Towards a neural network determination of Fragmentation Functions

4th Workshop on the QCD Structure of the Nucleon (QCD-N'16)

Emanuele R. Nocera

in collaboration with V. Bertone, S. Carrazza and J. Rojo

Rudolf Peierls Centre for Theoretical Physics - University of Oxford

Palacio San Joseren, Getxo - July 11, 2016

Outline

- Theory: the perturbative QCD framework or why we are interested in a determination of fragmentation functions à la NNPDF
 - Motivation and desiderata
 - ► The piece of theory we need
- Practice: towards NNFF1.0 or how we are dealing with a determination of fragmentation functions à la NNPDF
 - Observables, data sets
 - ► Methodological details of the fit
 - Results: fit quality, perturbative stability, comparison with other sets
- Conclusions

1. Theory: the perturbative QCD framework

Foreword [More in R. Sassot's talk]

Fragmentation functions encode the information on how partons produced in hard-scattering processes are turned into an observed colorless hadronic bound final-state [PRD 15 (1977) 2590]

Starting point: (leading-twist) QCD factorization

$$d\sigma^h(x, E_s^2) = \sum_{i=-n_f}^{n_f} \int_x^1 dz \, d\sigma^i \left(\frac{x}{z}, \frac{E_s^2}{\mu^2}, \frac{m_i^2}{E_s^2}, \alpha_s(\mu^2)\right) D_i^h(z, \mu^2)$$

$$e^+ + e^- \to h + X \\ \text{single-inclusive} \\ \text{annihilation (SIA)} \\ \text{ } \\ \text{ }$$

Process	DSS	HKNS	KRE	AKK08	
SIA	Ø	Ø	Ø		
SIDIS	Ø	\boxtimes	\boxtimes		
PP	Ø	\boxtimes	\boxtimes	Ø	
statistical treatment	Lagr. mult. $\Delta\chi^2/\chi^2=2\%$	Hessian $\Delta\chi^2=15.94$	no uncertainty determination	no uncertainty determination	
hadron species	π^{\pm} , K^{\pm} , p/\bar{p} , h^{\pm}	π^{\pm} , K^{\pm} , p/\bar{p}	π^{\pm} , K^{\pm} , h^{\pm}	π^{\pm} , K^{\pm} , p/\bar{p} , K_S^0 , $\Lambda/\bar{\Lambda}$	
latest update	PRD 91 (2015) 014035	PRD 75 (2007) 094009	PR D62 (2000) 054001	NP B803 (2008) 42	

+ some others: KKP [NP B582 (2000) 514], BFGW [EPJ C19 (2001) 89], AKKO5 [NP B725 (2005) 181], ... some of them are publicly available at http://lapth.cnrs.fr/ffgenerator/

Fragmentation functions: why should we bother?

Example 1: Ratio of the inclusive chargedhadron spectra measured by CMS and ALICE

Figures taken from [NPB 883 (2014) 615]

Example 2: The strange polarized parton distribution at $Q^2=2.5~{\rm GeV}^2~(\Delta s=\Delta \bar{s})$

Figure taken from [PRD D84 (2011) 014002]

- 1 Predictions from all available FF sets are not compatible with CMS and ALICE data, not even within scale and PDF/FF uncertainties
- 2 If SIDIS data are used to determine Δs , K^{\pm} FFs for different sets lead to different results. Such results may differ significantly among them and w.r.t. the results obtained from DIS

A determination of Fragmentation Functions à la NNPDF

List of desiderata (for the NNFF1.0 release)

- ① Data:
 - ▶ all untagged and tagged SIA data for π^{\pm} , K^{\pm} , p/\bar{p}
- 2 Theory:
 - ► LO, NLO, NNLO (will be the only NNLO fit together with [PRD 92 (2015) 114017])
 - ▶ MS scheme, ZM-VFNS
- Fit methodology/technology:
 - ► à la NNPDF [more in J. Rojo's talk]

Monte Carlo sampling of experimental data + neural network parametrization

- closure tests for a full characterization of procedural uncertainties
- ▶ use of APFEL [CPC 185 (2014) 1647] for the calculation of SIA observables
- keep mutual consistency with NNPDF unpolarized/polarized PDF sets

