Longitudinally-polarized parton distributions with faithful uncertainty estimates XVI workshop on high energy spin physics

Emanuele R. Nocera

Università di Genova & INFN, Genova

September 8, 2015

JOINT INSTITUTE FOR NUCLEAR RESEARCH

The JINR logo, from the web page http://www.jinr.ru/

Emanuele R. Nocera (UNIGE)

Foreword

I How the nucleon spin is built up from the quark and gluon spin and OAM?

$$\frac{1}{2} = \underbrace{\frac{1}{2}\Delta\Sigma(\mu^2) + \Delta G(\mu^2)}_{\text{quark and gluon spin fractions}} + \underbrace{\mathcal{L}_q(\mu^2) + \mathcal{L}_q(\mu^2)}_{\text{quark and gluon OAM}} \text{[NP B337 (1990) 509]}$$

Obes each of these terms allow for a unique field-theoretic definition in QCD? (possibly gauge-invariant, physically meaningful and related to a measurable quantity) [Phys.Rept. 541 (2014) 163, see also the talk by Bo-Qiang Ma]

③ This talk is about an accurate determination of $\Delta\Sigma(\mu^2)$ and $\Delta G(\mu^2)$ in QCD

$$\Delta\Sigma(\mu^2) = \sum_q \int_0^1 dx \, \left[\Delta q(x,\mu^2) + \Delta \bar{q}(x,\mu^2) \right] \qquad \Delta g(\mu^2) = \int_0^1 dx \, \Delta g(x,\mu^2)$$

Namely, a determination of the longitudinally-polarized PDFs of the proton (*i.e.* the momentum densities of partons with spin ([†]) or ([↓]) *w.r.t* the nucleon)

$$\Delta f(x) \equiv f^{\uparrow}(x) - f^{\downarrow}(x), \qquad f = u, \bar{u}, d, \bar{d}, s, \bar{s}, g$$

$$\Delta q(x) = \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

I = SQA

Outline

A global analysis of parton distributions

- Theory: perturbative accuracy, theoretical constraints
- Methodology: standard vs NNPDF routes
- Data: spin observables and accessible PDFs
- 2 Longitudinally polarized PDFs from the NNPDF family
 - Evolution of NNPDFpol fits: kinematic coverage and fit quality
 - Impact of new data: RHIC data, new DIS data
 - The emerging picture of the polarized nucleon
- 3 Drawing conclusions

Results shown in this presentation are based on the following papers [NP B874 (2013) 36] [PL B728 (2014) 524] [NP B887 (2014) 276] [PL B742 (2015) 117] in collaboration with R.D. Ball, S. Forte, G. Ridolfi and J. Rojo

JOVA TOTIVS TERRARVM ORBIS GEOGRAPHICA AC HYDROGRAPHICA TABVLA. Auch:Henr:Hond

1. A global analysis of parton distributions

MARE PACIFICVM

Hendrik Hondius, Nova Totius Terrarum Orbis Tabula (1630), State Library of New South Wales

A global PDF determination: the underlying strategy

Assume a reasonable PDF parametrization

Obtain theoretical predictions for various processes and compare predictions to data Determine the best-fit parameters via minimization of a proper figure of merit (*e.g.* χ^2)

A global PDF determination: the ingredients we need

Need for a choice of

- theory, or the theoretical details of the QCD analysis (perturbative order, treatment of heavy quarks, treatment of α_s, theoretical constraints)
- empty end of the second sec
- data, or the set of observables to be included in the analysis (constrain all possible PDFs in the widest range of Bjorken-x)

Each of these ingredients is a source of uncertainty on the PDF determination

Theory: perturbative QCD

Factorization of physical observables O₁ [Adv.Ser.Direct.High Energy Phys. 5 (1988) 1]

▶ a convolution between coefficient functions $C_{lf}(x, \alpha_s(\mu^2))$ and PDFs $f(x, \mu^2)$

$$\mathcal{O}_{I} = \sum_{f=q,\bar{q},g} \mathcal{C}_{lf}(y,\alpha_{s}(\mu^{2})) \otimes f(y,\mu^{2}) + \text{p.s. corrections} \quad f \otimes g = \int_{x}^{1} \frac{dy}{y} f\left(\frac{x}{y}\right) g(y)$$

• coefficient functions allow for a perturbative expansion in terms of $a_s = \alpha_s/(4\pi)$

$$C_{lf}(y, \alpha_{s}) = \sum_{k=0} a_{s}^{k} C_{lf}^{(k)}(y) \begin{cases} DIS (up to NNLO) & [NP B417 (1994) 61] \\ SIDIS (up to NLO) & [PR D57 (1998) 5811, NP B539 (1999) 455] \\ pp (up to NLO) & [NP B539 (1999) 455, PR D70 (2004) 034010] \\ [PR D67 (2003) 054004, ibidem 054005] \\ [PR D81 (2010) 094020] \end{cases}$$

Evolution of parton distributions [NP B126 (1977) 298]

▶ a set of $(2n_f + 1)$ integro-differential equations, n_f is the number of active flavors

$$\frac{\partial}{\partial \ln \mu^2} f_i(x,\mu^2) = \sum_{j}^{n_f} \int_x^1 \frac{dz}{z} \mathcal{P}_{ji}\left(z,\alpha_s(\mu^2)\right) f_j\left(\frac{x}{z},\mu^2\right)$$

with perturbative computable splitting functions

$$\mathcal{P}_{ji}(z,\alpha_s) = \sum_{k=0} a_s^{k+1} P_{ji}^{(k)}(z) \qquad \begin{cases} \text{LO} & [\text{NP B126 (1977) 298}] \\ \text{NLO} & [\text{ZP C70 (1996) 637, PR D54 (1996) 2023}] \\ \text{NNLO} & [\text{NP B889 (2014) 351}] \end{cases}$$

Theory: theoretical constraints

- Polarized PDFs must lead to positive cross sections
 - > at LO, polarized PDFs are bounded by their unpolarized counterparts

 $|\Delta f(x,\mu^2)| \leq f(x,\mu^2)$

- beyond LO, other relations hold, but are of limited effect [NP B534(1998)277]
- Polarized PDFs must be integrable
 - i.e. require that the axial matrix elements of the nucleon are finite

 $\langle P, S | \bar{\psi}_q \gamma^\mu \gamma_5 \psi_q | P, S
angle \longrightarrow$ finite for each flavor q

