Fragmentation Functions and their uncertainties

with V. Bertone, S. Carrazza, N.P. Hartland and J.Rojo XXV International Workshop on Deep-Inelastic Scattering and Related Subjects

Emanuele R. Nocera

Rudolf Peierls Centre for Theoretical Physics - University of Oxford

University of Birmingham - April 4 2017

Foreword

Fragmentation functions encode the information on how partons produced in a hard-scattering process are turned into an observed colorless hadronic bound final-state [PRD 15 (1977) 2590]

Starting point: (leading-twist) QCD factorization

$$d\sigma^{h}(x,Q^{2}) = \sum_{i=-n_{f}}^{n_{f}} \int_{x}^{1} dz \, d\sigma^{i}\left(\frac{x}{z},\frac{Q^{2}}{\mu^{2}},\frac{m_{i}^{2}}{Q^{2}},\alpha_{s}(\mu^{2})\right) D_{i}^{h}(z,\mu^{2})$$

	DHESS	HKNS	JAM	NNFF1.0
SIA SIDIS PP		⊠ ⊠	⊠ ⊠	⊠ ⊠ ∑
statistical treatment	Iterative Hessian 68% - 90%	Hessian $\Delta\chi^2 = 15.94$	Monte Carlo	Monte Carlo
hadron species	π^{\pm} , K^{\pm} , $p/ar{p}$, h^{\pm}	π^{\pm} , K^{\pm} , $p/ar{p}$	π^{\pm} , K^{\pm}	π^{\pm} , K^{\pm} , $p/ar{p}$
latest undate	PRD 91 (2015) 014035- 1702 06353	PTEP 2016 (2016) 113B04	PRD 94 (2016) 114004	in preparation

New data: BELLE [PRL 11 (2013) 062002], BABAR [PRD 88 (2013) 032001] (SIA) HERMES [PRD 87 (2013) 074029], COMPASS [PLB 764 (2017) 1; PLB 767 (2017) 133] (SIDIS)

Improved methodological sophistication, improved SIA theory: NNLO [PRD 92 (2015) 114017], low-z resummation [PRD 95 (2017) 054003], HQ [PRD 94 (2016) 034037]

Fragmentation functions: why should we bother?

Example 1: Ratio of the inclusive chargedhadron spectra measured by CMS and ALICE

Figures taken from [NPB 883 (2014) 615]

Example 2: The strange polarised parton distribution at $Q^2 = 2.5 \text{ GeV}^2$ ($\Delta s = \Delta \bar{s}$)

1 Predictions from all available FF sets are not compatible with CMS and ALICE data, not even within scale and PDF/FF uncertainties \rightarrow input for nuclear medium modifications 2 If SIDIS data are used to determine Δs , K^{\pm} FFs for different sets lead to different results. Such results may differ significantly among them and w.r.t. the results obtained from DIS \rightarrow input for polarised PDFs and TMDs

Towards NNFF1.0

A first determination of fragmentation functions à la NNPDF

Data:

2 Theory:

▶ LO, NLO, NNLO (will be the only NNLO fit together with [PRD 92 (2015) 114017]), MS

It methodology/technology:

 à la NNPDF, successfully used for the determination of unpolarised/polarised PDFs Monte Carlo sampling of experimental data + neural network parametrisation
 Genetic algorithm minimisation + determination of the best fit by cross-validation closure tests for a full characterisation of procedural uncertainties

- ▶ use of APFEL [CPC185(2014)1647] for the calculation of SIA observables (FK tables)
- keep mutual consistency with NNPDF unpolarised/polarised PDF sets

Results presented in this talk refer to π^+ and K^+ fragmentation functions

 π and K constitute the largest fraction in measured yields, work in progress for p/\bar{p}

The dataset

 $\begin{array}{l} \textbf{CERN-LEP: ALEPH [ZP C66 (1995) 353] DELPHI [EPJ C18 (2000) 203] OPAL [ZP C63 (1994) 181]} \\ \textbf{KEK: BELLE (} n_f = 4) [PRL 111 (2013) 062002] TOPAZ [PL B345 (1995) 335] \\ \textbf{DESY-PETRA: TASSO [PL B94 (1980) 444, ZP C17 (1983) 5, ZP C42 (1989) 189]} \\ \textbf{SLAC: BABAR (} n_f = 4) [PR D88 (2013) 032011] SLD [PR D58 (1999) 052001] TPC [PRL 61 (1988) 1263] \end{array}$

$$\frac{d\sigma^h}{dz} = \frac{4\pi\alpha^2(Q^2)}{Q^2}F_2^h(z,Q^2) \quad h = \pi^+ + \pi^-, K^+ + K^-; \text{ possibly normalised to } \sigma_{\text{tot}}$$