Results presented in this talk refer to π^{\pm} fragmentation functions

work in progress for K^\pm and p/\bar{p}

Factorization: single-inclusive annihilation cross section

$$e^{+}(k_1) + e^{-}(k_2) \xrightarrow{\gamma, Z^0} h(P_h) + X$$

 $q = k_1 + k_2 \qquad q^2 = Q^2 > 0 \qquad z = \frac{2P_h \cdot q}{Q^2}$

$$\boxed{\frac{d\sigma^h}{dz} = \mathcal{F}_T^h(z, Q^2) + \mathcal{F}_L^h(z, Q^2) = \mathcal{F}_2^h(x, Q^2)}$$

$$\mathcal{F}_{k=T,L,2}^{h} = \frac{4\pi\alpha_{\mathrm{em}}^{2}}{Q^{2}} \langle e^{2} \rangle \left\{ D_{\Sigma}^{h} \otimes \mathcal{C}_{k,q}^{S} + n_{f} D_{g}^{h} \otimes \mathcal{C}_{k,g}^{S} + D_{\mathrm{NS}}^{h} \otimes \mathcal{C}_{k,q}^{\mathrm{NS}} \right\}$$

$$\langle e^2 \rangle = \frac{1}{n_f} \sum_{p=1}^{n_f} \hat{e}_p^2 \qquad D_\Sigma^h = \sum_{p=1}^{n_f} \left(D_p^h + D_{\bar{p}}^h \right) \qquad D_{\mathrm{NS}}^h = \sum_{p=1}^{n_f} \left(\frac{\hat{e}_p^2}{\langle e^2 \rangle} - 1 \right) \left(D_p^h + D_{\bar{p}}^h \right)$$

$$\hat{e}_p^2 = e_p^2 - 2e_p \chi_1(Q^2) v_e v_p + \chi_2(Q^2) (1 + v_e^2) (1 + v_p^2)$$

$$\chi_1(s) = \frac{1}{16 \sin^2 \theta_W \cos^2 \theta_W} \frac{s(s - M_Z^2)}{(s - M_Z^2)^2 + \Gamma_Z^2 M_Z^2}$$

$$\chi_2(s) = \frac{1}{256 \sin^4 \theta_W \cos^4 \theta_W} \frac{s^2}{(s - M_Z^2)^2 + \Gamma_Z^2 M_Z^2}$$

Factorization: single-inclusive annihilation cross section

$$e^{+}(k_{1}) + e^{-}(k_{2}) \xrightarrow{\gamma, Z^{0}} h(P_{h}) + X$$

 $q = k_{1} + k_{2}$ $q^{2} = Q^{2} > 0$ $z = \frac{2P_{h} \cdot q}{Q^{2}}$

$$\frac{d\sigma^h}{dz} = \mathcal{F}_T^h(z, Q^2) + \mathcal{F}_L^h(z, Q^2) = \mathcal{F}_2^h(x, Q^2)$$

$$\mathcal{F}_{k=T,L,2}^{h} = \frac{4\pi\alpha_{\mathrm{em}}^{2}}{Q^{2}} \langle e^{2} \rangle \left\{ D_{\Sigma}^{h} \otimes \mathcal{C}_{k,q}^{S} + n_{f} D_{g}^{h} \otimes \mathcal{C}_{k,g}^{S} + D_{\mathrm{NS}}^{h} \otimes \mathcal{C}_{k,q}^{\mathrm{NS}} \right\}$$

$$\langle e^2 \rangle = \frac{1}{n_f} \sum_{p=1}^{n_f} \hat{e}_p^2 \qquad D_{\Sigma}^h = \sum_{p=1}^{n_f} \left(D_p^h + D_{\bar{p}}^h \right) \qquad D_{\mathrm{NS}}^h = \sum_{p=1}^{n_f} \left(\frac{\hat{e}_p^2}{\langle e^2 \rangle} - 1 \right) \left(D_p^h + D_{\bar{p}}^h \right)$$

