.11 obtained
from the average neutrino dimuon experiments as the best current direct determina-
tion [189]. Only the bound|Vcs| ≥ 0.74 at 90% confidence level [188] was quoted
in previous PDG [190] editions, but this is now superseded bya direct determination
|Vcs| = 1.04 ± 0.06 from D decays. Of course, the values obtained from the current
global CKM fits [191, 192, 189] are much more precise than these direct determina-
tions (see Table 5.5 below).

In the NNPDF1.2 reference fit,|Vcd|, |Vcs|, and |Vcb| are each fixed to the current
PDG value [189], obtained from the global CKM unitarity fit. To extract both|Vcs|
and|Vcd| from the fit, we performed a scan over the values of|Vcs| and|Vcd| used in
the fit, holding|Vcb| fixed, but relaxing the unitarity constraint (in practice, because of
its smallness, the precise value chosen for|Vcb| is inconsequential). The best–fit value
and uncertainty for the CKM parameters are then determined in the standard way by
maximum likelihood from theχ2 profile.

Theχ2 determined from a set ofNdat data points fluctuates, with a standard deviation
equal toσχ2 =

√
2Ndat. In order to determine theχ2 profile as the underlying pa-

rameters are varied, these fluctuations must be kept under control. Within our Monte
Carlo approach, this could be done by using the same set of data replicas each time
theχ2 is recomputed with different values of the underlying parameters. This might
however bias the result in a random way depending on the particular set of replicas
which has been chosen in the first place. We prefer thus to varyrandomly the set of
replicas which is used for different parameter values: fluctuations are then kept under
control by using a sufficiently large set of replicas, given the fluctuation of theχ2

computed from a replica average has a standard deviation equal toσχ2/
√
Nrep. Since

only dimuon data are sensitive to the CKM matrix elements, wecan determine their
values from the dependence of theχ2 of the fit to these data only, rather than for that



188 Chapter 5. Application of the NNPDF method to phenomenology

 52

 54

 56

 58

 60

 62

 0.8  0.85  0.9  0.95  1  1.05  1.1

χ2

|Vcs|

NNPDF1.2, Nrep = 500, |Vcd|=0.2256

NuTeV Dimuon
Parabolic fit (5 points)
Parabolic fit (3 points)

Figure 5.11:Theχ2 of the NuTeV dimuon data as a function of|Vcs| when|Vcd| is kept fixed
at its best unitarity fit value. The solid line is the parabolic fit from which the central value and
1σ uncertainty Eq. (5.21); the dashed curve is a parabolic fit tothe central and two outer points
only.

of the fit to the global dataset. Given that in the NNPDF1.2 analysis [70], 84 dimuon
data points are included, a set ofNrep = 500 replicas is sufficient to guarantee that
point-by-point fluctuations are smaller than∆χ2 = 1.

First, we varied independently each of the two CKM matrix elements, keeping the
other fixed at its central value in the CKM unitarity fit. Theχ2 profile is computed
for five equally spaced values of the parameter which is beingvaried. The values have
been chosen on the basis of a preliminary exploration of the space of parameters based
on fits with a small number of replicas; they are displayed in Fig. 5.13. The ensuing
χ2 profile is displayed in Fig. 5.11 for|Vcs| and in Fig. 5.12 for|Vcd|. We observe
well-defined minima in both cases. A parabolic fit leads to

|Vcs| = 0.93± 0.06, (5.21)

|Vcd| = 0.248± 0.012, (5.22)

where the 1σ uncertainty is obtained from the condition∆χ2 = 1. The fit is quite
stable upon the choice of different subsets of the five available points: if it is repeated
by only retaining the central and two outer points neither the central values nor the
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Figure 5.12:Theχ2 of the NuTeV dimuon data as a function of|Vcd| when|Vcs| is kept fixed
at its best unitarity fit value. The solid line is the parabolic fit from which the central value and
1σ uncertainty Eq. (5.22); the dashed curve is a parabolic fit tothe central and two outer points
only.

uncertainties Eqs. (5.21, 5.22) vary significantly. This confirms that the number of
replicas used to compute theχ2 is sufficiently large for the result not to be biased by
statistical fluctuations. Both fits are shown in Figs. 5.11-5.12.

This shows that either CKM matrix element can be determined from our data, with
comparable uncertainty, by keeping the other fixed. We can thus perform a simultane-
ous determination of both these CKM matrix elements. In order to improve the accu-
racy of this determination, we compute theχ2 at four more points in the (|Vcd|, |Vcs|)
plane, denoted by squares in Fig. 5.13. Theχ2 in these additional points is computed
from a smaller set ofNrep = 100 replicas. The result of the combined fit is then

|Vcs| = 0.96± 0.05, (5.23)

|Vcd| = 0.244± 0.012. (5.24)

The uncertainties turn out to be almost identical to the diagonal uncertainties, and the
correlation coefficient is relatively smallρ = 0.21, reflected in a moderate shift in
central values in comparison to the separate fits Eqs. (5.21-5.22). The location of the
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Figure 5.13:The grid of points used in the determination of the CKM matrixelements|Vcs|
and|Vcd|. Open circles denotes points used for the determination of|Vcd| Eq. (5.22), and full
circles points used for the determination of|Vcs| Eq. (5.21). All points are used in the joint
determination Eq. (5.24).

|Vcd| |Vcs|
Statistical ±0.012 ±0.05

Mass effects ±0.007 ±0.02
Higher order QCD ±0.010 ±0.03
Nuclear corrections ±0.008 ±0.03

Total systematic uncertainty ±0.014 ±0.05

Total uncertainty ±0.019 ±0.07

Table 5.4:Summary of statistical and systematic uncertainties in thepresent determination of
|Vcs| and|Vcd|.

best-fit point and 1σ (∆χ2 = 1) ellipse in the (|Vcd|, |Vcs|) plane for the best-fitχ2

paraboloid is shown in Fig. 5.14.

This determination Eq. (5.24) is affected by the same systematics that we examined
in the previous section, namely, higher order QCD corrections, treatment of heavy
quark effects and modeling of nuclear corrections. In orderto assess their impact in
the CKM element determination, we have repeated the determination of each of the
two parameters as the other is kept fixed, Eqs. (5.21, 5.22), by recomputing theχ2 for
a smaller set ofNrep = 100 replicas along the points denoted as circles in Fig. 5.13,
with each of these three effects varied in turn. We then take the shift in central value as
an estimate of the corresponding uncertainty. The results are summarised in Table 5.4.
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Figure 5.14:Location of the best-fit point and 1σ (statistical∆χ2 = 1 uncertainty) ellipse
in the (|Vcd|, |Vcs|) plane for the best-fitχ2 paraboloid obtained from theχ2 computed at the
points displayed in Fig. 5.13. The best unitarity fit result [189] is also shown for comparison.

Putting everything together, we found

|Vcs| = 0.96± 0.07tot , (5.25)

|Vcd| = 0.244± 0.019tot. (5.26)

In Table 5.5 we compare the final results Eqs. (5.25, 5.26) with the best CKM unitarity
fit results and with other direct determinations. The determination of |Vcd| is consis-
tent with other direct determinations, and of comparable accuracy, though one should
bear in mind that previous determinations from dimuon data were based on fits with a
fixed functional form, and thus subject to potentially largesystematics bias. Despite
these increased uncertainties, we find that, perhaps surprisingly, the dimuon data are
sufficient to determine|Vcs| = 0.96 ± 0.07tot. This is one order of magnitude more
precise than any other direct determination from neutrino deep-inelastic scattering,
and is comparable to the current PDG best average of direct determinations fromD
meson decays. It would be interesting to repeat the analysisafter the inclusion of the
Drell-Yan and jet data, i.e. by using the NNPDF2.0 fit. This has not been done yet but
is going to be performed in the near future.
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Analysis Description Reference |Vcs|
NNPDF1.2 Direct determination from global PDF analysis [70] 0.96± 0.07tot

CDHS LO determination fromνN → µ+µ−X [187] ≥ 0.59 (90% C.L.)
CCFR NLO determination fromνN → µ+µ−X [87, 188] ≥ 0.74 (90% C.L.)
PDG08 Avg of determinations fromD decays [189] 1.04± 0.06
Hocker Avg of determinations fromνN → µ+µ−X [193] 1.04± 0.16

DELPHI Direct measurement fromW+ → cs̄ decays [194] 0.94+0.32
−0.26 ± 0.13

LEP (avg) Direct measurement fromW+ → cs̄ decays [195] 0.95± 0.08
PDG08 CKM unitarity fit [189] 0.97334 ± 0.00023

Analysis Description Reference |Vcd|
NNPDF1.2 Direct determination from global PDF analysis [70] 0.244 ± 0.019tot

CDHS LO determination fromνN → µ+µ−X [187] 0.24± 0.03

CCFR NLO determination fromνN → µ+µ−X [188] 0.232+0.017
−0.019

PDG08 Avg of direct determinations fromνN → µ+µ−X [189] 0.230± 0.011
PDG08 Avg of determinations fromD → K/πlν decays [189] 0.218± 0.023
PDG08 CKM unitarity fit [189] 0.2256 ± 0.0010

Table 5.5:Comparison of the present determination of the CKM matrix elements|Vcs| (upper
table) and|Vcd| (lower table) with other available direct measurements, averages and CKM
constrained fits.

5.2 Prediction for LHC standard Candle

As for several relevant processes at the LHC the uncertainties coming from Parton
Distribution Functions (PDFs) and from the strong couplingconstantαs (MZ) are the
dominant ones, it is important to have a reliable estimate oftheir uncertainties and to
use a correct prescription to combine them, keeping into account the fact that PDFs,
especially the gluon, andαs are strongly correlated. In particular, when performing
a comparison between predictions evaluated with differentPDFs sets, it is desirable
to know how much of the discrepancy is due to the difference inαs and how much
instead is due to the uncertainty on PDFs.

In this section the NNPDF predictions for some of the so–called standard candle pro-
cesses at the LHC are presented. They are compared to the results of the other two
global analyses, MSTW2008 and CTEQ6.6. For the comparison Iconsistently use a
common value ofαs. Then the dependence of the NNPDF2.0 global set of partons
upon the central value ofαs is investigated and the correlation between the gluon
PDF and the strong coupling constant is evaluated. Finally Idiscuss the combination
of PDF andαs uncertainty.
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5.2.1 NNPDF predictions for LHC standard candles

Schematically, the measured cross section for a processX is given by

σX =
NX

ǫXL , (5.27)

whereNX is the number of observed events generated by the processX , ǫX is the
experimental efficiency andL is the integrated luminosity. The latter measures the
beam intensity and depends upon several factors, like the bunch sizes, the crossing
angles between beams, the density of the beams and so on. The measurement of the
integrated luminosity is needed and its accuracy influencesall predictions. There are
several ways for measuring it directly from beam parameters. A good accuracy of
the direct measurements requires sophisticated techniques and depends on the details
of the detector. Another way for measuring the luminosity isto perform an indirect
measurement. Inverting the above equation one has

L =
NY

ǫY σY
. (5.28)

If Y is some well–known process, both from the experimental and theoretical points
of view, one can infer the luminosity from the measured number of events, the ex-
perimental efficiency and the theoretical predictionσY . In this measurement several
factors are relevant: the understanding of the detector andof the background contam-
ination, and the accuracy of the theoretical prediction.

These processes are the so–called standard candles. Their measurements might also
be used to check the theoretical framework, like factorisation and DGLAP evolution
equations. Two typical standard candles are the productionof theZ andW bosons,
for which there are realistic prospects of experimental andtheoretical accuracy at a
few % level. Most of the theoretical uncertainty due to the error on the PDFs. Indeed,
the theoretical uncertainty due to the scale variation inσ(Z) is about 1%, while the
PDF uncertainty is about 2%. In Refs. [43, 196], a study of thecorrelatedZ andW±

production cross section has been performed with the MSTW input PDFs, and the
error ellipses show that the total 1σ uncertainty for the NNLO prediction is about 4%.
Another process which has been proposed as a candidate to measure the luminosity
is the totaltt̄ cross section,σ (tt̄). Several recent studies [42, 197, 198] motivated
such proposal. For this process the PDF uncertainty is only slightly larger than the
scale variation uncertainty associated with higher ordersin perturbation theory, which
is about 3%. Finally it is important to provide an estimate ofthe PDF uncertainty on
the Higgs production, even if in that case the uncertainty due to the scale variation
is much more significant than the uncertainty due to the PDFs.On the other hand,
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given that the main contribution to the Higgs production at the LHC comes from the
gluon–gluon fusion, the uncertainty onαs sizeably affects the total uncertainty.
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Figure 5.15:Comparison of predictions for LHC observables for NNPDF2.0, MSTW08 and
CTEQ6.6 sets for the LHC at centre of mass energy of 7 TeV.

In Fig. 5.15 and in Table 5.6 predictions for the observablesmentioned above are com-
pared from the three global PDF fits: NNPDF2.0 [71], MSTW08 [43] and CTEQ6.6 [42].
The observables are computed at a centre–of–mass energy of 7TeV, like in the early
LHC runs by using the public next–to–leading order MCFM code[179]. For CTEQ
and MSTW we show results both at the default value ofαs and for a common value
αs (MZ) = 0.119 in order to disentangle the discrepancy due to the use of a differ-
entαs reference value and the discrepancy due to the PDFs. In orderto produce the
CTEQ6.6 and MSTW08 predictions withαs = 0.119, the sets from Refs. [199, 200]
have been used. We also assumed that the PDF uncertainty for these two PDF sets does
not depend in a statistically significant way on the value ofαs when switching from
the default to the common value ofαs (which in both cases differ byδαs = 0.001).

It is clear that using a common value of the strong coupling improves the agreement
between global PDF sets. If predictions withαs = 0.119 are compared, the three
global PDF sets are in reasonable agreement both in central values and in uncertainties.
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σ(W+)Br
(

W+ → l+νl
)

[nb] σ(Z0)Br
(

Z0 → l+l−
)

[nb]

NNPDF2.0 5.84 ± 0.14 0.91± 0.02
CTEQ6.6 -αs = 0.118 4.10 ± 0.09 0.94± 0.02
CTEQ6.6 -αs = 0.119 4.11 ± 0.09 0.95± 0.02
MSTW08 -αs = 0.119 4.16 ± 0.08 0.94± 0.02
MSTW08 -αs = 0.120 5.95 ± 0.11 4.19± 0.08

σ(tt̄) [pb] σ(H,mH = 120GeV) [pb]

NNPDF2.0 168.1± 7.5 11.59± 0.22
CTEQ6.6 -αs = 0.118 156.0± 6.7 10.92± 0.20
CTEQ6.6 -αs = 0.119 160.1± 6.7 11.07± 0.20
MSTW08 -αs = 0.119 164.4± 4.9 11.48± 0.18
MSTW08 -αs = 0.120 168.1± 4.9 11.69± 0.18

Table 5.6:Cross sections forW+, Z, tt̄ and Higgs production at the LHC at
√
s = 7 TeV and

the associated PDF uncertainties. All quantities have beencomputed at NLO using MCFM for
the NNPDF2.0, CTEQ6.6 and MSTW08 PDF sets. All uncertainties shown are 1σ level. See
Fig. 5.15 for the graphical representation of the results ofthis table.
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Figure 5.16:Parton–parton luminosities Eq. (5.29) in the various partonic channels, computed
from the NNPDF2.0 set at the LHC for

√
s = 7 (top left). Relative PDF uncertainties on

parton–parton luminosities Eq. (5.29) for the NNPDF2.0, CTEQ6.6 and MSTW2008 PDF sets,
as function of the mass of the produced heavy objectMX at the LHC for 7 TeV. In a clockwise
sense, the gluon-gluon luminosity, the gluon-quark luminosity and the quark-quark luminosity
are shown.

To understand the comparable uncertainty between different predictions, it is useful to
look at theqq, qg andgg parton fluxes, defined as
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Each of them is relevant for the considered processes, for instanceΦqq is mostly rel-
evant for theW± andZ production, whileΦgg is more relevant for thett̄ and light
Higgs production. In Fig. 5.16 these quantities are evaluated with the NNPDF2.0 par-
ton set. In the same figure, the relative uncertainty is compared to the uncertainty
of the parton fluxes evaluated with the CTEQ6.6 and the MSTW08parton sets. The
comparable uncertainty is the origin of the comparable uncertainty of the predictions
for the considered standard candles.