3 Assume SU(2) and SU(3) symmetry

relate the octet of axial-vector currents to β-decay of spin-1/2 hyperons

$$a_3 = \int_0^1 dx \, \Delta T_3 = 1.2701 \pm 0.0025 \qquad a_8 = \int_0^1 dx \, \Delta T_8 = 0.585 \pm 0.025 \qquad \text{[PDG 2014]}$$

$$\Delta T_3 = (\Delta u + \Delta \bar{u}) - (\Delta d + \Delta \bar{d}) \qquad \Delta T_8 = (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) - 2(\Delta s + \Delta \bar{s})$$

note: violations of SU(3) symmetry are advocated in the literature [ARNPS 53 (2003) 39]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Methodology: the standard route

Simple analytical parametrization of PDFs, e.g.

$$xf(x,\mu_0^2) = \eta_f x^{a_f} (1-x)^{b_f} \left(1 + \rho_f x^{\frac{1}{2}} + \gamma_f x\right) \qquad \{\mathbf{a}\} = \{\mathbf{a}, \mathbf{b}, \eta, \rho, \gamma\}$$

 \Rightarrow potential bias if the parametrization is too rigid

- 2 Hessian propagation of errors
 - expand the χ^2 about its global minimum at first order, $\chi^2{\{\mathbf{a}\}} \approx \chi^2{\{\mathbf{a}_0\}} + \delta a^i H_{ij} \delta a^j$
 - diagonalize the Hessian matrix and take the hypersphere of radius $\sqrt{\chi^2}=1$
 - \Rightarrow is linear approximation adequate? do we need a tolerance T = $\sqrt{\chi^2} >$ 1?

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDFs

ELE NOR

Methodology: the NNPDF route

Neural network parametrization of PDFs

- redundant and flexible parametrization, $\mathcal{O}(200)$ parameters
- requires a proper minimization algorithm and stopping criterion
- \Rightarrow reduce the theoretical bias due to the parametrization
- 2 Monte Carlo propagation of errors
 - generate experimental data replicas assuming multi-Gaussian probability distribution
 - $\blacktriangleright\,$ validate against experimental data to determine the sample size ($N_{\rm rep}\sim 100$)
 - \Rightarrow no need to rely on linear error propagation, no tolerance needed

PDF replicas are equally probable members of a statistical ensemble which samples the probability density $\mathcal{P}[f_i]$ in the space of PDFs

$$\langle \mathcal{O} \rangle = \int \mathcal{D} f_i \mathcal{P}[f_i] \mathcal{O}[f_i]$$

Expectation values for observables are Monte Carlo integrals

$$\langle \mathcal{O}[f_i(x, Q^2)]
angle = rac{1}{N_{
m rep}} \sum_{k=1}^{N_{
m rep}} \mathcal{O}[f_i^{(k)}(x, Q^2)]$$

Data: spin asymmetries

PROCESS	OBSERVED ASYMMETRIES	SUBPROCESSES	PROBED PDFS
$\ell \longrightarrow \ell$ $N \longrightarrow \ell^{\pm} + X$ $\ell^{\pm} + X \longrightarrow \ell^{\pm} + X$	$A_1 pprox rac{\sum_q \Delta q(x) + \Delta ar q(x)}{\sum_{q'} q'(x) + ar q'(x)}$	$\gamma^* q o q$	$\Delta q + \Delta ar q \ \Delta g \ (extsf{NLO})$
e e e e e e e e e e e e e e e e e e e	$A_1^h \approx \frac{\sum_q \Delta q(x) \otimes D_q^h(z)}{\sum_{q'} q'(x) \otimes D_{q'}^h(z)}$	$\gamma^* q o q$	$\Delta u \ \Delta \overline{u}$ $\Delta d \ \Delta \overline{d}$ $\Delta g \ (NLO)$
$\ell^{\pm} + N \rightarrow \ell^{\pm} h + X$	$A_{LL}^{\gamma N \to D_0 X} \approx \frac{\Delta_g \otimes D_c^{D^0}(z)}{g(x) \otimes D_c^{D^0}(z)}$	$\gamma^* g ightarrow c ar c$	Δg
N2 X	$A_{LL}^{jet} \approx \frac{\sum_{a,b=q,\bar{q},g} \Delta f_a(x_1) \otimes \Delta f_b(x_2)}{\sum_{a,b,c=q,\bar{q},g} f_a(x_1) \otimes f_b(x_2)}$	$egin{array}{c} gg ightarrow qg \ qg ightarrow qg \ qg ightarrow qg \end{array}$	Δg
	$A_L^{W^+} \approx \frac{\Delta u(x_1)\bar{d}(x_2) - \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$	$u_L \bar{d}_R \to W^+$ $d_L \bar{u}_R \to W^+$	$\Delta u \Delta \bar{u}$ $\Delta d \Delta \bar{d}$
$N_1 \longrightarrow PP$ $N_1 + N_2 \rightarrow \{jet(s), W^{\pm}, \pi\} + X$	$A^{h}_{LL} \approx \frac{\sum_{a,b,c=q,\bar{q},g} \Delta f_{a}(x_{1}) \otimes \Delta f_{b}(x_{2}) \otimes D^{h}_{c}(z)}{\sum_{a,b,c=q,\bar{q},g} f_{a}(x_{1}) \otimes f_{b}(x_{2}) \otimes D^{h}_{c}(z)}$	$egin{array}{c} gg ightarrow qg \ qg ightarrow qg \ qg ightarrow qg \end{array}$	Δg

Nocera (UNIGE) Unbiased polarized PDFs	September 8, 2015	11 / 22
--	-------------------	---------

Overview of available polarized PDF sets

	DSSV	NNPDF	JAM	LSS
e de la construcción de la const	Ø	Ø	Ø	Ø
N SIDIS	Ø			Ø
N2 N1 PP	$(jets, \pi^0)$	$(jets, W^{\pm})$		
statistical treatment	Lagr. mult. $\Delta\chi^2/\chi^2=2\%$	Monte Carlo	Hessian $\Delta\chi^2 = 1$	Hessian $\Delta\chi^2 = 1$
parametrization	polynomial (23 pars)	neural network (259 pars)	polynomial (10 pars)	polynomial (20 pars)
features	global fit	minimally biased fit	large-x effects	higher-twist effects
latest update	PRL 113 (2014) 012001	NP B887 (2014) 276	PR D89 (2014) 034025	PR D91 (2015) 054017

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDFs

September 8, 2015 12 / 22

Julian Voss-Andreae, Spin Family (Bosons and Fermions), Steel and silk (2009)

Evolution of NNPDFpol fits

NNPDFpol1.0 [NP B87 (2013) 36]