Note 1: coefficient functions allow for a perturbative expansion

$$C_{k=T,L,2,f=q,g}^{i=S,NS} = \sum_{l=0} \left(\frac{\alpha_s}{4\pi}\right)^l C_{k,f}^{i,(l)}$$

with $C_{k,f}^{i,(l)}$ known up to NNLO (l=2) in $\overline{\mathrm{MS}}$ [NPB751(2006)18, NPB749(2006)1]

Note 2: only a subset of FFs can be determined from SIA

Note 3: different scaling with Q^2 of $\hat{e}_i \to \text{handle on flavour decomposition of quark FFs}$ $\hat{e}_u^2/\hat{e}_d^2(Q^2=M_Z)\approx 0.78 \qquad \hat{e}_u^2/\hat{e}_d^2(Q^2=10\text{GeV})\approx 4$

Evolution: time-like DGLAP

$$\begin{split} \frac{\partial}{\partial \ln \mu^2} D_{\mathrm{NS}}^h(z,\mu^2) &= P^{\mathrm{NS}}(z,\mu^2) \otimes D_{\mathrm{NS}}^h(z,\mu^2) \\ \frac{\partial}{\partial \ln \mu^2} \left(\begin{array}{c} D_{\Sigma}^h(z,\mu^2) \\ D_g^h(z,\mu^2) \end{array} \right) &= \left(\begin{array}{cc} P^{\mathrm{qq}} & 2n_f P^{\mathrm{gq}} \\ \frac{1}{2n_f} P^{\mathrm{qg}} & P^{\mathrm{gg}} \end{array} \right) \otimes \left(\begin{array}{c} D_{\Sigma}^h(z,\mu^2) \\ D_g^h(z,\mu^2) \end{array} \right) \end{split}$$

Note 1: splitting functions allow for a perturbative expansion

$$P_{ji} = \sum_{l=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{l+1} P_{ji}^{(l)}$$

with $P_{ii}^{(l)}$ known up to NNLO (l=2) in $\overline{\mathrm{MS}}$ [PLB 638 (2006) 61, NPB 845 (2012) 133]

an uncertainty still remains on the exact form of $P_{\rm qg}^{(2)}$ (it does not affect its logarithmic behavior)

Note 2: large perturbative corrections as $z \to 0$ [More in D. Anderle's talk]

SPACE-LIKE CASE

TIME-LIKE CASE

$$P_{ji} \propto \frac{a_s^{k+1}}{x} \log^{k+1-m} \frac{1}{x}$$
 $P_{ji} \propto \frac{a_s^{k+1}}{z} \log^{2(k+1)-m-1} z$

with $m=1,\dots,2k+1$: soft gluon logarithms diverge more rapidly in the time-like case than in space-like case as z decreases, the SGLs will spoil the convergence of the fixed-order series for $P_{j\,i}$ once $\log\frac{1}{z}\geq\mathcal{O}\left(a_s^{-1/2}\right)$

Note 3: numerical implementation of time-like evolution in APFEL-MELA [JHEP 1503 (2015) 046] https://apfel.hepforge.org/mela.html

at LO, NLO, NNLO, allow for $\mu_F \neq \mu_R$, relative accuracy below 10^{-4} reliability and stability of time-like evolution in APFEL has been extensively studied [PRD 92 (2015) 114017] after bug corrections, found perfect agreement with time-like evolution in QCDNUM [arXiv:1602.08383]

2. Practice: towards NNFF1.0

Data sets

CERN-LEP

ALEPH

ZP C66 (1995) 353

OPAL

ZP C63 (1994) 181

DELPHI

EPJ C18 (2000) 203

KEK

TOPAZ

PL B345 (1995) 335

BELLE $(n_f = 4)$

PRL 111 (2013) 062002

DESY-PETRA

TASSO PL B94 (1980) 444,

ZP C42 (1989) 189

SLAC

BABAR $(n_f = 4)$

PR D88 (2013) 032011 TPC

PRL 61 (1988) 1263 HRS

PR D35 (1987) 2639

SLD

PR D58 (1999) 052001

OBSERVABLE	EXPERIMENT	OBSERVABLE	EXPERIMENT	OBSERVABLE	EXPERIMENT
$\frac{d\sigma}{dz}$	BELLE	$\frac{1}{\sigma \cot} \frac{d\sigma}{dx_p}$	SLD, ALEPH, TASSO34/44	$\frac{1}{\sigma_{\mathrm{tot}}} \frac{d\sigma}{dp_h}$	BABAR, OPAL, DELPHI
$\frac{1}{\beta \sigma_{ m tot}} \frac{d\sigma}{dz}$	TPC	$\frac{s}{\beta} \frac{d\sigma}{dz}$	TASSO12/14/22/30, HRS	$\frac{1}{\sigma_{\rm tot}} \frac{d\sigma}{d\xi}$	TOPAZ