To understand the remaining differences in central values between PDF sets, one has
to keep into account that a different treatment of the heavy quark masses is used, as
it is explained in Chap. 3. For deeper investigations a detailed benchmarking on the
lines of the HERA-LHC benchmarks [101] would be required.

5.2.2 Determination of αs

Even though the strong coupling can be determined by a partonfit [43], its most
accurate determination is obtained by combining results from many high–energy pro-
cesses, most of which do not depend on PDFs at all. A recent combined determina-
tion [12] is

αs(M
2
Z) = 0.1184± 0.0007, (5.30)

while the current average in the PDG [109] has a rather more conservative assessment
of the 1σ uncertainty:

αs(M
2
Z) = 0.1176± 0.002. (5.31)

The PDG world average is dominated by NNLO results, with the NLO results included
carrying little weight.

On the other hand, various parton fitting groups use different values ofαs. Specifi-
cally, for the PDF sets that I am going to include in the following analysis the reference
values are

αs(M
2
Z) = 0.118, for CTEQ6.6,

αs(M
2
Z) = 0.119, for NNPDF2.0, (5.32)

αs(M
2
Z) = 0.12018, forMSTW08.

However, in recent publications, sets of partons with varyingαs have been presented
by the fitting collaborations. Specifically CTEQ [42] has released, on top of the set
evaluated with the central value ofαs reported above, four more sets withαs =
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0.116, 0.117, 0.119, 0.120. However for these sets only the best–fit set is provided
without the error sets. In the CTEQ analysesαs is taken as an external parameter
which is fixed before starting the fit.

The MSTW collaboration has performed a simultaneous determination of PDFs and
αs [199], which is treated as a parameter of the fit and whose fitted value is the one
reported in Eq. (5.33). This set may be used for the determination of the correlation
betweenαs and both the central value and the uncertainties of PDFs. Thevalue ofαs

found in the fit must be used. On top of that, MSTW has released sets of PDFs with
αs taken as a external parameters for twenty values ofαs varied in steps of 0.001 for
fromαs = 0.110 up toαs = 0.130.

In the NNPDF2.0 analysis,αs is taken as an external parameter. In order to study
the dependence of the results on the choice ofαs(M

2
Z), the fit withαs varied by one

and two standard deviations about this value is performed, by repeating the fit and
producing PDFs sets of 100 replicas for each central value ofαs from 0.114 to 0.124
in steps of 0.001. The same was done in the previous NNPDF1.0 and NNPDF1.2
analysis: the dependence of PDFs onαs was found [71, 156] to be noticeable but
weak, so much so that whenαs was varied by∆αs = ±0.002 most PDFs were found
to be statistically indistinguishable from those obtainedwith αs fixed to its central
value (i.e. to be at a distanced ≈ 1 from them). The gluon (and to a lesser extent the
singlet PDF) was found to change in a statistically significant way, but still within its
uncertainty band whenαs was varied in this range.

The dependence of NNPDF2.0 PDFs onαs is shown in Figs. 5.17-5.18, where the
ratio of the fourαs PDF sets to the central set are shown for all PDFs except the
total strangenesss+ which is found not to vary significantly. All PDFs are still within
the central uncertainty band when∆αs = ±0.002. However, there appears to be
now a greater sensitivity toαs. Firstly, now not only the gluon but also the triplet,
singlet and valence, whenαs is varied in the range∆αs = ±0.002, move close to
the edge of the 1σ range for the central PDF. This corresponds to a distanced ≈
7, well above the threshold of statistical significance, and even for the gluon it is
a somewhat larger variation than observed in NNPDF1.2. Furthermore, the triplet
appears to be as sensitive as the gluon to the value ofαs. The increased sensitivity
of quark distributions to the value ofαs is likely a consequence of the inclusion of
Drell-Yan data, which undergo large NLO corrections and arethus sensitive toαs.
This increased sensitivity with respect toαs suggests that the strong coupling could
be determined from the global PDF analysis with competitiveaccuracy, following a
procedure similar to that used to obtain the accurate determination of the CKM matrix
element|Vcs|.
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Figure 5.17:Ratios of PDFs withαs varied in the range0.115 ≤ αs ≤ 0.123 to the central
NNPDF2.0 determination, compared to the PDF uncertainty band: the singlet at small– and
large–x, the gluon at small– and large–x (from top to bottom and from left to right).

The qualitative behaviour of the PDFs with varyingαs shown might be understood
by taking into account the correlation between the parton distributions and the central
value ofαs. For instance, in a purely DIS fit, the gluon is determined by scaling vio-
lation of deep–inelastic structure functions mostly in themedium–smallx regions. In
the high–x region it is purely determined by momentum sum rules. Hence at large–x
a higher value ofαs requires a smaller value of the gluon and vice versa. This qual-
itative picture is supported by a quantitative study of the correlation betweenαs and
the gluon, or any other PDFs. As it was shown in Chap. 4, the correlation coefficient
may be evaluated as

ρ[αs(M
2
Z), f(x,Q

2)] =

〈
αs(M

2
Z)f(x,Q

2)
〉
rep

−
〈
αs(M

2
Z)
〉
rep

〈
f(x,Q2)

〉
rep

σαsσf
. (5.33)

In the above equation the distribution ofαs can be evaluated as follows. Given sets of
replicas determined with different values ofαs, it is possible to assume a distribution
of values forαs. For instance, the average over Monte Carlo replicas of a general
quantity which depends on bothαs and the PDFs,F (PDF, αs) can be computed as

〈F〉rep =
1

Nrep

Nα∑

j=1

Nα
(j)
s

rep∑

kj=1

F
(
PDF(kj ,j), α(j)

s

)
, (5.34)
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Figure 5.18:Ratios of PDFs withαs varied in the range0.115 ≤ αs ≤ 0.123 to the central
NNPDF2.0 determination, compared to the PDF uncertainty band: triplet, valence, sea asym-
metry and strange valence (from top to bottom and from left toright).

wherePDF(kj ,j) stands for thekj–th replica of the PDF fit withαs = α
(j)
s , and the

numbersNα(j)
s

rep of replicas for each value ofαs in the total sample are determined by
the probability distribution of values ofαs, with the constraint

Nrep =

Nαs∑

j=1

N
α(j)

s
rep . (5.35)

Specifically, assuming that global fit values ofαs are Gaussianly distributed, the num-
ber of replicas is given by

N
α(j)

s
rep ∝ exp


−

(
α
(j)
s − α

(0)
s

)2

2
(
δ
(68)
αs

)2


 . (5.36)

with the normalisation condition Eq. (5.35). Plugging the above equations into Eq. (5.33)
one may compute the correlation coefficient and plot it as a function ofx. In Fig. 5.19
the correlation betweenαs and the gluon determined both in the NNPDF1.2 and
NNPDF.20 analyses are plotted. The same pattern is observedin both analyses: a
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Figure 5.19: Correlation coefficient between the gluon PDF in the NNPDF1.2 (left) and
NNPDF2.0 (right) analyses. The correlations is computed according to Eqs. (5.33, 5.34)

sizeable correlation at high–x and a strong anti–correlation at medium–x, mostly due
to momentum sum rules.

5.2.3 PDFs+αs uncertainty for LHC standard candles

To conclude, in this section I present a method for combiningthe PDF+αs uncer-
tainty keeping into account their correlation. This methodis then used to evaluate the
combined uncertainties on the standard–candle processes considered in the previous
section, and to compare them with the results obtained by estimating the error as a
sum in quadrature.

A way of computing the total PDF+αs uncertainty when the correlation is kept into ac-
count has been proposed in Refs. [199, 156]. In the MSTW methodology of Ref. [199]
this is done by relying on a simultaneous determination of PDFs andαs. As a con-
sequence, the value and range of variation ofαs must be those obtained in this de-
termination. The procedure is the following: the total upper and lower (generally
asymmetric) uncertainties on an observableF are determined as

(∆F )PDF+αs
+ = max

αs

({Fαs(S0) + (∆Fαs

PDF)+})− Fα0
s(S0) (5.37)

(∆F )PDF+αs
− = Fα0

s(S0)−min
αs

({Fαs(S0)− (∆Fαs

PDF)−} , )

whereFαs(S0) is the observable computed using the central PDF setS0 and the
valueαs of the strong coupling,(∆Fαs

PDF)± is the PDF uncertainty on the observable
for given fixed value ofαs, as determined from the Hessian PDF eigenvectors [43,
199], and the maximum and minimum are determined from a set offive results, each
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computed with one distinct value ofαs (central,± half confidence level,± confidence
level).

With the NNPDF methodology one is free to choose any value andrange forαs, inas-
much as the corresponding Monte Carlo PDF replicas are available. In the approach
proposed in Ref. [156] the uncertainty is simply given by thestandard deviation of the
joint distribution of PDF replicas andαs values

∆FPDF+αs = σF ≡




1

Nrep − 1

Nα∑

j=1

Nα
(j)
s

rep∑

kj=1

(F [
{
q(kj ,j)

}
]− F [

{
q0
}
])2




1/2

(5.38)

where the number of replicasNα(j)
s

rep for each valueα(j)
s of the strong coupling is

determined in the Gaussian case by Eq. (5.36). In this case, we have taken as central
value and uncertainty onαs the one given in Eq. (5.33).
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Figure 5.20:Predictions for some important LHC observables computed at7 TeV. From top
to bottom and from left to right:W+ andZ production,tt̄ production, and Higgs production in
gluon-gluon fusion formH = 120 GeV. Results are shown for different values ofαs (MZ) as
well as for the combined PDF+αs uncertainties.

The results for the uncertainty obtained in this way forW+ andZ0 production,tt̄
production and Higgs production in gluon–fusion formH = 120 GeV are shown in
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Fig. 5.20. We computed predictions for various values ofαs in order to determine the
combined PDF+αs uncertainties for these observables. The exact combined PDF+αs

uncertainty is compared to the one obtained by adding in quadrature the PDF uncer-
tainties and theαs uncertainties, in turn obtained either with fixed PDFs, or bytaking
the PDF set that corresponds to each value ofαs.

It is clear that the two methods, quadrature and exact propagation, yield essentially
identical results, confirming the results found in Ref. [156]. The effect of the correla-
tion betweenαs and PDF uncertainties is indeed quite small: as one might expect, it
is in fact smaller than the effect of the correlation betweenαs and PDF central values
shown in Fig. 5.19. Moreover PDF uncertainties are independent ofαs for any reason-
able range ofαs. For processes which depend onαs at leading order like Higgs ortt̄
production, the combined PDF+αs uncertainty is as expected sizeably larger than the
PDF uncertainty alone: for such processes, comparing predictions from different PDF
sets using a common value ofαs is mandatory to obtain a meaningful comparison.

5.3 Reweighting

The use of statistical inference to determine the probability distribution function of
derived quantities starting from some initial probabilitydensity of parton distribu-
tion functions (PDFs) was first advocated in Ref. [110]. In the original work, such
initial probability density for the PDFs,Pinit[{f}], is projected from the functional
space of all possible functional forms assumed by the partondensities into theNpar–
dimensional space of parameters characterising the chosenfunctional form. The space
of parameters is sampled by generating a Monte Carlo (MC) ensemble consisting of
Nrep random sets of parameters. The expectation values with respect to the initial
density are then computed as averages over the MC ensemble.

The method has several interesting applications dependingon thederivedquantities
that are considered. First it allows one to propagate easilythe PDF uncertainty to a
new observable without having to perform the usual error propagation that involves
the derivative of the observable with respect to the parameters. Moreover it can be
used to include new observables into an existing fit without having to perform further
minimisations.

The limitations of the method proposed in Ref. [110] are related to the generation
of the Monte Carlo ensemble. Indeed, the sampling of the parameter space is not
particularly efficient due to the presence of many flat directions, which require the
generation of very large ensembles which cannot be used for practical purposes.
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In the NNPDF approach [67, 68, 70, 71] this problem is solved by generatingNrep

MC replicas in the space of the data included into the fit, distributed according to
the probability distribution of the experimental data; theMC ensemble of PDFs are
obtained by fitting each data replica, and therefore the sampling in PDF space is deter-
mined by the data themselves. This ensemble ofNrep best-fit PDFs is the final output
of the NNPDF fits. Hence the method developed within the NNPDFcollaboration is
ideally suited for the application of the techniques based on statistical inference.

In the next sections, I first briefly describe the statisticalprinciples upon which the
reweigthing is based and then I show several examples of application of the reweight-
ing technique.

5.3.1 Bayesian reweighting

Given a NNPDF ensemble of PDFsE = {fk; k = 1, . . . , N}, the mean, the error, the
correlation of any quantity depending on the PDFs may be evaluated by computing
these statistical estimators over the set of replicas, according to the formulae reported
in Appendix C. For instance the integral in the space of functions is approximated by
the average over the ensembleE , so that the mean value of an observableO depending
on PDFs is given by

〈O〉 =

∫
O[f ]Pold(f)Df

= 1
N

N∑

k=1

O[fk] . (5.39)

Consider a set ofn new data that have not been included in the determination of the
initial probability density distribution:

{y} = y1, y2, · · · , yn.

The experimental uncertainties are summarised by thed× d experimental covariance
matrix covij defined in Eq. (2.3). Assuming that the new experiments are not corre-
lated with any of the experiments used in the determination of the initial probability
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density, the probability density distribution of{y} is given by:

P(y) =

∫
P(y|f)Pold(f)Df

= 1
N

N∑

k=1

P(y|fk), (5.40)

whereP(y|fk) is the conditional probability density distribution, often called likeli-
hood function. Assuming that uncertainties are Gaussian, the probabilitydnP (y|fk)
that the new data lie in an infinitesimal volumedny of the space of possible data given
thek-th elementfk of the ensemble of PDFs is

dnP (y|fk) = P(y|fk)dny = (2π)−n/2(det covij)
−1/2e−

1
2χ

2(y,fk)dny. (5.41)

whereχ2(y, fk) is calculated using the new data:

χ2(y, fk) =
n∑

i,j=1

(yi − fk(xi))cov
−1
ij (yj − fk(xj)) (5.42)

The probability density for the new dataset is then obtainedby averaging over replicas
according to Eq. (5.40):

dnP (y) = P(y)dny = 1
N

N∑

k=1

P(y|fk)dny. (5.43)

Similarly the probability density for theχ2 to the new dataset may be evaluated:

dP (χ2|fk) = P(χ2|fk)dχ2 = 2−n/2(Γ(n/2))−1(χ2(y, fk))
n/2−1e−

1
2
χ2(y,fk)dχ2, (5.44)

whereP(χ2|fk) is now theχ2 distribution. This may be readily derived from Eq. (5.41)
by diagonalising the covariance matrix and rescaling the data to a set{Y } of indepen-
dent Gaussian variables each with unit variance. Thendny = (detσij)

1/2dnY , and
χ2 =

∑n
i=1 Y

2
i . Choosingn-dimensional spherical co-ordinates in the space of data

(with
√
χ2 as the radial co-ordinate), we may writednY = An

1
2 (χ

2)n/2−1dχ2dnΩ,
wheredn−1Ω is the measure on the sphere andAn = 2πn/2(Γ(n/2))−1 is the area of
the unit sphere inn-dimensions. The probability Eq. (5.41) may thus be written

dnP (y|fk) = (2π)−n/2e−
1
2χ

2(y,fk)dnY (5.45)

= 2−n/2(Γ(n/2))−1(χ2(y, fk))
n/2−1e−

1
2χ

2(y,fk)dχ2dn−1Ω.
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in agreement with Eq. (5.44) provided

dnP (y|fk) = dP (χ2|fk)dn−1Ω. (5.46)

Again the probability densityP(χ2) for the χ2 of the new dataset is obtained by
averaging over replicas:

dP (χ2) = P(χ2)dχ2 = 1
N

N∑

k=1

P(χ2|fk)dχ2. (5.47)

so combining Eq. (5.43) and Eq. (5.47)

dnP (y) = dP (χ2)dn−1Ω, (5.48)

sincedn−1Ω is independent of the choice of replica, and may thus be takenout of the
sum.

If the new data are simply consistent with the old data as summarised in the probability
densityPold(f) the probability densityP(χ2|f) should be aχ2 distribution forn
degrees of freedom: forn large this is peaked atn, with width

√
2n. To test this one

might evaluate
〈
χ2
〉

and the standard deviationσχ2 . A value of 1n
〈
χ2
〉

much greater
than one suggests that the new data are inconsistent with theold, while if the value
of σχ2

new
is much larger than

√
n, the new data should be useful to constrain PDFs.