- inclusive DIS data from CERN, SLAC and DESY on $g_1^{p,d,n}$ $g_1(x,Q^2) = \frac{\sum_q^{n_f} e_q^2}{2n_f} \Big(\mathcal{C}_{\rm NS} \otimes \Delta q_{\rm NS} + \mathcal{C}_{\rm S} \otimes \Delta \Sigma + 2n_f \mathcal{C}_g \Delta g \Big) + \frac{h^{\rm TMC}}{Q^2} + \frac{h^{\rm HT}}{Q^2} + \mathcal{O}\Big(\frac{1}{Q^4}\Big)$
 - $\frac{2n_f}{(c_{\rm NS} \otimes Aq_{\rm NS} + c_{\rm S} \otimes Az + zh_f c_g z)}$
- power-suppressed TMCs and HT

- TMCs included exactly [NP B513 (1998) 301]
- kinematic cut $W^2 \ge 6.25~{
 m GeV}^2$ to remove sensitivity to dynamical HTs [arXiv:0807.1501]
- inflated uncertainty on a_8 (up to 30% of its exp value) to allow for SU(3) violation
- $\bullet\,$ NLO perturbative accuracy, $\overline{\rm MS}$ renormalization scheme, ZM-VFN scheme

NNPDFpol1.1 [NP B877 (2014) 276]

- $\bullet~+$ new collider data from RHIC, included via reweighting:
- \rightarrow jet production: STAR [PRD 86 (2012) 032006, PRL 115 (2015) 092002], PHENIX [PRD 84 (2011) 012006]
- \rightarrow W-boson production from STAR [PRL11(2014)072301]
- + open-charm production: COMPASS [PRD 87 (2013) 052018], included via reweighting

NNPDFpol1.2 [in preparation]

- \bullet + new inclusive DIS data, included via a complete refit:
- \rightarrow COMPASS [arXiv:1503.08935] (p)
- $\rightarrow \text{JLAB} \text{ [PLB 641 (2006) 11, PRC 90 (2014) 025212, PLB 744 (2015) 309, arXiv:1505.07877]} (p, d)$
- the new unpolarized fit NNPDF3.0 [JHEP 1504 (2015) 040] is used as baseline

Kinematic coverage and fit quality

EXPERIMENT	$N_{ m dat}$	1.0	$\chi^2/N_{\rm dat}$ 1.1	1.2
EMC	10	0.44	0.43	0.43
SMC	24	0.93	0.90	0.92
SMClowx	16	0.97	0.97	0.94
E142	8	0.67	0.66	0.55
E143	50	0.64	0.67	0.63
E154	11	0.40	0.45	0.34
E155	40	0.89	0.85	0.98
COMPASS-D	15	0.65	0.70	0.57
COMPASS-P	15	1.31	1.38	0.93
HERMES97	8	0.34	0.34	0.23
HERMES	56	0.79	0.82	0.69
COMPASS-P-15	51	0.98*	0.99*	0.65
JLAB-E93-009	148	1.26*	1.23*	0.94
JLAB-EG1-DVCS	18	0.45*	0.59*	0.29
JLAB-E06-014	2	2.81*	3.20*	1.33
TOTAL DIS		0.77	0.78	0.74
COMPASS (OC)	45	1.22*	1.22	1.22
STAR (jets)	41	_	1.05	1.06
PHENIX (jets)	6	—	0.24	0.24
STAR-AL	24	_	1.05	1.05
STAR-A _{LL}	12	_	0.95	0.94
TOTAL		0.77	1.05	1.01

* data set not included in the corresponding fit

= nar

Impact of new DIS data: total up and down

- Improved accuracy at small x: new COMPASS data (+ improved unpolarized F_L and F₂ from NNPDF3.0)
- Improved accuracy at large x: new JLAB data (also note that the positivity bound is slightly different)
- A lower cut on W^2 will allow for exploiting the full potential of JLAB data (if we replace $W^2 \ge 6.25 \text{ GeV}^2$ with $W^2 \ge 4.00 \text{ GeV}^2$ the χ^2 deteriorates significantly) (need to include and fit dynamic higher twists, in progress)

Impact of RHIC data: sea asymmetry and gluon

High- p_T jet production first evidence of a sizable, positive gluon polarization in the proton

ELE NOR

Behavior at large-x values: $A_1^{n,p}$ [PLB742 (2015) 117]

х

Model	A_1^n	A_1^p	Model	A_1^n	A_1^p
$\begin{array}{l} {\rm SU(6)} \\ {\rm RCQM} \\ {\rm QHD} \; (\sigma_{1/2}) \\ {\rm QHD} \; (\psi_{\rho}) \end{array}$	0 1 1 1	5/9 1 1 1	NJL DSE (<i>realistic</i>) DSE (<i>contact</i>) pQCD	0.35 0.17 0.34 1	0.77 0.59 0.88 1
NNPDFpol1.1 ($x = 0.7$) NNPDFpol1.2 ($x = 0.7$)	$\begin{array}{c} 0.41 \pm 0.31 \\ 0.18 \pm 0.26 \end{array}$	$\begin{array}{c} 0.75 \pm 0.07 \\ 0.74 \pm 0.06 \end{array}$	NNPDFpol1.1 ($x = 0.9$) NNPDFpol1.2 ($x = 0.9$)	$\begin{array}{c} 0.36 \pm 0.61 \\ 0.15 \pm 0.59 \end{array}$	$\begin{array}{c} 0.74 \pm 0.34 \\ 0.24 \pm 0.15 \end{array}$

Behavior at large-x values: PDF ratios [PL B742 (2015) 117]

Model	$\Delta u^+/u^+$	$\Delta d^+/d^+$	Model	$\Delta u^+/u^+$	$\Delta d^+/d^+$
SU(6) RCQM QHD $(\sigma_{1/2})$ QHD $(\psi_{ ho})$	2/3 1 1 1	$-1/3 \\ -1/3 \\ 1 \\ -1/3$	NJL DSE (<i>realistic</i>) DSE (<i>contact</i>) pQCD	0.80 0.65 0.88 1	-0.25 -0.26 -0.33 1
NNPDFpol1.1 ($x = 0.7$) NNPDFpol1.2 ($x = 0.7$)	$\begin{array}{c} 0.82 \pm 0.08 \\ 0.86 \pm 0.08 \end{array}$	$\begin{array}{c} -0.88 \pm 0.68 \\ -0.75 \pm 0.62 \end{array}$	NNPDFpol1.1 ($x = 0.9$) NNPDFpol1.2 ($x = 0.9$)	$\begin{array}{c} 0.91 \pm 0.65 \\ 0.62 \pm 0.48 \end{array}$	$\begin{array}{c} -0.74 \pm 3.57 \\ -0.23 \pm 1.06 \end{array}$