$$z = \frac{E_h}{E_h} = \frac{2|\mathbf{p}_h|}{\sqrt{s}}$$

$$z = \frac{E_h}{E_h} = \frac{2|\mathbf{p}_h|}{\sqrt{s}}$$
 $x_p = \frac{|\mathbf{p}_h|}{\mathbf{p}_h} = \frac{2|\mathbf{p}_h|}{\sqrt{s}}$

$$\xi = \ln(1/x_p)$$
 $\beta = \frac{|\mathbf{p}_h|}{E_h}$

$$\beta = \frac{|\mathbf{p}_h|}{E_h}$$

Some methodological details

Physical parameters: consistent with the upcoming NNPDF3.1 PDF set

$$\alpha_s(M_Z)=0.118$$
, $\alpha_{\mathrm{em}}(M_Z)=1/127$, $m_c=1.51$ GeV, $m_b=4.92$ GeV

Running couplings: we include the effects of the running of both α_s and $\alpha_{\rm em}$ in the case of QCD the RGE is solved exactly using a fourth-order Runge-Kutta algorithm

Heavy flavors: we use the ZM-VFN scheme with a maximum of $n_f=5$ active flavors heavy-quark FFs are generated dynamically above the threshold neglecting HQ mass effects matching conditions for the transition between a n_f and a n_f+1 schemes in the evolution: included at NLO [JHEP0510 (2005) 034]; set to zero at NNLO (they are not known)

Solution of DGLAP equations: numerical solution in z-space as implemented in APFEL

$$\begin{split} \text{Parametrization basis: } & \{D_{\Sigma}^{\pi^{\pm}}, D_{g}^{\pi^{\pm}}, D_{T_{3}+1/3\,T_{8}}^{\pi^{\pm}}\} \; \big(\{D_{u+\bar{u}}^{\pi^{\pm}}, D_{d+\bar{d}}^{\pi^{\pm}} + D_{s+\bar{s}}^{\pi^{\pm}}, D_{g}^{\pi^{\pm}}\} \big) \\ & D_{T_{3}+1/3\,T_{8}}^{\pi^{\pm}} = D_{T_{3}}^{\pi^{\pm}} + 1/3 D_{T_{8}}^{\pi^{\pm}} = 2\, D_{u+\bar{u}}^{\pi^{\pm}} - D_{d+\bar{d}}^{\pi^{\pm}} - D_{s+\bar{s}}^{\pi^{\pm}} \end{split}$$

Parametrization form: each FF is parametrized with a feed-forward neural network

$$D_i^{\pi^{\pm}}(Q_0, z) = \text{NN}(x) - \text{NN}(1), i = \Sigma, g, T_3 + 1/3T_8, Q_0 = 1 \text{ GeV}$$

Kinematic cuts:
$$z_{\min} \le z \le z_{\max}$$
, $z_{\min} = 0.1$, $z_{\min} = 0.05$ ($\sqrt{s} = M_Z$); $z_{\max} = 0.90$ $z \to 0$: corrections $\propto M_{\pi}/(sz^2) + \text{contributions} \propto \ln z$; $z \to 1$: contributions $\propto \ln(1-z)$

