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Introduction

The formulation of Quantum Chromodynamics (QCD) as a theory to describe the strong
interactions was certainly one of the most impressing achievements of Physics in the 20-
th century. As a matter of fact, QCD proved to be able to account for a wide variety of
observed phenomena. Some of the most famous examples are: confinement [1], hadron
spectroscopy [2], asymptotic freedom [3] and Bjorken scaling violation in Deep Inelastic
Scattering of leptons and hadrons [4].

Since the establishment of QCD in the early ’70s, a huge effort has been devoted to
find suitable tools that permit the extraction of quantitative predictions out of it. The
non-abelian nature of QCD, and the consequent asymptotic freedom, strongly suggests
that perturbation theory could offer a valuable handle for the calculation of the cross
sections in the high-energy region where perturbativity is supposed to hold. Nonetheless,
perturbativity is not always sufficient. In fact, a more careful analysis of the QCD
structure reveals that a general high-energy cross section is a mix of high- and low-energy
contributions, and thus is not directly computable in perturbation theory. In practice,
it turns out that a direct calculation is affected by infrared (low-energy) divergences.

It should be remarked that the appearance of infrared singularities is a feature of
non-inclusive observables. It has been proven that fully inclusive observables without
hadrons in the initial state, like for instance e+e− annihilation into hadrons, are free
of any infrared divergence (KLN-theorem [5, 6]). Therefore in these cases perturba-
tivity alone is enough to perform the calculation. On the other hand, this excludes a
widely studied category of observables, namely the hadron-lepton and the hadron-hadron
cross sections, which are of extreme interest in the Large Hadron Collider (LHC) era.
However, these processes can still be treated in a manner which is reminiscent of the
renormalization procedure, and that is based on the concept of collinear factorization.
Unfortunately, until now the applicability of the factorization procedure to all orders in
perturbation theory has been be proven only for a limited number of processes [7]. For
the remaining processes, instead, the collinear factorization is simply assumed to hold
up to the perturbative order under consideration.

The collinear factorization property of QCD states that any high-energy cross section
σ can be systematically separated (factorized) into a high-energy contribution σ̂ and a
low-energy contribution f , according to the formula:

σ = σ̂ ⊗ f . (1)

The infrared singularities that may appear in an explicit perturbative calculation of σ̂
(coefficient functions) can be factorized out and essentially moved into the low-energy
part f . This is similar to what happens in the renormalization procedure, where the
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ultraviolet singularities are absorbed into the renormalization constants. In the factor-
ization framework, the role of the renormalization constants is played by the parton
distribution functions (PDFs). The essential difference between renormalization con-
stants and PDFs is that, while the former are still computable in perturbation theory,
the latter are not. Hence, one is forced to find an alternative way to determine PDFs
and, up to now, the by far most efficient method is the extraction from experimental
data.

Any PDF determination from experimental data basically proceeds through the fit
of eq. (1) to data, where the function f is parametrized by some empirical functional
form. Therefore, the reliability of PDFs deeply depends on the accuracy with which
coefficient functions σ̂ have been calculated. As a consequence, a lot of effort has been
invested in obtaining as accurate as possible computations. In this context, the inclusion
of higher-order perturbative corrections and the formulation of a factorization scheme
able to properly account for the heavy quark mass effects were certainly two of the main
guidelines.

The importance of having precise PDF sets at one’s disposal is manifest in the
present historical moment. In fact, PDFs are one of the dominant sources of systematic
uncertainty in many of the LHC cross section measurements relevant for Standard Model
precision physics, Higgs boson characterization and new physics searches. In parallel,
the copious amount of precise measurements coming from the LHC itself will certainly
lead to a substantial improvement in the determination of PDFs.

This thesis is mainly concerned with the effects of the inclusion of the heavy quark
mass contributions in PDF determinations up to the highest possible perturbative order.
The more general scope is to obtain a PDF set which combines the most up to date
available data with the most precise calculations. To this end a wide dataset, ranging
from Deep-Inelastic-Scattering (DIS) data to the most recent LHC data, has been fitted
using a theoretical framework where heavy quark mass effects are consistently included
up to next-to-next-to-leading order. This resulted in the arguably most accurate PDF
set currently available: the NNPDF2.3 set.

This thesis is organized as follows. In the first chapter the concept of PDF will be
introduced in the context of QCD. Considering the DIS process at next-to-leading order,
it will be shown how the presence of PDFs is needed to reabsorb the infrared divergences
that arise in the calculation. Such a procedure will finally lead to the formulation of the
DGLAP equation which is one of the basic ingredients for a PDF determination.