The spin content of the proton

Emanuele R. Nocera (UNIGE)

September 8, 2015 20 / 22

3. Drawing conclusions

Maurits Cornelis Escher, Drawing hands, Litograph (1948)

Unbiased polarized PDF:

Final remarks

After three decades of experimental and theoretical activity, we cannot really say we know $\Delta\Sigma$ and Δg Main culprit: small-x behavior of polarized PDFs

Spin experiments continue to produce high impact results (RHIC, JLAB, ...) First evidence of a sizable, positive gluon polarization in the proton First evidence of broken flavor symmetry for polarized light sea quarks

Theory efforts and global QCD analyses try to keep up interesting physics questions $(e.g. \text{ sea, large-}x \text{ behavior, higher-twist, perturbative accuracy } \dots)$

The NNPDF collaboration regularly delivers sets of unpolarized/polarized PDF sets They are determined within a mutually consistent methodology which allows for faithful uncertainty estimates

A brand-new machine (an EIC?) is however required to push forward our knowledge of the nucleon spin content significantly

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Final remarks

After three decades of experimental and theoretical activity, we cannot really say we know $\Delta\Sigma$ and Δg Main culprit: small-x behavior of polarized PDFs

Spin experiments continue to produce high impact results (RHIC, JLAB, ...) First evidence of a sizable, positive gluon polarization in the proton First evidence of broken flavor symmetry for polarized light sea quarks

Theory efforts and global QCD analyses try to keep up interesting physics questions $(e.g. \text{ sea, large-}x \text{ behavior, higher-twist, perturbative accuracy } \dots)$

The NNPDF collaboration regularly delivers sets of unpolarized/polarized PDF sets They are determined within a mutually consistent methodology which allows for faithful uncertainty estimates

A brand-new machine (an EIC?) is however required to push forward our knowledge of the nucleon spin content significantly

Thank you for your attention

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDFs

September 8, 2015 1 / 27

MONTE CARLO SAMPLING

 Sample the probability density *P*[Δq] in the space of functions assuming multi-Gaussian data probability distribution

$$g_{1,p}^{(\text{art}),(k)}(x,Q^2) = \left[1 + \sum_{c} r_{c,p}^{(k)} \sigma_{c,p} + r_{s,p}^{(k)} \sigma_{s,p}\right] g_{1,p}^{(\text{exp})}(x,Q^2)$$

 $\begin{array}{ll} \sigma_{c,p} : \text{ correlated systematics} & \sigma_{s,p} : \text{ statistical errors (also uncorrelated systematics)} \\ r_{c,p}^{(k)}, r_{s,p}^{(k)} : \text{ Gaussian random numbers} \end{array}$

• Generate MC ensemble of $N_{\rm rep}$ replicas with the data probability distribution

MAIN FEATURES

• Expectation values for observables are Monte Carlo integrals

$$\langle \mathcal{O}[\Delta q]
angle = rac{1}{N_{\mathsf{rep}}} \sum_{k=1}^{N_{\mathsf{rep}}} \mathcal{O}[\Delta q_k]$$

... and the same is true for errors, correlations etc.

- No need to rely on linear propagation of errors
- Possibility to test for non-Gaussian behaviour in fitted PDFs

== •) < @

DETERMINING THE SAMPLE SIZE

• Require the average over the replicas reproduces central values and errors of the original experimental data to desired accuracy

Qualitative approach: look at the scatter plots

Accuracy of few % requires \sim 100 replicas

Emanuele R. Nocera (UNIGE)

DETERMINING THE SAMPLE SIZE

• Require the average over the replicas reproduces central values and errors of the original experimental data to desired accuracy

Quantitative approach: devise proper statistical estimators

	<pre></pre>	$\left[\left< g_1 \right] \right]$	$\left \right\rangle \left \right\rangle [\%]$	I	$\left[\begin{smallmatrix} g_1 \\ g_1 \end{smallmatrix} \right]$	
Nrep	10	100	1000	10	100	1000
EMC SMC	23.7 19.4	3.5 5.6	2.9 1.2	.76037 .94789	.99547 .99908	.99712 .99993

$$\left\langle PE\left[\langle F^{(art)}\rangle_{rep}\right]\right\rangle_{dat} = \frac{1}{N_{dat}} \sum_{i=1}^{N_{dat}} \left|\frac{\langle F_i^{(art)}\rangle_{rep} - F_i^{(exp)}}{F_i^{(exp)}}\right|$$
 Percentage Error
$$r\left[F^{(art)}\right] = \frac{\langle F^{(exp)}\langle F^{(art)}\rangle_{rep}\rangle_{dat} - \langle F^{(exp)}\rangle_{dat} \left\langle \langle F^{(art)}\rangle_{rep} \right\rangle_{dat}}{\sigma_s^{(exp)}\sigma_s^{(art)}}$$
 Scatter Correlation

Accuracy of few % requires \sim 100 replicas

Emanuele R. Nocera (UNIGE)

DETERMINING THE SAMPLE SIZE

• Require the average over the replicas reproduces central values and errors of the original experimental data to desired accuracy

Quantitative approach: devise proper statistical estimators

	PE	$\left[\left< \delta g_1 \right> \right]$	$\left. ^{(\%)}\right) \left. \right\} \left[^{(\%)}\right] $	r	$\left[\delta g_1^{\left(\operatorname{art}\right)}\right]$]
Nrep	10	100	1000	10	100	1000
EMC SMC	12.8 22.4	4.9 5.4	2.0 1.7	.97397 .96585	.99521 .99489	.99876 .99980

$$\left\langle PE\left[\langle F^{(art)}\rangle_{rep}\right] \right\rangle_{dat} = \frac{1}{N_{dat}} \sum_{i=1}^{N_{dat}} \left| \frac{\langle F_i^{(art)}\rangle_{rep} - F_i^{(exp)}}{F_i^{(exp)}} \right|$$
 Percentage Error
$$r\left[F^{(art)}\right] = \frac{\left\langle F^{(exp)}\langle F^{(art)}\rangle_{rep} \right\rangle_{dat} - \left\langle F^{(exp)}\rangle_{dat} \left\langle \langle F^{(art)}\rangle_{rep} \right\rangle_{dat}}{\sigma_s^{(exp)}\sigma_s^{(art)}}$$
 Scatter Correlation

Accuracy of few % requires \sim 100 replicas

Emanuele R. Nocera (UNIGE)

Methodology: neural networks

A convenient functional form providing redundant and flexible parametrization used as a generator of random functions in the PDF space