From observables to fragmentation functions

$$\mathcal{F}_{2}^{h} = \langle e^{2} \rangle \left\{ C_{2,q}^{\mathrm{S}} \otimes D_{\Sigma}^{h} + n_{f} \mathcal{C}_{2,g}^{\mathrm{S}} \otimes D_{g}^{h} + \mathcal{C}_{2,q}^{\mathrm{NS}} \otimes D_{\mathrm{NS}}^{h} \right\}$$

$$\langle e^2 \rangle = \frac{1}{n_f} \sum_{q=1}^{n_f} \hat{e}_q^2 \qquad D_{\Sigma}^h = \sum_{q=1}^{n_f} D_{q^+}^h \qquad D_{\rm NS}^h = \sum_{q=1}^{n_f} \left(\frac{\hat{e}_q^2}{\langle e^2 \rangle} - 1 \right) D_{q^+}^h \qquad D_{q^+}^h = D_q^h + D_{\bar{q}}^h$$

Coefficient functions and splitting functions known up to NNLO [NPB 751 (2006) 18; NPB 749 (2006) 1; PLB 638 (2006) 61; NPB 845 (2012) 133]

$$\begin{split} F_2^{h,n_f=5} = & \frac{1}{5} \left[\left(2\hat{e}_u^2 + 3\hat{e}_d^2 \right) C_{2,q}^{\mathrm{S}} + 3 \left(\hat{e}_u^2 - \hat{e}_d^2 \right) C_{2,q}^{\mathrm{NS}} \right] \otimes \left(D_{u^+}^h + D_{c^+}^h \right) \\ & + \frac{1}{5} \left[\left(2\hat{e}_u^2 + 3\hat{e}_d^2 \right) C_{2,q}^{\mathrm{S}} - 2 \left(\hat{e}_u^2 - \hat{e}_d^2 \right) C_{2,q}^{\mathrm{NS}} \right] \otimes \left(D_{d^+}^h + D_{s^+}^h + D_{b^+}^h \right) \\ & + \left(2\hat{e}_u^2 + 3\hat{e}_d^2 \right) C_{2,g}^{\mathrm{S}} \otimes D_g^h \end{split}$$

No sensitivity to individual quark and antiquark FFs

Limited sensitivity to flavour separation via the variation of \hat{e}_q with Q^2 $\hat{e}_u^2/\hat{e}_d^2(Q^2 = 10 \,\text{GeV}) \sim 4 \Rightarrow D_{u^+}^h$, $D_{d^+}^h + D_{s^+}^h$; $\hat{e}_u^2/\hat{e}_d^2(Q^2 = M_Z) \sim 0.8 \Rightarrow D_{\Sigma}^h$ Flavor separation between uds and c, b quarks achieved thanks to tagged data

Direct sensitivity to D_g^h only beyond LO, as $C_{2,g}^S$ is $\mathcal{O}(\alpha_s^2)$, and tenous Indirect sensitivity to D_g^h via scale violations in the time-like DGLAP evolution

Fit settings

Physical parameters: consistent with the upcoming NNPDF3.1 PDF set

$$\alpha_s(M_Z)=0.118,\ \alpha(M_Z)=1/127,\ m_c=1.51$$
 GeV, $m_b=4.92$ GeV

Solution of DGLAP equations: numerical solution in *z*-space as implemented in APFEL extensive benchmark performed up to NNLO [JHEP 1503 (2015) 046]

Parametrisation: each FF is parametrised with a feed-forward neural network (2-5-3-1)

$$D_i^h(Q_0, z) = NN(x) - NN(1), \ Q_0 = 5 \text{ GeV}$$

PIONS $h = \pi^+ + \pi^-$, $i = u^+, s^+, c^+, b^+, g$ $D_{u^+}^{\pi^\pm} = D_{d^+}^{\pi^\pm}$ (isospin symmetry) we assume charge conjugation, from which $D_{a^+}^{\pi^+} = D_{a^+}^{\pi^-}$

we enforce positivity by construction, assuming quadratic NNs

initial scale above m_b , but below the lowest c.m. energy of the data, avoid threshold crossing Heavy flavours: heavy-quark FFs are parametrised independently at the initial scale Q_0 a matched GM-VFNS (like FONLL) may be required if $Q_0 < m_c$ [PRD 94 (2016) 034037]

