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Abstract

Calculations of high energy processes involving the production of bottom quarks,
are typically performed in two different ways. One option, the massive or the 4F
scheme, is an effective theory where the heavy quark are decoupled, which is a
valid approximation for energy of the same order of that of the bottom mass.

Alternatively, one may face the situation where the typical scale of the process
Q is way higher than the bottom mass. Then one can consider a scheme where
the towers of logmQ2/m2

b , appearing from the collinear splittings, are explicitly
re-summed via the Altarelli-Parisi equations into a b-PDF. This scheme is referred
to the massless or 5F scheme.

At fixed order n in perturbation theory, the difference among these schemes
amount to adding O(αn+1

S ) higher-order term.
We, instead, propose a hybrid scheme, called the doped scheme, which accounts

for the particular cases in which neither the 4F scheme or the 5F seems to be
perfectly reliable. In this work we study the properties of this peculiar scheme.
We state three conditions under which we say that the doped scheme provides
reliable predictions, and we check this conditions against numerical simulations
using Sherpa+OpenLoops.
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4.4 h(0), g(0), h̄, ḡ values for Zbb̄ production. . . . . . . . . . . . . . . . . 50

B.1 ∆(i, j, Q2,m2
b) at NLO for pcutT > 25 GeV . . . . . . . . . . . . . . . 63

B.2 ∆(i, j, Q2,m2
b) at NLO for pcutT > 5 GeV . . . . . . . . . . . . . . . . 64

11



12 List of Tables



Introduction

The accurate description of hadron-hadron collisions is of increasing importance
at the LHC. Due to the recent discovery of a Higgs-like boson, it will be very
important to have a better control over third generation quark initiated process,
since they have the highest masses among all quark and, hence, they interact most
strongly with the electroweak symmetry breaking sector in the Standard Model
(SM).

Theoretical predictions in QCD have been obtained according to a variety of
schemes for dealing with heavy quark masses. Two classes of schemes can be
adopted for dealing with heavy quark distributions. One is called the massless
scheme (5F henceforth) the other is called the massive scheme (4F). In the latter
scheme, heavy quarks (e. g. the bottom and the top quark) appear only as final
state particles and they are not associated with a PDF, while in the former scheme
collinear logarithms arising from collinear splittings are re-summed to all orders
into a heavy quark PDF. The advantage of a 4F scheme is that heavy quarks
are treated as massive, thus calculations in the 4F scheme are meant to provide
reliable results when the typical scale of the process is not much larger than the
mass of the heavy quark m, whereas, at any finite order in a perturbation theory,
they are expected to break down as the scale becomes large compared to the mass
of the heavy quark. On the other hand, since heavy quarks are treated as massless,
calculation in the 5F scheme are usually much easier and provide reliable results
for scales much higher than the heavy quark mass.

Both the 4F and the 5F can be included in a Fixed Flavor Number Scheme
(FFNS) or in their natural extensions called Variable Flavor Number Schemes
(VFNS), which consists of a sequence of nf -flavor FFNS, each in its region of va-
lidity, consistently matched at transition thresholds. The simplest implementation
of the VFNS is the Zero-Mass (ZM) approximation, where all quarks are treated as
massless. Heavy quarks are absent (or infinitively massive) at scales µ2 < m2, and
they are radiatively generated (as massless) above the transition point µ2 = m2

by the sub-process g → qq̄. Since, basically, the only mass effects are due to the
change the number of flavors in the β function and in the splitting functions (or
theirs Mellin space transformed Anomalous dimensions) as one cross the heavy
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quark thresholds, the ZM formalism is expected not to be a good approximation
in the region near the physical threshold. However, powers of m2/Q2 can also
be consistently included at higher orders. This schemes are called General-Mass
VFNS. All partons, including the bottom and the top quark are associated with
a PDF above their respective threshold. The GM-VFNS represents an improve-
ment with respect to the ZM-VFNS. However, it also introduces new ambiguities
regarding the shifting of higher-order terms into the lower-order expression. In the
GM-VFNS the mass of the heavy quark is taken into account in the partonic cross
sections, and the scheme is constructed to interpolate between the FFN scheme,
which holds a correct description of the threshold region, and the ZM-VFNS which
accounts for large energy logarithms.

The first proposed matching technique for the inclusion of mass suppressed
terms was developed long ago; it is the so-called ACOT scheme [4]. It yields
the complete quark mass dependence from the low to the high energy regime,
providing manifest decoupling for Q2 � m2 whereas reducing precisely, in the
limit Q2 � m2, to the correct MS scheme. Several variants of this method were
subsequently proposed, such as S-ACOT [28] or ACOT-χ [37].

A different approach, the Thorne-Roberts [36] VFN scheme or TR′ [35] in its
latest version, includes higher-order terms to ensure the correct threshold behavior
and in order to smooth the function at the transition point. Namely the NLO
calculation, which includes O(α2

S) terms, which formally belong to the NNLO and
they are introduced so to cure the discontinuities of the physical observables at
the heavy quark mass threshold.

Another way to solve the problem is to consider both massless and massive
scheme calculations as power expansion in the strong coupling constant and to
replace the coefficients of the expansion in the former with their exact massive
counterpart in the latter. This is the so-called FONLL [13] scheme introduced in
the context of hadro-production of heavy quarks, and recently applied to Deeply
Inelastic Scattering (DIS) [23].

Most of the up-to-date PDF sets [8, 9, 32, 29, 2] adopt one of the schemes
pictured above as the default scheme. On top of that they usually also provide a
FFNS parton set with nf = 3, 4, 5.

At fixed order n in perturbation theory, the difference among these schemes
amount to adding O(αn+1

S ) higher-order term. Therefore this difference is reduced
increasing the perturbative order (a benchmark comparison has been made to
NNLO and is available in [5]).

As stated in [30], however, there are many cases of current interest in which
the effects of initial state logs are rarely very large in hadron collision at the LHC.
Hence, in this cases, 4F scheme computations are perturbatively well behaved and
a substantial agreement between predictions computed in the 4F and in the 5F
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scheme is found. The reason for this behavior is found to be that the re-summation
of the initial state logarithms into the b-PDF is relevant only at large Bjorken x
and the, possibly, large ratios Q2/m2

b are always accompanied by universal phase
space suppression factors. The authors also suggest that one should use both
schemes so to exploit their complementary advantages for different observables.

From a purely phenomenological viewpoint, though, one can ask whether using
the 4F scheme is a good choice, since it underestimates the value of the coupling
constant (and hence that of the various observables) especially at high energies
or for processes which start with a large power of αS, even in those cases where
the contribution coming from collinear splitting logarithms can be negligible. In
view of this argument we propose a hybrid scheme, called the doped scheme, which
accounts for this particular cases. In order to do this, the doped scheme is defined
as to be exactly equal to the 4F one except for the running of the coupling which
is computed in the 5F scheme.

This thesis is organized as follows. In the first chapter we review the funda-
mental tools that will be use throughout the rest of this work, setting the notation.
In chapter 2 we will show a comparison between the 4F and the 5F scheme, with
reference to W/Zbb̄ production. In the last part of this work we will present the
doped scheme and discuss its analytical properties. Finally we present a numerical
comparison of this scheme with the usual 4F and 5F scheme again with specific
reference to W/Zbb̄ production.
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Chapter 1

Fundamentals of QCD

In this chapter we will review some fundamental aspects of QCD, setting the
notation used throughout the rest of this work. We will also report some results,
which will be useful in the following chapters, which are not usually shown in
standard references. In this work we expect the reader to be familiar with quantum
field theory in general and QCD in particular.

1.1 The QCD running coupling

We recall that the QCD running coupling αS(µ2), is defined as

(1.1)
∂αS(µ2)

∂ log µ2
= β(αS),

where the β function has a perturbative expansion

Figure 1.1: Diagrams contributing to the QCD β function

(1.2) β(αS) = −b0α
2
S(1 + b1αS +O(α2

S)),

so that

(1.3)
∂αS(µ2)

∂ log µ2
= −b0α

2
S(1 + b1αS +O(α2

S)),

17



18 Fundamentals of QCD

where

(1.4) b0 =
(33− 2nf )

12π
, b1 =

(153− 19nf )

2π(33− 2nf )
.

We also recall that the LO, or one loop, solution of eq. (1.5) is

(1.5) αS(µ2) =
αS(µ2

0)

1 + αS(µ2
0)b0 log µ2

µ20

.

Since it is going to be useful in the following let us write the O(α3
S) expansion of

the LO solution of the re-normalization group equation,

(1.6) αS(µ2) = αS(µ2
0)

(
1− αS(µ2

0)b0 log
µ2

µ2
0

+ α2
S(µ2

0)b2
0 log2 µ

2

µ2
0

+O(α3
S)

)
.

The NLO solution of eq. (1.5), can also be found in analytical form once the
LO one is known,
(1.7)

αS(µ2) =
αS(µ2

0)

1 + αS(µ2
0)b0 log µ2

µ20

1− b1
αS(µ2

0)

1 + αS(µ2
0)b0 log µ2

µ20

log

(
1 + b0αS(µ2

0) log
µ2

µ2
0

) ,
this in turn can be expanded in power of αS yielding, up to O(α4

S) terms,
(1.8)

αS(µ2) = αS(µ2
0)

[
1− αS(µ2

0)b0 log
µ2

µ2
0

+ α2
S(µ2

0)b0 log
µ2

µ2
0

(
b0 log

µ2

µ2
0

− b1

)
+O(α3

S)

]
.