Fit quality

Data set	$\sqrt{s}~[{\rm GeV}]$	$N_{\rm dat}$	$\chi_{\rm LO}^2/N_{\rm dat}$	$\chi_{\rm NLO}^2/N_{\rm dat}$	$\chi^2_{\rm NNLO}/N_{\rm dat}$
ALEPH	91.2	22	0.60	0.57	0.55
DELPHI	91.2	16	3.04	3.12	2.98
OPAL	91.2	22	1.26	1.25	1.32
SLD	91.2	29	0.73	0.66	0.65
TOPAZ	58	4	1.81	1.49	0.85
TPC	29	12	1.78	0.94	0.90
HRS	29	2	4.26	4.26	2.93
TASSO44	44	5	2.04	1.81	1.53
TASSO34	34	8	1.65	1.38	0.63
TASSO22	22	7	2.04	2.10	1.46
TASSO14	14	7	2.00	2.37	2.30
TASSO12	12	2	1.06	0.89	0.59
BABAR (promt)	10.54	37	1.17	0.99	0.88
BELLE "	10.52	70	0.46	0.11	0.10
		243	1.14	0.96	0.91

$$\chi^{2} \{ \mathcal{T}[D], \mathcal{E} \} = \sum_{i,j}^{N_{\text{dat}}} (T_{i}[D] - E_{i}) c_{ij}^{-1} (T_{j}[D] - E_{j})$$

$$c_{ij}^{t_{0}} = \delta_{ij} s_{i}^{2} + \sum_{\alpha=1}^{N_{c}} \sigma_{i,\alpha}^{(c)} \sigma_{j,\alpha}^{(c)} E_{i} E_{j} + \sum_{\alpha=1}^{N_{\mathcal{L}}} \sigma_{i,\alpha}^{(\mathcal{L})} \sigma_{j,\alpha}^{(\mathcal{L})} T_{i}^{(0)} T_{j}^{(0)}$$

 s_i : uncorrelated unc.; $\sigma_{i,\alpha}^{(\mathcal{L})}$: $N_{\mathcal{L}}$ multiplicative norm. unc.; $\sigma_{i,\alpha}^{(c)}$ all other N_c correlated unc.

a fixed theory prediction $T_i^{(0)}$ is used to define the normalization contribution to the χ^2 this prescription allows for the proper inclusion of multiplicative systematic uncertainties in c_{ij}

Fit quality

Data set	$\sqrt{s}~[{\rm GeV}]$	$N_{ m dat}$	$\chi^2_{ m LO}/N_{ m dat}$	$\chi^2_{\rm NLO}/N_{\rm dat}$	$\chi^2_{\rm NNLO}/N_{\rm dat}$
ALEPH	91.2	22	0.60	0.57	0.55
DELPHI	91.2	16	3.04	3.12	2.98
OPAL	91.2	22	1.26	1.25	1.32
SLD	91.2	29	0.73	0.66	0.65
TOPAZ	58	4	1.81	1.49	0.85
TPC	29	12	1.78	0.94	0.90
HRS	29	2	4.26	4.26	2.93
TASSO44	44	5	2.04	1.81	1.53
TASSO34	34	8	1.65	1.38	0.63
TASSO22	22	7	2.04	2.10	1.46
TASSO14	14	7	2.00	2.37	2.30
TASSO12	12	2	1.06	0.89	0.59
BABAR (promt)	10.54	37	1.17	0.99	0.88
BELLE	10.52	70	0.46	0.11	0.10
		243	1.14	0.96	0.91

Note 1: overall good description of SIA cross sections/multiplicities $\chi^2_{
m tot}/N_{
m dat}\sim 1$

Note 2: the quality of the fit increases as higher order QCD corrections are included

Note 3: good consistency of data sets at different energy scales good consistency between BELLE and BABAR (prompt) data sets good consistency among BELLE, BABAR (prompt) and LEP/SLAC data sets fair description of old data sets (TASSO, HRS) with limited information on systematics poor description of DELPHI (though χ^2 consistent with HKNSO7 [PRD75 (2007) 094009])

Fair description of the data in the small-z extrapolation region excluded by kinematic cuts Slight deterioration of the data description as z increases

Apparent inconsistency of DELPHI with all other data sets at M_Z , especially for z>0.3

Good description of TPC data set, which deteriorates in the small-z region excluded by cuts Fair/poor description of TASSO/HRS data sets, including the small-z extrapolation region (limited number of data points + limited information on systematics)

Good description of TPC data set, which deteriorates in the small-z region excluded by cuts Fair/poor description of TASSO/HRS data sets, including the small-z extrapolation region (limited number of data points + limited information on systematics)