Kinematic cuts: $z \to 0$: contributions $\propto \ln z$; $z \to 1$: contributions $\propto \ln(1-z)$ PIONS KAONS

$$\begin{split} z_{\min} &= 0.1, \, z_{\min} = 0.05 \; (\sqrt{s} = M_Z); \, z_{\max} = 0.90 & z_{\min} = 0.2, \, z_{\min} = 0.1 \; (\sqrt{s} = M_Z); \, z_{\max} = 0.90 \\ z_{\min} &= 0.075, \, z_{\min} = 0.01 \; (\sqrt{s} = M_Z); \, z_{\max} = 0.90 & z_{\min} = 0.1, \, z_{\min} = 0.05 \; (\sqrt{s} = M_Z); \, z_{\max} = 0.90 \\ \text{kinematic corrections} &\propto M_h / (sz^2) \text{ included exactly in the cross sections [PRD 73 (2006) 054020]} \end{split}$$

Fit quality: π^+

NNLO theory					
Exp.	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	remarks		
BELLE	70	0.08	lack of correlations		
BABAR	37	1.17	Ø		
TASSO12	2	1.61	small sample		
TASSO14	7	1.83) data fluaturationa		
TASSO22	7	2.16			
TASSO34	8	1.09	Ø		
TASSO44	5	1.95	data fluctuations		
TPC	12	0.98	Ø		
TPC-UDS	6	0.45	Ø		
TPC-C	6	0.50	Ø		
TPC-B	6	1.41	Ø		
TOPAZ	4	0.66	Ø		
ALEPH	22	0.88	Ø		
DELPHI	16	2.32	tension with OPAL		
DELPHI-UDS	16	1.90	tension with OPAL		
DELPHI-B	16	1.09	Ø		
OPAL	22	2.05	tension with DELPHI		
SLD	29	1.09	Ø		
SLD-UDS	29	0.80	Ø		
SLD-C	29	0.97	Ø		
SLD-B	29	0.44	Ø		
TOTAL	378	0.99	Ø		

Overall good description of the dataset Signs of tension OPAL vs DELPHI (inclusive) Anomalously small $\chi^2/N_{\rm dat}$ for BELLE

Fit quality: K^+

NNLO theory						
Exp.	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	remarks			
BELLE	70	0.19	lack of correlations			
TASSO14	3	1.30)			
TASSO22 TASSO34	2	0.29 0.09	<pre>small sample</pre>			
TPC ALEPH	7 13	1.19 0.72	⊠í ⊄i			
DELPHI	11	0.17	Ø			
DELPHI-0D3	11	0.41	ZÍ ZÍ			
OPAL SLD	9 21	2.10 0.77	tension with other M_Z data \square			
SLD-UDS SLD-C	21 20	1.11 0.42	IZÍ IZÍ			
SLD-B	21	0.71	Ø.			
TOTAL	250	0.67	Ø			

Overall good description of the dataset Excellent BELLE/BABAR consistency Signs of tension OPAL vs DELPHI (inclusive) Anomalously small $\chi^2/N_{\rm dat}$ for BELLE Data description rapidly deteriorates at low zPrediction uncertainties blow up at low z

Dependence upon perturbative order: π^+

Exp.	$N_{\rm dat}$	$LO \chi^2/N_{dat}$	NLO $\chi^2/N_{\rm dat}$	NNLO $\chi^2/N_{\rm dat}$
BELLE	70	0.67	0.12	0.08
BABAR	37	1.64	1.26	1 17
TASSO12	21	1 10	1.20	1.17
TASSO12 TASSO14	7	1.19	1.57	1.01
TASS022	7	1.81	2 19	2.16
TASS034	8	1.01	1 11	1 09
TASSO44	5	2.05	2.00	1.95
TPC	12	0.51	0.69	0.98
TPC-UDS	6	0.79	0.52	0.45
TPC-C	6	0.54	0.51	0.50
TPC-B	6	1.45	1.41	1.41
TOPAZ	4	1.25	0.75	0.66
ALEPH	22	2.25	1.10	0.88
DELPHI	16	1.63	2.17	2.32
DELPHI-UDS	16	1.40	1.75	1.90
DELPHI-B	16	1.45	1.18	1.09
OPAL	22	2.68	2.19	2.05
SLD	29	2.66	1.35	1.09
SLD-UDS	29	1.63	0.98	0.80
SLD-C	29	2.39	1.15	0.97
SLD-B	29	0.45	0.43	0.44
TOTAL	378	1.50	1.05	0.99