1.2 The DGLAP equations

We also recall that the DGLAP equations [6], in x space, read

(1.9)
∂f

(nf )
i (x, µ2)

∂ log µ2
=
α

(nf )
S (µ2)

2π

nf∑
j

∫ 1

x

dy

y
P

(nf )
ij

(
x

y
, α

(nf )
S (µ2)

)
f

(nf )
j (y, µ2)

where i runs from zero to the number of light active flavour, nf . The Pijs are the
well known Altarelli-Parisi’s splitting functions. They are calculable as a power
series in αS,

(1.10) P
(nf )
ij (z, α

(nf )
S ) = P

(nf ),(0)
ij (z) +

α
(nf )
S

2π
P

(nf ),(1)
ij + . . .
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and

(1.11) P
(nf ),(0)
ij (z) =

(
p

(0)
qq (z) p

(0)
qg (z)

p
(0)
gq (z) p

(nf ),(0)
gg (z)

)
and we will give their full expression in the appendix. These functions provide the
probability for an initial state parton i to split into a parton j, accordingly to the
theory’s allowed vertex.

We will now obtain the O(α2
S) expression for the LO solution of the DGLAP

equations. In doing so, we will follow the nation used in [24]. Let us first recall
that the DGLAP equation can be written, in Mellin space as:

(1.12)
df

(nf )
i (N, τ (nf ))

dτ (nf )
= γ

(nf )
ij (N, τ (nf ))f

(nf )
j (N, τ (nf ))

where:
(1.13)

f
(nf )
i (N, τ (nf )) =

∫ ∞
0

dxxN−1f
(nf )
i (x, τ (nf )), γ

(nf )
ij (N, τ (nf )) =

∫ ∞
0

dxxN−1P
(nf )
ij (x, τ (nf ))

and τ (nf ) is defined as:

(1.14) τ (nf ) ≡ 1

2π

∫ t

t0

dt′α
(nf )
S (t′).

Then the renormalization group equation, can be re-written in terms of τ :

(1.15)
dαS(τ)

dτ
= −b0αS(1 + b1αS + . . . ).

As the Altarelli-Parisi splittings, the anomalous dimensions admit an αS expan-
sion,

(1.16) γ
(nf )
ij (N, τ (nf )) = γ

(nf ),(0)
ij (N) + α

(nf )
S (τ (nf ))γ

(nf ),(1)
ij (N) + . . .

where

(1.17) γ
(nf ),(0)
ij (N) =

(
γ

(0)
qq (N) γ

(0)
qg (N)

γ
(0)
gq (N) γ

(nf ),(0)
gg (N)

)
and their explicit expression is given in the appendix. We can thus, perturbatively,
find the solution to eq. (1.12),

(1.18)
df

(nf )
i (N, τ (nf ))

dτ (nf )
= γ

(nf ),(0)
ij (N)f

(nf )
j (N, τ (nf )) + . . . .
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To solve this system we first note that det γ
(0)
ij 6= 0 and that γ

(0)
ij has nf distinct

eigenvalues. This means that we can always find a matrix R such that detR 6= 0
and

(1.19) R
(−1)
im γ(0)

mnRnj = λiδij,

where λm are the eigenvalues of the matrix γmn and R is the eigenvector matrix.
Note that the matrix R is not uniquely defined. This is due to the fact that
eigenvectors are defined up to a multiplicative factor. This means that one can
find another matrix, say R̃, satisfying

(1.20) R̃
(−1)
im γ(0)

mnR̃nj = λiδij,

where

(1.21) R̃ = RD, D = diag (d1, . . . , dn)

with non vanishing d1, . . . , dn. Since the eigenvalues of γ
(0)
ij are all real and distinct

it can be shown that it is always possible to choose the diagonal matrix D in
such a way that R̃ is an orthogonal matrix. Let us then use R such that it is an
orthogonal matrix, this in turn means that:

(1.22) RimR
(−1)
mj = δij where detR = 1.

Once this has been done, the solution can be written as

(1.23) fi(N, τ) = RimUmn(N, 0, τ)Rnjfj(N, 0),

and the LO form of the matrix U reads

(1.24) Uij(N, 0, τ) =

(
αS(0)

αS(τ)

)λj(N)/2πb0

δij.

Then defining Γ, inverting eq. (1.24), expanding in power of αS and substituting
τ :

Γ
(nf )
ij (N,µ2

0, µ
2) = RimU

(nf )
mn (N,µ2, µ2

0)Rnj

= δij +
α

(nf )
S (µ2

0)

2π
log

µ2

µ2
0

γ
(nf ),(0)
ji +

α2
S(µ2

0)

8π2
log2 µ

2

µ2
0

(
γ

(0)
jk γ

(0)
ki − 6πb0γ

(nf ),(0)
ji

)
(1.25)

This is the O(α2
S) LO solution of the DGLAP equations for the evolution kernel

in Mellin space.
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1.3 The NLO solution of the DGLAP equations

We will also need the two loop solution of the DGLAP equations, expressed in
power of αS.

At NLO, eq. (1.18) reads

(1.26)
dfi(N, τ)

dτ
= γ

(0)
ij (N)fj(N, τ) +

αS(τ)

2π
γ

(1)
ij (N)fj(N, τ) + · · ·

Let us also call

(1.27) γ̂
(1)
ij = R−1

imγ
(1)
mnRnj,

where the matrix R was defined in eq. (1.22). Then, the NLO form of the matrix
U is, dropping the N dependence,

Uij(µ
2
0, µ

2) =

(
αS(µ2

0)

αS(µ2)

)λi/2πb0
δij

(1.28)

+
γ̂

(1)
ij − b1λiδij

λi − λj + 2πb0

[
αS(µ2

0)

(
αS(µ2

0)

αS(µ2)

)λi/2πb0
− αS(µ2)

(
αS(µ2

0)

αS(µ2)

)λj/2πb0]
Now, using eq. (1.7), one obtains, up to O(α3

S):
(1.29)

Uij(µ
2
0, µ

2) = δij+
αS(µ2)

2π
log

µ2

µ2
0

λiδij+
α2
S(µ2)

4π
log

µ2

µ2
0

(
2γ̂

(1)
ij + log

µ2

µ2
0

λi

(
λi
2π
− b0

)
δij

)
which, inverting eq. (1.29), gives:

Γij(µ
2
0, µ

2) = δji +
αS(µ2)

2π
log

µ2

µ2
0

γ
(0)
ji

(1.30)

+
α2
S(µ2)

4π
log

µ2

µ2
0

(
2γ

(1)
ji +

1

2π
log

µ2

µ2
0

γ
(0)
jk γ

(0)
ki − b0 log

µ2

µ2
0

γ
(0)
ji

)
+O(α3

S).

Finally we can then define

Γ
(nf ),(1)
ij (µ2

0, µ
2) =

1

2π
log

µ2

µ2
0

γ
(nf ),(0)
ji

(1.31)

Γ
(nf ),(2)
ij (µ2

0, µ
2) =

1

4π
log

µ2

µ2
0

(
2γ

(nf ),(1)
ji +

1

2π
log

µ2

µ2
0

γ
(nf ),(0)

jk γ
(nf ),(0)

ki − b0 log
µ2

µ2
0

γ
(nf ),(0)
ji

)
in order to write:

(1.32) Γ
(nf )
ij (µ2

0, µ
2) = δij+α

(nf )
S (µ2)Γ

(nf ),(1)
ij (µ2

0, µ
2)+

(
α

(nf )
S (µ2)

)2

Γ
(nf ),(2)
ij (µ2

0, µ
2).
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Chapter 2

Comparing the 4F and the 5F scheme

We already saw that calculations of high energy processes involving bottom quarks
are typically performed in two different ways. One option, the massive or 4F
scheme, consists in not including bottom and top quarks among partons. This
means that one assumes them not to contribute to the β function and to the
anomalous dimensions, i.e. to decouple. This is an effective theory with nf active
light quark where the heavy quark are decoupled. Hence, for this approach to be
reliable, the heavy quark mass must be of the same order as that of the other hard
scales involved.

Alternatively, one may face the situation where the typical scale of the process
Q is way higher than the heavy quark mass and logarithms of the type logQ2/m2

b

(initial or final state ones) appear that might spoil the convergence of a fixed-order
perturbative expansion. In this case, one considers a scheme in which the heavy
quark mass is treated as a small parameter, power corrections of the ratio m2

b/Q
2

are pushed to higher orders and towers of logmQ2/m2
b are explicitly re-summed via

the Altarelli-Parisi equations into a b-PDF. This scheme is referred to the massless
or 5F scheme.

In the rest of this chapter we will review some analytical properties of this two
schemes at NLO. In the final section a numerical comparison for two interesting
processes will be presented.

2.1 Analytical comparison between the 4F and the 5F scheme

Recall that in any scheme in perturbative QCD the total cross section (and its
differential distribution as well) can be written, for a single scale process, as
(2.1)

σ(nf )(s,Q2) =

nf∑
ij

∫∫
dx1dx2f

(nf )
i (x1, µ

2
F )f

(nf )
j (x2, µ

2
F )σ̂

(nf )
ij (x1x2s, µ

2
F , µ

2
R, Q

2),

23
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where σ̂ij is the partonic cross section involving initial state partons i, j, which,
coming from a hadron, carry a fraction xp of the pth incoming hadron, µF and µR
are, respectively, the scales at which the factorization and the re-normalization is
performed and s is the hadronic center of mass energy, and Q is the hard scale
of the process, for instance, in the case of the production of a vector boson V ,
Q2 = M2

V . We can now use the Mellin transform defined as

(2.2) g(N) =

∫ ∞
0

dxxN−1h(x),

where g and h are two generic functions, to write eq. (2.1) in Mellin space

(2.3) σ(nf )(Q2) =

nf∑
i

f
(nf )
i (µ2

F )C
(nf )
i (µ2

F , µ
2
R, Q

2),

in the case of lepton-hadron scattering, where

(2.4) σ
(nf )
LO C

(nf )
i (N,µ2

F , µ
2
R, Q

2) =

∫ ∞
0

dxxN−1σ̂
(nf )
i (x, µ2

F , µ
2
R, Q

2).

The Cis are called the coefficient functions.

The complete functional form of the the factorization and re-normalization
scales dependence in the coefficient functions are determined by the running of
the coupling αS and by the evolution of the PDFs. Indeed, we can write eq. (2.3)
as follows:
(2.5)

σ(nf )(Q2) =

nf∑
ij

(
α

(nf )
S (Q2)

)N (
C

(0)
i + α

(nf )
S (Q2)C

(1)
i +O(α2

S)
)

Γ
(nf )
ij (µ2

F , Q
2)f

(nf )
j (µ2

F ).