Smaller values mean that the errors on the new data are probably overestimated.

Using the formalism of statistical inference, we can updatethe old probability density
Pold(f) by taking into account the new data to give an improved probability density
Pnew(f). The new probability density is the conditional probability for {f} taking
into account the new data{y}, i.e. Pnew(f) = P(f |y) = P(f |χ2). It may thus be
determined from the probability densitiesP(y|f) or P(χ2|f) using Bayes’ theorem,
which relates the conditional probabilitiesP (A|B) andP (B|A):

P (A|B)P (B) = P (B|A)P (A), (5.49)

whereP (A) andP (B) are the unconditional probabilities ofA andB. Note that
Eq. (5.49) relates probabilities, not probability densities: to apply it to probability
densities needs some care with regard to measure factors. Thus for example

(P(f |χ2)Df)(P(χ2)dχ2) = (P(χ2|f)dχ2)(P(f)Df). (5.50)

Note that the marginalization Eq. (5.47) follows directly on integration overf , since if
P(f |χ2) is correctly normalized,

∫
P(f |χ2)Df = 1. Now, cancelling thedχ2 from
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either side of Eq. (5.50) (since this is just a pre-assigned interval),

P(f |χ2)Df =
P(χ2|f)
P(χ2)

P(f)Df. (5.51)

Multiplying on both sides by some observableO[f ] and integrating over the PDFs,

〈O〉new =

∫
O[f ]P(f |χ2)Df,

=

∫
O[f ]

P(χ2|f)
P(χ2)

P(f)Df,

=
1

N

N∑

k=1

P(χ2|fk)
P(χ2)

O[fk] , (5.52)

where in the last line we used Eq. (5.39). It follows that we can sample the probability
densityP(f |χ2) using the replicasfk, but reweighted:

〈O〉new = 1
N

N∑

k=1

wk O[fk] , (5.53)

where

wk =
P(χ2|fk)
P(χ2)

=
P (fk|χ2)

P (fk)
. (5.54)

the second equality coming from another application of Bayes’ theorem. Importance
sampling of the old probability distribution Eq. (5.39) guarantees that all theP (fk)

are equal (to1/N ): the weightswk are thus the relative probabilities of the replicas
given theχ2 to the new data. Combining Eq. (5.54) and Eq. (5.44), and noting that
the densityP(χ2) can be taken out of the sum,

wk = Nχ(χ
2(y, fk))

n/2−1e−
1
2χ

2(y,fk), (5.55)

whereNχ is a normalization factor. Applying Eq. (5.52) to the unit operator,〈1〉new =

1, so
∑N

k=1 wk = N , and

Nχ = N
/ N∑

k=1

(χ2(y, fk))
n/2−1e−

1
2χ

2(y,fk), (5.56)

consistent with Eq. (5.54) and Eq. (5.47).
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One can therefore re–evaluate the average, the standard deviation and the correlation
for all uncertainties using the new probability density instead of the old one by simply
replacing the average in Eq. (5.39) with the weighted average in Eq. (5.53). The same
can be done for the evaluation of the uncertainties and correlations. In particular if
O is one of the PDFs, one can re–evaluate the PDFs after the inclusion of the new
data and use the re–weighted PDF set into the analysis ratherthan the PDF set used to
evaluate the weights.

A useful measure of the effectiveness of the reweighting is

Neff ≡ (
∑N

k=1 wk)
2

∑N
k=1 w

2
k

=
N2

∑N
k=1 w

2
k

: (5.57)

this gives the number of replicas left after the reweighting. Clearly,0 < Neff < N .
If Neff becomes too low, the reweighting procedure will no longer bereliable, either
because the new data contain a lot of information on the PDFs,necessitating a full
refitting, or because the new data are inconsistent with the old. These two cases can
be distinguished by examining theχ2 profile of the new data: if there are very few
replicas with aχ2 per degree of freedom of order unity, the errors in the new dataset
have probably been underestimated.

5.3.2 Phenomenological applications

First of all, as a cross-check of the procedure, the reweighting procedure has been
tested in a well–known situation. The NNPDF2.0 reference fitincludes a large number
of DIS, Drell–Yan and inclusive jet data, as it is illustrated in Chap. 4. As a test of
the reweighting procedure within the NNPDF approach, we compare the NNPDF2.0
reference fit to the one obtained by fitting only the DIS and theDrell–Yan data (which
we call it NNPDF2.0_DYP+DIS) and including inclusive jet data through Bayesian
reweighting. Given the consistency of the inclusive jet data with the DIS and Drell–
Yan data included in the NNPDF2.0 analysis [71], we expect the refitting and the
reweigthing to provide statistically equivalent results.

Results are shown in Fig. 5.21. The re–weighted PDFs reproduce exactly the parton
shapes obtained in the NNPDF2.0 reference fit. In particularthe error of the medium
and large–x gluon is reduced by the inclusion of the inclusive jet data, while the other
PDFs remain more or less the same. In Fig. 5.22 the distribution of theχ2 per degree
of freedom,χ2,(k)

jets /Ndat, over the ensemble of 1000 replicas and the corresponding
distribution of weights are displayed. We see that the distribution of theχ2 is peaked
between 1 and 2 and it is pretty narrow about that region. Consequently the weights
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are mostly concentrated about1/Nrep. The computation of the effective number of
replicas (Neff = 443 in this case) confirms what we can infer from Fig. 5.22, i.e. that
half of the replicas constribute to the redefinition of the new probability density.

Once the method of Bayesian reweighting has been cross–checked, it can be used
in several contexts. One possibility is the study of the potential impact of the Teva-
tron lepton asymmetry data at Run II. This analysis is interesting in several respects.
First of all, it allows us to study the compatibility betweentheW lepton asymmetry
data and the other data included into the NNPDF2.0 analysis,namely the CDFW
asymmetry data [95] and the DIS structure functions data andthe low–mass Drell–
Yan data. These data are found to be problematic within otherglobal analyses, see
for instance Ref. [201]. Secondly, it enables us to assess the impact of these data in
further constraining the parton densities. In proton–antiproton scattering,W± bosons
are produced mainly by the annihilation of a u(d) quarks in the proton with thed̄(ū)
in the anti–proton. Any asymmetry in theW+ andW− rapidity distributions is the
result of a difference between theu andd distributions in the proton. Indeed theW
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charge asymmetry at the Tevatron is defined as

AW (yW ) =
dσ(W+)/dyW − dσ(W−)/dyW
dσ(W+)/dyW + dσ(W−)/dyW

∼ u(x1)d(x2)− d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)
, (5.58)

where the last equality is valid only at leading–order neglecting the sea contribu-
tions andx1,2 = MW√

S
exp(±yW ). TheW± bosons are detected through their decays

into a lνl pair. Due to the unknown longitudinal momentum of the neutrino, the bo-
son rapidityyW cannot be directly measured, unless some extra informationof the
transverse energy of the resolved lepton and on the missing energy is used on a event–
by–event basis, as in a recent CDF analysis [95]. What is typically measured, see e.g.
Refs. [146, 145, 147], is the lepton charge asymmetry which is a convolution between
theW boson production asymmetry and the parity violating asymmetry from theW
boson decay

A(ηl) =
dσ(l+)/dηl − dσ(l−)/dηl
dσ(l+)/dηl + dσ(l−)/dηl

, (5.59)

whereηl is the pseudo–rapidity of the charged lepton. If one defines the emission an-
gle of the charged lepton relative to the proton beam in theW rest frame bycos θR =

1 − 4E2
T /M

2
W , beingET the transverse energy of the charged lepton, the lepton

pseudo–rapidity and theW rapidity are related by

ηl = yW +
1

2
ln

(
1 + cos θR
1− cos θR

)
. (5.60)

Since at the edge of the phase space forcos θR ∼ ±1 the leading sea contribution̄ud̄
is enhanced relatively to the valence–valence contributions, on top of measuring the
shapes of the up and down quarks, the lepton charge asymmetryprobes the separation
into valence and sea quarks. The enhancement, and thereforethe constraint on the
separation, is bigger near the edge of the phase space, for small ET . This is one of the
reasons why in some experimental analyses [146, 147], the asymmetry is measured in
different bins ofET .

In the NNPDF analysis only theW boson asymmetry data of Ref. [95] is included.
They are implemented at next–to–leading order without relying on any K–factor ap-
proximation thanks to the FastKernel method introduced in Ref. [71]. The other
datasets are not included in the analysis due to the lack of a fast implementation.
The recent development of the APPLGRID [202] interface is likely to facilitate the
future inclusion of these data directly in our fits. However we can already study the
impact of their inclusion into the analysis through the reweighting technique. In this
analysis we consider the sets of measurements performed by the D0 collaboration and
published in Refs. [146, 145].
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In Ref. [146] a measurements of the electron charge asymmetry in pp̄ → W +X →
eν + X events at a centre–of–mass energy of 1.96 TeV using 0.75 fb−1 of data col-
lected with the D0 detector at the Run II of the Tevatron collider is presented. The
asymmetry is measured as a function of the electron pseudo–rapidityη in the interval
|ηe| < 3.2 with the following cuts

6E > 25 GeV |ηe| < 3.2 |MT | < 50 GeV.

Three sets of measurements in 12 bins of the electron pseudo–rapidity which differ
because of the different cuts imposed to the transverse energy of the electron

ET > 25 GeV (bin A) 25 GeV> ET > 35 GeV (bin B) ET > 35 GeV (bin C).

Here I only study the inclusion of the bin A data. The analysiswill be extended to
the other two bins in the near future. In Ref. [145] a measurement of the muon charge
asymmetry fromW boson decay using 0.3 fb−1 of data collected at

√
s = 1.96 GeV

between 2002 and 2004 with the D0 detector at the Tevatron collider is presented. The
measurements are performed in the|ηµ| < 2 pseudo–rapidity range and the following
cuts are applied:pT,µ > 20 GeV andMT > 40 GeV. The range inηµ constrains the
PDF in the0.005 < x < 0.3 x−region. There is a more recent set of data introduced
in Ref. [203] but the data are not public yet.

In what follows, we use the DYNNLO code [204] to compute the theoretical predic-
tions for the lepton asymmetries. The code is a parton level Monte Carlo program
designed to compute the cross–section distributions for the vector–boson colliders in
the proton–proton and proton–antiproton collisions. It calculates exclusive processes
and it enables the user to implement the same cuts and the sameisolation as those
implemented in the experimental analyses.

The predictions obtained with the next–to–leading order computation with DYNNLO
and several sets of PDFs are compared in Fig. 5.23 for the considered datasets. The
error bands refer only to the PDF errors. The latter are evaluated by runningNmem

times the DYNNLO code, once for each member of input parton distribution, where
Nmem = 44 for NLO CTEQ6.6 [41],Nmem = 40 for the NLO MSTW08 [43] and
Nset =1000 for NNPDF20 [71]. All sets are available in the common LHAPDF
interface [137]. It is quite remarkable that, even if these data are not included into the
NNPDF2.0 fit, the prediction obtained from the NNPDF20_1000is much closer to the
experimental data than the predictions obtained with the other parton sets.

In this analysis, we first reweight one data set at the time, inorder to study the impact
of each of the two separately. In Fig. 5.24 the effect of the addition of theD0 electron
(bin A) data through reweighting into the NNPDf20 fit (prior probability). One can
see that the effect consists in a slight reduction of the error of the Singlet and the



5.3. Reweighting 211

η
0 0.5 1 1.5 2 2.5 3

)η
A

(

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

binA

NNPDF20

CTEQ66
MSTW08

>25GeV)
T

D0(E

binA

η
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

)η
A

(

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

muon

NNPDF20
CTEQ66
MSTW08
D0(muon)

muon

Figure 5.23: Prediction for the D0W electron and muon asymmetries [146, 145]
(left, electron binA:ET > 25 GeV; ; right, muonET > 20 GeV) obtained with
DYNNLO at next-to-leading order, using the NNPDF20_1000 [71], CTEQ6.6 [41]
and MSTW08 [43] parton sets. The uncertainty are the PDFs uncertainty, evaluated
according to the HEPDATA recipe for MSTW08 and CTEQ6.6 and with the Monte
Carlo prescription for the NNPDF2.0 set reported in Appendix C.

Total Strangeness PDFs in the small–x region and a more sensible reduction of the
uncertainty of the total Valence in the small and middle−x region. Instead the effect
of the addition of the muon data through re-weighting is pretty mild and it does not
produce any effect on the PDF shapes or errors, as one can see in Fig. 5.25 in the case
of the Singlet PDF.

In order to understand the difference between the two sets, in Fig. 5.26 the histogram
with the distribution ofχ2,(k)

new over the 1000 replicas and the correspondingdistribution
of weights are displayed for both sets. For these sets

Ndat,e = 12, Ndat,µ = 10,

Neff,e = 266, Neff,µ = 758.

While for the D0 electron data, the number of effective replicas reduces to a quarter
of the original set, still remaining significant, and the distribution of the weights is
pretty spread, for the D0 muon data,Neff is much bigger. However, the weights for
this dataset are distributed about10−3, according to a very narrow distribution, which
means that the reweighting does not have much effect.

In Fig. 5.27 we have evaluated the average and the standard deviation of the observ-
able before and after the re-weighting, i.e. with the old andwith the new probability
distributions respectively. We notice that in both cases the predictions get closer to
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the data, while only for the reweighting of the D0 electron data the PDF uncertainty is
substantially reduced. This confirms what we said earlier. To conclude, if we evaluate
theχ2 per degree of freedom of the experiments already included inthe NNPDF2.0
analysis before and after the addition of theD0 data through the reweighting proce-
dure, we see that none of the experiments displays a deterioration of theχ2 due to the
addition of these data. This is a sign that there is no manifest incompatibility between
these data and the other Drell–Yan, jets and DIS data included into the NNPDF2.0
analysis. More care must be adopted when we will be considering the data in separate
bins (bin B and bin C) because these data might display incompatibility and therefore
be more problematic to include.

The technique that I have applied to a set of real data, might be applied to any other
dataset or to any pseudo–dataset. The method just discussedenables one to easily
assess the potential of future experiment to further constrain the parton content of the
nucleon without relying PDFs fitting collaborations. For this reason, it is particularly
handy for external users and easily generalisable.
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Chapter 6
Processes with heavy quarks in
the initial states

As it has been discussed in Chap. 2, there are two possible ways of performing a
calculation of a high-energy process involving heavy quarks. One option is the most
straightforward from the conceptual point of view. The heavy quark mass is taken to
be of the same order of magnitude as the other hard scales involved in the process. The
heavy quark does not contribute to the proton wavefunction and can only be generated
as a massive final state. In practice the theory which is used in the massive calculation
is an effective theory withnl light quarks, where the heavy quarks are decoupled and
do not enter in the computation of the running coupling constant and in the evolution
of the PDFs. Alternatively, one may consider the heavy quarkmasses much smaller
than the other scales involved in the process and consequently ignore them. The heavy
quarks are treated as massless partons which do constitute the hadron and may appear
in the initial state.

Both schemes present several advantages and disadvantagesand can be applied in
complementary regimes depending on the relative size of theheavy quark masses. In
the massless scheme the calculation is highly simplified andpotentially large loga-
rithmsO(µ2/M2

Q) due to the collinear splitting of the initial heavy quarks and glu-
ons are consistently resummed in the heavy quark PDF. Analogously logarithms of
O(p2T,Q/M

2
Q) appear due to the heavy quark splitting in the final state and they may

be resummed in the fragmentation functions or absorbed intoa suitable definition of
inclusive heavy quark jets. In the massive scheme instead, the computation is more
complicated due to the addition of massive final states; however the kinematic descrip-
tion of the heavy quark is correctly taken into account at theleading order and can be
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coherently studied at the next–to–leading order. In the latter case, the implementation
in parton shower codes is also straightforward. The downside is that possibly large
logarithms developing both in the initial and the final states are not resummed.

To all orders in perturbation theory the two schemes are identical, but the way of
ordering the perturbative expansion is different and at a finite order the results do not
match exactly. For some processes the difference between calculations performed in
the two schemes may be very significant at the leading order, yielding to predictions
which might differ up to an order of magnitude. One of the mostfamous and glaring
example is the discrepancy observed in the inclusive Higgs production initiated byb
quarks. For this reason matching schemes based on the combination of the massless
and massive computations with the suitable subtraction of the double–counting were
proposed [46, 51, 205, 53].