Excellent perturbative convergence FFs almost stable from NLO to NNLO LO FF uncertainties larger than HO

Emanuele R. Nocera (Oxford)

Dependence upon perturbative order: K^+

Exp.	$N_{ m dat}$	$\underset{\chi^2/N_{\rm dat}}{\rm LO}$	$_{\chi^2/N_{\rm dat}}^{\rm NLO}$	$_{\chi^2/N_{\rm dat}}^{\rm NNLO}$
BELLE	70	0.37	0.34	0.19
BABAR	28	1.02	0.96	0.77
TASSO14	3	1.23	1.24	1.30
TASSO22	2	0.29	0.32	0.29
TASSO34	2	0.02	0.03	0.09
TPC	7	0.41	0.49	1.19
ALEPH	13	0.66	0.71	0.72
DELPHI	11	0.17	0.16	0.17
DELPHI-UDS	11	2.01	1.94	1.97
DELPHI-B	11	0.51	0.44	0.41
OPAL	9	2.02	2.08	2.10
SLD	21	0.81	0.80	0.77
SLD-UDS	21	1.16	1.19	1.11
SLD-C	20	0.49	0.46	0.42
SLD-B	21	0.71	0.68	0.71
TOTAL	250	0.73	0.72	0.67

Excellent perturbative convergence FFs almost stable from NLO to NNLO LO FF uncertainties larger than HO

i	$\mathrm{N}^{i+1}\mathrm{LO}/\mathrm{N}^{i}\mathrm{LO}$	D_g	D_{Σ}	$D_{c}+$	$D_{b}+$
0	NLO/LO [%]	95-300	70-80	65-80	70-85
1	NNLO/NLO [%]	70-130	90-100	90-110	95-115

Dependence upon the dataset: π^+

NNLO theory Exp.	N_{dat}	$_{\chi^2/N_{\rm dat}}^{\rm NNFF1.0}$	no BB $\chi^2/N_{ m dat}$	$^{\rm BB+LEP}_{\chi^2/N_{\rm dat}}$
BELLE	70	0.08	(5.95)	0.08
BABAR	37	1.17	(82.2)	1.22
TASSO12	2	1.61	0.84	(1.61)
TASSO14	7	1.83	1.77	(1.85)
TASSO22	7	2.16	1.55	(2.48)
TASSO34	8	1.09	1.35	(1.55)
TASSO44	5	1.95	2.22	(2.60)
TPC	12	0.98	1.94	(0.87)
TPC-UDS	6	0.45	0.56	(0.79)
TPC-C	6	0.50	0.73	(0.57)
TPC-B	6	1.41	1.59	(1.47)
TOPAZ	4	0.66	0.75	(1.50)
ALEPH	22	0.88	0.69	0.71
DELPHI	16	2.32	2.50	2.38
DELPHI-UDS	16	1.90	1.98	1.91
DELPHI-B	16	1.09	1.10	1.13
OPAL	22	2.05	1.87	1.98
SLD	29	1.09	0.72	1.07
SLD-UDS	29	0.80	0.60	0.73
SLD-C	29	0.97	0.80	1.10
SLD-B	29	0.44	0.43	0.43
TOTAL	378	0.99	1.14	0.93

no BB: larger uncertainties; different gluon shape and different light flavour separation BB+LEP: comparable uncertainties; slightly different size of gluon and light flavoured quarks