- made of neurons grouped into layers (define the architecture)
- each neuron receives input from neurons in preceding layer (feed-forward NN)
- activation determined by parameters (weights and thresholds)
- activation determined according to a non-linear function (except the last layer)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Methodology: neural networks EXAMPLE: THE SIMPLEST 1-2-1 NN

$$f(x) \equiv \xi_1^{(3)} = \left\{ 1 + \exp\left[\theta_1^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{\theta_1^{(2)} - x\omega_{11}^{(1)}}} - \frac{\omega_{12}^{(2)}}{1 + e^{\theta_2^{(2)} - x\omega_{21}^{(1)}}}\right] \right\}^{-1}$$

Recall:
$$\xi_i^{(l)} = g\left(\sum_{j}^{n_l-1} \omega_{ij}^{(l-1)} \xi_j^{(l-1)} - \theta_i^{(l)}\right)$$
; $g(x) = \frac{1}{1 + e^{-x}}$

Emanuele R. Nocera (UNIGE)

ELE NOR

∃ ► < ∃</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Methodology: standard vs neural network parametrization

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDFs

September 8, 2015 6 / 27

Methodology: minimization and stopping GENETIC ALGORITHM

Standard minimization unefficient owing to the large parameter space and non-local x-dependence of the observables Genetic algorithm provides better exploration of the whole parameter space

- Set Neural Network parameters randomly
- Make clones of the parameter vector and mutate them
- Define a figure of merit or error function for the k-th replica

$$E^{(k)} = \frac{1}{N_{\text{rep}}} \sum_{i,j=1}^{N_{\text{rep}}} \left(g_{1,i}^{(\text{art})(k)} - g_{1,i}^{(\text{net})(k)} \right) \left((\text{cov})^{-1} \right)_{ij} \left(g_{1,j}^{(\text{art})(k)} - g_{1,j}^{(\text{net})(k)} \right)$$

 $g_{1,i}^{(art)(k)}$: generated from Monte Carlo sampling $g_{1,i}^{(net)(k)}$: computed from Neural Network PDFs

• Select the best set of parameters and perform other manipulations (crossing, mutating, ...) until stability is reached.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|∃ ◇Q⊘

• NN can learn fluctuations owing to their flexibility

UNDERLYING PHYSICAL LAW

• NN can learn fluctuations owing to their flexibility

UNDERLEARNING

• NN can learn fluctuations owing to their flexibility

PROPER LEARNING

• NN can learn fluctuations owing to their flexibility

OVERLEARNING

Emanuele R. Nocera (UNIGE)

Methodology: minimization and stopping CROSS-VALIDATION METHOD

- divide data into two subsets (training & validation)
- train the NN on training subset and compute χ^2 for each subset
- stop when χ^2 of validation subset no longer decreases (NN are learning noise!)

The best fit does not coincide with the χ^2 absolute minimum

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDFs

September 8, 2015 9 / 27

Methodology: reweighting [PR D58 (1998) 094023]

Assess the impact of including a new data set $\{y\} = \{y_1, \ldots, y_n\}$ in an old PDF set

Bayesian reweighting [NP B849 (2011) 112] [NP B855 (2012) 608]

(1) Evaluate the agreement between new data and each replica f_k in a prior ensemble

$$\chi_k^2(\{y\},\{f_k\}) = \sum_{i,j}^n \{y_i - y_i[f_k]\} \sigma_{ij} \{y_j - y_j[f_k]\}$$

Apply Bayes theorem to determine the conditional probability of PDF upon the inclusion of the new data and update the probability density in the space of PDFs

 $\mathcal{P}_{\text{new}} = \mathcal{N}_{\chi} \mathcal{P}(\chi_k^2 | \{f_k\}) \mathcal{P}_{\text{old}}(\{f_k\}) \qquad \mathcal{P}(\chi_k^2 | \{f_k\}) = [\chi_k^2(\{y\}, \{f_k\}]^{\frac{1}{2}(n-1)} e^{-\frac{1}{2}\chi_k^2(\{y\}, \{f_k\})}$

③ Replicas are no longer equally probable. Expectation values are given by

$$\langle \mathcal{O}[f_i(x, Q^2]\rangle_{\text{new}} = \sum_{k=1}^{N_{\text{rep}}} w_k \mathcal{O}[f_i^{(k)}(x, Q^2)]$$

$$[\chi_k^2(\{y\}, \{f_k\})]^{\frac{1}{2}(n-1)} e^{-\frac{1}{2}\chi_k^2(\{y\}, \{f_k\})} \quad \text{with} \quad N_{\text{rep}} = \sum_{k=1}^{N_{\text{rep}}} w_k$$

 $W_k \propto$

Methodology: reweighting [PR D58 (1998) 094023]

Assess the impact of including a new data set $\{y\} = \{y_1, \ldots, y_n\}$ in an old PDF set

Bayesian reweighting with Hessian PDF sets or Hessian reweighting [JHEP 1412 (2014) 100] Define the function χ^2_{new}

$$\begin{split} \chi_{\text{new}}^2 &\equiv \chi^2 \{\mathbf{a}\} + \sum_{i,j}^n \{y_i - y_i[f]\} \,\sigma_{ij} \left\{y_j - y_j[f]\right\} \\ y_i[f] &\approx y_i[S_0] + \sum_{k=1}^{n_{\text{eig}}} D_{ik} w_k \qquad D_{ik} \equiv (y_i[S_k^+] - y_i[S_k^-])/2 \qquad w_k \equiv \sqrt{\epsilon_k} \sum_j^n v_j^{(k)} \delta \mathbf{a}_j / \sqrt{\Delta \chi^2} \end{split}$$

The components of w_{min} specify the set of PDFs corresponding to the new global minimum of \chi²_{new}, which is a continuous, quadratic function of the parameters w_k

$$f^{\text{new}} \approx f_{S_0} + \sum_{k=1}^{n_{\text{eig}}} \left(\frac{f_{S_k^+} - f_{S_k^-}}{2} \right) w_k^{\min}$$
$$\boldsymbol{w}^{\min} = -B^{-1} \mathbf{a} \qquad B_{kn} = \sum_{i,j}^n D_{ik} \sigma_{ij} D_{jn} + \Delta \chi^2 \delta_{kn} \qquad a_k = \sum_{i,j}^n D_{ik} \sigma_{ij} \left(y_i [S_0] - y_i \right)$$

Reweighting allows for incorporating new datasets without the need of refitting

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDFs

September 8, 2015 10 / 27

Methodology: unweighting [NP B855 (2012) 608]