Using eq. (1.25), together with eq. (1.6), one obtains at NLO,

σ(nf )(Q2) =
(
α

(nf )
S (µ2

R)
)N (nf )∑

j

{
C

(nf ),(0)
j − α(nf )

S (µ2
R)

(
Nb

(nf )
0 log

Q2

µ2
R

C
(nf ),(0)
j − C(nf ),(1)

j

)(2.6)

+

(nf )∑
i

αS(µ2
R)

2π
log

Q2

µ2
F

C
(nf ),(0)
i γ

(nf ),(0)
ji

 f
(nf )
j (µ2

F ) +O(αN+2
S )

This formula is easily generalized to hadron-hadron scattering processes, in
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which it is:

σ(nf )(Q2) =
(
α

(nf )
S (µ2

R)
)N nf∑

ij

{
C

(nf ),(0)
ij + α

(nf )
S (µ2

R)

(
C

(nf ),(1)
ij −Nb(nf )

0 log
Q2

µ2
R

C
(nf ),(0)
ij

)(2.7)

+
α

(nf )
S (µ2

R)

2π

(nf )∑
mn

C
(nf ),(0)
mn log

Q2

µ2
F

(
γ

(nf ),(0)
jn δim + γ

(nf ),(0)
im δjn

) f
(nf )
i (µ2

F )f
(nf )
j (µ2

F )

Note that there is an implicit Q2 dependence, in the previous two equations, trough
nf , since, in fact, in the 5F scheme

(2.8) nf (Q
2) ≡


3 if Q2 < m2

c

4 if Q2 < m2
b

5 if Q2 > m2
b

,

whereas in the 4F scheme

(2.9) nf (Q
2) ≡

{
3 if Q2 < m2

c

4 if Q2 > m2
c

,

where mc is the mass of the charm quark. It has also to be noted that here and
in the rest, we assumed that there is only one physical scale, Q2, so that the Cis
must be scale independent. If more than one physical scale is present, C would also
depend on them. Assume for example that there is another physical scale such as
the transverse momentum of a hard probe, pT . Then C must also be a function of
pT but only through dimensionless ratio p2

T/Q
2. Where more than a physical scale

is present (once one have chosen the reference scale), results obtained in the rest
of this work are still valid but have to be considered as functions of these scales.
However, in such cases, one could also choose pT as a hard scale and then view
the whole argument presented with pT instead of Q. Which of the various choice
one can adopt as a hard scale is the best depends on physical arguments.

We can now check that the 4F and the 5F scheme are indeed equal up to
higher order corrections and up to m2/Q2 corrections. We do this noting that
the dependence on nf only appears in the value of the anomalous dimensions, in
the running of the coupling and in the number of values the summation-index can
take. We can then get rid of it choosing µF = µR = mb. In this case using again
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eq. (1.25) and eq. (1.6),

σ(nf )(Q2, µ2
R, µ

2
F ) = αNS (mb)

nf∑
i

{
C

(0)
i + αS(m2

b)

[
−Nb(nf )

0 log
Q2

m2
b

C
(0)
i + C

(1)
i

(2.10)

+
1

2π
γ

(0)
ij log

Q2

m2
b

C
(0)
j +O(α2

S)

]}
fi(m

2
b)

= σ(nf )(Q2,m2
b ,m

2
b) +O(αN+2

S ).

We can now make use of the fact that at the bottom mass, since nf (mb) = 4, in
each schemes the value of the coupling, of the PDFs and that of the coefficient
functions are equal, this means that

(2.11) α
(4)
S (m2

b) = α
(5)
S (m2

b) +O(α2
S),

(2.12) f
(4)
i (mb) = f

(5)
i (mb) +O(α2

S)

and

(2.13) C
(p),(4)
i = C

(p),(5)
i +O(m2

b/Q
2).

Then one obtains

(2.14) σ(4)(Q2,m2
b ,m

2
b) = σ(5)(Q2,m2

b ,m
2
b) +O(αN+2

S ) +O(m2
b/Q

2)

which in turn, using eq. (2.10), yields

(2.15) σ(4)(Q2, µ2
R, µ

2
F ) = σ(5)(Q2, µ2

R, µ
2
F ) +O(αN+2

S ) +O(m2
b/Q

2)

In the 5F scheme, when Q2 > m2
b , there is a contribution from the evolution of

the b-PDF. This term is proportional to logQ2/m2
bγgqfg(m

2
b). In the 4F scheme,

this term, exactly matches the term arising from a bottom real emission which is
also proportional (see eq. 2.6) to logQ2/m2

bγgqfg(m
2
b) but with an opposite sign.

Note that instead the µR-dependent term in eq. (2.6) cancels out because the value
of nf in the running of the coupling matches that of the nf in the b0 term in each
scheme.

2.2 Some interesting processes

Many interesting processes at the LHC are the Higgs background processes. As
a reference, in this thesis we will consider two such processes: pp → Wbb̄ where
W = W± and pp→ Zbb̄.
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Figure 2.1: The different running of αS(Q2) in the 4F(blue) and in the 5F(red)
scheme (the large figure) and the ratio between the two (small fig-
ure). Note that here we assume that in the schemes the value of the
coupling coincides at the bottom mass.

In the following we will present some numerical NLO results for these two pro-
cesses in the 4F and in the 5F scheme. We briefly report the set-up used for the
numerical simulations. The numerical simulations presented here, has been per-
formed in the, fully automated, SHERPA+OPENLOOPS framework [25][18][16].

Whenever we use a non-zero bottom mass, it is fixed at the value mb =
4.62 GeV. The W and Z boson are always considered on-shell with mass MW =
80.41 GeV and MZ = 91.1876 GeV respectively and width ΓW,Z = 0. The mass of
the top quark, which enters in virtual corrections, is set to mt = 172.6 GeV.
We use the NLO fixed flavor number scheme NNPDF set of PDFs [7], with
αS(MZ) = 0.118. The Cabibbo-Kobayashi-Maskawa (CKM) matrix is considered
to be a unit matrix, hence Vdu = Vcs = Vtb = 1. This is acceptable because the
CKM matrix differ slightly from a unit matrix and we checked that the error due
to this choice is relatively small compared to that of the Monte-Carlo integration.

QCD partons in the final state, including b-quarks and excluding only top
quarks are recombined into IR-safe jets using the anti-kT algorithm [14] with jet-
resolution parameter R = 0.7. We require all events to have a bb̄ jet pair in the final
state with a transverse momentum (pT ) larger than 25 GeV (pT > 25 GeV) while
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i

j

W±

g

j
b

b̄

Figure 2.2: Diagram contributing to pp→ Wbb̄.

we do not impose any rapidity or pseudo-rapidity cuts. In this respect we classify
as b-jet any jet involving at least a b quark. We also do not impose any cuts on
the extra-jet arising due to a hard, non-collinear, real emission of a parton. This
hard, non collinear, emission is treated inclusively. This means that we consider
both two- and three- jets events at NLO. Finally, the re-normalization and the
factorization scale are choose to be µR = µF = MV + 2mb where V is the mass of
the vector boson (V = W,Z).

This processes have been known at NLO for a long time now, both in the
massless and in the massive scheme and a full calculation can be found in [21])
while a detailed numerical study is presented in [22].

2.3 Wbb̄ production at LHC

The study of W boson production in association with two b jets at the LHC
presents many theoretical and experimental facets. On the experimental side, this
process is background to WH(bb̄) with the Higgs boson decaying to b quarks, to
single top and top-pair production and to many new physics searches. On the
theoretical side, since it involves heavy quarks, it gives us a testing ground for
various calculation techniques.

In fig. (2.1) we show the running of the coupling αS(Q2) in the 4F and in the
5F scheme assuming that the value of the two couplings is matched at Q2 = m2

b ,

then assuming α
(5)
S (M2

Z) = 0.118. Henceforth we will refer to this value of the
coupling as the correct value of αS. We can see from fig. (2.1) that at scales of the
order of the mass of the W and the Z bosons the difference between the value of
the coupling is around 3%, this means that for processes starting, for example, at
O(α2

S)(as this case is) the difference on the LO cross section in the two schemes is
around 12% which is significant. Also note that this difference is increased as the
LO order for a considered process has a higher power of αS.

At LO this process proceeds through the Feynman diagram shown in fig. (2.2).
From a LO study, finite bottom mass effects are expected to affect both total and
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differential cross section only in the region of small bb̄-pair invariant masses. For
this reason, and for that related to the value of αS, one would be lead to use the
5F scheme in this calculation. However, given the variety of experimental analyses
involved for the signal of which Wbb̄ is a background, it should be important to
precisely access the impact of a finite bottom mass over the entire kinematic reach
of the process. This would suggest one to use a massive scheme (as the 4F) to
account for this contributions as well.
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Figure 2.3: Differential distributions for Wbb̄ production with respect to the pT
of the W boson(bottom), of the leading pT jet (top right) or of the
invariant mass of the b-jet pair (top left), in the 4F(green) and the
5F(red) scheme. The uncertainty band is that of the Monte-Carlo
integration.

In fig. (2.3) we plot the mbb̄, p
b
T and pWT distribution computed at

√
s = 7 TeV

while total the total cross section is reported in tab. (4.1). Here mbb̄ is the invariant



30 Comparing the 4F and the 5F scheme

mass of the bb̄ pair, pbT is the transverse momentum of the leading b-jet and pWT
is the transverse momentum of the W boson. As it can be seen the 4F and the
5F scheme are in reasonable agreement, with differences within 20%. The main
difference between the two scheme is in the region of small invariant mass of the
bb̄ pair, mbb̄ ∈ [0, 25] GeV. In this region, in fact, mass dependent corrections are
large. It is easy to see that this must be the case because the cross section in the
5F scheme diverges as mbb̄ → 0 due to a collinear singularity, which is regulated
in the 4F scheme by the bottom mass. For this reason mb/mbb̄ correction in this
region are large.