Dependence upon the dataset: K^+

NNLO theory Exp.	$N_{ m dat}$	$_{\chi^2/N_{\rm dat}}^{\rm NNFF1.0}$	$_{\chi^2/N_{\rm dat}}^{\rm no \; BB}$	$_{\chi^2/N_{\rm dat}}^{\rm BB+LEP}$
BELLE	70	0.19	(16.3)	0.37
TASSO14	3	1.30	1.80	(1.23)
TASSO22	2	0.29	0.23	(0.33)
TASSO34	2	0.09	0.02	(0.04)
TPC	7	1.19	0.61	(0.45)
ALEPH	13	0.72	0.75	0.63
DELPHI	11	0.17	0.23	0.16
DELPHI-UDS	11	1.97	2.05	2.00
DELPHI-B	11	0.41	0.45	0.48
OPAL	9	2.10	2.01	2.01
SLD	21	0.77	0.76	0.77
SLD-UDS	21	1.11	1.12	1.19
SLD-C	20	0.42	0.36	0.47
SLD-B	21	0.71	0.76	0.70
TOTAL	250	0.67	0.86	0.74

no BB: larger uncertainties; different gluon shape and different light flavour separation; significant degradation in the description of BELLE and BABAR data BB+LEP: comparable uncertainties; FFs stable; no significant degradation in fit quality; fair description of the data not included in the fit

Dependence upon kinematic cuts: π^+

NNLO theory	NNFF1.0		NNFF1.0 (lc)	
Exp.	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$
BELLE	70	0.08	70	0.09
BABAR	37	1.17	40	0.82
TASSO12	2	1.61	4	0.87
TASSO14	7	1.83	9	1.69
TASSO22	7	2.16	8	1.88
TASSO34	8	1.09	9	0.97
TASSO44	5	1.95	6	2.32
TPC	12	0.98	13	0.88
TPC-UDS	6	0.45	6	0.47
TPC-C	6	0.50	6	0.52
TPC-B	6	1.41	6	1.42
TOPAZ	4	0.66	5	0.75
ALEPH	22	0.88	30	2.39
DELPHI	16	2.32	22	1.70
DELPHI-UDS	16	1.90	22	1.43
DELPHI-B	16	1.09	22	0.85
OPAL	22	2.05	38	1.31
SLD	29	1.09	38	0.97
SLD-UDS	29	0.80	38	0.61
SLD-C	29	0.97	38	0.84
SLD-B	29	0.44	38	0.41
TOTAL	378	0.99	468	0.94

Slight improvement of the overall fit quality Excellent consistency in the overlapping region Significantly varied FF shapes at low zPossible tensions with ALEPH at small z

Emanuele R. Nocera (Oxford)

Dependence upon kinematic cuts: K^+

NNLO theory	NNFF1.0		NNFF1.0 (lc)	
Exp.	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$
BELLE	70	0.19	70	0.32
BABAR	28	0.77	43	1.12
TASSO12	_		3	1.02
TASSO14	3	1.30	7	2.03
TASSO22	2	0.29	4	0.33
TASSO34	2	0.09	4	0.04
TPC	7	1.19	12	0.72
TOPAZ	—	_	3	0.73
ALEPH	13	0.72	18	0.48
DELPHI	11	0.17	16	0.23
DELPHI-UDS	11	1.97	16	1.63
DELPHI-B	11	0.41	16	0.33
OPAL	9	2.10	10	1.68
SLD	21	0.77	29	0.71
SLD-UDS	21	1.11	29	1.02
SLD-C	20	0.42	29	0.41
SLD-B	21	0.71	29	0.84
TOTAL	250	0.67	338	0.73

Slight deterioration of the overall fit quality Excellent consistency in the overlapping region Significantly varied FF shapes at low z

Comparison with other FF sets: π^+

DEHSS [arXiv:1702.06353] (+SIDIS +PP)

JAM [PRD 94 (2016) 114004] (almost same dataset as NNFF1.0)

 $D_{\Sigma}^{\pi^{+}}$: excellent mutual agreement both c.v. and unc. (bulk of the dataset)

 $D_g^{\pi^+}$: slight disagreement different shapes, larger uncertainties DEHSS: data; JAM: parametrisation

 $D_{u^+}^{\pi^+}$, $D_{s^+}^{\pi^+}$: good overall agreement excellent with JAM, though larger uncertainties slight different shape w.r.t. DHESS (dataset)

 $D_{c+}^{\pi+}$, $D_{b+}^{\pi+}$: good overall agreement excellent with JAM, same uncertainties slight different shape w.r.t. DHESS (dataset)

Comparison with other FF sets: K^+

DEHSS [PRD 91 (2015) 014035] (+SIDIS +PP)