In the second chapter a general overview of the presently available factorization
schemes commonly used in DIS to include heavy quark mass effects in PDF fits is
presented. The main features, and the possible variants, of each scheme will be discussed
showing how they behave in the low- and high-energy regions.

In the third chapter the implementation of the FONLL method (already introduced
in Chapter 2) up to order α2

s (being αs the strong coupling) will be described thoroughly.
This will go through the precise definition of heavy and light structure functions for both
neutral-current (NC) and charged-current (CC) processes. In addition, the Mellin space
formalism, which is used for the implementation of the FONLL method presented in
this thesis, will be introduced. In the last part of the chapter a benchmark of the
implementation of the structure functions will also be presented.

In the fourth chapter a detailed description of the implementation of the heavy
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quark masses in the MS renormalization scheme for the DIS structure functions will
be illustrated and benchmarked. The implementation of the MS scheme for the heavy
quark masses, as compared to the more common pole mass scheme, requires two main
modifications: the consistent replacement of the pole masses with the respective MS
masses in coefficient functions and the modification of the PDF matching at the heavy
quark thresholds. Both the NC and CC cases are considered here.

The implementation of the FONLL method to extract PDFs has been performed in
the NNPDF framework. In the fifth chapter the main features of the NNPDF methodo-
logy as a framework for the determination of PDFs will be summarized.

Finally, in the sixth chapter, the results obtained from the implementation of the
FONLL scheme up to next-to-next-to-leading order in the NNPDF framework to obtain
the proton PDFs will be presented. After a brief description of the dataset included in
the fits, the impact of the higher-order corrections and of the heavy quark mass effects
will be assessed. Thereafter, a short discussion on some of the implication on the LHC
phenomenology will be presented and, at the end, a brief comparison to the other PDF
sets presently available will be given.
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Chapter 1

Parton Distribution Functions

The main goal of this Chapter is the introduction of the concept of Parton Distribution
Function (PDF) in the context of the Quantum-Chromodynamics (QCD). This in par-
ticular will lead to the formulation of the DGLAP equation which is one of the most
important ingredient of the present PDF determinations.

The Deep-Inelastic-Scattering (DIS) context is doubtless the most suitable play-
ground where to discuss such concepts. In fact, DIS is one of the few processes for
which the all-order factorization theorem has been proved [7], therefore it provides a
well-established framework. In addition, DIS data are still massively used in the deter-
mination of the PDFs.

The so-called “naive” parton model, proposed by Feynman in the late ’60s [8], regards
hadrons (e.g. protons) as composed of point-like constituents, named partons, from which
any incoming particle scatters instantaneously and incoherently. Such a simple model,
applied immediately after to DIS [9], was able to predict the (approximate) Bjorken
scaling of the structure functions, that not much later was experimentally observed.
In addition the verification of the Callan-Gross relation, derived in the same context,
ascertained the spin-12 property of the partons [10]. As a “byproduct”, the idea of PDF
fi(ξ) was also introduced, fi(ξ)dξ being the probability that the parton type i carries a
momentum fraction of the hadron between ξ and ξ+dξ. It should be stressed here that,
in the naive parton model, the PDFs have a purely probabilistic interpretation.

The naive parton model existed before the invention of QCD. Once the QCD was
invented [11], it was straightforward to match partons to quarks and gluons, giving the
parton model a solid theoretical foundation. In particular, it was found that the naive
parton model is the leading-order (LO) approximation of QCD. Higher-order corrections
to DIS were soon calculated and this resulted in one of the most impressive achievements
of QCD: the prediction of the so-called Bjorken scaling violation that later was experi-
mentally observed in DIS. This striking success is based on two main features of QCD:
the asymptotic freedom and the collinear factorization.

1.1 The Asymptotic Freedom

Asymptotic freedom [4] is a property of QCD according to which the coupling αs between
constituents becomes asymptotically weaker as the energy Q at which the “matter” is



2 1.2. THE COLLINEAR FACTORIZATION

probed increases. At LO in perturbation theory the equation for the evolution of αs

(running) is given by:

Q2 ∂αs

∂Q2
= β0α

2
s +O(α3

s) , (1.1)

with:

β0 =
1

6π
Nf −

11

12π
CA , (1.2)

being Nf is the number of quark flavours and CA = 3 one of the SU(3) color factors. The
second term on the r.h.s. of eq. (1.2) is a consequence of the “non-abelianity” of QCD
(gauge group SU(3)) which gives rise to gluon self-interaction diagrams. It is evident
that this negative contribution is dominant if Nf ≤ 16. In QCD this is always the case,
therefore, while β0 < 0, eq. (1.1) states that αs is a decreasing function of Q or, in
other words, that QCD is asymptotically free. The asymptotic freedom is an extremely
important feature of QCD because, for Q sufficiently large, the coupling constant αs is
small enough to allow the use of perturbation theory.