Table 2.1: NLO total cross sections for Wbb̄ at
√
s = 7 TeV. Each scheme is

computed at µR = µF = MW + 2mb. The error shown is that of the
Monte-Carlo integration.

NLO

σ(4F ) σ(5F )

14.8241 pb ±0.28% 16.9878 pb ±0.43%

2.4 Zbb̄ production at LHC

This process also starts at O(α2
S) and has a massive final state with Q2 of the

order of the mass of the Z boson.
The main difference between W and Z production is that Z production also

receives a contribution from the gluon channel. Feynman diagrams for this process
are shown in fig. (2.4). The gluon contribution turns out to be dominant and it
amounts to 80% of the total cross section. This is because the gluon PDF is much
larger than that of other partons.

i

i

Z

g

i
b

b̄
g

g

g
b̄

b
Z

g

b
Z

b̄

b
g

Figure 2.4: Diagrams contributing to pp→ Zbb̄.
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Table 2.2: NLO total cross sections for Zbb̄ at
√
s = 7 TeV. Each scheme is

computed at µR = µF = MZ + 2mb. The error shown is that of the
Monte-Carlo integration.

NLO

σ(4F ) σ(5F )

21.1719 pb ±0.34% 24.2749 pb ±0.38%

In fig. (2.5) differential distributions for Zbb̄ production are shown, again with
respect to: the invariant mass of the b-pair (mbb̄), the leading b-jet transverse mo-
mentum (pbT ) and the Z boson transverse momentum (pZT ); in fig. (4.3) results for
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Figure 2.5: Same as fig. (2.3 but for Zbb̄ production.
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the total cross section in the 4F and in the 5F scheme are shown. Because only the
quark channel is affected by a collinear singularity, but not the dominant gluon
channel, the agreement between the 4F and the 5F scheme is now better also in the
small mbb̄ region. Furthermore, in the quark channel, there is a b-initiated contri-
bution which is present in the 5F scheme, but not in the 4F scheme. However 4F
and 5F scheme are in good reasonable agreement, both on differential distributions
and on total cross section. This suggests that the b-initiated contributions can be
negligible. This in turn seems reasonable since they are suppressed by the small
value of the b-PDF.



Chapter 3

The doped scheme

In this chapter we present our main result, namely a doped scheme.
We define a doped scheme: as a scheme obtained by setting nf = 4 everywhere in

eq. (2.1), except in the evolution of the running coupling constant, i.e. in eq. (1.5),
where we use nf = 5. The rationale for this is that there can be processes in which
contributions from the re-summation of initial state logarithms may be negligible
with respect to mass suppressed terms (which would suggest to use a massive
scheme), but which proceed at such large energy at which the error made using
the value of the coupling in a massive scheme can be large.

This means that the factorized cross section translates, in this scheme, in
(3.1)

σ(d4)(s,Q2) =
4∑
ij

∫∫
dx1dx2f

(d)
i (x1, µ

2
F )f

(d)
j (x2, µ

2
F )σ̂

(d4)
ij (x1x2s, µ

2
F , µ

2
R, Q

2)

with f
(d)
i being the solutions of:

(3.2)
∂f

(d)
i (x, µ2

F )

∂ log µ2
F

=
4∑
j

α
(5)
S (µ2

F )

2π
P

(4)
ij ⊗ f (d)

j (µ2
F )

and

(3.3)
dα

(5)
S (µ2

R)

d log µ2
R

= β(5)(αS) = −b(5)
0

(
α

(5)
S

)2

+ . . .

and

(3.4) σ̂
(d4)
ij =

(
α

(5)
S

)N (
σ̂

(4),(0)
ij + α

(5)
S σ̂

(4),(1)
ij +O(α2

S)
)

Note that we did not use the apex (d) on the cross section ((d) as doped) but we
used (d4). This is due to the fact that the coefficient functions in the scheme so

33
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defined are not yet that of the doped scheme we want to propose, and which will
be derived in the next section.

It is also interesting to note that such hybrid schemes are already used to in-
clude mass suppressed terms, for example the BMSN scheme (see for a review [26]).
This method, however, differ from ours in the way PDF evolution is performed.
In fact they evolve PDFs in a full 4F scheme, using also α

(4)
S , whereas we use α

(5)
S ,

while they use α
(5)
S only in the partonic cross section expansion. Note also that

this scheme has been only be applied to Deeply Inelastic Scattering (DIS).

3.1 The doped PDF set

In this section we study some properties of the doped PDF set, as defined by
eq. (3.2).

We start again with the DGLAP equations eqs.(1.12). Recalling the anomalous
dimensions γ do depend on the number of active light flavor nf , in the doped
scheme, the DGLAP equations have the form

(3.5)
df

(d)
i (N, τ (5))

dτ (5)
= γ

(4)
ij (N, τ (5))f

(d)
j (N, τ (5)),

where the nf dependence is given by:

(3.6) τ (nf ) =
1

2π

∫ t

t0

dt′α
(nf )
S (t′),

dα
(nf )
S (τ)

dτ
= −b(nf )

0 αS(1 + b
(nf )
1 αS + . . . )

(3.7) γ
(nf )
ij (N, τ (nf )) = γ

(0),(nf )
ij (N) + α

(nf )
S (τ)γ

(1),(nf )
ij (N) + . . .

We can then use eq. (1.25) and eq. (1.30) and get

Γ
(d)
ij (µ2

0, µ
2) = δji +

α
(5)
S (µ2)

2π
log

µ2

µ2
0

γ
(4),(0)
ji

(3.8)

+

(
α

(5)
S (µ2)

)2

4π
log

µ2

µ2
0

(
2γ

(4),(1)
ji +

1

2π
log

µ2

µ2
0

γ
(4),(0)
jk γ

(4),(0)
ki − b(5)

0 log
µ2

µ2
0

γ
(4),(0)
ji

)
+O(α3

S).

As it was already pointed out by Martin et al. in [31], this evolution produces an
inconsistency on physical observables. To better understand this point consider
for example the gluon contribution to the longitudinal structure function in DIS,
FL. At LO, in the doped scheme, this is

(3.9) FL(x,Q2) = α
(5)
S (Q2)

(
C

(1)
Lg ⊗ g(d)

)
(x,Q2)
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and therefore (dropping the x,Q2 dependence):

(3.10)
∂FL

∂ logQ2
= −b(5)

0 α2
SC

(1)
Lg ⊗ g(d) +

α2
S

2π
C

(1)
Lg ⊗ p(4)

gg ⊗ g(d) + quark terms

Since the p
(nf )
gg contains a term proportional to b

(nf )
0 δ(1 − z) (i.e. the gluon loses

momentum to the quarks it radiates) it is easy to see that this quantity has a nf
residual dependence which it shouldn’t have. In fact when, for example, going
from the 4F to the 5F scheme, both nf changes equally and cancel out, leaving
this quantity independent of nf . In our case this is happens because the O(αS)

term in eq. (3.8) is proportional to γ
(4),(0)
gg which in turn has a term proportional

to b
(4)
0 , this term, in a hybrid scheme, will no longer match the b0 proportional

term coming from the running of the coupling (which in this case is proportional

to b
(5)
0 ).
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Figure 3.1: Ratio of the gluon density in the 5F(red) and in the doped(black)
scheme at Q2 = 10, 102 and 103 GeV2 with respect to the 4F scheme
(green).

In fig. (3.1) we show the ratio between the 5F scheme and the 4F scheme and
between the doped scheme with the 4F scheme for the gluon PDF. The doped PDF
have been obtained [10] by evolving to the bottom mass a standard 4F scheme PDF
set, and then using the evolution kernels in eq. (3.8). It is clear from this plot that
the differences between the 4F scheme and the doped scheme set are as large as
that between the 4F scheme and the 5F scheme.
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3.2 Some analytical properties of the doped scheme

We have seen in sect. (2.1) that the 4F and the 5F scheme, provide equivalent
results at the level of physical observables. This is the case even if the two schemes
are indeed different. In fact the coefficient functions in the 4F scheme are defined
as to consistently match, order by order in perturbation theory, terms arising in
the 5F scheme from the bottom quark. This means that it must be possible to
also construct an equivalent scheme provided only a consistent re-definition of the
coefficient functions used in eq. (3.1). In this section we will do that for the doped
scheme defined by eq. (3.1). To do this, we use the same trick used in sect. (2.1),
namely we choose µR = µF = mb. We will then show that however, if we use the
4F expression for the coefficient function in the doped scheme, the cross section is
no longer independent of the re-normalization scale. We can then define

(3.11) σ(d)(Q2, µ2
R, µ

2
F ) = σ(d4)(Q2,m2

b ,m
2
b)−X(µ2

R, µ
2
F ).

where σ(d) will be the correct expression of the cross section in the doped scheme
and X is the residual scale dependent term of σ(d4).

To compute X(µ2
R, µ

2
F ) we use eqs(3.2) and (1.6). Then

σ(d4)(Q2, µ2
R, µ

2
F ) =

(
α

(5)
S (µ2

R)
)N 4∑

i

{
C

(4),(0)
i + α

(5)
S (µ2

R)

[
−Nb(4)

0 log
Q2

µ2
R

C
(4),(0)
i + C

(4),(1)
i

(3.12)

+
1

2π
γ

(4),(0)
ij log

Q2

µ2
F

C
(4),(0)
j +O(α2

S)

]}
f

(d)
j (µ2

F ).

Making use again of the running of the coupling and of the DGLAP equations in
the doped scheme, one obtains that

(3.13) X(µ2
R, µ

2
F ) = αN+1

S (m2
b)(b

(5)
0 − b(4)

0 )N log
µ2
R

m2
b

C
(0)
i fi(µ

2
F ) +O(αN+2

S ).