Unweighting allows for constructing an ensemble of equally probable PDFs statistically equivalent to a given reweighted set Hence, the new set can be given without weights

IDEA

۱

Given a weighted set of N_{rep} replicas, select (possibly more than once) replicas carrying relatively hight weight and discard replicas carrying relatively small weight

CONSTRUCTION OF THE UNWEIGHTED SET

- Set the number of replicas N'_{rep} in the unweighted set (pointless to choose N'_{rep} > N_{rep}: no gain of information)
- 2 Compute, for the k-th replica of the reweighted set, the integer number

$$w_k' = \sum_{j=1}^{N_{
m rep}'} heta \left(rac{j}{N_{
m rep}'} - P_{k-1}
ight) heta \left(P_k - rac{j}{N_{
m rep}'}
ight), \quad P_k = \sum_{j=0}^k rac{w_j}{N_{
m rep}}, \quad \sum_{k=1}^{N_{
m rep}} w_k' = N_{
m rep}'$$

③ Construct the unweighted set taking w'_k copies of the k-th replica, $k = 1, \ldots, N_{rep}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Methodology: unweighting [NP B855 (2012) 608]

CONSTRUCTION OF THE UNWEIGHTED SET

Set the number of replicas N'_{rep} in the unweighted set (pointless to choose N'_{rep} > N_{rep}: no gain of information)

② Compute, for the k-th replica of the reweighted set, the integer number

$$w'_k = \sum_{j=1}^{N'_{\mathrm{rep}}} heta \left(rac{j}{N'_{\mathrm{rep}}} - P_{k-1}
ight) heta \left(P_k - rac{j}{N'_{\mathrm{rep}}}
ight), \quad P_k = \sum_{j=0}^k rac{w_j}{N_{\mathrm{rep}}}, \quad \sum_{k=1}^{N_{\mathrm{rep}}} w'_k = N'_{\mathrm{rep}}$$

3) Construct the unweighted set taking w_k' copies of the k-th replica, $k=1,\ldots,N_{
m rep}$

EL OQO

NNPDFpol1.1: open-charm production at COMPASS

$$A^{\gamma N \to D^0 X} = \frac{\Delta g \otimes \Delta \hat{\sigma}_{\gamma g} \otimes D_c^H}{g \otimes \hat{\sigma}_{\gamma g} \otimes D_c^H}$$

Virtual photon-nucleon asymmetry for open-charm production [arXiv:1212.1319]

FEATURES

- Δg is probed directly through the photon-gluon fusion process (in DIS Δg is mostly probed through scaling violations instead)
- the fragmentation functions for heavy quarks are computable in perturbation theory (and only introduce a very moderate uncertainty in the fit)

EXPERIMENTAL MEASUREMENT

Experiment	Set	$N_{ m dat}$	NNPDFpol1.0	$\chi^2/N_{ m dat}$ DSSV08	AAC08	BB10
COMPASS		45	1.23	1.23	1.27	1.25
	COMPASS $K1\pi$	15	1.27	1.27	1.43	1.38
	COMPASS $K2\pi$	15	0.51	0.51	0.56	0.55
	COMPASS $K3\pi$	15	1.90	1.90	1.81	1.82

COMPASS (2002-2007) [arXiv:1211.6849]

Emanuele R. Nocera (UNIGE)

September 8, 2015 12 / 27

JIN NOR

NNPDFpol1.1: open-charm production at COMPASS

Data are affected by large uncertainties w.r.t. the uncertainty due to PDFs They do not show a clear trend

Experiment	Set	$N_{ m dat}$	NNPDFpol1.0	$\chi^2/N_{ m dat}$ DSSV08	AAC08	BB10
COMPASS	COMPASS $K1\pi$ COMPASS $K2\pi$ COMPASS $K3\pi$	45 15 15 15	1.23 1.27 0.51 1.90	1.23 1.27 0.51 1.90	1.27 1.43 0.56 1.81	1.25 1.38 0.55 1.82

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ほ言 ろくで

Emanuele R. Nocera (UNIGE)

NNPDFpol1.1: open-charm production at COMPASS

The impact of open-charm data from COMPASS is mostly negligible, as we notice from the value of the $\chi^2/N_{\rm ndat}$ and the reweighted observable

Experiment	Set	$N_{ m dat}$	$\chi^2/\textit{N}_{\rm dat}$	$\chi^2_{\rm rw}/{\it N}_{\rm dat}$
COMPASS	COMPASS K1π COMPASS K2π COMPASS K3π	45 15 15 15	1.23 1.27 0.51 1.90	1.23 1.27 0.51 1.89

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NNPDFpol1.1: inclusive jet production at RHIC

$$\mathsf{A}_{\mathsf{LL}}^{1\mathsf{jet}} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$

Longitudinal double-spin asymmetry for single-inclusive jet production

[arXiv:hep-ph/9808262] [arXiv:hep-ph/0404057] [arXiv:1209.1785]

FEATURES

• sensitive to the polarized gluon Δg

(receives leading contribution from $gq \rightarrow qg$ and $qg \rightarrow qg$ partonic subrocesses)

EXPERIMENTAL MEASUREMENT

- STAR 2005, 2006 [arXiv:1205.2735], 2009 [arXiv:1405.5134]
- PHENIX [arXiv:1009.4921] at RHIC

Data set	$N_{ m dat}$	jet-algorithm	R	$[\eta_{\min},\eta_{\max}]$	\sqrt{s} [GeV]	$\mathcal{L} \; [\text{pb}^{-1}]$
STAR 1j-05	10	midpoint-cone	0.4	[+0.20, +0.80]	200	2.1
STAR 1j-06	9	midpoint-cone	0.7	[-0.70, +0.90]	200	5.5
STAR 1j-09A	11	anti- <i>k</i> t	0.6	[-0.50, +0.50]	200	25
STAR 1j-09B	11	anti- <i>k</i> t	0.6	[-1.00, -0.50] [+0.50, +1.00]	200	25
PHENIX 1j	6	seeded-cone	0.3	[-0.35, +0.35]	200	2.1

●●● 単語 《語》《語》《問》《□

NNPDFpol1.1: inclusive jet production at RHIC

Experiment	Set	$N_{ m dat}$	$\chi^2/N_{ m dat}$			$\chi^2_{ m rw}/N_{ m dat}$				
			1σ	2σ	3σ	4σ	1σ	2σ	3σ	4σ
STAR		41	1.50	1.49	1.50	1.50	1.05	1.04	1.04	1.04
	STAR 1j-05	10	1.04	1.05	1.04	1.04	1.01	1.02	1.02	1.02
	STAR 1j-06	9	0.75	0.76	0.76	0.76	0.59	0.58	0.59	0.59
	STAR 1j-09A	11	1.40	1.39	1.39	1.40	0.98	0.99	0.98	0.98
	STAR 1j-09B	11	3.04	3.05	3.03	3.05	1.18	1.17	1.17	1.18
PHENIX										
	PHENIX 1j	6	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
		47	1.35	1.35	1.35	1.36	1.00	1.01	1.01	1.00