A rough estimate of the minimal energy where perturbation theory is still applicable
can be obtained considering the “experimental” value of ΛQCD $ 200 MeV which is,
by definition, the energy where the coupling constant αs diverges. Given that for Q →
ΛQCD ⇒ αs → ∞, the requirement for perturbativity αs ( 1 to be applicable leads to
Q ) ΛQCD. More quantitatively, for Q $ 2 GeV, αs(Q) $ 0.3 which is already a small
enough value to use perturbation theory.

1.2 The Collinear Factorization

The collinear factorization is a very central ingredient in the definition of PDFs.
As discussed in Ref. [7], order by order in a perturbative expansion, any physical

quantity in QCD is a combination of low- and high-energy contributions, and hence,
due to the presence of the low-energy part, it is not computable directly in perturbation
theory. This is the basic statement of the factorization theorem. There are actually
exceptions to this rule. These are inclusive cross sections without hadrons in the ini-
tial state, such as the total cross section for e+e annihilation into hadrons, or into jets
(infrared safe observables). Nevertheless, this leaves out the majority of experimentally
studied processes like lepton-hadron and hadron-hadron cross sections, as well as inclu-
sive cross sections in e+e annihilation with detected hadrons in the final state. The
factorization theorem allows to derive predictions for these cross sections, by separat-
ing (factorizing) low-energy from high-energy behavior in a systematic fashion. Thus,
almost all applications of perturbative QCD use factorization properties of some kind.

The original factorization theorem [7] was based of the assumption that the typical
kinematic energy scale of the process Q is much bigger than all the masses involved.
However, this assumption is not always valid. Presently, a substantial fraction of the
DIS measured cross sections place themselves in a region where the heavy quark masses
are not negligible with respect to the scale Q and, a priori, the “standard” factorization
theorem could be questionable. However, in Ref. [12] a general proof of factorization
in DIS including heavy-quark effects to all orders was given, establishing once and for
all the validity of the factorization theorem also in the presence of non-negligible heavy
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l(k)
l(k′)

γ∗(q)

N (p)

}X

Figure 1.1: Deep inelastic charged lepton-hadron scattering.

quark masses. This is indeed the real theoretical foundation of the so-called general
mass factorization schemes extensively discussed in Chapter 2.

In the following a sketchy calculation of the DIS process at next-to-leading-order
(NLO) in QCD focusing on the infrared divergences will be presented. This will serve to
exhibit the need for factorizing out the initial-state collinear divergences into the PDFs.
Such a factorization will in turn result in the appearance of an unphysical factorization
scale and in the DGLAP evolution equation for PDFs.

1.3 DIS in QCD

Consider the scattering of a high-energy charged lepton off a hadron target (typically a
proton) mediated by the exchange of a virtual (space-like) photon, like in Fig. 1.1. The
standard DIS variables commonly used to study this kind of processes are:

Momentum transfer (virtuality): Q2 = −q2 ,

Target Mass: p2 = M2 ,

Energy transfer: ν = q · p = M(E′ − E) ,

Bjorken variable: x =
Q2

2(p · q)
=

Q2

2M(E′ − E)
,

Fractional energy transfer (inelasticity): y =
q · p
k · p

= 1−
E′

E
,

(1.3)

where the energy variables on the r.h.s. of eq. (1.3) refer to the target rest frame and
serve to give an idea of the physical meaning of the respective variables.

As is well known, the cross section for this process can be factored into a leptonic
and a hadronic tensor as:

d2σ

dxdy
∝ LµνW

µν . (1.4)
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Lµν =

Wµν =

µ ν

νµ

⊗

Figure 1.2: Pictorial representation of the factorization of the cross section into a leptonic and
a hadronic tensor for a DIS cross section.

This is pictorially illustrated in Fig. 1.2.
The leptonic tensor, assuming photon exchange only, is completely determined by

QED and is equal to:

Lµν = e2Tr[ /k′γµ/kγν ] = 4e2(kµk
′
ν + kνk

′
µ − gµνk · k′) , (1.5)

being e the electric charge of the incoming lepton.
The hadronic tensor, instead, cannot be completely determined. However, requir-

ing the current conservation qµWµν = 0 and the hermiticity Wµν∗ = Wµν , it can be
parametrized in terms of two real scalar structure functions F1 and F2 that contain all
the information about the structure of the hadron as seen by the virtual photon:

Wµν(x,Q) =

(
gµν −

qµqν

q2

)
F1(x,Q

2)+
1

ν

(
pµ +

1

2x
qµ
)(

pν +
1

2x
qν
)
F2(x,Q

2) . (1.6)

The contraction of the leptonic tensor in eq. (1.5) with the hadronic tensor in eq. (1.6)
gives the scattering cross section in terms of the structure functions F1 and F2.