This means that the µR independence is restored if the doped scheme is defined as

(3.14) σ(d)(Q2, µ2
R, µ

2
F ) = σ(d4)(Q2, µ2

R, µ
2
F )−X(µ2

R, µ
2
F )

With this re-definition of the doped scheme, together with the fact that (this
property follows by definition of the doped scheme):

(3.15) σ(d)(Q2,m2
b ,m

2
b) = σ(4F )(Q2,m2

b ,m
2
b) +O(αN+2

S )

one obtains:

(3.16) σ(d)(Q2, µ2
R, µ

2
F ) = σ(4F )(Q2, µ2

R, µ
2
F ) +O(αN+2

S ).

One then gets a scheme in which mass effects are included, logarithms of the type
logQ2/µ2

R, are re-summed in αS but not in the hard cross section, while logarithms
of the type logQ2/µ2

F are not re-summed.
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3.3 Consistency of the doped scheme

As was shown in the previous, the difference between the various schemes (with
the doped scheme consistently adjusted at NLO) is at least of order O(αN+2

S ). Let
us then define the following quantities,

(3.17) ∆(5F, 4F,Q2, µ2
R, µ

2
F ,m

2
b) = σ(5F )(Q2, µ2

R, µ
2
F )− σ(4F )(Q2, µ2

R, µ
2
F )

and

(3.18) ∆(d, 4F,Q2, µ2
R, µ

2
F ,m

2
b) = σ(d)(Q2, µ2

R, µ
2
F )− σ(4F )(Q2, µ2

R, µ
2
F ).

Let also µF = µR = µ. We now want to separate mass corrections form logarithmic
ones. This can be done noticing that we can write:

(3.19) ∆(5F, 4F,Q2, µ2,m2
b) = h

(
m2

Q2

)
= h(0) + h̄

and

(3.20) ∆(d, 4F,Q2, µ2,m2
b) = g

(
m2

Q2

)
= g(0) + ḡ,

where h(0) and g(0) are defined to be the limit for mb → 0 of h and g respectively,
while h̄ and ḡ are defined so to be the rest of these limits, namely h̄ = h−h(0) and
ḡ = g − g(0). Since ∆(5F, 4F ) is the difference between the 5 and 4 flavor scheme
then, we notice that h(0) contains the logarithms present in the 5F scheme but not
in the 4F scheme. Since these logs start being different at O(α2

S) with respect to
the LO,

(3.21) h(0) = αN+2
S

(
h

(0)
(0) + αSh

(0)
(1) +O(α2

S)
)
.

However, since the coefficient functions in the 4F and in the 5F scheme differ in
the way they treat mass suppressed terms, h̄ actually start already at LO,

(3.22) h̄ = αNS
(
h̄(0) + αSh̄(1) +O(α2

S) +O(m2
b/Q

2)
)
.

In the case of ∆(d, 4F ), g(0) contains terms proportional to log µ2
R/m

2
b which, as we

have seen, are not re-summed in the hard cross section, while g(1) contains mass
suppressed terms. However now also ḡ start at O(α2

S) because the doped scheme
is a massive scheme, and thus terms can only arise as interference with log µ2

R/m
2
b

corrections.

(3.23) g(0) = αN+2
S

(
g

(0)
(0) + αSg

(0)
(1) +O(α2

S)
)
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and

(3.24) ḡ = αN+2
S

(
ḡ(0) + αS ḡ(1) +O(α2

S) +O(m2
b/Q

2)
)
.

Unresummed higher order terms proportional to powers of log µ2
R/m

2
b could in

principle be unnaturally large. The doped scheme is thus advantageous if this is
not the case, i.e. the following conditions are met:

1. The 4F description should be better than 5F one. So collinear logs, arising
from the radiation of a b-quark off a gluon should be small compared to the
mass suppressed terms ⇒

(3.25)
∣∣h(0)

∣∣ < ∣∣h̄∣∣ .
If this condition is not met, the 5F scheme is the most appropriate.

2. The possible logarithmic terms in the doped scheme must not be large com-
pared to those of the 5F scheme.

(3.26)
∣∣g(0)

∣∣ . ∣∣h(0)
∣∣ .

If this condition is not met, the extra sub-leading terms induced by the
doping are large.

3. Mass suppressed terms in the difference between doped and 4 flavor scheme
should be ∼ 0 since they treat mass dependence in the same way. One, thus,
has to make sure that

(3.27) |ḡ| <
∣∣g(0)

∣∣ .
If this condition is not met, interference between mass corrections and sub-
leading logarithmic terms are large.

Note that in this analysis we always assumed that there is only one scale of the
process, namely Q2. When dealing with a multi-scale problem these conditions
may be met only for particular choices of the other hard scales or for a particular
range of parameters (such as physical cuts).

3.4 The O(αN+2
S ) terms

We can try to get an analytic handle on the various quantities in eqs.(3.25,3.26,3.27).
To this purpose we make use again of the trick used in the previous sections,
namely we express any results in terms of PDF and αS evaluated at the scale
µR = µF = mb.
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In the following we assume the physically interesting situation in which Q2 �
m2
b . Then for a generic choice µR = µF = µ, using eq. (1.6) together with eq. (1.25)

the cross section is

σ(nf )(Q2, µ2) = αNS (µ2)

nf∑
i

{
C

(0)
i + αS(µ2)

[
−Nb0 log

Q2

µ2
C

(0)
i + C

(1)
i +

1

2π
log

Q2

µ2
C

(0)
j γ

(0)
ij

]}
fi(µ

2)

= αNS (m2
b)

[
1− αS(m2

b)Nb0 log
µ2

m2
b

+ α2
S(m2

b)
b2

0

2
log2 µ

2

m2
b

N (N + 1)

]
×

nf∑
i

{
C

(0)
i + αS(m2

b)

[
−Nb0 log

Q2

µ2
C

(0)
i + C

(1)
i +

1

2π
log

Q2

µ2
C

(0)
j γ

(0)
ij

]
−α2

S(m2
b)b0 log

µ2

m2
b

[
−Nb0 log

Q2

µ2
C

(0)
i + C

(1)
i +

1

2π
log

Q2

µ2
C

(0)
j γ

(0)
ij

]}

×
[
δim +

αS(m2
b)

2π
log

µ2

m2
b

γ
(0)
im +

α2
S(m2

b)

8π2
log2 µ

2

m2
b

(
γ

(0)
ik γ

(0)
km − 6πb0γ

(0)
im

)]
fm(m2

b)

(3.28)

This can be written in the general form:

(3.29) σ(nf )(Q2, µ2) = σ
(nf )
NLO(m2

b) + αN+2
S (m2

b)
2∑
p=0

logp
µ2

m2
b

ξ(p),(nf )

(
Q2

m2
b

)
.

We now observe that if µ = mb then all schemes coincides. On the other hand, with
this choice there are large corrections of order logQ2/µ2. It is thus advantageous to
study the accuracy of the doped scheme when one make a natural choice µ ∼ Q2.
In this case, logarithms of the type log µ2/m2

b are potentially large. We then
extract the leading correction as the largest coefficient proportional to the lowest
order, i.e. the term proportional to αN+2

S log2. Then we can write the previous
equation as

(3.30) σ(nf )(Q2, µ2) = σ
(nf )
NLO(m2

b) + αN+2
S (m2

b) log2 µ
2

m2
b

ξ(2),(nf )

(
Q2

m2
b

)
,

with

ξ(2),(nf )

(
Q2

m2
b

)
= −

nf∑
j=0

{
1

2

(
b

(nf )
0

)2

N(1 +N)C
(0)
j

+
1

8π2

nf∑
i=0

[
nf∑
k=0

γ
(nf ),(0)

ki γ
(nf ),(0)

jk + 2πb
(4)
0 (2N − 1) γ

(nf ),(0)
ji

]
C

(0)
i

}
fj(m

2
b)(3.31)
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Then, using the fact that σ
(4F )
NLO = σ

(5F )
NLO +O(αN+2

S ) we can write

h(0)(Q2, µ2) =
(
σ(5F )(Q2, µ2)− σ(4F )(Q2, µ2)

)
= log2 µ

2

m2
b

(
ξ(2),(5F )

(
Q2

m2
b

)
− ξ(2),(4F )

(
Q2

m2
b

))
(3.32)

and also, of course,

g(0)(Q2, µ2) =
(
σ(d)(Q2, µ2)− σ(4F )(Q2, µ2)

)
= log2 µ

2

m2
b

(
ξ(2),(d)

(
Q2

m2
b

)
− ξ(2),(4F )

(
Q2

m2
b

))
.(3.33)

In practice what do we need to compute in order to check the three conditions pre-

viously defined, is just ξ(2),(5F )
(
Q2

m2
b

)
−ξ(2),(4F )

(
Q2

m2
b

)
and ξ(2),(d)

(
Q2

m2
b

)
−ξ(2),(4F )

(
Q2

m2
b

)
.

Let us the write the expression of ξ(2) in the various schemes.

ξ(2),(4)

(
Q2

m2
b

)
= −

4∑
j=0

{
1

2

(
b

(4)
0

)2

N(1 +N)C
(0)
j

+
1

8π2

4∑
i=0

[
4∑

k=0

γ
(4),(0)
ki γ

(4),(0)
jk + 2πb

(4)
0 (2N − 1) γ

(4),(0)
ji

]
C

(0)
i

}
fj(m

2
b),(3.34)

ξ(2),(5)

(
Q2

m2
b

)
= −

5∑
j=0

{
1

2

(
b

(5)
0

)2

N(1 +N)C
(0)
j

+
1

8π2

5∑
i=0

[
5∑

k=0

γ
(5),(0)
ki γ

(5),(0)
jk + 2πb

(5)
0 (2N − 1) γ

(5),(0)
ji

]
C

(0)
i

}
fj(m

2
b)(3.35)

and

ξ(2),(d)

(
Q2

m2
b

)
= −

4∑
j=0

{
1

2

(
b

(5)
0

)2

N(1 +N)C
(0)
j

+
1

8π2

4∑
i=0

[
4∑

k=0

γ
(4),(0)
ki γ

(4),(0)
jk + 2πb

(5)
0 (2N − 1) γ

(4),(0)
ji

]
C

(0)
i

}
fj(m

2
b).(3.36)

Now we can define,

(3.37) a1 =
1

2
N(N + 1)

4∑
j=0

(
−
(
b

(5)
0

)2

+
(
b

(4)
0

)2
)
C

(0)
j fj(m

2
b),
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a2 = − 1

8π2

4∑
ij=0

[
4∑

k=0

(
γ

(5),(0)
ki γ

(5),(0)
jk − γ(4),(0)

ki γ
(4),(0)
jk

)
(3.38)

+2π (2N − 1)
(
b

(5)
0 γ

(5),(0)
ji − b(4)

0 γ
(4),(0)
ji

)]
C

(0)
i fj(m

2
b),

while we define a3 to be the contribution, which was not included in the previous
terms, of the bottom quark to the 5F scheme. This term is

(3.39) a3 =
1

8π2
C

(0)
b γ(0)

gq

(
2γ(0)

qq − 6πb
(5)
0 + γ(0)

gg

)
fg(m

2
b).

since fb(mb) = 0. Then

(3.40) ξ(2),(5F )

(
Q2

m2
b

)
− ξ(2),(4F )

(
Q2

m2
b

)
= a1 + a2 + a3.