Emanuele R. Nocera (UNIGE)

NNPDFpol1.1: inclusive jet production at RHIC

Experiment	Set	$N_{ m dat}$	$\chi^2/N_{ m dat}$				$\chi^2_{\rm rw}$	$N_{\rm dat}$		
			1σ	2σ	3σ	4σ	1σ	2σ	3σ	4σ
STAR		41	1.50	1.49	1.50	1.50	1.05	1.04	1.04	1.04
	STAR 1j-05	10	1.04	1.05	1.04	1.04	1.01	1.02	1.02	1.02
	STAR 1j-06	9	0.75	0.76	0.76	0.76	0.59	0.58	0.59	0.59
	STAR 1j-09A	11	1.40	1.39	1.39	1.40	0.98	0.99	0.98	0.98
	STAR 1j-09B	11	3.04	3.05	3.03	3.05	1.18	1.17	1.17	1.18
PHENIX										
	PHENIX 1j	6	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
		47	1.35	1.35	1.35	1.36	1.00	1.01	1.01	1.00

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDFs

September 8, 2015 14 / 27

NNPDFpol1.1: W^{\pm} production at RHIC

$$A_{L}^{W^{\pm}} = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} \qquad A_{LL}^{W^{\pm}} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$
$$A_{L}^{W^{\pm}} \sim \frac{\Delta u(x_{1})\bar{d}(x_{2}) - \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})} \qquad A_{L}^{W^{-}} \sim \frac{\Delta d(x_{1})\bar{u}(x_{2}) - \Delta \bar{u}(x_{1})d(x_{2})}{d(x_{1})\bar{u}(x_{2}) + \bar{u}(x_{1})d(x_{2})}$$

Longitudinal single-spin asymmetry for W^{\pm} boson production [arXiv:1003.4533] FEATURES

- sensitive to individual quark and antiquark flavours $(\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d})$ (purely weak process coupling q_L with \bar{q}_R at partonic level, $u_L \bar{d}_R \to W^+$ or $d_L \bar{u}_R \to W^-$)
- no need for fragmentation functions (instead of SIDIS)

EXPERIMENTAL MEASUREMENT

• STAR and PHENIX at RHIC [arXiv:1009.0326] [arXiv:1009.0505] [arXiv:1404.6880]

Data set	$N_{ m dat}$	$[p_{T,\min}, p_{T,\max}]$ [GeV]	$\sqrt{s}~[{\rm GeV}]$	$\mathcal{L} \; [\mathrm{pb}^{-1}]$
STAR-W ⁺ (prel.)	6	[25, 50]	510	72
STAR- W^- (prel.)	6	[25, 50]	510	72

NNPDFpol1.1: W^{\pm} production at RHIC

Experiment	Set	$N_{ m dat}$		χ^2/r	$N_{ m dat}$			$\chi^2_{ m rw}/$	$N_{\rm dat}$	
STAR-AL		12	1σ 1.38	2σ 1.44	$\frac{3\sigma}{1.39}$	4σ 1.33	1σ 1.08	2σ 0.88	3σ 0.74	4σ 0.74
	STAR- $A_L^{W^+}$	6	0.75	0.75	0.86	0.90	0.75	0.75	0.68	0.70
	STAR- $A_L^{W^-}$	6	1.92	2.03	1.82	1.67	1.32	1.08	0.83	0.82
STAR-A _{LL}		6	0.82	0.81	0.78	0.78	0.82	0.80	0.76	0.76
	STAR- $A_{LL}^{W^+}$	3	0.92	0.88	0.81	0.80	0.90	0.85	0.77	0.76
	STAR- $A_{LL}^{W^{-}}$	3	0.73	0.74	0.75	0.76	0.73	0.74	0.75	0.76
		18	1.19	1.20	1.15	1.15	1.00	0.87	0.78	0.77

NNPDFpol1.1: W^{\pm} production at RHIC

Experiment	Set	$N_{ m dat}$		χ^2/r	$N_{ m dat}$			$\chi^2_{ m rw}/$	$N_{\rm dat}$	
STAR-AL		12	1σ 1.38	2σ 1.44	$\frac{3\sigma}{1.39}$	4σ 1.33	1σ 1.08	2σ 0.88	3σ 0.74	4σ 0.74
	STAR- $A_L^{W^+}$	6	0.75	0.75	0.86	0.90	0.75	0.75	0.68	0.70
	STAR- $A_L^{W^-}$	6	1.92	2.03	1.82	1.67	1.32	1.08	0.83	0.82
STAR-A _{LL}		6	0.82	0.81	0.78	0.78	0.82	0.80	0.76	0.76
	STAR- $A_{LL}^{W^+}$	3	0.92	0.88	0.81	0.80	0.90	0.85	0.77	0.76
	STAR- $A_{LL}^{W^{-}}$	3	0.73	0.74	0.75	0.76	0.73	0.74	0.75	0.76
		18	1.19	1.20	1.15	1.15	1.00	0.87	0.78	0.77

$$A_{LL}^{H} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^H \otimes \Delta \hat{\sigma}_{ab}^c}{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^H \otimes \hat{\sigma}_{ab}^c}$$

PHENIX [arXiv:0810.0701] [arXiv:0810.0694] [arXiv:1402.6296] STAR [arXiv:1309.1800]

Good agreement between experimental data and theoretical predictions

- Experimental uncertainties are larger than than those of the corresponding predictions
- We expect a slight impact on the gluon PDF from these data

$$A_{LL}^{H} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^{H} \otimes \Delta \hat{\sigma}_{ab}^c}{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^{H} \otimes \hat{\sigma}_{ab}^c}$$

PHENIX [arXiv:0810.0701] [arXiv:0810.0694] [arXiv:1402.6296] STAR [arXiv:1309.1800]

• Good agreement between experimental data and theoretical predictions

- Experimental uncertainties are larger than than those of the corresponding predictions
- We expect a slight impact on the gluon PDF from these data

$$A_{LL}^{H} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^{H} \otimes \Delta \hat{\sigma}_{ab}^c}{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^{H} \otimes \hat{\sigma}_{ab}^c}$$