In this work we critically reconsider the motivations for using schemes (massless or
improved) that allow the resummation of potentially large logarithms, by performing
a thorough analysis of their origin and relevance in variousprocesses. The first section
is devoted to a brief overview of the studies which have been performed in literature.
In the following sections we analyse in detail some representative processes that can
be treated analytically and cover a broad spectrum of possibilities. We start by consid-
ering theb quark production at DIS in both schemes. In this case the scales involved in
the process are the mass of the bottom quark, the virtuality of the intermediate vector
boson and the energy of the partonic process. Then we move to amore general case
where the masses of the produced quarks are different, as in the case of the single
top production. Finally, we consider theW boson production associated to a charm
quark. For each of the above processes we proceed as follows.We first go through
the massive calculation and determine analytically the scale associated to the collinear
emission of the heavy quarks. Then we study the associate cross–section distributions
and assess the size of the logarithms which are resummed in the evolution of the heavy
parton distribution. This allows us to carefully estimate the size of the potentially large
logarithms and therefore quantitatively assess their impact in predictions for processes
at the LHC.

6.1 Phenomenological review

In this section I give a general overview of the impact that the choice of different
heavy quark schemes has on the predicted cross sections. This topic has been broadly
discussed in literature and this section cannot provide a comprehensive review. Rather,
it aims to describe the context where the analysis which we have performed finds its
natural location and inspiration. In particular, we mention some studies performed in
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literature on the DIS production of heavy quarks, the associated production of heavy
quarks and vector or Higgs bosons and we finally mention the single top process.

The production of heavy quarks in Deep–Inelastic lepton–hadron scattering has been
extensively analysed from both the theoretical and the experimental points of view.
Calculations have been performed in the massive scheme, where the heavy quark and

t
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Figure 6.1: Leading–order diagrams for heavy quark production in the massive (a) and
massless (b) scheme. Leading order diagrams for single top production in massive (c)
and massless (d) schemes.

anti–quark appear in pairs and are produced via photon–gluon fusion, as it is shown
in Fig. 6.1 (a). The LO calculation starts atO(αs) and has been evaluated at the end
of the seventies (see for instance Ref. [206]). TheO(α2

s) corrections have been eval-
uated in the nineties [44]. The same collaboration has provided a code [207], which
integrates the heavy quark contributions to the fully differential heavy structure func-
tionsF b,c

i (x,Q2) overx andQ2 to produce rates and differential distributions relevant
for DIS charm and bottom production. We’ll make use of this code in the following
analyses. In addition, other methods to study heavy flavor production were advocated,
like the intrinsic quark approach [208] and the variable flavor number scheme [46],
whose leading–order contribution is drawn in Fig. 6.1 (b). The latter was one of
the first processes evaluated according to the so–called ACOT scheme, discussed in
Chap. 2. The main difference between the two production mechanisms which describe
the LO contribution in case of massive or massless (as well asVFNS) calculations can
be attributed to the fact that for massive heavy quark production the quark and the
anti–quark are produced in pairs, while in the other approach only one heavy quark is
produced at the leading–order. At NLO, however, these striking differences are milder
as, for instance, the gluon splitting process appears also in the massless scheme. The
experiments carried out at HERA, which have provided a wealth of information about
charm and bottom production [82], indicate that the bulk of the heavy quark structure
function in the region explored by HERA is given by gluon–initiated processes.

On the other hand in Ref. [209] the size of the logarithmic terms of(Q2/m2
Q) has been

assessed by comparing the fixed–order massive calculation at NLO to an asymptotic
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calculation which only containslogn(Q2/m2
Q) and logn(µ2/m2

Q) and terms which
survive in the limitQ2 → ∞. In this analysis it was shown that the logarithms men-
tioned above dominated the structure function, in the sensethat the ratio between the
asymptotic calculation where these logarithms are resummed to all orders and the log-
arithms included at fixed order in the massive calculation islarge, except in the narrow
threshold region wheres = Q2(1−z)/z ∼ 4m2

Q. In the same reference, to answer the

CSNBMSNEXACTOsaka Abs. 855: ZEUS 95-00

log10 x
d�=dlog 10x(n
b)

-1-1.5-2-2.5-3-3.5-4

32.521.510.5
Figure 6.2: The combined Osaka and published ZEUS-data [210] for dσ/d log10 x
(nb) for DIS production ofD∗,±-mesons. The dashed line is the NLO fixed flavor
number scheme resultFEXACT

2,c , from the program HVQDIS [207]. The dotted line
(BMSN–scheme [205]) and dashed-dotted line (CSN–scheme [211]) are based on a
variable flavor number scheme computationFVFNS

2,c . Taken from Ref. [209].

question whether these logarithms bedevil the convergenceof the perturbation theory,
a comparison was performed between the massive calculationand the variable–flavor
number calculation performed in the BMSN scheme [39]. It wasobserved that, in
spite of their dominance, these logarithms do not vitiate the convergence of the per-
turbation series so that their resummation in the heavy quark PDF is in principle not
necessary. Indeed, as it is shown in Fig. 6.2, it is actually hard to distinguish between
the two approaches except in the vicinity ofxB = 10−3, where the VFNS seems to
describe better the data.

The second class of processes that we consider is the associated production of heavy
quarks with electroweak gauge or Higgs bosons. Among the various channels which
might be exploited to search for Higgs bosons at hadron colliders, Higgs radiation
off bottom quarks is of special interest [212]. This processis the dominant Higgs-
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boson production mechanism in supersymmetric theories at largetanβ, where the
bottom–Higgs Yukawa coupling is strongly enhanced1. In a four-flavour scheme with

b

H

b̄

H

(d)

b
H

b

g

g

b

g

b̄

q̄

q

(a) (b) (c)

b

b̄
H

Figure 6.3: Leading–order diagrams for: (a),(b) inclusiveHiggs production in the
four–flavor scheme, (c) inclusive Higgs plus 1 b–jet production in the five–flavor
scheme, (d) inclusive Higgs production in the five–flavor scheme.

no b quarks in the initial state, the lowest-order QCD processesfor associatedbb̄H
production are gluon–gluon fusion, Fig. 6.3 (a), and quark–antiquark annihilation2,
Fig. 6.3 (b)

gg → bb̄H and qq̄ → bb̄H . (6.1)

As we mentioned earlier, the massive approach does not resumthe logarithmic con-
tribution of the bottom mass,(Q2/m2

b), beingQ the typical scale of the process.
However, these terms can be summed to all orders in perturbation theory by introduc-
ing bottom parton densities (the five-flavour scheme) [214].For the inclusive Higgs
production cross–section, where nob-jet is necessarily tagged in the final state, the
leading order diagram of the five–flavor calculation is drawnin Fig. 6.3 (d). The
leading order diagram of the four–flavor scheme, drawn in Fig. 6.3 (a), enters in the
five–flavor calculation only at NNLO. In the latter scheme, the incomingb partons are
given zero transverse momentum at leading order, and acquire transverse momentum
at higher orders. If on the other hand one demands that at least oneb-jet is observed
(pbT > pcutT ; |ηb| < ηcut), then the leading parton process in the five-flavour scheme
is gb → bH , drawn in Fig. 6.3 (c), and the leading order contribution ofthe four–
flavor schemes enters into the five–flavor one at NLO. Finally,if one compares the
theoretical prediction with the experimental cross–section for Higgs plus twob–jets
(pb,1T , pb,2T > pcutT ; |ηb,1|, |ηb,2| < ηcut), the two schemes include the same diagrams
at the leading–order in perturbation theory (apart from theb–initiated contributions
included only in the five–flavors scheme, which are however completely negligible).

1The parametertan β = v2/v1 is the ratio of the vacuum expectation values of the two Higgsfields
generating the masses of up- and down-type particles in supersymmetric extensions of the SM.

2The quark–antiquark annihilation is not considered in the following discussion given that it is unrelated
to the choice of the four versus five–flavor schemes and that its contribution is very small [213].
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The case of the fully–inclusive cross–section is particularly interesting. In Fig. 6.4

σLO [fb]

√S = 14 TeV

bb
_ 

 → H

gg → bb
_ 

 H

MH = 120 GeV

µY = MH

µR = µF = µ

µ/MH

10 2

10 3

10
-1

1 10

Figure 6.4: Scale variation of the LO inclusive Higgs production cross section predic-
tion for pp → bb̄H+X at the LHC in the four- and five flavour schemes. Taken from
Ref. [213].

we display the LO prediction for the totalbb̄H cross secion at the LHC in the two
schemes as a function of the renormalisation and factorisation scales [213]. Both cal-
culations exhibit a strong scale dependence. The scale dependence goes in opposite
directions in the two cases, being driven by theαs scale dependence in the four–flavor
scheme and by theb PDF in the five–flavor one. The leading order scale analysis was
confirmed by the explicit calculation of the NNLO in the massless scheme and NLO
in the massive one, even though the discrepancy is slightly reduced. From the dis-
cussion above it is clear that at least for the fully–inclusive case, a “fair" comparison
between the two schemes could only be done at NNLO for the massless and NLO for
the massive one.

In the leading–order analysis, setting the renormalisation and factorisation scales to
µ = MH , the five-flavour scheme prediction exceeds the four-flavourscheme pre-
diction by more than a factor of 5. For this reason, in Ref. [215] the massive and
massless approaches were combined by subtracting the double counting, according to
the so called simplified ACOT scheme [47]. This matching is meant to keep the best
characteristics of the two approaches. However this still does not clarify the origin of
the large discrepancy observed in Fig. 6.4. In Ref. [216] it was suggested that the cal-
culation ofbb̄ → h may overestimate the inclusive cross section, due to crude approx-
imations inherent in the kinematics, which give rise to large bottom-quark mass and
phase-space effects. However in Ref. [217] the massless calculation is performed us-
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ing the ACOT scheme which does not approximate the kinematics of the final bottom
pair and the same discrepancy is observed. The matched and the massive calculations
were then separately studied in more details in the same paper [217]. Looking at the
collinear plateau of the five–flavor matchedbb̄ → H calculation, it was argued that
the choice of the factorisation scaleµF = MH is not the best choice given that the
collinear plateau of the cross–section as a function of the collinearity |t| drops much
earlier. It was found instead that a choice such asµF = MH/4 leads to a reduced
scale dependence in both massive and massless approaches and that the discrepancy
between the four and five–flavor schemes was reduced by a factor of two, as one can
also infer from Fig. 6.4. This suggests that the scale at which the gluon splits is softer
than the scale of the hard process where the Higgs is produced. However the question
about what is the dynamical origin of that is still unanswered.

In Ref. [218] a similar process was considered at next–to–leading order: the produc-
tion of super symmetric charged Higgs boson in association with a top quark. In a
four–flavor scheme the leading order process isgg → b̄tH− while in a five–flavor
scheme the leading order process isgb → tH−. In this study, a heuristic method for
identifying the dynamical scale of the collinear splittingof the gluon into a bottom
pair was employed by analysing the distribution of the differential cross–section in
the transverse momentum and in the virtuality of the bottom quark. More recently
in Ref. [219], the NLO calculation in the four–flavor scheme has been fully carried
out and a comparison between the results obtained at NLO in the four–flavor scheme
have been compared to the NLO results in the five–flavor scheme. The result of this
comparison is shown in Fig. 6.5. One sees that, even taking the scale uncertainty
into account, the cross sections evaluated in the two schemeat NLO are barely con-
sistent; independently on the charged Higgs boson mass, thecentral predictions in
the five–flavor scheme are larger than those of the four–flavorone by approximately
40%. Recently, at the LHC Higgs working group, the same comparison was shown
by using the MSTW2008 PDF input set [43] instead of the MRST2004 one [65], and
the distance between the two predictions was slightly smaller, still remaining pretty
significant. This requires a better understanding of its origin.

Processes whose final states are theW or Z boson plus one or two heavy quarks are
also relevant at the Tevatron and the LHC. They not only provide the dominant back-
ground to the study oftt̄, single top, as well as Higgs production, but also represent
a useful benchmarks for the validation of the theoretical description of heavy quark
jets at hadron colliders. The problem of the choice of the scheme is also present for
this class of processes, since calculations may be performed in several ways and for
some observables it is convenient to match the massive and massless calculations by
adopting one of the variable flavor number schemes discussedin Chap. 2. In Table 6.1
we summarise the state of the art of these calculation indicating the scheme in which
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4FS NLO QCD

5FS NLO QCD

µ = (mb + mt + mH−)/3

√
s = 14TeV

σ (pp → tH− + X) [fb]

MH− [GeV]
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Figure 6.5: Left: Total NLO cross section forpp → tH−+X at the LHC as a function
of the Higgs mass in the four–flavor and five–flavor scheme. Central prediction and
the scale dependence forµ0/3 < µ < 3µ0, whereµ0 = (Mt + mb + MH−)/3 in
the four–flavor scheme, whileµ0 = (Mt +MH−)/5 in the five–flavor scheme. Input
PDF set MRST2004 [65]. Taken from Ref. [219].

the NLO calculation has been performed and provide some references. Each calcula-
tion corresponds to a given experimental signature indicated on the last column of the
table.

In the same class of processes one might consider the inclusiveW production and the
Wc associated production. The latter has been calculated in Ref. [227] using a three–
flavor scheme where the charm is treated as a massive final state. The NLO result is
found to be very sensitive to the choice of the factorisationand renormalisation scales
by varying them aboutMW . The authors interpreted this dependence as a sign that
this might be attributed to the fact that in a massive approach the collinear logarithms
resummed in thecPDF are neglected and they perform some analysis in order to assess
the size of these logarithms. Sincecs̄ contributes to theW production rate amounts
to 5% of the totalW rate, this process is very interesting from the phenomenological
point of view. The difference between the predictions obtained with the three–flavor
scheme, where the leading order process iscs → W , and the massive approach, where
the leading order process issg → Wc, has been estimated to be of about 50% at the
Tevatron energy if the factorisation scale is set toMW , which leads to a difference in
the prediction of the W production rate of about 2-3%, comparable to the error due to
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Process Scheme Reference Experimental signal
pp → ZQQ NLO 4F,5F (mQ = 0) [220] Zjj with 2 Q–tags
pp → ZQQ NLO 4F [221, 222] Zjj with 2 Q–tags
pp → ZQ NLO VF [223] Zj with 1 Q–tag
pp → ZQj NLO 5F [224] Zjj with 1 Q–tag
pp → Wbb NLO 4F (mb = 0) [220] Wjj with 2 b–tags
pp → Wbb NLO 4F [221, 222] Wjj with 2 b–tags
pp → Wb NLO VF [225] Wj with 1 b–tag
pp → Wbj NLO 5F [226] Wjj with 1 b–tag
pp → Wc NLO 3F [227] Wj with 1 c–tag
pp → Wc NLO VF [228] Wj with 1 c–tag

Table 6.1: Available next–to-leading calculation of processes with a weak boson plus
one or more heavy jets in the final states. For each process thescheme in which the
calculation is performed, the reference and the experimental signatures are indicated.
nF and VF stand forn–flavor and variable flavor number schemes respectively.

the scale variation. Analogously the totalZ production rate receives a contribution of
about 5% from the gluon–gluon fusion followed by bottom–anti-bottom annihilation
gg → bb̄Z [229]. Hence, to get a 1% accuracy on the totalZ production, it must be
under control at 20% level. In the next section we are going toconsider explicitly the
associatedWc process due to the simplicity of the calculation which allows us to gain
a better analytical control.

Finally the choice of the heavy quark scheme in single top production was studied in
details in Refs. [230, 231], where also the production of a heavy fourth generation
quarkt′, b′ was considered. In this study, it was shown that the central cross sections
predicted by the2 → 2, Fig. 6.1 (d), and2 → 3 processes, Fig. 6.1 (c) differ by 5%
or less, both at the Tevatron and at the LHC, for masses aroundthe top quark, see
Fig.6.6. At the Tevatron, the difference is well within the combined uncertainty from
higher orders and PDFs, so they concluded that the two calculations are consistent. At
the LHC (10 TeV) the consistency was found to be marginal. Forlarger masses,i.e.
for t′ production, the differences were found to be much larger. For a t′ of mass of
1 TeV, the2 → 2 prediction using the CTEQ6.6 PDF set is almost twice as largeat
the Tevatron and20% larger at the LHC. Therefore, for such large top masses it could
well be that the logarithm that is implicitly resummed in thebottom quark distribution
function might become relevant or that an even smaller factorisation scale should be
used.