Using γ
(4)
ij = γ

(5)
ij − 2π(b

(5)
0 − b(4)

0 )δij one gets

(3.41) a1 = −
4∑
j=0

1

2

((
b

(5)
0

)2

−
(
b

(4)
0

)2
)
N(1 +N)C

(0)
j fj(m

2
b),

a2 =

(
b

(5)
0 − b(4)

0

)
4π

{[(
2πb

(5)
0 − (2N − 1)γ(0)

gg

)
fg(m

2
b)− (2N − 1)γ(0)

qq

∑
i=q,q̄

fi(m
2
b)

]
C(0)
g

(3.42)

−
∑
i=q,q̄

[
(2N − 1)γ(0)

gq fg(m
2
b) + (2N − 1)γ(0)

qq fi(m
2
b)
]
C

(0)
i

}

and

(3.43) a3 =
1

8π2
C

(0)
b γ(0)

gq

(
2γ(0)

qq − 6πb
(5)
0 + γ(0)

gg

)
fg(m

2
b).

In this way the first contribution is that coming from the different value of b0 in
the running of the coupling, the second comes from the different value of b0 in the
gluon-gluon splitting function while the last term is the bottom contribution to
the 5F scheme.

repeating the same argument for g(0), one then finds that

(3.44) ξ(2),(d)

(
Q2

m2
b

)
− ξ(2),(4F )

(
Q2

m2
b

)
= d1 + d2 + d3,
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with

d1 = a1,

d3 = 0(3.45)

and d2:

d2 =

(
b

(5)
0 − b(4)

0

)
4π

(1− 2N)

{
C(0)
g

[
γ(0)
gg fg(m

2
b) + γ(0)

gq

∑
i=q,q̄

fi(m
2
b)

]
(3.46)

+
∑
i=q,q̄

C
(0)
i

[
γ(0)
qg fg(m

2
b) + γ(0)

qq fi(m
2
b)
]}

.

With this results, the three conditions presented (eqs.(3.25,3.26,3.27)) imply that:

log2 µ
2

m2
b

(a1 + a2 + a3) <
m2
b

Q2
h(1)

a2 + a3 ∼ d2

log2 µ
2

m2
b

(a1 + d2) >
m2
b

Q2
g(1).(3.47)

which yield that, for doping to be advantageous one has to make sure that

(3.48)
m2

Q2
g(1) . (a1 + d2) log2 µ

2

m2
b

.
m2
b

Q2
h(1).



Chapter 4

Comparing the doped scheme with the 4F
and the 5F scheme

In this chapter we study the phenomenological relevance of the doped scheme,
using as examples the processes W/Zbb̄ production. Numerical results in this
section are obtained using the same experimental settings of sect. (2.2). In order
to study the dependence of our results on other physical scales we also report
numerical results for a cut on the b-jets of pcutT > 5 GeV.

4.1 Wbb̄ production at LHC

Table 4.1: NLO cross sections for Wbb̄ at
√
s = 7 TeV. Each scheme is computed

at µR = µF = MW + 2mb. The errors shown are the Monte-Carlo
errors.

NLO, pcutT > 25 GeV

σ(4F ) σ(5F ) σ(d)

14.8241 pb ±0.28% 16.9878 pb ±0.43% 16.5539 pb±0.27%

NLO, pcutT > 5 GeV

σ(4F ) σ(5F ) σ(d)

113.823 pb ±0.21% 185.044 pb ±0.38% 127.211 pb±0.21%

In fig. (4.1) we show differential distributions with respect to the b-pair invariant
mass (mbb̄) the pT of the leading b-jet and that of the W boson for pT of the b-jet

43
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Figure 4.1: Differential distributions for Wbb̄ production with respect to the pT
of the W boson(bottom), of the leading pT jet (top right) or of the
invariant mass of the b-jet pair (top left), in the 4F(green), in the
5F(red) and in the doped scheme(black). The uncertainty band is
that of the Monte-Carlo integration. Numerical results are obtained
with pcutT > 25 GeV.

pcutT > 25 GeV (results for pcutT > 5 GeV are shown in fig. (4.2)), while in tab. (4.1)
we report numerical results for the total cross section. As it can be seen from the
results for pcutT > 25 GeV, the doped scheme is essentially indistinguishable from
the 5F scheme, except at small mbb̄ , where it agrees with the 4F scheme. This
suggests that the dominant difference between the 4F and the 5F scheme, in this
case, is the value of αS, which is correctly reproduced by the doped scheme, except
at small mbb̄ where the 5F scheme has a collinear singularity which is regulated
by the bottom mass in the doped scheme. We therefore expect that at the level
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Figure 4.2: Same as fig. (4.1) with pcutT > 5 GeV.

of total cross section the impact of mass corrections is negligible. Indeed we can
check this by making use of the conditions defined in the previous chapter, namely
eq. (3.25), eq. (3.26) and eq. (3.27).

Recall that we defined,

(4.1) ∆(5F, 4F,Q2, µ2,m2
b) = h(0) + h̄

and

(4.2) ∆(d, 4F,Q2, µ2,m2
b) = g(0) + ḡ

then:

h(0) = ∆(5F, 4F,Q2, µ2, 0),

g(0) = ∆(d, 4F,Q2, µ2, 0)(4.3)
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and finally

h̄ = ∆(5F, 4F,Q2, µ2,m2
b)−∆(5F, 4F,Q2, µ2, 0)

ḡ = ∆(d, 4F,Q2, µ2,m2
b)−∆(d, 4F,Q2, µ2, 0).(4.4)

The numerical value of eq. (4.3) is reported in tab. (4.2) and the exact way used
to obtain it is given in the appendix. Note that in the appendix also an analytical
approach to compute the same limit is given, although results obtained using that
method are not reported here since they need to be validated. As we expected,

Table 4.2: h(0), g(0), h̄, ḡ values for Wbb̄ production.

pcutT > 25 GeV
∆(5F, 4F,Q2, µ2,m2

b) ∆(5F, 4F,Q2, µ2, 0) h(0) h̄

2.1634 pb 1.47957 pb 1.47957 pb 0.68383 pb

∆(d, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2, 0) g(0) ḡ

1.7298 pb 1.67011 pb 1.67011 pb 0.05969 pb

pcutT > 5 GeV
∆(5F, 4F,Q2, µ2,m2

b) ∆(5F, 4F,Q2, µ2, 0) h(0) h̄

71.221 pb 15.168 pb 15.168 pb 56.053 pb

∆(d, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2, 0) g(0) ḡ

13.388 pb 17.6117 pb 17.6117 pb −4.2237 pb

while eq. (3.26) and eq. (3.27) are met, eq. (3.25) is not met suggesting that mass
corrections for this case can be negligible. This in turn suggests that while doped
scheme, for this process, may be advantageous for differential distribution, for total
cross sections the 5F scheme could still be preferred.

We find that however, for smaller values of the transverse momentum cut on
the b-jets, mass corrections become non-negligible. This is due to the collinear
singularity in the 5F scheme which is artificially regulated by this cut. In fact, as
can be seen in fig. (4.2), the 5F and the doped scheme now differ in many regions,
with the doped scheme in reasonable agreement with the 4F scheme. This suggests
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that with this choice, mass corrections become more important than the value of
αS, which is still the correct one in the doped scheme. We therefore expect mass
effects to be dominant at the level of total cross sections. This can be seen in
tab. (4.2). In fact, for this choice of parameters, eq. (3.25) is met. Note that also
eqs(3.26) and (3.27) are met, suggesting that in this case the doped scheme may
be the most advantageous scheme to use.

4.2 Zbb̄ production at LHC

Table 4.3: NLO cross sections for Zbb̄ at
√
s = 7 TeV. Each scheme is computed

at µR = µF = MZ + 2mb. The errors shown are the Monte-Carlo
error.

NLO, pcutT > 25 GeV

σ(4F ) σ(5F ) σ(d)

21.1719 pb ±0.34% 24.2749 pb±0.38% 23.2418 pb ±0.37%

NLO, pcutT > 5 GeV

σ(4F ) σ(5F ) σ(d)

183.513 pb ±0.28% 248.356 pb ±0.95% 205.204 pb±0.4%

In fig. (4.3) we show differential distributions with respect to the b-pair invariant
mass (mbb̄) the pT of the leading b-jet and that of the Z boson for pT of the b-jet
pcutT > 25 GeV (results for pcutT > 5 GeV are shown in fig. (4.4)), while in tab. (4.3)
we report numerical results for the total cross section for Zbb̄ production. For
this process, for pcutT > 25 GeV, we see that the 5F scheme and doped scheme
are almost indistinguishable, even in the region of small invariant b-pair masses,
since, as we saw in sect. (2.2) only the quark initiated diagrams for this process
are affected by a collinear singularity while the dominant gluon channel is not.
This suggests that the for this case the 5F scheme could be used. We therefore
expect only conditions 2) and 3) (eqs.(3.26,3.27)) to be met. Indeed, this can
be seen explicitly in tab. (4.4) where numerical values for h(0), h̄, g(0) and ḡ are
shown. This means that for this case the use of the doped scheme may not be so
advantageous.