The question is how to explicitly explicit expressions for the structure functions F1

and F2. At this point let us assume that QCD is at work, i.e. the proton is made up
of (massless) quarks interacting by means of gluons. This allows to make use of the
factorization theorem [7] that states that the generic structure function F = F1, F2 can
be factorized into a low- and a high-energy contribution as follows:

F (x,Q) =
∑

i=q,g

∫ 1

0
dy

∫ 1

0
dz C0

i (z,Q)f0
i (y)δ(x− yz)

=
∑

i=q,g

∫ 1

x

dy

y
C0
i

(
x

y
,Q

)
f0
i (y) =

∑

i=q,g

∫ 1

x

dz

z
C0
i (z,Q) f0

i

(
x

y

)

≡
∑

i=q,g

C0
i (x,Q)⊗ f0

i (x) =
∑

i=q,g

f0
i (x)⊗ C0

i (x,Q) ,

(1.7)
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νµ

=
∑

i=q,q,gWµν

p p

µ ν

p p

i i

f 0
i

q

q

q

q

q

⊗
yp

zpzp

yp

̂W 0µν
i

Figure 1.3: Pictorial representation of the factorization of the hadronic tensor into a long- and
a short- distance contribution.

where ⊗ denotes the Mellin convolution defined as:

f(x)⊗ g(x) ≡
∫ 1

0
dy

∫ 1

0
dz f(y)g(z)δ(x− yz)

=

∫ 1

x

dy

y
f(y)g

(
x

y

)
=

∫ 1

x

dz

z
f
(x
z

)
g(z) .

(1.8)

In eq. (1.7) C0
i are the so-called coefficient functions or Wilson coefficients and embody

the high-energy contributions and thus, thanks to the QCD asymptotic freedom, they
are computable in perturbation theory. The functions f0

i , instead, are the PDFs and
embody the low-energy contributions. As a consequence, PDFs are non-perturbative
quantities. PDFs do not depend on the process under consideration (DIS in the case),
but rather they are an “intrinsic” characteristic of the hadron (the proton in this case),
while the whole information about the specific process is contained in the coefficient
functions C0

i . It is this universality that the possibility to determine the PDFs of the
proton by fitting different categories of data is based on. Fig. 1.3 represents a pictorial
representation of the factorization formula in eq. (1.7).

The superscript 0 in the quantities appearing on the r.h.s. of eq. (1.7) denotes the fact
that they are “bare” quantities that need to be regularized and eventually renormalized.
In fact, when using the perturbation theory to calculate the coefficient functions C0

i
beyond LO, the result turns out to be divergent. As is well known, there are two different
categories of divergences appearing in such a calculation: ultraviolet and infrared.

The first category of divergences, the ultraviolet ones, arise from the loop contribu-
tions and therefore they are explicit divergences of the matrix element associated to the
high-energy region. They are treated using the standard procedure, i.e. regularizing the
divergent integrals, typically using the dimensional regularization, and subtracting the
divergences, typically in the MS scheme. This kind of divergences will not be addressed
here and the ultraviolet renormalization will be understood in the following.
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The infrared divergences, instead, are not originally present in the matrix element
but appear only when the integration over the phase-space is performed. Some of the
infrared divergences, also called mass singularities, arise from the fact that partons, i.e.
quarks and gluons, are treated as massless particles. This causes the propagators to
blow up when approaching the small energy region. A natural way to regularize this
kind of divergences would be to assign the massless particle a mass and, after having
subtracted the divergent terms, take the limit of vanishing mass. However, it has been
shown in Ref. [13] that for a non-abelian theory like QCD this leads to a wrong result.
In fact, it was proved that a zero-mass gluon is not the limiting case of a finite-mass
gluon. On the other hand, the use of dimensional regularization also for the treatment of
the infrared divergences does not present any sort of problem and therefore is presently
systematically employed. In the following it will be used to study the structure of the
infrared divergences in DIS.

As already mentioned, the coefficient functions C0
i can be calculated in perturbation

theory. As a consequence, they admit the following perturbative expansion(1):

C0
i =

∫ ∣∣∣Aµν,(0)
i + gsA

µν,(1)
i + g2sA

µν,(2)
i +O(g2s)

∣∣∣
2
dΦ

= C0,(0)
i +

αs

4π
C0,(1)
i +O(α2

s) , i = q, g ,

(1.9)

being αs = g2s/4π and dΦ the phase-space element. The expression in eq. (1.9) should
be understood in 4 − 2ε dimensions with ε < 0, so that all the infrared divergences are
regularized and appear as 1/ε poles. For simplicity only the case i = q will be considered
here. In Fig. 1.4 a pictorial representation of eq. (1.9) for i = q is also given.