Interestingly, the first comparison between the massless and the massive approach was
performed long ago in a study of the charged Higgs production[232]. The six–flavor
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Figure 6.6: Cross sections (fb) at the Tevatron Run II (left)and LHC 10 GeV (right)
for the sum of top and anti-top quark production in thet channel, as a function of the
top mass obtained with the CTEQ6.6 PDF set andVtb = 1 in the2 → 2 and2 → 3
schemes. Bands are the total uncertainty (scale+PDF). In the lower plots, dashed is
scale uncertainty, solid is scale + PDF. Taken from Ref. [230].

calculationbt̄ → H− was compared to a five–flavor calculation whose leading–order
process isbg → H−t. A large difference between the two approaches was observed
for the top masses lying in the range expected at those times,i.e. mt ∈ [3, 300] GeV.
The size of the difference increased with the mass of the top.

All these studies raise the question about understanding what is the scale of the loga-
rithms and what is their dynamical origin. This is what we investigate in the following
analyses.

6.2 DIS heavy quarks production

In this section we study the production of heavy quarks in DIScollisions. This class
of processes includes both the production of heavy pairs of quark–antiquarks and the
single top production. All calculations and results can be easily generalised to the
hadron–hadron production of heavy quarks, as we will explicitly see in what follows.

We consider the general case where there are two heavy quarkswhose massesM and
m do not have to be equal, withM ≥ m. In the Feynman diagrams below we draw the
leading order process in the massive,n–flavor, and massless,(n+1)–flavor, schemes.
In the massive scheme the heavy quark of massm, Qm, is treated as a massive final
state and does not contribute to the proton wavefunction. Atthe leading order the
process is

l(pa) + g(pb) → B∗(q) → l′(k1) +QM (k2) + Q̄m(k3), (6.2)
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whereB∗ is the virtual vector boson which mediates the scattering. We stress that
the leading order diagram in this scheme is a next-to-leading order contribution in
the(n + 1)–flavor scheme where the heavy quarkQm is treated as a massless quark
and appears as a parton in the initial state. In this case the leading order partonic
contribution is given by the process

l(pa) +Qm=0(pb) → B∗(q) → l′(k1) +QM (k2). (6.3)

n–flav scheme

B∗
QM

Q̄m

n+ 1–flav scheme

B∗
QM

Qm=0

In the latter scheme the calculation is highly simplified andpotentially high logarithms
due to initial state collinear splitting of the gluon inQQ̄ are consistently resummed
in the evolution of the heavy quark PDF. However, while at very high energy this
scheme is perfectly sensible, at low or intermediate valuesof the scale characterising
the process, this scheme does not treat correctly the kinematics and at leading order
it ignores power suppressed contributions ofO(m2/µ2

F ). In the former scheme, the
computation is more complicated due to the addition of a massive final state; however
the kinematic description of the heavy quark is correctly taken into account already at
leading order. The scale which discriminates between the high–energy region, where
a massless approach works well and the low–energy region, where instead the massive
approach works better, is the scale of the collinear logarithm which is resummed in the
DGLAP evolution of theQm=0 PDF. This scale is often identified withQ2 [53, 41]. In
what follows, we show that the scale is not exactly given byQ2, rather by a dynamical
scale that depends on the momenta of the final states.

As discussed in Chap. 2, the scattering of the incoming lepton can be described by
the kinematical variablesQ2, xB andy defined in Eqs. (1.1) and (1.2), such that
xB = Q2/(Shady), beingShad the hadronic centre–of–mass energy. In Eq. (1.6)
the inclusive lepton–hadron scattering cross section was written as a product between
the leptonic tensorLµν , Eq. (1.9), describing the upper part of the diagram and the
hadronic tensorHµν . The latter assumes the generic form of Eq. (1.10) where, given
that the quarks in the final states are not massless, the structure functionF4 andF6 do
not vanish. However, if one neglects the masses of the leptons, they do vanish when
the hadronic tensor is contracted with the leptonic one. As aresult, the total DIS cross
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section can be expressed in terms of theF2, FL andF3 heavy structure functions as

σtot =

∫ ymax

ymin

dy

∫ Q2
max

Q2
min

dQ2 2παlBαhB

y(M2
B +Q2)2

{

[1 + (1− y)2]FQ
2 (x,Q2,M2,m2)

− y2FQ
L (x,Q2,M2, m2) + [1− (1 − y)2]FQ

3 (x,Q2,M2, m2)

}

, (6.4)

where byFQ
2,L,3 we indicate the contribution to the structure functions coming from

the heavy quark coupling to the virtual vector bosonB∗ (γ orZ boson, for the neutral
current processes andW± for the charged current processes). The structure functions
depend on the mass of the produced heavy quarkQM and on the mass ofQm. The
dependence onm2 is explicit in the coefficient functions in case of a massive cal-
culation, while it is implicit in the definition of theQm=0 parton distribution in the
massless calculation.

6.2.1 Massive calculation

The easiest way to evaluate the structure functions is to project the hadronic tensor
in its transverse, longitudinal and axial components whichare directly related to the
amplitudeM of the partonic subprocess by Eq. (1.20). From that, it is easy to derive
the structure functionsF2, FL andF3 according to Eqs. (1.19) and (1.21). We can
therefore consider only the subprocess as initiated by theB∗ vector boson.

The LO partonic subprocessB(q) + g(pb) → Q(k2,M) + Q̄(k3,m) is drawn in the
diagram below. The amplitude receives a contribution from the t–channel and the
u–channel where the Mandelstam variablest andu are defined as

t = (pb − k3)
2 = m2 − 2(pb · k3),

u = (pb − k2)
2 = M2 − 2(pb · k2). (6.5)



6.2. DIS heavy quarks production 227

t–channel

B∗
q

QM

k2

k3
Q̄m

pb
g

u–channel

B∗
q

QM

k2

k3

Q̄m

pb
g

It is convenient to define another Mandelstam variables, the centre of mass energy in
the boson–gluon system (not to be confused with the lepton–parton centre–of–mass
energyŝ = (pa + pb)

2 = ξShad whereξ is the fraction of the momentum of the
incoming hadron carried by the gluon), as

s = (pb + q)2 = 2ξ(PH · q)−Q2 =
Q2ξ

xB
(1− xB

ξ
) (6.6)

= Q2 (1− z)

z
, where z ≡ xB

ξ
, (6.7)

such that

s+ t+ u = M2 +m2 −Q2. (6.8)

We might also define the mass–subtracted Mandelstam variables

t1 = t−m2 u1 = u−M2 s1 = s+Q2 = Q2/z (6.9)

such that

s1 + t1 + u1 = 0. (6.10)

The partonic tensor, related to the hadronic tensor by Eq. (1.19), is given by

Ĥµν =
1

2s1

1

2
Kgγ

[∑
Mµ(γ

∗g → QM Q̄m)M∗

ν(γ
∗g → QM Q̄m)dΓ2 +O(α2

s)

]
, (6.11)

where1/2s1 is the flux factor,1/2 comes from the average on the initial degrees of
freedom,Kgγ is the color average,Mµ is the leading–order amplitude for the partonic
process,dΓ2 is the two–body phase space and

∑
is the average over the initial and the
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sum over the final polarisations. After integrating over theazimuthal angle between
the plane containing the leptons and the plane containing the initial parton and the
outgoing heavy quarks, the partonic tensor (6.11) can be written as

Ĥµν = dσ̂T

(
−gµν +

qµqν
q2

)
+

(
pbµ − pb · q

q2
qµ

)(
pbν − pb · q

q2
qν

)

·
(−4q2

s21

)(
dσ̂G +

3

2
dσ̂L

)
− iǫµνρσp

ρ
bq

σ

(−2q2

s21

)
dσ̂3. (6.12)

Using the projection tensorsgµν , pµb p
ν
b andεµνσρpσb q

ρ one may derive the partonic
cross sectionsdσ̂T , dσ̂2 = (dσ̂G + 3/2dσ̂L) anddσ̂3, and from them the structure
functions. The partonic cross sections are directly proportional to the projected matrix
elements according to

dσi =
1

2s1

1

2
KgγMg

i dΓ2, i = T, L, 3, (6.13)

where the latter are given by

Mg
T (γ∗g → QM Q̄m) = −gµν

∑

Mµ(γ
∗g → QM Q̄m)M∗

ν(γ
∗g → QM Q̄m),

Mg
L(γ

∗g → QM Q̄m) = −
4q2

(s1)2
pµb p

ν
b

∑

Mµ(γ
∗g → QM Q̄m)M∗

ν(γ
∗g → QM Q̄m),

Mg
3(γ

∗g → QM Q̄m) = −i
2q2

(s1)2
ǫµνρσp

ρ
bq

σ
∑

Mµ(γ
∗g → QM Q̄m)M∗

ν(γ
∗g → QMQ̄m).

If the generic coupling between the vector bosonB∗ and the heavy quarkQ is given
by

gRγ
µ 1 + γ5

2
+ gLγ

µ 1− γ5
2

≡ gRγ
µPR + gLγ

µPL, (6.14)

then the leading–order amplitudeMµ might be explicitly written as

Mµ(γ∗g → QM Q̄m) = gst
aū(k2)

[
(gRγ

µPR + gLγ
µPL)

6pb− 6k3 +m

t−m2
γα +

γα 6k2− 6pb +M

u−M2
(gRγ

µPR + gLγ
µPL)

]
v(k3)ǫα(pb) (6.15)

In appendix D, the expressions forMg
G,2,L are written down explicitly and one can

see the explicit symmetry int1 → u1 (M → m). The partonic cross–section̂σ2 di-
verges int → 0 in the limit m → 0 and inu → 0 in the limit M → 0.
In the partonic centre–of–mass frame of theB∗γ → QMQ̄m process, the four-
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momenta vectors are

pb =

(
s+Q2

2
√
s

, 0, 0,−s+Q2

2
√
s

)
,

q =

(
s−Q2

2
√
s

, 0, 0,
s+Q2

2
√
s

)
,

k2 =
(
E2, 0, |~k| sin θ, |~k| cos θ

)
,

k3 =
(
E3, 0,−|~k| sin θ,−|~k| cos θ

)
,

whereE2, E3 and|~k| are determined by imposing the momentum conservation in the
evaluation of the two–body phase space

dΦ2 =
d3k2

(2π)32E2

d3k3
(2π)32E3

(2π)4δ(4)(q + pb − k2 − k3)

=
1

(16π2)

|~k|2d|~k|dΩ
E2E3

δ

(
√
s−

√
|~k|2 +m2 −

√
|~k|2 +M2

)

=
1

8π

|~k|√
s
d cos(θ) =

1

16πs1
dt1 =

1

16πs1
du1. (6.16)

From the energy–momentum conservation, we get

|~k| =
∆(s,M2,m2)

2
√
s

,

E2 =
(s+M2 −m2)

2
√
s

,

E3 =
(s−M2 +m2)

2
√
s

, (6.17)

where∆(a, b, c) =
√
a2 + b2 + c2 − 2ab− 2ac− 2bc [109].

The explicit expressions for the partonic cross–sections in Appendix D show that the
partonic cross–sectionsdσ̂2 anddσ̂3 have a pole int1 and a pole inu1, which inte-
grated over the phase space give rise to logarithms. In particular, the integration int1
gives rise to

Lt =

∫ |t1|max

|t1|min

dt1
t1

= log

(
s+M2 −m2 +∆(s,M2,m2)

s+M2 −m2 −∆(s,M2,m2)

)
, (6.18)
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while the integration inu1 gives rise to

Lu =

∫ |u1|max

|u1|min

du1

u1
= log

(
s−M2 +m2 +∆(s,M2,m2)

s−M2 +m2 −∆(s,M2,m2)

)
. (6.19)

In the limit m2 << M2, as in the case of single top production,

Lt → log

[
s

m2

(
1− M2

s

)2
]

Lu → log
( s

M2

)
. (6.20)

In the special casem2 = M2 → 0, as in the case ofbb̄ or cc̄ production,

Lt = Lu → log
( s

m2

)
, (6.21)

i.e. the argument of the logarithmLt does not have the phase space suppression on
the numerator. We have seen explicitly that, in the collinear region t → 0 and in
the massless limitm → 0, the scale associated to the splitting of the gluon into a
heavy pair is associated to a scale which does not correspondto Q2, rather to scales
which are directly related to the final phase space configuration. In the next sections
we analyse two processes corresponding to the each of the twolimits presented above
and investigate in details the collinear limits and its implication on the size of the
collinear logarithms.

6.2.2 Bottom–Antibottom production

The bottom–antibottomproduction corresponds to the special case of the cross–section
described in the previous subsection, where

QM = Qm = b and M = m = mb. (6.22)

Moreover, if we consider only the scattering mediated by a virtual photon, i.e. we
exclude theZ contribution, we havegR = gL = eb. If θ (0 ≤ θ ≤ π) is the angle
between the incoming vector boson and the outgoingb quark in the partonicγ∗g

centre–of–mass frame, the mass-subtracted Mandelstam variables can be written as

t1 = −s1
2
(1− β cos θ) u1 = −s1

2
(1 + β cos θ). (6.23)
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whereβ is the velocity of the heavy quark in the centre–of–mass frame, which tends
to 1 in themb → 0 limit

β =
|~k|
E2,3

=
√
1− 4m2

b/s. (6.24)

From the general expressions reported in Appendix D, we may write down the partonic
differential cross sections,dσ̂2 anddσ̂L as

dσ̂2

d cos θ
=

παee
2
Hαsβ

Q2 (1− β2 cos2 θ)2
z

[
− β4 cos4 θ

(
6z2 − 6z + 1

)
(6.25)

+8β2 cos2 θz(ε(4z − 1) + z − 1)− 2(4εz + z)2 + 2(4ε + 1)z + 1

]

and

dσ̂L

d cos θ
=

παee
2
Hαsβ

4Q2 (1− β2 cos2 θ)
z2
[
(1− β2 cos2 θ)(z − 1) + 4εz

]
, (6.26)

where

ε =
m2

b

Q2
z =

xB

ξ
.

The differential cross-sections are symmetric incos θ, reflecting the symmetry of the
matrix elements upon the exchange ofu1 ↔ t1. For mb → 0, the cross section
diverges incos θ → ±1, displaying explicitly the collinear divergence associated to
the splitting of a gluon in a pair of massless quarks. In orderto study analytically the
collinear limit of the partonic cross sections, we expand aboutt1 = 0. The differential
partonic cross sectiondσ̂2/dt1 is easily deduced from Eq. (6.25) as

dσ̂2

dt1
=

2

s1β

dσ̂2

d cos θ

∣∣∣∣∣
cos θ=(s1+2t1)/(βs1)=1/β+2t1z/(βQ2)

=
3παeαse

2
HCF

4

[
z2(1− 2ε)ε

2t21
+

2z
(
2
(
4ε2 + 6ε− 1

)
z2 + (2− 4ε)z − 1

)

Q2t1

−z2
(
2
(
6ε2 + 5ε+ 5

)
z2 − 2(2ε+ 5)z + 1

)

Q4
+O(t1)

]
.

The same expression witht1 → u1 would be found if we were expanding about
u1 = 0 due to the symmetry of the cross–section under the exchangeu1 ↔ t1. If we
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further expand aboutε = 0, the above expression becomes

dσ̂2

dt1
=

3παeαse
2
HCF

4

[
O(ε)

t21
−4zPqg(z) +O(ε)

Q2t1
+
z2(−10z2 + 10z − 1) +O(ε)

Q4
+O(t1)

]
,

wherePqg is the Altarelli–Parisi splitting function introduced in Chap. 2. If we finally
keep only the pole of the divergent part ignoring theO(ε) contributions, we end up
with an expression for the collinear pole, which, integrated betweentmin = t(cos θ =
−1) = −s1(1 + β)/2 andtmax = t(cos θ = 1) = −s1(1− β)/2 gives

∫ t1,max

t1,min

dt1
dσ̂coll

2

dt1
= −3παeαse

2
bCF z

Q2
Pqg(z) log

(
1− β

1 + β

)
∝ αs

2π
σ
(0),5F
2 Pqg(z) log

s

m2
b

,

whereσ(0),5F
2 is the leading–order cross–section in the five–flavor scheme. The inte-

gration of the collinear limit yields then a term proportional to

αs

2π
Pqg(z) log

(
s

m2
b

)
=

αs

2π
Pqg(z) log

[
Q2

m2
b

(1− z)

z

]
. (6.27)

The scale(s/m2
b) corresponds to the scale of the splitting of the gluon into a collinear

bb̄ pair and it is proportional but not equal toQ2

s =
(1− z)

z
Q2 = M2

bb̄.