BELLE: good description of the data in the large-z region excluded by kinematic cuts BABAR: the description of the data in the excluded small- and large-z regions deteriorates Overall good consistency between BELLE and BABAR data sets within kinematic cuts

Fragmentation functions: perturbative stability

Impact of higher-order QCD corrections: sizable for LO \rightarrow NLO, moderate for NLO \rightarrow NNLO both at the level of CV and 1σ error bands

i	$\mathrm{N}^{i+1}\mathrm{LO}/\mathrm{N}^{i}\mathrm{LO}$	D_g	D_{Σ}	D_{u^+}	$D_{d^++s^+}$
	NLO/LO [%]	95-300	70-80	65-80	70-85
	NNLO/NLO [%]	70-130	90-100	90-110	95-115

Fragmentation functions: perturbative stability

Impact of higher-order QCD corrections: sizable for LO → NLO, moderate for NLO → NNLO both at the level of CV and 1 σ error bands

i	${\rm N}^{i+1}{\rm LO}/{\rm N}^i{\rm LO}$	D_g	D_{Σ}	D_{u^+}	$D_{d^++s^+}$
	NLO/LO [%]	95-300	70-80	65-80	70-85
	NNLO/NLO [%]	70-130	90-100	90-110	95-115

Fragmentation functions: comparison with other FF sets

Compare only the FF sets provided with an estimate of the uncertainties at NLO Caveat: different data sets, different theory (heavy quarks), different treatment of uncertainties Shape: good agreement for $D_{\Sigma}^{\pi^{\pm}}$ (and $D_{d^{+}+s^{+}}^{\pi^{\pm}}$); sizable difference for $D_{g}^{\pi^{\pm}}$ (and $D_{u^{+}}^{\pi^{\pm}}$)

Uncertainties: NNFF1.0 significantly larger than DSS14 and slightly larger than HKNS07

Fragmentation functions: comparison with other FF sets

Compare only the FF sets provided with an estimate of the uncertainties at NLO Caveat: different data sets, different theory (heavy quarks), different treatment of uncertainties Shape: good agreement for $D_{\Sigma}^{\pi^{\pm}}$ (and $D_{d^{+}+s^{+}}^{\pi^{\pm}}$); sizable difference for $D_{g}^{\pi^{\pm}}$ (and $D_{u^{+}}^{\pi^{\pm}}$)

Uncertainties: NNFF1.0 significantly larger than DSS14 and slightly larger than HKNS07

3. Conclusions and outlook

Summary and final remarks

- NNFF1.0 will be the first determination of fragmentation functions à la NNPDF
 - based on inclusive data in SIA
 - provided at LO, NLO and NNLO
 - with a faithful uncertainty estimate
- 2 Preliminary results for π^{\pm} fragmentation functions from NNFF1.0 were presented
 - good description of all inclusive untagged SIA data
 - ▶ inclusion of higher-order corrections up to NNLO
 - larger uncertainties than in other available sets (caveat applies)
- lacktriangledown The NNFF1.0 release will include fragmentation functions of π^\pm , K^\pm and p/\bar{p}
 - they will be made available for each hadron species through the LHAPDF interface https://lhapdf.hepforge.org/
- Beyond NNFF1.0: inclusion of SIDIS and PP data, GM-VFNS, resummation(s), ...

Summary and final remarks

- NNFF1.0 will be the first determination of fragmentation functions à la NNPDF
 - based on inclusive data in SIA
 - provided at LO, NLO and NNLO
 - with a faithful uncertainty estimate
- 2 Preliminary results for π^{\pm} fragmentation functions from NNFF1.0 were presented
 - good description of all inclusive untagged SIA data
 - ▶ inclusion of higher-order corrections up to NNLO
 - larger uncertainties than in other available sets (caveat applies)
- lacktriangledown The NNFF1.0 release will include fragmentation functions of π^\pm , K^\pm and p/\bar{p}
 - they will be made available for each hadron species through the LHAPDF interface https://lhapdf.hepforge.org/
- Beyond NNFF1.0: inclusion of SIDIS and PP data, GM-VFNS, resummation(s), ...

Thank you