We will consider one by one the diagrams in the bottom of Fig. 1.4, highlighting the
structure of the infrared divergences (if any) [14].

Let us start with the only LO diagram contributing to C0,(0)
i . In this case no infrared

(as well as ultraviolet) divergences appear and thus no regularization is needed at all.
Moreover, the calculation of this diagram is totally equivalent to that for the leptonic
tensor in eq. (1.5) and, for both the structure functions (apart from a factor 1

2), the
result is(2):

C0,(0)
q (x,Q) = C(0)

q (x) = δ(1− x) . (1.10)

Notice that C(0)
q , without the superscript 0, denotes the renormalized (finite) coefficient

function.
Now we consider the order αs coefficient function C0,(1)

q . To this end, we start
considering the diagram (a) at the bottom of Fig. 1.4. In the case the result is infrared
divergent and the divergent part has the form:

(a) = V(ε)C(0)
q (x) + · · · , (1.11)

where dots denote terms which are finite in the limit ε→ 0, with:

V(ε) = 2CF
αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

[
−

2

ε2
−

3

ε

]
, (1.12)

1Note that the strong coupling constant αs in eq. (1.9) has already been renormalized and thus
depends on the renormalization scale µR which is taken to be of the order of Q.

2For simplicity we are assuming that the electric charge of the quarks is equal to one.
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Figure 1.4: Pictorial representation of eq. (1.9).

being CF = 4
3 another SU(3) color factor. Notice the appearance of the arbitrary scale

µ which has been introduced in order to preserve the dimension of the coupling.
Considering the diagram (b) in Fig. 1.4, one finds that the divergent part is equal to:

(b) = 2CF
αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

[
−
1

ε
(1− x)

]
+ · · · . (1.13)

The diagram (c) instead gives the result:

(c) = 2CF
αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

[
−2x

(
1

ε
+ 1

)
xε

(1− x)1+ε

]
+ · · · . (1.14)

This expression can be manipulated using the expansion [14]:

xε

(1− x)1+ε
= −

1

ε
δ(1− x) +

1

(1− x)+
+O(ε) , (1.15)

where the so-called plus prescription in the second term on the r.h.s. of eq. (1.15) is
defined in such a way that:

∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx

f(x)− f(1)

1− x
, (1.16)

being f(x) some test function. Therefore, plugging eq. (1.15) into eq. (1.14), one gets:

(c) = 2CF
αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

[(
2

ε2
+

2

ε

)
C(0)
q (x)−

1

ε

2x

(1− x)+

]
+ · · · . (1.17)
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Finally, considering the diagram (d), one finds:

(d) = 2CF
αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

[
−

1

2ε

]
C(0)
q (x) + · · · . (1.18)

Summing diagrams (b), (c) and (d), we find:

(b) + (c) + (d) = 2CF
αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

[(
2

ε2
+

3

2ε

)
C(0)
q (x)−

1

ε

1 + x2

(1− x)+

]
+ · · · ,

(1.19)
which can also be written as:

(b)+ (c)+ (d) = −V(ε)C(0)
q (x)−

αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
2CF

[
1 + x2

1− x

]

+

+ · · · , (1.20)

where we have used the identity:

1 + x2

(1− x)+
+

3

2
δ(1− x) =

[
1 + x2

1− x

]

+

. (1.21)

In conclusion, summing eqs. (1.11) and (1.20), we have the order αs bare coefficient

function C0,(1)
q is given by:

C0,(1)
q (x,Q) = C(1)

q (x,Q)−
(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qq (x) , (1.22)

where we have defined:

P (0)
qq (x) ≡ 2CF

[
1 + x2

1− x

]

+

. (1.23)

On the r.h.s. of eq. (1.22) the function C(1)
q is the part of the calculation that remains

finite as ε → 0 and that we omitted in the previous calculations. The net result is
that almost all the infrared singularities cancel in the calculation (V(ε) disappears),
except a leftover initial-state 1/ε singularity of collinear origin. The physical reason
for the missing cancellation stems from the fact that the collinear emission changes the
momentum fraction of the incoming parton that scatters off the virtual photon, causing
a momentum unbalancing that spoils the “inclusivity” of the process.