It is interesting to notice that, also in Ref. [233], in the context of the study of the soft
gluon radiation in DIS and DY processes, the scale for the soft emission in the soft
limit z → 1 was found to beQ2(1 − z)/z → Q2(1 − z) and its origin was shown to
be purely kinematic, i.e. purely due to the structure of the phase space.

The scale (6.27) is a dynamical scale which changes on an event–by–event basis de-
pending on the momentum fraction carried by the gluon and on the kinematic invari-
antsQ2 andxB. Therefore, to make any consideration about its size, one has to look
atdσ̂/ds. In other words, for a given collider energy and acceptance,one has to check
what is the distribution of values of(1 − z)/z with respect to one. In the case it is
found to be smaller than one, then the logarithms of(s/m2

b) are not in fact large, even
whenQ2 ≫ m2

b . If, on the other hand, it is close or even larger than one, logarithms
should be resummed.

In order to investigate such behaviour, we run a modified version of the HVQDIS
code [207] with two different settings: one for the HERA experiment and one that
represents a typical relevant kinematical region for the LHC. For HERA we set the
energies of the beams to the Run II energiesEp = 920GeV andEe = 27.5GeV and
we set the kinematical cuts in(y,Q2) to 2 ≤ Q2 ≤ 100 GeV2 and0.1 ≤ y ≤ 0.9. At
the LHC the incoming electron is replaced by an incoming quark. In order to identify
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where the distribution of the fraction of momentum carried by the incoming quark is
peaked, we study the processug → ubb̄ and plot the distribution of the fraction of
energy carried by an initialu quark. In Fig. 6.7 we see that, if we set the energy of the
up quark to a fixed value given by the mean of theu momentum fraction distribution
(z = 0.15,Eu=1.05 GeV), then the gluon momentum fraction distribution reproduces
well the solid line histogram. Therefore, to reproduce a LHC-like kinematic, we set

Figure 6.7: Solid lines: distribution of the fraction of momentum carried by the initial
up quark and the gluon in the processug → ubb̄, s = (14 TeV)2. Dashed lines:
distribution of the fraction of momentum carried by the gluon in the processug →
ubb̄, if Eg = 7 TeV andzup = 0.15, Eu=1.05 TeV .

the energy of the incoming proton to a value of 7 TeV and the oneof the incoming
electron to∼ 0.15 · 7 = 1.05 TeV so thatShad = 29.4TeV2. The value for the
cuts iny andQ2 is such that the transverse momentum of the outgoing electron is
above 20 GeV, a typical experimental cut for the detection oflight jets. Given that
peT,min ∼ 20GeV =

√
Q2

min(1− ymax), we set

Q2
min = 2000 GeV2 ymax = 0.8.

The leading–order results produced with the modified version of HVQDIS have been
cross–checked against MadGraph v4 [234].

As from Tab. 6.2, the comparison shows that results are perfectly compatible within
the uncertainty.

In Fig. 6.8 we plot the distribution ofQ2/m2
b, s/m

2
b , and the factor(1−z)

z in logarith-
mic scale for both kinematics. The distributions are very different in the two cases. In
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cteq66 HVQDIS MG
s = 101200 GeV2

2 ≤ Q2 ≤ 100 GeV2 σtot = 398.749 ± 0.097 (pb) σtot = 399.170 ± 1.104 (pb)
0.1≤ y ≤ 0.9

s = 29.4 TeV2

2·103 ≤ Q2 ≤ 106 GeV2 σtot = 46.704± 0.072 (pb) σtot = 46.276 ± 0.648 (pb)
0.001≤ y ≤ 0.8

Table 6.2: Comparison between MG and HVQDIS total cross sections for HERA and
LHC kinematics. Input PDF: CTEQ66 [42].

2
b/m2q

-110 1 10

2
/d

q
σd

2 b
m

0

200

400

600

800

1000

1200

1400

HERAHERA

2
b/m2q

1 10 210 310 410 510

2
/d

q
σd

2 b
m

0

1000

2000

3000

4000

5000

6000

7000

8000

LHCLHC

2
bscale=s/m

1 10 210

/d
(s

ca
le

)
σ

d

0

500

1000

1500

2000

2500

3000

3500

HERAHERA

2
bscale=s/m

1 10 210 310 410 510

/d
(s

ca
le

)
σ

d

0

500

1000

1500

2000

2500

LHCLHC

fact=(1-z)/z
-110 1 10 210 310

/d
(f

ac
t)

σ
d

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

HERAHERA

fact=(1-z)/z
-310 -210 -110 1 10 210

/d
(f

ac
t)

σ
d

0

500

1000

1500

2000

2500

LHCLHC

Figure 6.8:Q2/m2
b (top),s/m2

b (middle) and(1−z)/z (bottom) logarithmic distribu-
tions forbb̄ production in the HERA (left –2 < Q2 < 100, 0.1 < y < 0.9, Ep= 920
GeV,Ee = 27.5 GeV) and LHC–like (right –2 · 103 < Q2 < 106, 0.001 < y < 0.8,
Ep= 7 TeV,Ee = 1.05 TeV) kinematics. Input PDF: CTEQ66 [42].
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the HERA kinematics, the invariant mass of thebb̄ pair has a peak at a higher scale
with respect toQ2. Indeed, the factor(1 − z)/z is peaked between 10 and 100. This
means that the scale of the logarithm is actually larger thanQ2/m2

b . Therefore, even
if the experimental cuts are such thatQ2 lies in a region wherelog(Q2/m2

b) is very
small, the effect of these logarithms might be enhanced by a scale which is effectively
ten up to hundred times larger thanQ2. On the other hand, in the LHC–like kine-
matics the invariant mass distribution has a peak about a scale which is hundred times
larger thanm2

b , consistently with the prefactor(1 − z)/z is peaked about one and its
distribution is smoothly distributed between 0.1 and 100, with a slight dominance in
the region on the right of the peak. This means that in a LHC–like kinematics, the
scale associated to the collinear splitting is aboutQ2 and that therefore the logarithms
which are resummed in the bottom PDF are important as one would expect by looking
at theQ2 distribution.

Another interesting question is whether the shape of the pre–factor(1 − z)/z is due
to the shape of the gluon PDF or to the energies and cuts associated to the considered
kinematic configuration. To clarify this issue, we reproduced the same distribution
using several different input PDFs for the LHC–like kinematics by ending up with the
very same distributions as the ones shown in Fig. 6.8. We alsorun the code a toy gluon
x−a(1 − x)b and looked at the distributions as varying the parametersa andb. We
observed that, only if the gluon PDF were much steeper than the CTEQ66 gluon, i.e.
only for unrealistic exponentsa ≥ 5, the peak of the(1 − z)/z distribution would be
more pronounced and would shift to the left. For all other values ofa, the distribution
does not change. On the other hand, the high–x exponentb seems to be irrelevant.
Therefore we concluded that for realistic PDFs the scale of the logarithms depends
mostly on the kinematics rather than on the gluon shape.

We look then at the differential distributions of the cross–section in terms of the trans-
verse momentum and pseudo-rapidity of the outgoingb quark. Their shapes change
radically from the HERA to the LHC kinematics. In the HERA kinematics the trans-
verse momentum is peaked in the smallpT region and the pseudo–rapidity is peaked
about zero. In the LHC kinematics instead, the transverse momentum distribution
exhibits a double peak, one at smallpT and one atpT ∼ 50 GeV, while the pseudo–
rapidity distribution is centred in the backward region. InFig. 6.9 we observe that
the distribution of momenta of the less energetic quark is peaked in the smallpT ,
while the distribution of the most energetic quark is peakedaboutpT ∼ 50 GeV.
One quark is soft and the other compensates thepT of the outgoing electron. This
picture is confirmed by looking at the pseudo–rapidity distribution. The difference
of pseudo–rapidity for the three outgoing particles, electron, bottom and anti–bottom
shows that the less energetic quark lies is in the forward region, compensating the elec-
tron pseudo–rapidity, while the hard quarks is in the central region. This observation
tends to confirm what we found previously, namely that in the LHC kinematics the
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logarithms are dominant and that therefore the five–flavor scheme where the leading
order process is a2 → 2 needs to be matched with the four–flavor one.
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for bb̄ production in LHC kinematics,Q2

min = 2000 GeV. The two dashed histograms
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Figure 6.10: Comparison of normalised LO transverse momentum differential cross
sections for bottom productions in the LHC kinematic. PDF input set: CTEQ66 [42].
Cut on the transverse momentum of the outgoingb quark.

We finally look at the transverse momentum distributions forb and b̄ when a cut on
theirpT is imposed. In absence of cuts onpT , theb andb̄ transverse momentum distri-
butions look exactly the same. If instead a cut is applied on the transverse momentum
of the outgoing bottom quark, leaving the other quark free, the distributions look ob-
viously different. In Fig. 6.10 we notice that the shape of the transverse momentum of
the b̄ antiquark does not change much, even raising the cut onpbT from 20 to 80 GeV.
This suggests that the scale associated to the collinear logarithms is softer when a cut
on thepT of theb is applied than when no cuts are imposed. Since the cut inpT sup-
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presses theu–channel contribution to the cross–section with respect tothet–channel
one, this case relates to the one which is going to be discussed in the next section.

To conclude, we found that the scale of the logarithms is a dynamical scale which
depends on the final state particles momenta. This scale is peaked at a scale higher
thanQ2 in the HERA kinematics, while it is peaked aboutQ2 for the LHC kinematics.
This means that in both cases the size of the logarithms is as large or even larger than
log(Q2/m2

b). This confirms the result of Ref. [209] about the size of the logarithms
resummed in the massless approach and clarifies its dynamical origin.

6.2.3 Single top

This process corresponds to one special of the two special cases of the general process
discussed in Sect. 7.2.1, where

M = Mt m = mb gR = 0 gL = gW /
√
2.

If we restrict the general expressions reported in AppendixD to this case, we may
write the differential cross–section int as

dσ2

dt
=

3αsg
2
WCF

128s41(t−m2
b)

2(u−M2
t )

2

{
2m2

bM
2
t s

4
1 + 2s31(M

4
t t1 +m4

bu1)

+12Q2t1u1

[
s1(t1M

2
t + u1m

2
b) + u1t1(s1 −Q2)

]

−2s21

[
m2

bu1(Q
2s1 −Q2t1 + s1t1)

+M2
t t1(Q

2s1 −Q2u1 + s1u1)

]

+s21t1u1

(
2Q4 − 2Q2s1 + t21 + u2

1

)
}

(6.28)
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It is apparent that the cross–section has a pole int = 0 in the smallmb limit. If we
expand the above expression aboutt1=0, we get

dσ2

dt
=

3αsg
2
WCF

64(s+Q2)2

{
O(m4

b ,m
2
bM

2
t ,m

2
bQ

2)

t21
−

+2M4
t + 4M2

t Q
2 − 2M2

t s1 + 2Q4 − 2Q2s1 + s21 +O(m4
b ,m

2
bM

2
t , m

2
bQ

2)

2(s+Q2)t1
−

−4M4
t + 6M2

t Q
2 + 2M2

t s1 + 10Q4 − 10Q2s1 + s21 +O(m4
b ,m

2
bM

2
t ,m

2
bQ

2)

2(s+Q2)2

+O (t1)

}
(6.29)

In the collinear limitt → 0, if we ignore the terms proportional tom2
b , we end up

with an expression for the collinear pole int1, which, integrated betweentmin and
tmax yields

∫ tmax

tmin

dt
dσ̂coll

2

dt
=

3αsg2WCF

128s31

(

2M4
t + 4Q2M2

t − 2(s+Q2)M2
t + 2Q4 + s2 +Q4

)

· log

[

s

m2
b

(

1−
M2

t

s

)2
]

∝
αs

2π
σ
(0),5F
2 P

(

M2
t

s

)

log

[

M2
t

m2
b

s

M2
t

(

1−
M2

t

s

)2
]

, m2
b . Q2 ≪ M2

t ,

whereσ(0),5F
2 is the Born–level cross section for the leading order process in the

five–flavor scheme. Notice that in the last equality we usedQ2 ≪ M2
t , which is

justified by looking at the distribution of the cross sectionin Q2/M2
t in Fig. 6.11. The

scale corresponding to the collinear splitting then is notM2
t , rather a dynamical scale

proportional to the ratioM2
t /m

2
b by a factor

(1− z)2

z
with z =

M2
t

s
.

With respect to the previous case, there is an additional factor (1 − z) due to the
suppression of the final phase space related to the production of a heavy final state. In
Fig. 6.11 we plot the differential cross section as a function ofQ2/M2

t , of the scale of
the logarithms(1−M2

t /s)
2/m2

b , of the factor(1− z)2/z and its squared root, being
z = M2

t /s. The kinematics is the one of the LHC. We see that the distribution of the
(1−z)2/z pre–factor is centred on a value close to one and it is broadlyspread about it,
being slightly enhanced on the left of the unity. This yieldsa distribution of the scale
of the collinear logarithms which in average is slightly smaller than the scale that one
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Figure 6.11: Distribution ofq2/M2
t (top left), the scale of the collinear logarithm (top

right), the(1− z)2/z factor (bottom left) and its squared root (bottom right). Here the
energies of the proton beams are at 7 TeV.Mt = 174.3 GeV,mb = 4.7 GeV. Input
PDF: CTEQ6L1 [59].

would expect by simply identifying the scale of the splitting with M2
t . However this

is less small than we would expect from the studies performedin Refs. [230, 231].

6.3 Associated W and charm production

We turn now to discuss another class of process where the large scale which makes
the process perturbative is the invariant mass of the final states, rather than the high
virtuality of the incoming particles, as it is in the DIS case. In particular we consider
the Drell–Yan production of aW boson associated to the production of a charm quark.
The advantage of this choice is that it is easier to gain analytic control and that, as
discussed in Sect. 7.1, it might bear some phenomenologicalrelevance.
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6.3.1 Massive calculation

Here below we draw the LO diagram that contribute to the LO process for theWc

production:

g(p1) + s̄(p2) −→ c(p3) +W−(p4) (6.30)

t–channel
s W−

cg

+

s–channel
s

g c

W−

The Mandelstam invariants for this process are defined as

ξ1ξ2Shad = s = (p1 + p2)
2 = 2(p1 · p2) = (p3 + p4)

2 = m2
c +M2

W + 2(p3 · p4),
t = (p1 − p3)

2 = m2
c − 2(p1 · p3) = (p2 − p4)

2 = M2
W − 2(p2 · p4),

u = (p1 − p4)
2 = M2

W − 2(p1 · p4) = (p2 − p3)
2 = +m2

c − 2(p2 · p3).

As in the previous section, it is useful to define the Mandelstam mass subtracted
variables as

t1 = t−m2
c u1 = u−M2

W s1 = s− (mc +MW )2. (6.31)

The matrix element is the sum of the contributions coming from thet and thes chan-
nels

M(gs → Wc) = Mt(gs → Wc) +Ms(gs → Wc), (6.32)

Mt(gs → Wc) = i
g2sg

2
W tA

2
√
2

εν(p2)ε
∗

µ(p4)ū(p3)γ
ν ( 6p3− 6p1) +mc

t−m2
c

γµ(1− γ5)u(p2),

Ms(gs → Wc) = i
g2sg

2
W tA

2
√
2

εν(p2)ε
∗

µ(p4)ū(p3)γ
µ(1− γ5)

( 6p1+ 6p2)
s

γνu(p2).