However, for pcutT > 5 GeV, mass corrections become more important (see
fig. (4.4)). In this case in fact, the collinear singularity in the 5F scheme of the
quark channel becomes the dominant contribution. This in turn spoils also the
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Figure 4.3: Differential distributions for Zbb̄ production with respect to the pT
of the Z boson(bottom), of the leading pT jet (top right) or of the
invariant mass of the b-jet pair (top left), in the 4F(green), in the
5F(red)and in the doped scheme(black). The uncertainty band is
that of the Monte-Carlo integration. Numerical results are obtained
with pcutT > 25 GeV.

prediction on the total cross section in the 5F scheme. This suggests that the
doped scheme may be advantageous even for this process, for this choice of the
cut on the transverse momentum. We can check that this may be the case looking
at tab. (4.4) where we can see that for this choice of the pcut

T each condition
(eqs.(3.25,3.26) and (3.27)) is met.
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Figure 4.4: Same as fig. (4.3) but with pcutT > 5 GeV.
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Table 4.4: h(0), g(0), h̄, ḡ values for Zbb̄ production.

pcutT > 25 GeV
∆(5F, 4F,Q2, µ2,m2

b) ∆(5F, 4F,Q2, µ2, 0) h(0) h̄

3.103 pb 4.03937 pb 4.03937 pb −0.93637 pb

∆(d, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2, 0) g(0) ḡ

2.0699 pb 1.67361 pb 1.67361 pb 0.39629 pb

pcutT > 5 GeV
∆(5F, 4F,Q2, µ2,m2

b) ∆(5F, 4F,Q2, µ2, 0) h(0) h̄

64.843 pb 27.3469 pb 27.3469 pb 37.4961 pb

∆(d, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2, 0) g(0) ḡ

21.691 pb 20.0117 pb 20.0117 pb 1.6793 pb



Chapter 5

A NNLO analysis

Since higher order calculations is of increasing importance in high energy physics,
and since NNLO computation, in particular, are becoming more and more avail-
able, to conclude our discussion about the doped scheme we will now work out the
full NNLO term which has to be subtracted in order to restore the doped scheme
scale independence up to O(αN+3

S ). In order to do that recall the procedure that
has been used to to do the same at NLO. There we wrote:

(5.1) σ(d)(Q2, µ2
R, µ

2
F ) = σ(d)(Q2,m2

b ,m
2
b) +X(Q2, µ2

R, µ
2
F ),

where of course:

(5.2) σ(d)(Q2,m2
b ,m

2
b) = σ(4F )(Q2,m2

b ,m
2
b) +O(αN+3

S ).

Also note that we can arrange that also

(5.3) α
(4F )
S (m2

b) = α
(d)
S (m2

b) +O(α3
S).

Start back then with the factorized cross section in Mellin space, eq. (2.3),

(5.4) σ(nf )(Q2) =

nf∑
i

f
(nf )
i (µ2

F )C
(nf )
i (µ2

F , µ
2
R, Q

2).

Also recall that this can be expanded in power series of the coupling constant once
one uses eq. (1.30) with the result,

σ(Q2) = αNS (Q2)

nf∑
i

fi(µ
2
F )
(
C

(0)
j + αS(Q2)C

(1)
j + α2

S(Q2)C
(2)
j

)
(5.5)

×
(
δij + αS(Q2)Γ

(1)
ij (µ2

F , Q
2) + α2

S(Q2)Γ
(2)
ij (µ2

F , Q
2)
)

+O(αN+3
S )

51



52 A NNLO analysis

where

Γ
(1)
ij (µ2

0, µ
2) =

1

2π
log

µ2

µ2
0

γ
(0)
ji

Γ
(2)
ij (µ2

0, µ
2) =

1

4π
log

µ2

µ2
0

(
2γ

(1)
ji +

1

2π
log

µ2

µ2
0

γ
(0)
jk γ

(0)
ki − b0 log

µ2

µ2
0

γ
(0)
ji

)
(5.6)

and we dropped the nf dependence being it trivial. Then, using eq. (1.8)

αS(Q2) = αS(µ2
R)

[
1− αS(µ2

R)b0 log
Q2

µ2
R

+ α2
S(µ2

R)b0 log
Q2

µ2
R

(
b0 log

Q2

µ2
R

− b1

)
+O(α3

S)

]
one obtains the full NNLO expansion. This reads, in the doped scheme

σ(d)(Q2) =
(
α

(5)
S (µ2

R)
)N nf∑

i

f
(d)
i (µ2

F )
(
C

(0)
i + α

(5)
S (µ2

R)σ
(d),(1)
i (Q2, µ2

F , µ
2
R)

+
(
α

(5)
S (µ2

R)
)2

σ
(d),(2)
i (Q2, µ2

F , µ
2
R) +O(α3

S)

)
(5.7)

with

(5.8) σ
(d),(1)
i (Q2, µ2

F , µ
2
R) = −Nb(5)

0 log
Q2

µ2
R

C
(0)
i + C

(1)
i +

1

2π
log

Q2

µ2
F

γ
(4),(0)
ij C

(0)
j

and

σ
(d),(2)
i (Q2, µ2

F , µ
2
R) = Nb

(4)
0 log

Q2

µ2
R

[
1

2
(N + 1)b

(4)
0 log

Q2

µ2
R

− b(4)
1

]
C

(0)
i

(5.9)

− (N + 1)b
(4)
0 log

Q2

µ2
R

C
(1)
i + C

(2)
i +

1

2π

(
C

(1)
j − (N + 1)b

(4)
0 log

Q2

µ2
R

C
(0)
j

)
γ

(4),(0)
ij log

Q2

µ2
F

+
1

4π
log

Q2

µ2
F

[
2γ

(4),(1)
ij +

1

2π
log

Q2

µ2
F

γ
(4),(0)
ik γ

(4),(0)
kj − b(4)

0 log
Q2

µ2
F

γ
(4),(0)
ij

]
C

(0)
j .

Now to compute X, as we previously did, we have to make use again of eq. (1.8),
(5.10)

α
(5)
S (µ2

R) = αS(m2
b)

[
1− αS(m2

b)b
(5)
0 log

µ2
R

m2
b

+ α2
S(m2

b)b
(5)
0 log

µ2
R

m2
b

(
b

(5)
0 log

µ2
R

m2
b

− b(5)
1

)
+O(α3

S)

]
and of eq. 1.30

(5.11) Γ
(d)
ij (m2

b , µ
2
F ) = δij + αS(m2

b)Γ
(d),(1)
ij (m2

b , µ
2
F ) + α2

S(m2
b)Γ

(d),(2)
ij (m2

b , µ
2
F )
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with

Γ
(d),(1)
ij (m2

b , µ
2
F ) =

1

2π
log

µ2
F

m2
b

γ
(4),(0)
ji

Γ
(d),(2)
ij (m2

b , µ
2
F ) =

1

4π
log

µ2
F

m2
b

(
2γ

(4),(1)
ji +

1

2π
log

µ2
F

m2
b

γ
(4),(0)
jk γ

(4),(0)
ki − 3b

(5)
0 log

µ2
F

m2
b

γ
(4),(0)
ji

)(5.12)

then one obtains, putting µF = µR = µ, that:

X(µ2) = N log
Q2

µ2

[
−1

2
(N + 1)

((
b

(5)
0

)2

−
(
b

(4)
0

)2
)

log
Q2

µ2
+
(
b

(5)
0 b

(5)
1 − b(4)

0 b
(4)
1

)]
C

(0)
i fi(m

2
b)

(5.13)

+
(
b

(5)
0 − b(4)

0

) 2N + 1

4π
log

Q2

µ2
γ

(0)
ij C

(0)
j fi(m

2
b)

+
(
b

(5)
0 − b(4)

0

)
(N + 1) log

Q2

µ2
C

(1)
i fi(m

2
b)(5.14)

It has to be noted, however, that since,

(5.15) σ(d)(Q2, µ2
R, µ

2
F ) = σ(d)(Q2,m2

b ,m
2
b) +X(Q2, µ2

R, µ
2
F )

and

(5.16) σ(d)(Q2,m2
b ,m

2
b) = σ(4F )(Q2,m2

b ,m
2
b) +O(αN+3

S ),

then

(5.17) σ(d)(Q2, µ2
R, µ

2
F ) = σ(4)(Q2,m2

b ,m
2
b) +X(Q2, µ2

R, µ
2
F ) +O(αN+3

S ).

Which in turn yields that

(5.18) σ(d)(Q2, µ2
R, µ

2
F ) = σ(4)(Q2, µ2

R, µ
2
F ) +X(Q2, µ2

R, µ
2
F ) +O(αN+3

S )

this means, that once one has subtracted the X term, one obtains the 4F scheme
again up to higher order terms.
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Chapter 6

Conclusions

In this work we proposed a hybrid scheme, called the doped scheme to account for
processes in which neither the 4F scheme or the 5F scheme seem to give the most
accurate prediction. This, for instance, may happen for high energy processes
which start at a high perturbative order (i.e. with a large power of αS), but for
which mass corrections are more important than contributions from initial state
logarithms arising from collinear splittings. In this cases, in fact, one should use
the 4F scheme to describe correctly the whole kinematical region accessible by the
process. On the other hand, since they start with a large power of αS, the wrong
value of αS in the 4F scheme can lead to a very large error in the total cross section
even for small differences between the coupling computed in the two schemes. For
this reason the doped scheme was defined to be exactly equal to the 4F scheme
except for the running of the coupling which is computed in the 5F scheme.

In order to obtain a fully consistent scheme up to NLO, we first had to define
the doped scheme in such a way that the independence of the re-normalization scale
is preserved. Once this is done, however, higher order terms receive logarithmic
contributions which, though sub-leading, may in practice spoil the accuracy of
the calculation. In order to assess whether this may be the case, we gave three
conditions under which, if all met, the doped scheme is advantageous. We also re-
expressed these conditions in term of analytically calculable quantities which can
be implemented to check automatically these three conditions. Such a program
has already been developed, but need a further study in order to check results
obtained in this way.