The bare quark coefficient function up to order αs can be finally written as:

C0
q (x,Q) = C(0)

q (x) +
αs

4π
C(1)
q (x,Q)−

αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qq (x) +O(α2

s) . (1.24)

The same procedure can be applied for the calculation of the gluon coefficient function
appearing in eq. (1.7). In this case, since the gluon does not couple directly to the photon,
this causes the vanishing of the order α0

s contribution, i.e.:

C0,(0)
g (x,Q) = 0 , (1.25)

while for the order αs coefficient function one finds:

C0,(1)
g (x,Q) = C(1)

g (x,Q)−
(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qg (x) , (1.26)
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where:
P (0)
qg (x) ≡ 2TR

[
x2 + (1− x)2

]
, (1.27)

with TR = 1
2 , so that:

C0
g (x,Q) =

αs

4π
C(1)
g (x,Q)−

αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qg (x) +O(α2

s) . (1.28)

Finally, plugging eqs. (1.24) and (1.28) into eq. (1.7), one gets:

F (x,Q) =
∑

q

[
C(0)
q (x) +

αs

4π
C(1)
q (x,Q)−

αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qq (x)

]
⊗ f0

q (x)

+

[
αs

4π
C(1)
g (x,Q)−

αs

4π

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qg (x)

]
⊗ f0

g (x) +O(α2
s) .

(1.29)
The definition of MS renormalized PDFs is:

f0
q (x) = fq(x, µF ) +

αs

4π

(
4πµ2

µ2
F

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qq (x)⊗ fq(x, µ)

+
αs

4π

(
4πµ2

µ2
F

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
qg (x)⊗ fg(x, µ) +O(α2

s)

f0
g (x) = fg(x, µF ) + O(αs) ,

(1.30)

where the arbitrary scale µ2
F , called factorization scale, has been introduced. The reason

of the definition in eq. (1.30) is, of course, the subtraction of the poles in eq. (1.29).
However, the finite contributions can be treated arbitrarily. In fact, using the expansion:

1

ε

(
4πµ2

Q2

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
=

(
1

ε
+ ln 4π − γE

)
+ ln

µ2

Q2
+O(ε) , (1.31)

where γE is the Euler-Mascheroni constant, it is evident that the poles come typically
with finite terms containing a logarithmic contribution. Therefore, plugging the defini-

tions given in eq. (1.30) into eq. (1.29), using the fact that C(0)
q (x)⊗fi(x, µF ) = fi(x, µF )

and finally taking the limit ε→ 0, one obtains:

F (x,Q) =
∑

q

[
C(0)
q (x) +

αs

4π

(
C(1)
q (x,Q) + P (0)

qq (x) ln
Q2

µ2
F

)]
⊗ fq(x, µF )

+
αs

4π

(
C(1)
g (x,Q) + P (0)

qg (x) ln
Q2

µ2
F

)
⊗ fg(x, µF ) +O(α2

s) ,

(1.32)

which is the order αs prediction for the structure function F .
Before moving to discuss the scale dependence of PDFs it is worth making some

remarks. First of all we see that the r.h.s. of eq. (1.32) contains logarithms of µF /Q.
If the (arbitrary) factorization scale µF is taken to be very different from Q, these
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logarithms become large spoiling the usefulness of perturbation theory, because they
overcome the small coupling αs that each logarithm multiplies. For this reason, the
choice for µF should be such that ln(µF /Q) is not large. In particular, very often one
chooses µF = Q. Commonly, however, the factorization scale is also varied in the range
Q/2 < µF < 2Q in order to give an estimate of the missing higher-order corrections.

As a second remark, we recall that the naive parton model gave as a prediction the
so-called Bjorken scaling according to which, in the Bjorken limit defined as Q → ∞
with x fixed, the structure functions exhibit the scaling law:

F (x,Q) −→ F (x) . (1.33)

In other words, the structure functions are only functions of the Bjorken variable x.
However, as we already mentioned, the naive parton model is equivalent to the LO
approximation of QCD. Considering the NLO corrections to the DIS structure functions,
we obtained eq. (1.32) where, at order αs, terms proportional to ln(Q2/µ2

F ) appear. The
presence of such terms violates the scaling law of eq. (1.33), leading to the so-called
Bjorken scaling violation, i.e. an explicit dependence on Q of the structure functions.
In addition, the predicted scaling violation has a peculiar behavior. It can be shown
that the structure functions decrease with increasing Q at large x and increase with
increasing Q at small x. The later experimental observation of the scaling violation as
predicted by eq. (1.33) represents one of the most remarkable success of QCD. In Fig. 1.5
the experimental data published by the ZEUS, NMC, BCDMS and E665 experiments
are compared to the NLO QCD predictions [15]: the agreement is excellent.