It is the same as the one studied in the previous case withu1 → s, M = mc, m = 0

andQ2 = −M2
W . The squared matrix element averaged over the initial colours and



6.3. Associated W and charm production 241

polarisations and summed over the final ones reads

Σ̄|M|2 =
g2sg

2
W |Vcs|2

24M2
Ws (t−m2

c)
2

[
−m8

c +m6
c(2s+ t)

+m4
c

(
2M4

W + 2M2
W t− (s+ t)2

)

+m2
c

(
− 4M6

W + 2M4
W t− 2M2

W

(
s2 − st+ 2t2

)
+ t(s+ t)2

)

+2M2
W t
(
2M4

W − 2M2
W (s+ t) + s2 + t2

)
]
. (6.33)

In the partonic centre of mass frame we can write the 4-momentof the particles as

p1 = (
√
s/2, 0, 0,

√
s/2),

p2 = (
√
s/2, 0, 0,−√

s/2),

p3 = (E3, 0, |~p| sin θ, |~p| cos θ),
p4 = (E4, 0,−|~p| sin θ,−|~p| cos θ).

where|~p| = |~p4| = |~p3| andθ is the angle between the outgoing c quark and the
colliding partons. The phase space in 4 dimensions is given by

dΦ2 =
d3p3

(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)(p1 + p2 − p3 − p4)

=
1

8π

|~p|√
s
d cos(θ) =

1

8πs
dt1 =

1

8πs

pT√
|~p|2 − p2T

dpT , (6.34)

with

|~p| =
∆(s,M2

W ,m2
c)

2
√
s

,

E3 =
s+m2

c −M2
W

2
√
s

,

E4 =
s+M2

W −m2
c

2
√
s

. (6.35)
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The total cross section is then obtained by integrating overthe phase space and the
parton distribution functions:

σLO,4F
tot =

∫
dξ1 s(ξ1, µ

2
F )

∫
dξ2 g(ξ2, µ

2
F )

∫
dX

dσ

dX
, (6.36)

where

dσ

dX
=

1

2s
Σ̄|M(0)

gs |2
dΦ2

dX
with X = {t, t1, pT , cos θ, ...} . (6.37)

In Fig. 6.12 we plot the partonic cross section, without including PDFs, as a function
of (s1, t1) and(s1, pT ). We see that most of the events lie in the very smallt1 region,
and in the relatively smalls1 region. The same for thepT distribution, although there
is also a peak aroundpT ∼ pT,max due to the Jacobian which appears in the phase
space, Eq. (6.34). In order to check how close to the threshold is the scale at which the
partonic cross–section is damped, in the same figure we plot two transverse sections
of the three–dimensional plots, one fort1 close to 0 and one fors1 = 10GeV2. We
see that at very small|t1| the cross–section starts being damped ats−(MW +mc)

2 ∼
2 104 GeV2 which is about more than two units of(mc +MW )2, therefore pretty far
from the threshold region. On the other hand, looking at the plot for s1 fixed, most of
the events are in the region very close to the collinear limitt1 ∼ 0.

To draw the same plot by including the parton distributions,we perform the change of
variables(ξ1, ξ2) −→ (τ, y), where

ξ1 =
√
τe+y ξ2 =

√
τe−y.

Under this transformation
∫ 1

τ0

dξ1

∫ 1

τ0/ξ1

dξ2 s(ξ1, µ
2
F )g(ξ2, µ

2
F ) =

∫ 1

τ0

dτ

∫ + log τ/2

− log τ/2

dy s(
√
τe+y, µ2

F )g(
√
τe−y, µ2

F ),

where

τ0 =
(mc +MW )2

Shad
. (6.38)

By integrating in the rapidityy the product of the PDFs, we obtain the parton lumi-
nosity as a function ofτ

L(τ, µ2
F ) =

∫ + log τ/2

− log τ/2

dy s(
√
τe+y, µ2

F )g(
√
τe−y, µ2

F ) (6.39)
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Figure 6.12: Partonic cross section plotted as a function of(|t1|, s1) (top left) and
(pT , s1) (top right). Transverse sections of the top left 3D plot fora fixed value oft1
(bottom left) ands1 (bottom right).

and we can write the total cross section as

σLO,4F
tot =

∫ 1

τ0

dτL(τ, µ2
F )

∫
dX

dσ

dX
(τ/Shad,m

2
c , X, αs(µ

2
R)). (6.40)

In Fig. 6.13 we display the double differential partonic cross–section multiplied by the
parton luminosity obtained with the MSTW08 [43] NLO parton set. The effect of the
luminosity is to damp further the cross section ins1. In order to assess how close to the
threshold is the scale at which the PDFs further damp the cross–section, we plot on the
same figure the MSTW08 parton luminosity as a function ofs1 = s− (MW +mc)

2

at LHC, whereShad = (10 TeV)2. We see that the luminosity starts dropping at
s1 ∼ (100 GeV)2, i.e. more than one unity in(MW + mc)

2, therefore the region
enhanced by the luminosity is broader than the threshold region but narrower than the
region which would be enhanced in absence of PDFs, see Fig. 6.12.
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function of t1 ands1 (left) and parton luminosity as a function ofs1 (right) at the
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We now compute analytically the differential cross–section dσ̂/ds, related to the total
cross–section by

σLO,4F
tot =

∫ Shad

(mc+MW )2
dsL(s, µ2

F )
dσ̂

ds
. (6.41)

To evaluateddσ̂/ds we integrate the double differential cross sectiondσ̂/dsdt1 in t1
between

t1,max = −1

2

(
s−m2

c −M2
W +∆(s,m2

c ,M
2
W )
)

t1,min = −1

2

(
s−m2

c −M2
W −∆(s,m2

c ,M
2
W )
)

(6.42)

and obtain

dσ̂

ds
=

∫ t1,max

t1,min

dt1 Σ̄|Mgs(t1, s, αs(µ
2
R))|2

1

16πs2
(6.43)

= −αsGFV
2
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]
.
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As we did in the precedent analyses, we study the collinear limit of the above expres-
sion. Expanding the integrand of Eq. (6.43) aboutt1 = 0, we get

dσ̂

dsdt1
(s, t1,

m2
c

M2
W

,M2
W ) ∝ O(ǫ)

t21
+

−2M6
W + 2sM4

W − s2M2
W +O(ǫ)

6
√
2s3

1

t1

+

(
M4

W

3
√
2s3

+O(ǫ1)

)
+O(t1), (6.44)

whereǫ = m2
c/M

2
W . If we neglect term ofO(ǫ) and the non collinear termO(t01), we

are left with the pole int1

dσ̂

dsdt1
(s, t1,

m2
c

M2
W

,M2
W ) ∼ −2M6

W + 2sM4
W − s2M2

W

s3
1

t
. (6.45)

In approximationm2
c ≪ M2

W ,

|t|max ∼ s−M2
W +O(m2

c),

|t|min ∼ m2
cs

s−M2
W

+O(m4
c), (6.46)

and therefore the integration yields

dσ̂

ds
∼ M2

W

s3
(s2 − 2M2

W s+ 2M4
W ) log

[
s

m2
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(
1− M2

W
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,

∝ αs

2π
σ(0),4F Pqg

(
M2

s

)
log

[
s

m2
c

(
1− M2

W

s

)2
]
, (6.47)

whereσ(0),4F is the Born–level cross section for the leading–order process in the
four–flavor scheme. The scale associated to the collinear splitting

M2
W

m2
c

s

M2
W

(
1− M2

W

s

)2

=
M2

W

m2
c

(1− z)2

z
, z = M2

W /s (6.48)

is a dynamical scale which depends on the partonic centre–of–mass energys = τS.
The result is similar to the one found in the single top analysis.

In order to assess the size of this scale, in Fig. 6.14 we plot the distribution of the
cross section in terms ofs1/M2

W , (1 − z)2/z and(1 − z)/
√
z with z = M2

W /s and

the scale of the logarithm
√
s

mc

(
1− M2

W

s

)
. The scale is peaked about a value which

is significantly smaller thanM2
W , as we expect by looking at the distribution of the
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(1− z)2/z factor in the same Fig. Indeed, if the scale of the logarithm wereMW /mc,
the scale associated to the logarithm would be distributed about 60. Here the shift
observed in its distribution with respect toM2

W is far more enhanced than in the single
top case.

2/Mwps
-110 1 10

)
2

/M
w

p
/d

(s
σd

0

0.05

0.1

0.15

0.2

0.25

0.3

=1.3
c

=80, mwm

 = 500GeVS
 = 1.96TeVS
 = 14TeVS

=1.3
c

=80, mwm

(1-z)/mcs=
c

p10 210

c
/d

p
σ

d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

=1.3
c

=80, mwm

 = 500GeVS
 = 1.96TeVS
 = 14TeVS

=1.3
c

=80, mwm

zfact = (1-z)/
-210 -110 1

/d
fa

ct
σd

0

0.01

0.02

0.03

0.04

0.05

=1.3
c

=80, mwm

 = 500GeVS
 = 1.96TeVS
 = 14TeVS

=1.3
c

=80, mwm

/z2=(1-z)2fact
-310 -210 -110

2
/d

fa
ct

σd

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

=1.3
c

=80, mwm

 = 500GeVS
 = 1.96TeVS
 = 14TeVS

=1.3
c

=80, mwm

Figure 6.14: Distribution of the LOWc cross–section as a function ofs1/M2
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We may wonder what happens if the only the gluon PDF is turned on, while the strange
PDFs is peaked as a delta function about the average fractionof momentum carried.
To answer this question, we first plot the distributions ofxs andxg for mc = 1.3 GeV
andMW = 80 GeV for the three considered hadronic centre–of–mass energies. Then
we sets(x) = δ(1− xmax) and re-evaluate the distributions. The latter are displayed
in Fig. 6.16. Their shape does not change significantly with respect to Fig. 6.14. We
have also tried to substitute the initial strange by a initial down quark. Even though the
distribution ofξ2 is different when the initial quark is a down quark, as it is observe on
the right–hand side plot in Fig. 6.15, the shape of the distributions does not change at
all. This means that the distribution of the scale associated to the gluon splitting in a
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almost collinearc–c̄ pair is rather independent of the PDFs. It seems to have a purely
kinematic origin.

To conclude our discussion about this process, we integratethe double differential
cross–section ins and look at the distribution of the differential cross section in thet1

dσ

dt1
=

∫ 1

τmin

dτL(τ, µ2
f )Σ̄|Mgs(t, τS, αs(µ

2
r))|2

1

16πs2
, (6.49)

whereτmin > τ0 is determined by inverting Eq. (6.42), as illustrated in Fig. 6.17, and
obtaining

τmin =
m2

c +M2
W

S
− m2

cM
2
W

St
− t

S
.
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Figure 6.17: Region of integration of Eq. (6.43) in the plane(τ, |t|).

To perform analytically the integration in Eq. (6.49), we introduce a toy parton lumi-
nosity

Ltoy(τ) = τ−l.

and end up with the following result

dσ
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, (6.50)
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which, in them2
c → 0 limit, tends to

dσ(mc=0)

dt
=

αsGFV
2
cs

6
√
2l (l2 + 3l + 2)

1

S3t2
(6.51)

[
(
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)( S
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WS + l(l + 1)(2M4
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W t+ t2) + (l + 1)(l + 2)S2)
]
.

In the limit t ≪ M2
W andmc ≪ |t| Eq. (6.50) simplifies to

dσ

dt
∼ M2

W

t

[
log

(
S

M2
W

)
+

(
1− M2

W

S

)2
]
. (6.52)

The logarithm depends on the ratioS/M2
W . Plotting Eqs.(6.50, 6.51) as a function of√

|t|/mc in Fig. 6.18, we observe that the collinear plateau drops at ascale smaller
thanM2

W . The scale where the bulk of the events is concentrated is in aregion about
MW /mc ∼ 20.
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Figure 6.18: Plot ofdσ/dt as a function of
√
|t|/mc for l=2,

√
S = 10 TeV, MW =

80.398 GeV formc = 1.3 GeV (pink) andmc = 0 (blue).

In order to cross–check the result and assess whether the latter is modified by using
a realistic input set of PDFs, we performed numerically the integration of Eq. (6.49).
The code we used to perform the numerical integration has been cross–checked against
other independent codes. The distribution of the events int1 is shown in Fig. 6.19,
where thetdσdt distribution is plotted as a function of

√
|t| for mc = 0 and for several

values ofmc 6= 0. We see that the distribution presents a collinear plateau,damped
neart ∼ 0 for finite values ofmc. We observe that the scale at which the plateau
drops is much smaller thanM2

W . This confirms the results obtained in the analytical
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calculation and suggests that the scale associated to the splitting of the gluon is softer
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Figure 6.19:log(t) distribution for
√
S = 1.96 TeV,MW = 80.398 GeV and various

values ofmc. The distribution is not normalised

that the scale associated to the hardW production process, whose scale is naturally
given byM2

W . This implies that the factorisation scale that should be set for the
bottom PDFs in the four–flavor scheme is smaller thanM2

W , which is what has been
suggested in several studies presented in Sect. 7.1. Here wepointed out the reason
why this choice is meaningful and we clearly showed its dynamical origin.



Conclusion

As pointed out several times in this thesis, the search for new physics at hadron col-
liders requires precise results in QCD phenomenology. The theoretical uncertainties
in cross sections for hadron–hadron collisions is often dominated by the uncertain-
ties of parton distribution functions. Their faithful estimation is therefore essential for
providing reliable predictions at the LHC. Another source of uncertainty is related to
the treatment of heavy quark masses in the calculation of processes involving heavy
quarks. We have seen that there are several schemes for performing such calcula-
tions. Often they lead to predictions which differ by a significant amount, resulting in
ambiguities in the theoretical description of this class ofprocesses.

My research activity has focused on understanding and controlling the above sources
of theoretical errors. On one side this thesis presents the results that I achieved within
the NNPDF collaboration. The method, based on the combination of a Monte Carlo
sampling of the probability measure in the space of PDFs withthe use of neural net-
works as unbiased interpolating functions, provides a statistically–sound determina-
tion of parton densities. In this thesis I presented the progress that has been made
during the last four years, the results obtained and the analyses carried out. They
give an important contribution to the understanding of the role of partonic uncertain-
ties in the high–energy predictions and help in clarifying several issues which cannot
be dealt by mean of the traditional approaches. Moreover several phenomenological
studies performed using the NNPDF method, have been presented and their relevance
has been outlined. A related but somewhat independent result concerns the study of
processes with heavy quarks in the initial states. I have introduced a method to as-
sess the size of the potentially large logarithms of the massof the heavy quarks which
arise in massive calculations. The identification of the actual scale of these logarithms
and the understanding of their dynamical origin enabled us to quantitatively estimate

251
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their impact for several representative LHC processes. Theanalysis might be easily
extended to any other process.

Parton densities determination

The NNPDF collaboration has developed a completely original method for deter-
mining parton distribution functions. Before the work carried out in this thesis, the
NNPDF approach was only applied to the determination of a single parton density [67].
My main research project aimed at extending the method to thedetermination of a full
set of PDFs. On top of the DIS data, upon which the first two fits were based [68, 70],
inclusive jets and Drell–Yan data have recently been included, by yielding the first
NNPDF global analysis [71]. In the latter, hadronic cross–sections are evaluated at
NLO, without relying on any K–factor approximation thanks to the formulation of the
FastKernel method. Moreover normalisations uncertainties are correctly taken into
account by mean of the so–calledt0 prescription proposed in Ref. [118]. The faithful
determination of PDFs uncertainties allowed us to perform aseries of statistical anal-
yses which cannot be easily addressed by other methods. In particular the dependence
on the choice of the parametrisation of the PDFs has been assessed in a statistical
way and satisfying answers when comparing the results obtained out of a reduced set
of data with the global results have been obtained: while theuncertainty bands do
increase in the regions where there are less data, and thus less information, the cen-
tral values of the reduced and the full fits remain compatiblewithin the uncertainty.
Finally the compatibility between DIS and hadronic datasets has been studied in a
quantitative way.

The most recent NNPDF global analysis however, still uses anapproximate prescrip-
tion for the treatment of heavy quarks masses, which might lead to systematic shifts
in theoretical predictions. For this reason, the FONLL general mass VFN scheme [54]
is currently under implementation and is going to be included in the forthcoming
NNPDF2.1 release [105]. The inclusion of a better treatmentof the heavy quark
masses is particularly interesting within the unbiased NNPDF approach, since it al-
lows us to disentangle its actual effect from other possiblecontributions due to PDFs
parametrisation. Other features, such as the implementation of a NNLO analysis for
precision studies, or the inclusion of small– and large–x resummation effects, are go-
ing to be explored in the near future. Finally, a suitable LO parton fit able to match
the requirements of the leading–order Monte Carlo event generators is in preparation.
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Related phenomenology

With the technique developed within the NNPDF approach, several phenomenolog-
ical studies have been performed and presented in this thesis. The detailed study of
the strange content of the nucleon showed that better control of the uncertainty of
the strange and anti-strange parton distributions has a twofold significance. First, it
enabled us to reassess the determination of electroweak parameters from the NuTeV
dimuon data and to solve the well-known NuTeV anomaly, by making these results
fully consistent with the precision electroweak data. Secondly, it yielded the most
precise direct determination of the CKM matrix element|Vcs| [70]. It would be in-
teresting to perform such analysis with the most recent NNPDF parton set [71] and
check whether the accuracy in the CKM matrix elements determination may further
improve. The same kind of analysis might be performed by varying αs and obtain-
ing a direct determination from the parton fit. In performingsuch analysis, all details
presented in this thesis about the correlation betweenαs and PDFs must be carefully
taken into account.