JAM [PRD 94 (2016) 114004] (almost same dataset as NNFF1.0)

 $D_{\Sigma}^{\pi^+}$: excellent agreement (both c.v. and unc.) bulk of the dataset

 $D_g^{\pi^+}$: good mutual agreement similar shapes, larger uncertainties DEHSS: data; JAM: parametrisation

 $D_{u+}^{\pi+}$: mutual sizable disagreement differences in dataset and parametrisation comparable uncertainties in the data region

 $D_{d+}^{\pi+} + D_{s+}^{\pi+}$: fair mutual agreement differences in dataset and parametrisation comparable uncertainties in the data region

 $D_{c^+}^{\pi^+}$, $D_{b^+}^{\pi^+}$: excellent mutual agreement uncertainties similar to JAM DHESS shows inflated uncertainties

Summary and outlook

INNFF1.0 is the first determination of fragmentation functions à la NNPDF

- based on SIA data only (still limited phenomenological usefulness)
- provided at LO, NLO and NNLO

2 Preliminary results for π^+ and K^+ fragmentation functions were presented

- good description of all untagged and tagged SIA data
- ▶ inclusion of higher-order corrections up to NNLO, good perturbative convergence
- substantial impact of B-factory data (shape and reduction of uncertainties)
- significant stability under removal of the least precise data
- good fit quality as z cuts are lowered, modified FF shapes
- shape and size of the uncertainties of $D_{\Sigma}^{\pi^+,K^+}$ comparable to other sets
- uncertainties larger than other sets for $D_g^{\pi^+,K^+}$ (with different shapes for π^+)
- ▶ slight different light flavour separation, especially for K^+ , w.r.t. other sets
- overall good agreement for $D_{c^+}^{\pi^+,K^+}$ and $D_{b^+}^{\pi^+,K^+}$ with other sets
- 3 The <code>NNFF1.0</code> release will include fragmentation functions of π^\pm , K^\pm and $p/ar{p}$
 - ▶ they will be made available for each hadron species through the LHAPDF interface
- Beyond NNFF1.0: inclusion of SIDIS and PP data, GM-VFNS, resummation(s), ...

Summary and outlook

INNFF1.0 is the first determination of fragmentation functions à la NNPDF

- based on SIA data only (still limited phenomenological usefulness)
- provided at LO, NLO and NNLO

2 Preliminary results for π^+ and K^+ fragmentation functions were presented

- good description of all untagged and tagged SIA data
- ▶ inclusion of higher-order corrections up to NNLO, good perturbative convergence
- substantial impact of B-factory data (shape and reduction of uncertainties)
- significant stability under removal of the least precise data
- good fit quality as z cuts are lowered, modified FF shapes
- shape and size of the uncertainties of $D_{\Sigma}^{\pi^+,K^+}$ comparable to other sets
- uncertainties larger than other sets for $D_g^{\pi^+,K^+}$ (with different shapes for π^+)
- ▶ slight different light flavour separation, especially for K^+ , w.r.t. other sets
- overall good agreement for $D_{c^+}^{\pi^+,K^+}$ and $D_{b^+}^{\pi^+,K^+}$ with other sets
- ${f 0}$ The NNFF1.0 release will include fragmentation functions of π^\pm , K^\pm and p/ar p
 - they will be made available for each hadron species through the LHAPDF interface
- Beyond NNFF1.0: inclusion of SIDIS and PP data, GM-VFNS, resummation(s), ...

Thank you

Extra material

Dependence upon perturbative order

7 April 4 2017

Emanuele R. Nocera (Oxford)

2 / 6

 $zD_{q}^{K^{+}}(z,Q^{2})$

 $zD_{d^{+}+s^{+}}^{K^{+}}(z,Q^{2})$

 $zD_{b^{+}}^{K^{+}}(z,Q^{2})$

ratio to LO

ratio to LO

ratio to LO

0.1 1

1.2

0.8

0.6 0.4

0.2

1.2

0.8

0.6

0.4

0.2

1.8

0.2

1.2

0.8

0.6

0.4

0.2

14

0.6

Dependence upon the dataset

NNFF1.0

Dependence upon kinematic cuts

Emanuele R. Nocera (Oxford)

NNFF1.0

April 4 2017 4 / 6

Data/theory comparison

Comparison with other sets

NNFF1.0