1.4 The DGLAP Equation

As already stated before, PDFs cannot be determined in perturbation theory and pre-
sently they are extracted from experimental data. However, the way how PDFs evolve
with the factorization scale µF is instead perturbatively predictable. The starting point
is the observation that, by definition, any physical quantity is independent from the
factorization scale µF , and so should be the structure function in eq. (1.32) if all the
perturbative orders were included. Therefore the (logarithmic) derivative of F with
respect to µF is required to be zero, i.e.:

∂F (x,Q)

∂ lnµ2
F

= 0 . (1.34)

As a consequence, also the derivative of r.h.s. of eq. (1.32) must be zero and this leads
to the equation for the quark PDF:

∂fq(x, µF )

∂ lnµ2
F

=
αs

4π

∑

i=q,g

P (0)
qi (x)⊗ fi(x, µF ) . (1.35)

A similar equation for the gluon PDF fg can be obtained calculating the order α2
s

corrections to F in eq. (1.32) in the gluon-initiated channel. Therefore, one has to
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Figure 1.5: F2 versus Q2 for fixed x. Results from ZEUS (points) and the fixed target
experiments NMC, BCDMS and E665 (triangles) are shown. The NLO QCD predictions

(curve) are also displayed [15].

consider the order αs correction for the gluon PDF in eq. (1.30), that reads:

f0
g (x) = fg(x, µF ) +

αs

4π

(
4πµ2

µ2
F

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
gq (x)⊗ fq(x, µ)

+
αs

4π

(
4πµ2

µ2
F

)ε
Γ(1− ε)

Γ(1− 2ε)

1

ε
P (0)
gg (x)⊗ fg(x, µ) +O(α2

s) ,

(1.36)

where the functions P (0)
gq and P (0)

gg can be derived in a similar way as P (0)
qq and P (0)

qg

and their explicit form will be given in Chapter 3. This in turn leads to the analogous
equation for the gluon PDF:

∂fg(x, µF )

∂ lnµ2
F

=
αs

4π

∑

i=q,g

P (0)
gi (x)⊗ fi(x, µF ) . (1.37)
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The system of coupled integro-differential equations given in eqs. (1.35) and (1.37) is
commonly known as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [16,
17, 18]. It should be noticed that Eqs. (1.35) and (1.37) represent only the LO approxi-
mation of the all-order equation system that reads:

∂fi(x, µF )

∂ lnµ2
F

=
αs(µF )

4π

∑

j=q,g

Pij(x,αs(µF ))⊗ fj(x, µF ) , i = q, g , (1.38)

where the evolution kernels Pij admit the perturbative expansion:

Pij(x,αs(µF )) = P (0)
ij (x) +

αs(µF )

4π
P (1)
ij (x) + . . . (1.39)

and the functions P (k)
ij , commonly called splitting functions, are derived considering

more and more perturbative orders in the definition of renormalized PDFs in eqs. (1.30)
and (1.37). Presently, the splitting functions have been analytically calculated up to
three loops [16, 19, 20, 21, 22], i.e. the first three terms of the expansion in eq. (1.39)
are known.

The DGLAP equation (1.38) describes the evolution of PDFs with the factorization
scale µF . As any differential equation, to be univocally solved the DGLAP equation
needs some boundary condition. In practice this means that knowing the PDFs at some
initial scale µF0, eq. (1.38) allows to predict how they change from the scale µF0 to
any other scale µF . This has a big impact on PDF determination. In fact, thanks to
the DGLAP equation, the dependence on the variable µF of PDFs is known and it is
then sufficient to determine the dependence of PDFs on the Bjorken variable x at some
particular initial scale µF0.

1.5 Recent PDF Determinations

To conclude this chapter, we only mention the main groups that perform PDF fits and
their most recent determinations. A more detailed description regarding the method
used to include heavy quark mass effects is given in Chapter 2, while a quantitative
comparison between PDFs will be given in Chapter 6. Here we limit ourselves to list
the collaborations and give a very brief description of the main features of their most
recent PDF determinations. It is however worth mentioning that there are some main
differences that distinguish the following PDF sets which essentially are: the treatment
of the heavy quark flavour effects, the perturbative order at which PDFs are determined,
the data set included in the fit and the functional form adopted to parametrize PDFs.
In this respect, the choices adopted by the PDF collaborations can give rise in some
cases to relevant quantitative differences.

• The ABM collaboration provides PDF sets at NLO and NNLO based on DIS and
Drell-Yan data. They parametrize six independent PDFs using polynomials for a
total of 25 free parameters and determine the PDF uncertainties by means of the
Hessian method. Their most recent determination is the ABM11 set [23] where
the heavy quark mass effects are included using the fixed-flavour-number scheme.
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• The CTEQ/TEA collaboration produces PDF sets at LO, NLO and NNLO using
a global dataset that includes DIS data, Drell-Yan data, collider vector boson pro-
duction data and jet data. They also use polynomials to parametrize 6 independent
PDFs with 26 free parameters in total and determine the PDF errors by means of
the Hessian method. Their most recent determination of the CTEQ collaboration
is the CT10 PDF set [24] where the heavy quark mass effects are included using
the S-ACOT-χ general-mass-variable-flavour-number scheme.