We showed numerical results obtained in the 4F, in the 5F and in doped scheme
for two interesting processes, namely W/Zbb̄ production. Using these results we
tried to check whether our conditions were met. We saw there that results heavily
depended on the choice made on the pcutT . In fact, using a large enough value
of the cut on the b-jets, the singular behavior of the 5F scheme for these two
processes, is either restricted to a small region of invariant mass of the b-pair, or
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is present only in a non dominant channel, resulting that the 5F scheme gives the
most accurate description. When we used a smaller value of the cut imposed on
the b-jets, however, we saw that mass corrections became more important, leading
to the conclusion that in that case, the doped scheme was the most advantageous
choice both for differential calculation and of total cross sections. We expect this
behavior to be generic for processes characterized by more than one physical scale:
we generally expect that there exist regions of parameters or physical scales in
which the doped scheme results to be advantageous. We can therefore conclude
that the doped scheme should be used or for differential analyses, when a collinear
singularity in the 5F scheme spoils the accuracy in some kinematic region, or
for both differential analyses and for total cross section computations when a
particular range of parameters, such as pT or pseudo-rapidity cuts, or of physical
scales, makes this singular behavior more marked.

In the last part of this thesis we have computed the term which can be used
to restore the scale independence of the doped scheme up to NNLO, so that this
could be implemented (in principle) in a possible higher order numerical tool.

As a natural development for this work we propose to test the analytical method
to check the three conditions claimed in this thesis, together with thorough test on
the processes shown here and other interesting processes and physical observables.



Appendices
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Appendix A

The splitting functions and the anomalous
dimensions

Let us now report the full expression of the Altarelli-Parisi splitting functions with
their full nf dependence.

Remember that the splitting functions Pij(x, µ
2) can be intepreted as the prob-

ability to find a parton i into a parton j witha fraction x of the longitudinal mo-
mentum of the parent parton and a trasversal momentum squared much less than
the scale µ2. Then, each splitting function is calculable as a power series in αS,

Pqiqj(x, µ
2) = δijp

(0)
qq (x) +

αS(µ2)

2π
p(1)
qiqj

(x) + . . .

Pqig(x, µ
2) = p(0)

qg (x) +
αS(µ2)

2π
p(1)
qg (x) + . . .

Pgqi(x, µ
2) = p(0)

gq (x) +
αS(µ2)

2π
p(1)
gq (x) + . . .

Pgg(x, µ
2) = p(0)

gg (x) +
αS(µ2)

2π
p(1)
gg (x) + . . .(A.1)

Note that because of charge conjugation invariance and SU(nf ) flavor symmetry
we have

Pqiqj = Pqiq̄j
Pq̄iqj = Pqiq̄j
Pqig = Pq̄ig ≡ Pqg

Pgqi = Pgq̄i ≡ Pgq(A.2)
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Where the leading-order contribution are

p(0)
qq (x) =

4

3

[
1 + x2

(1− x)+

+
3

2
δ(1− x)

]
,

p(0)
qg (x) =

1

2

[
x2 + (1− x)2

]
,

p(0)
gq (x) =

4

3

[
1 + (1− x)2

x

]
,

p(0)
gg (x) = 6

[
x

(1− x)+

+
1− x
x

+ x(1− x)

]
+ 2πδ(1− x)b

(nf )
0 ,(A.3)

where we used the standard plus distribution,

(A.4)

∫ 1

0

dx
f(x)

(1− x)+

=

∫ 1

0

f(x)− f(1)

1− x .

Alternatively one can use their Mellin transformed, the anomalous dimensions,
γij. They are defined as

(A.5) γij(N,µ
2) =

∫ ∞
0

dxxN−1Pij(x, µ
2).

then of course, they can also be expanded in power series of the coupling,

(A.6) γij(N,µ
2) = γ

(0)
ij (N) +

αS(µ2)

2π
γ

(1)
ij (N) + . . .

where

(A.7) γ
(k)
ij (N) =

∫ ∞
0

dxxN−1p
(k)
ij (x).

We report here the leading-order expression reads

γ(0)
qq (x) =

4

3

[
−1

2
+

1

N(N + 1)
− 2

N∑
i=2

1

i

]
,

γ(0)
qg (N) =

1

2

[
2 +N +N2

N(N + 1)(N + 2)

]
,

γ(0)
gq (N) =

4

3

[
2 +N +N2

N(N2 − 1)

]
,

γ(0)
gg (N) = 6

[
− 1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N∑
i=2

1

i

]
− 1

3
nf .(A.8)



Appendix B

Computation of the massless limit

In this Appendix we show how the massless limit of ∆, eq. (4.3), defined in
sect. (4.1) has been computed.

Let us recall that

(B.1) ∆(5F, 4F,Q2, µ2,m2
b) = h(0) + h̄

and

(B.2) ∆(d, 4F,Q2, µ2,m2
b) = g(0) + ḡ

then:

h(0) = ∆(5F, 4F,Q2, µ2, 0),

g(0) = ∆(d, 4F,Q2, µ2, 0).(B.3)

In practice though ∆(i, j, Q2, µ2, 0) exists only as the limit of
∆(i, j, Q2, µ2,mb),mb → 0.

This limit in analytical form exists and is expressed, up to higher order terms,
in terms of the functions a1, a2, a3, d2 as shown in sect. (3.4). One way to compute
this terms is to re-write them in term of LO cross section.

In practice one can re-define those terms in the following way,

a1 = −1

2

1

αNS (m2
b)

((
b

(5)
0

)2

−
(
b

(4)
0

)2
)
N(N + 1)σLO(m2

b),

a2 =
1

αNS (m2
b)
σ

(a2)
LO (m2

b),

a3 =
1

αNS (m2
b)
σ

(b)
LO(m2

b),

d2 =
1

αNS (m2
b)
σ

(d2)
LO (m2

b).(B.4)
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With:

σLO(m2
b) = αNS (m2

b)
4∑
i

C
(0)
i fi(m

2
b),

σ
(a2)
LO (m2

b) = αNS (m2
b)

4∑
i

C
(0)
i f

(a2)
i (m2

b),

σ
(b)
LO(m2

b) = αNS (m2
b)C

(0)
b f

(a3)
b (m2

b),

σ
(d2)
LO (m2

b) = αNS (m2
b)

4∑
i

C
(0)
i f

(d2)
i (m2

b)(B.5)

and

f
(a2)
i (m2

b) =
1

4π

(
b

(5)
0 − b(4)

0

)[(
2πb

(5)
0 − γ(0)

gg

)
fg(m

2
b)− (2N − 1)

∑
i

γ
(0)
ji fj(m

2
b)

]
,

(B.6)

f
(a3)
b (m2

b) =
1

8π2
γ(0)
gq

(
2γqq − 6πb

(5)
0 + γ(0)

gg

)
fg(m

2
b),

f
(d2)
i (m2

b) = −(2N − 1)

4π

(
b

(5)
0 − b(4)

0

)∑
i

γ
(0)
ji fj(m

2
b).

(B.7)

Now, as it was reported in sect. (3.4),

∆(5F, 4F,Q2, µ2, 0) = αN+2
S (m2

b) log2 µ
2

m2
b

(a1 + a2 + a3) +O(αN+3
S ),

∆(d, 4F,Q2, µ2, 0) = αN+2
S (m2

b) log2 µ
2

m2
b

(a1 + d2) +O(αN+3
S ).(B.8)

This is the method, which has been already implemented but still need to be
checked, to check the three conditions claimed for the doped scheme.

However, one can of course try to compute this limit in a numerical way. This
can be achieved by computing the cross section for smaller and smaller value of
the b-mass, for different values of the various parameters, such as pT cuts and so
on, interpolating ∆ as a function of mb and then taking its limit as mb → 0.

In the case considered we computed σ(nf )(Q2,m2
b) at NLO, with the same cuts

as that used throughout this work, for four different values of the b-mass. The
results of those simulations are reported in tabs.(B.1) and (B.2). We then fitted
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the function ∆ between the 5F and the 4F scheme and between the doped and the
4F scheme with a polynomial of degree 4,

(B.9) ∆(i, j, Q2,m2
b) = aij + bijmb + cijm

2
b + dijm

3
b + eijm

4
b

of course then, the massless limit is the coefficient aij.

Table B.1: ∆(i, j, Q2,m2
b) at NLO for pcutT > 25 GeV

Wbb̄

∆(5F, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2,m2

b)

mb = 4.62 GeV 2.1634 pb 1.7298 pb

mb = 0.5 GeV 1.5988 pb 1.8878 pb

mb = 0.3 GeV 1.6123 pb 2.0198 pb

mb = 0.1 GeV 1.545 pb 1.8693 pb

Zbb̄

∆(5F, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2,m2

b)

mb = 4.62 GeV 3.103 pb 2.0699 pb

mb = 0.5 GeV 3.4962 pb 2.2303 pb

mb = 0.3 GeV 3.4244 pb 2.0735 pb

mb = 0.1 GeV 3.7344 pb 1.8295 pb
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Table B.2: ∆(i, j, Q2,m2
b) at NLO for pcutT > 5 GeV

Wbb̄

∆(5F, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2,m2

b)

mb = 4.62 GeV 71.221 pb 13.388 pb

mb = 0.5 GeV 19.609 pb 20.363 pb

mb = 0.3 GeV 17.798 pb 19.558 pb

mb = 0.1 GeV 17.313 pb 19.641 pb

Zbb̄

∆(5F, 4F,Q2, µ2,m2
b) ∆(d, 4F,Q2, µ2,m2

b)

mb = 4.62 GeV 64.843 pb 21.691 pb

mb = 0.5 GeV 25.836 pb 25.908 pb

mb = 0.3 GeV 29.639 pb 24.327 pb

mb = 0.1 GeV 29.222 pb 21.717 pb
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