PHENIX [arXiv:0810.0701] [arXiv:0810.0694] [arXiv:1402.6296] STAR [arXiv:1309.1800]

• Good agreement between experimental data and theoretical predictions

- Experimental uncertainties are larger than than those of the corresponding predictions
- We expect a slight impact on the gluon PDF from these data

$$A_{LL}^{H} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^H \otimes \Delta \hat{\sigma}_{ab}^c}{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes D_c^H \otimes \hat{\sigma}_{ab}^c}$$

PHENIX [arXiv:0810.0701] [arXiv:0810.0694] [arXiv:1402.6296] STAR [arXiv:1309.1800]

- Good agreement between experimental data and theoretical predictions
- Experimental uncertainties are larger than than those of the corresponding predictions
- We expect a slight impact on the gluon PDF from these data

- ∢ ⊢⊒ →

ELE DOG

Open issues: strangeness

NNPDFpol1.2: DIS \emptyset , SIDIS $(K^{\pm}) \boxtimes$; DSSV08: DIS \emptyset , SIDIS $(K^{\pm}) \emptyset$;

- assume $\Delta s = \Delta \overline{s}$, which may not be true [PRD71 (2005) 094014]
- DIS data \Rightarrow negative $x\Delta \bar{s}$; SIDIS data \Rightarrow changing-sing $x\Delta \bar{s}$
- New, very precise, JLAB data (DIS) point to negative xΔs [PRD91 (2015) 054017]
- Is there mounting tension between DIS and SIDIS data?
- How well do we know K fragmentation functions? [PRD84 (2011) 014002]

E SQA

Open issues: the Bjorken sum rule

Emanuele R. Nocera (UNIGE)

Theory: higher-twist corrections and JAM13 [PR D89 (2014) 034025]

• leading-twist factorization of g_1 and g_2 receives contributions from higher-twist terms

$$g_1 = g_1^{\tau=2} + g_1^{\tau=3} + g_1^{\tau=4}$$
 $g_2 = g_2^{\tau=2} + g_2^{\tau=3}$

 $\rightarrow g_2^{\tau=2}$ can be related to $g_1^{\tau=2}$ via Wandzura-Wilckzek relation [PL B72 (1977) 195] $\rightarrow g_2^{\tau=3}$ can be related to $g_1^{\tau=3}$ via Blümlein-Tkablaze identity [NP B553 (1999) 427] $\rightarrow g_2^{\tau=3}$ can be parametrized (using e.g. the form by Braun et al.) [PR D83 (2011) 094023] $\rightarrow g_1^{\tau=4}$ can be parametrized as $g_1^{\tau=4}(x,Q^2) = h(x)/Q^2$ (D. Hui) higher twists to both g_1 and g_2 are included in JAM13

higher twist contributions are sizable and are needed for describing JLAB data properly

Theory: all-order resummation [PR D87 (2013) 094021]

resummation of large logarithm corrections to spin asymmetries in DIS and SIDIS
asymmetries are rather insensitive to the inclusion of resummed higher-order terms
modest decrease of spin asymmetries at fairly high x values, more pronounced for SIDIS
most relevant for JLAB kinematics, important for future high statistic JLAB12

Theory: higher-order computations $(\overline{\mathrm{MS}})$ [NP B889 (2014) 351]

• NNLO (three-loop) corrections to spin-dependent splitting functions have been computed

- NNLO corrections to the splitting functions are small outside the region of small x
- corrections to the evolution of the PDFs can be unproblematic down to $x \approx 10^{-4}$
- QCD analyses of polarized PDFs are now feasible up to NNLO accuracy
 → only in a FFN scheme (VFN would require non-trivial unknown matching conditions)
 - \rightarrow only including DIS data (coefficient functions are know at NNLO only for DIS)

Opportunities at RHIC

PINNING DOWN THE LIGHT POLARIZED SEA ASYMMETRY

		$\int_{10-3}^{1} dx \Delta f(x)$	Q ²)	$\int_{0.05}^{0.4} dx \Delta f(x, Q^2)$			
	cv	unc (pol1.1)	unc (pol1.1+)	cv	unc (pol1.1)	unc (pol1.1+)	
Δu^+	+0.764	± 0.035	±0.034	+0.523	± 0.014	± 0.013	
Δd^+	-0.407	± 0.037	± 0.036	-0.231	± 0.018	± 0.018	
$\Delta \overline{u}$	+0.044	± 0.046	± 0.030	+0.019	± 0.023	± 0.012	
$\Delta \overline{d}$	-0.088	± 0.067	± 0.032	-0.037	± 0.021	± 0.013	
Δ_{sea}	+0.123	± 0.076	± 0.038	+0.056	± 0.030	± 0.016	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Opportunities at RHIC

PINNING DOWN THE GLUON POLARIZATION

M. Stratmann, Talk at HiX2014

Emanuele R. Nocera (UNIGE)

< 67 ▶

= nac

Opportunities at a future Electron-Ion Collider

DELIVERABLES	OBSERVABLES	WHAT WE LEARN
Δg	scaling violations in DIS	gluon contribution to proton spin
$\Delta q, \Delta \bar{q}$	SIDIS for pions and kaons	quark contribution to proton spin; flavor asymmetry $\Delta \bar{u} - \Delta \bar{d}$; strangeness Δs
$m{g}_1^{W^-}$, $m{g}_5^{W^-}$	inclusive CC DIS at high Q^2	flavor separation at medium \boldsymbol{x} and high Q^2

1.5

(日) (周) (三) (三)

Opportunities at a future Electron-Ion Collider

- Dramatic reduction of uncertainties of both PDFs and their moments [arXiv:1206.6014]
- Accurate determination of Δg via scaling violations in DIS [arXiv:1206.6014] [arXiv:1310.0461]
- Accurate determination of $\Delta \bar{u}$, $\Delta \bar{d}$ via SIDIS and CC DIS [arXiv:1309.5327]
- Access to unknown electroweak structure functions [arXiv:1309.5327]

Opportunities at a future Electron-Ion Collider

- Dramatic reduction of uncertainties of both PDFs and their moments [arXiv:1206.6014]
- Accurate determination of Δg via scaling violations in DIS [arXiv:1206.6014] [arXiv:1310.0461]
- Accurate determination of $\Delta \bar{u}$, $\Delta \bar{d}$ via SIDIS and CC DIS [arXiv:1309.5327]
- Access to unknown electroweak structure functions [arXiv:1309.5327]

The emerging picture of the polarized nucleon

Emanuele R. Nocera (UNIGE)

Unbiased polarized PDF

September 8, 2015 27 / 27