Another application of the Monte Carlo representation of the NNPDF results is the so–
called Bayesian Reweighting technique. In this thesis the method has been explained
in detail and the technique has been applied to the inclusionof the D0W–lepton
asymmetry data into the NNPDF fit without need of refitting. The analysis deserves
to be extended to moreW lepton asymmetry datasets, by including the most recent
D0 muon data and the separate electron bins data that have notbeen considered in this
preliminary study. This would enable us to compare the results to those obtained by
the MSTW and CTEQ collaborations, where a tension is found between these data
and some fixed target DIS data. Furthermore the technique might be easily applied
to the inclusion of future experiments pseudo–data and usedto study how they might
further constrain the parton content of the proton.

On top of what has been presented in this thesis, the NNPDF method has a much wider
range of applications, thanks to the generality of its features. It might be implemented
whenever a function or a set of functions cannot be derived byfirst principles and must
be inferred from a set of experimental data and theoretical assumptions, for instance
in cosmology problems or in saturation models.

Heavy quark processes

As mentioned several times in this thesis, there are two complementary approaches
in performing a QCD calculation of processes initiated by a heavy quark. The heavy
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quark is either considered a massless parton in the initial state; or it does not con-
tribute to the proton wavefunction and it is generated as a massive final state. In the
latter scheme, possibly large logarithms developing in theinitial states due to heavy
quarks collinear splittings are not resummed into the heavyquark PDF. The sizeable
difference observed between the two computations for several key processes at the
LHC requires a better understanding of the size of the scale associated to the collinear
logarithms and its dynamical origin. This was the aim of the preliminary analysis
presented in this thesis.

By considering three representative processes, the heavy quark pair production, the
single top and the associateW and c productions, I formulated a general method
for gaining a better understanding of the difference between massless and massive
computations. I showed that the scale of the logarithms arising due to the collinear
splitting of heavy quarks is a dynamical scale which dependson the final state particles
momenta. In the case of DIS heavy quarks production, the dynamical scale is actually
peaked about the expectedQ2 scale, while in the other cases, when the phase space
of final particles is suppressed by the production of a massive particle, such as the top
quark or theW boson, this scale is peaked at a softer scale than the expected hard
mt or MW scale. My analysis of the distributions not only reinforce the idea that
the origin of leading–order discrepancies between the two schemes may be attributed
to a choice of factorisation scales which is too large with respect to the actual scale
associated to the splitting process, but it gives a quantitative explanation for that.

The simplicity of the analysis presented in this thesis allows us to extend the results
obtained to relevant processes that were mentioned in the phenomenological review,
such as the Higgs production induced by bottom quarks, or theanalogousZ produc-
tion. In this way the generality of the method proposed may beassessed and more
final conclusions may be drawn.



Appendix A
Notation

The classical Lagrangian corresponding to QCD, is given by the Yang–Mill Lagrangian

Lclass =
∑

flavors

Ψ̄a (iγµD
µ − m)ab Ψb − 1

4
TrGA

µνG
µν
A , (A.1)

whereΨa are the quark fields,GA
µν is the field strenght tensor derived from the gluon

fieldAA

GA
µν =

[
∂µA

A
ν − ∂νA

A
µ − gfABCAB

µ A
C
ν

]
, (A.2)

andDµ is the covariant derivative:

(Dµ)ab = ∂µδab+ ig(tCAC
α )ab, (Dµ)AB = ∂µδAB + ig(TCAC

α )AB , (A.3)

wheretC andTC are the SU(3) generator matrices in the fundamental and adjoint
representations, respectively:

[tA, tB] = ifABCtC , [TA, TB] = ifABCTC , (TA)BC = −ifABC . (A.4)

By convention, the normalization of theSU(N) matrices is chosen to be

Tr tAtB = TRδ
AB, TR =

1

2
. (A.5)
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With this choice, the color matrices obey the following relations:

∑

A

tAabt
A
bc = CF δab CF =

N2 − 1

2N

TrTCTD =
∑

A,B

fABCfABD = CAδ
CD CA = N. (A.6)

For the specific case ofSU(3) the structure constants are:CF = 4/3, CA = 3.



Appendix B
Statistical Estimators

B.1 Monte Carlo statistical estimators

Here I define the Monte Carlo statistical estimators used in the analyses presented in
this thesis.

• Central value of the i-th experimental point

〈
F

(net)
i

〉
rep

=
1

Nrep

Nrep∑

k=1

F
(net)(k)
i . (B.1)

• Variance of the i-th experimental point

σ
(net)
i =

√〈(
F

(net)
i

)2〉

rep

−
〈
F

(net)
i

〉2
rep

. (B.2)

• Covariance and correlation of the i-th experimental point

ρ
(net)
ij =

〈
F

(net)
i F

(net)
j

〉
rep

−
〈
F

(net)
i

〉
rep

〈
F

(net)
j

〉
rep

σ
(net)
i σ

(net)
j

. (B.3)

cov
(net)
ij = ρ

(net)
ij σ

(net)
i σ

(net)
j . (B.4)
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• Mean variance and percentage error on central values over theNdat data points.

〈
V

[〈
F (net)

〉
rep

]〉

dat

=
1

Ndat

Ndat∑

i=1

(〈
F

(net)
i

〉
rep

− F
(exp)
i

)2

, (B.5)

〈
PE

[〈
F (net)

〉
rep

]〉

dat

=
1

Ndat

Ndat∑

i=1




〈
F

(net)
i

〉
rep

− F
(exp)
i

F
(exp)
i


 . (B.6)

•
〈
V
[〈
σ(net)

〉
rep

]〉
dat

,
〈
V
[〈
ρ(net)

〉
rep

]〉
dat

,
〈
V
[〈
cov(net)

〉
rep

]〉
dat〈

PE
[〈
σ(net)

〉
rep

]〉
dat

,
〈
PE

[〈
ρ(net)

〉
rep

]〉
dat

,
〈
PE

[〈
cov(net)

〉
rep

]〉
dat

relative to errors, correlations and covariances are defined in the same way.
They indicate how close are the averages over generated dataand the experi-
mental values.

• Scatter correlation:

r
[
F (net)

]
=

〈
F (exp)

〈
F (net)

〉
rep

〉
dat

−
〈
F (exp)

〉
dat

〈〈
F (net)

〉
rep

〉
dat

σ
(exp)
s σ

(net)
s

,

(B.7)

where the scatter variances are defined as

σ(exp)
s =

√〈(
F (exp)

)2〉
dat

−
(〈
F (exp)

〉
dat

)2
, (B.8)

σ(net)
s =

√〈(〈
F (net)

〉
rep

)2〉

dat

−
(〈〈

F (net)
〉
rep

〉
dat

)2
. (B.9)

• r
[
σ(net)

]
r
[
ρ(net)

]
r
[
cov(net)

]
are defined in the same way.

The scatter correlation indicates the size of the spread of data around a straight

line. Specificallyr
[
σ(net)

]
= 1 implies that

〈
σ
(net)
i

〉
is proportional toσ(exp)

i .

• Average variance:

〈
σ(net)

〉
dat

=
1

Ndat

Ndat∑

i=1

σ
(net)
i . (B.10)

•
〈
ρ(net)

〉
dat

〈
cov(net)

〉
dat

are defined in the same way.
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B.2 Distances

Given a set ofN (k)
rep replicasq(k)i of some quantityq, the estimator for the expected

(true) value ofq is the mean

〈q(k)〉(i) =
1

N
(i)
rep

N(i)
rep∑

i=1

q
(k)
i . (B.11)

The square distance between the two estimates of the expected value obtained from
setsq(1)i , q(2)i is then

d2
(
〈q(1)〉, 〈q(2)〉

)
=

(
〈q(1)〉(1) − 〈q(2)〉(2)

)2

σ2
(1)[〈q(1)〉] + σ2

(2)[〈q(2)〉]
(B.12)

where the variance of the mean is given by

σ2
(i)[〈q(i)〉] =

1

N
(i)
rep

σ2
(i)[q

(i)] (B.13)

in terms of the varianceσ2
(i)[q

(i)] of the variablesq(i) (which a priori could come from
two distinct probability distributions).

We estimate the variance of the mean from the variance of the replica sample as

σ2
(i)[q

(i)] =
1

N
(i)
rep − 1

N(i)
rep∑

k=1

(
q
(i)
k − 〈q(i)〉

)2
, (B.14)

with 〈q(i)〉 given by Eq. (3.34).

Given a set ofN (k)
rep replicasq(k)i of some quantityq, the estimator for the square

uncertainty ofq is the variance of the replica sample given by Eq. (B.14). Thedistance
between the two estimates of the square uncertainty obtained from setsq(1)i , q(2)i is
then

d2(σ2
(1), σ

2
(2)) =

(
σ̄2
(1) − σ̄2

(2)

)2

σ2
(1)[σ̄

2
(1)] + σ2

(2)[σ̄
2
(2)]

(B.15)

where for brevity we have defined

σ̄2
(i) ≡ σ2

(i)[q
(i)]. (B.16)



260 Chapter B. Statistical Estimators

The variancesσ2
(i)[σ̄

2
(i)] of the square uncertainties could also be estimated from the

replica sample, by computing the variance from various subsets of the given replica
sample, and then the variance of these resulting variances as the subset is varied; for
finite number of replicas this may lead to loss of statisticalaccuracy. For simplicity
here we use instead the expression [189]

σ2
(i)[σ̄

2
(i)] =

1

N
(i)
rep

[
m4[q

(i)]− N
(i)
rep − 3

N
(i)
rep − 1

(
σ̄2
(i)

)2
]
, (B.17)

where as abovēσ2
(i) is estimated using Eq. (B.14), while the fourth momentm4 of

the probability distribution is estimated from the corresponding moment of the replica
sample (which provides an estimate of it which is only asymptotically unbiased):

m4[q
(i)] =

1

N
(i)
rep

N(i)
rep∑

k=1

(
q
(i)
k − 〈q(i)〉

)4
. (B.18)

In practice, for small–sized replica samples the distancesdefined in Eq. (B.12) and
Eq. (B.15) display sizable statistical fluctuations. In order to stabilise the result, dis-
tances are determined as follows: we randomly pickN

(i)
rep/2 out of theN (i)

rep replicas
for each of the two subsets. The computation of the square distance Eq. (3.35) or
Eq. (B.15) is then repeated forNpart = 100 (randomly generated) choices ofN

(i)
rep/2

replicas, and the result is averaged: this is sufficient to bring the statistical fluctuations
of the distance at the level of a few percent.
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PDFs uncertainty computation

Within the NNPDF approach the expectation value of any function O[{q}] which
depends on the PDFs is computed as an average over the ensemble of PDFs, using the
master formula

〈O[{q}]〉 = 1

Nset

Nset∑

k=1

O[{q}], (C.1)

whereNset = Nrep is the number of sets of PDFs in the ensemble, equal to the
number of replicas. The associated uncertainty is found as the standard deviation of
the sample, according to the usual formula

σO =

(
Nset

Nset − 1

(〈
O[{q}]2

〉
− 〈O[{q}]〉2

))1/2

=

(
1

Nset − 1

Nset∑

k=1

(
O[
{
q(k)

}
]− 〈O[{q}]〉

)2
)1/2

. (C.2)

These formulae may also be used for the determination of central values and uncertain-
ties of the parton distribution themselves, in which case the functionalO is identified
with the parton distributionq : O[{q}] ≡ q.

Here we briefly compare the procedures we use to determine central values and errors
with those used for the various other PDFs available throughHEPDATA. Available
methods for the determination of PDF uncertainties fall broadly into two distinct cate-
gories, which we shall refer to as the HEPDATA method (used asa default in the PDF
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server at the HEPDATA database) and the Monte Carlo method. In both methods sets
of PDFs with uncertainties are given as an ensemble ofNset sets of PDFs,

{
q(k)

}
, k = 0, . . . , Nset. (C.3)

Conventionally the PDF setq(0) corresponds to a “central” set.

In the HEPDATA method, the central set is a best fit set of PDFs,which thus provides
the central value for PDFs themselves. The central value of any quantityO[{q}] is
obtained in this method by evaluating it as a function of the central set:

O(0) = O[
{
q(0)
}
]. (C.4)

In the Monte Carlo method, the central values of any quantityO[{q}] is instead given
by Eq. (C.1). However, for any quantityO[{q}] which depends nonlinearly on the
PDFs

〈O[{q}]〉 6= O[
{
q(0)
}
]. (C.5)

Hence, Eq. (C.1) must be used for the determination of the central value, and use of
the setq(0) is not recommended. However, for a quantity that does dependlinearly
on the PDFs, such as a DIS structure function, Eq. (C.4) with the central PDFsq(0)

gives the same result as Eq. (C.1), and thus it may be used alsowith the Monte Carlo
method. Note that setq(0) should not be included when computing an average with
Eq. (C.1), because it is itself already an average.

The determination of uncertainties with the HEPDATA methodis based on the idea
that setsq(k) with k > 0 provide upper and lower variations (for even and odd values
of k) away from the central setq(0) which correspond to eigenvectors in parameter
space. The one-σ uncertainty is then found by adding in quadrature these variations:

σhepdata
O =

1

2C90




Nset/2∑

k=1

(
O[
{
q(2k−1)

}
]−O[

{
q(2k)

}
]
)2



1/2

, (C.6)

where the factor

C90 ≡
√
2Erf−1[0.90] = 1.64485 (C.7)

accounts for the fact that the upper and lower parton sets correspond to 90% confi-
dence levels rather than to one-σ uncertainties. This method should be used with the
CTEQ and MRST/MSTW sets.
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A slightly different application of the HEPDATA method is required for the Alekhin/ABKM
PDF sets Ref. [73, 74, 75, 102]. With these PDFs, setsq(k) with k > 0 each provide
the uncertainty limits from the central set, with upper and lower PDFs symmetrical by
construction and already corresponding to one-σ uncertainties. So for these PDFs

σhepdata
F =

(
Nset∑

k=1

(
F [
{
q(k)

}
]−F [

{
q(0)
}
]
)2
)1/2

. (C.8)
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Appendix D
O(αs) matrix elements for
heavy quark production

In this appendix we provide the explicit expression for the matrix elements defined in
Eq. (6.14). They refer to leading–order process

g(pb) +B∗(q) → QM (k2) + Q̄m(k3),

whereQM andQm are heavy quarks of massesM andm respectively whose coupling
with the generic vector bosonB∗ is given by

gRγ
µ 1 + γ5

2
+ gLγ

µ 1− γ5
2

≡ gRγ
µPR + gLγ

µPL.

The transverse component is given by

Mg
T =

4

t21u
2
1

{

g2L

[

+ 2m2M2s21 − 2s1
[

m4u1 +M4t1 + (m2 +M2)u1t1
]

(D.1)

+t1u1

(

2Q4 − 2s1Q
2 + t21 + u2

1

)

+ 2Q2
[

m2u1(2t1 + u1) +M2t1(2u1 + t1)
]

]

+16gLgRmM

[

s1(u1m
2 + t1M

2) + u1t1(s1 −Q2)

]

+g2R

[

+ 2m2M2s21 − 2s1
[

m4u1 +M4t1 + (m2 +M2)u1t1
]

+t1u1
(

2Q4 − 2s1Q
2 + t21 + u2

1

)

+ 2Q2
[

m2u1(2t1 + u1) +M2t1(2u1 + t1)
]

]}

.
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The longitudinal component is given by

Mg
L =

16Q2
(

g2L + g2R
)

s21t1u1

[

s1(u1m
2 + t1M

2) + u1t1(s1 −Q2)

]

. (D.2)

The axial component, which vanishes ifgL = gR is given by

Mg
3 = −

4Q2
(

g2L − g2R
)

s1t21u
2
1

{

(−2m4s21u1 −m2s1

(

2M2s1(s1 + 2t1)− u1
(

2Q2(s1 + 3t1)− 2s21 + 2s1ŝy − 5s1t1 + 3ŝt1y
))

+t1

(

2M4s21 +M2s1
(

4Q2s1 + 6Q2t1 − 3s21 + s1ŝy − 5s1t1 + 3ŝt1y
)

+
(

s21 + 3s1t1 + 2t21
) (

2Q4 − 3Q2s1 +Q2ŝy + s21
)

)}

(D.3)
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