• The GJR collaboration provides PDF sets at NLO and NNLO based on DIS, Drell-
Yan data and jet data. They have 5 independent polynomial PDFs with 15 free
parameters in total and determine the PDF uncertainties again using the Hessian
method. The JR09 set [25] is their most recent fit and employs the fixed-flavour-
number scheme.

• The HERAPDF collaboration produces PDF sets at NLO and NNLO which are
based only on HERA DIS data. The HERAPDF fits are performed using the
Hessian method and assuming 5 independent polynomial PDFs and 14 free pa-
rameters. Their last release is the HERAPDF1.5 fit [26, 27] which employs the
TR general-mass-variable-flavour-number scheme.

• The MSTW collaboration produces PDF sets at LO, NLO and NNLO using a
global dataset that includes DIS data, Drell-Yan data, collider vector boson pro-
duction data and jet data. They fit 7 independent PDFs, again using polynomials,
for a total of 20 free parameters using the Hessian method. Their most recent de-
termination is MSTW08 set [28] which is based on the TR general-mass-variable-
flavour-number scheme.

• The NNPDF collaboration, finally, provides LO, NLO and NNLO PDF sets based
on a global dataset like the MSTW and the CTEQ collaborations but, at present,
it is the only collaboration that includes the most recent vector boson production
data and jet data published by the LHC experiments. The NNPDF collaboration
parametrizes 7 PDFs at the initial scale using neural networks, for a total of 259
free parameters while the errors are determined using the Monte Carlo sampling
method (see Chapter 5). The most up to date release is the NNPDF2.3 set [29]
which is based on the FONLL general-mass-variable-flavour-number scheme.
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Chapter 2

Treatment of Heavy Flavours

Interest in the inclusion the effects of heavy flavours in DIS structure functions was
revived by the discovery [30] that different treatments of mass-suppressed terms in global
parton fits can affect predictions for the total W and Z production at the LHC by almost
10%.

A technique for the inclusion of these mass-suppressed contributions to structure
functions was developed long ago [12, 31], based upon a renormalization scheme with
explicit heavy quark decoupling [32]. Several variants of this method (usually called
ACOT after Aivazis, Collins, Olness and Tung) were subsequently proposed, such as
S-ACOT [33] and ACOT-χ [34, 35]. The ACOT method is presently used by the CTEQ
collaboration since 2007 when the CTEQ6.5 set [36] was made public.

An alternative method (sometimes called TR after Thorne and Roberts) has also been
advocated [37, 38] and used for all MRST parton fits until 2004 [39, 40, 41, 42]. However,
the methods used by the CTEQ [30] and MRST/MSTW [28, 36] groups for their current
parton fits, based respectively on the ACOT [12, 31] and TR’ [43] procedures, have
adopted at least in part a common framework. They have been compared in Refs. [44, 45],
thereby elucidating differences and common aspects.

A somewhat different technique for the inclusion of heavy-quark-mass effects, the so-
called FONLL method (which stands for fixed-order next-to-leading log), was introduced
in Ref. [46] in the context of hadro-production of heavy quarks. The FONLL method
only relies on standard QCD factorization and calculations with massive quarks in the
decoupling scheme of Ref. [32] and with massless quarks in the MS scheme. The name
FONLL is motivated by the fact that the method was originally used to combine a
fixed (second) order (FO) calculation with a next-to-leading-log (NLL) one. However,
the method is entirely general and can be used to combine consistently a fixed-order
with a resummed calculations to any order. The application of the FONLL scheme to
DIS structure functions was presented in Ref. [47] and is presently used by the NNPDF
collaboration.

It is also worth mentioning that there exists another method, usually referred to as
BMSN prescription [48, 49] (after Buza, Matiounine, Smith and van Neerven), that re-
sembles quite closely the FONLL method. The main differences, however, will be briefly
mentioned in Sec. 2.5. The BMSN has been employed in the ABKM09 analysis [50] but
has been abandoned in favor of a purely fixed-order approach in the more recent ABM11
analysis [23].
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In this chapter we will give a detailed overview of the techniques described above and
used to include heavy quark masses to the DIS structure functions, with some emphasis
on the FONLL method. This will serve as a theoretical background for the next chapter
where the implementation of the FONLL method will be described in detail. A numerical
benchmark of these methods (except the BMSN scheme) has been recently presented in
Ref. [51].

2.1 FFNS and VFNS

In order to explain how the inclusion of heavy quark mass effects works in DIS, we
consider a general lepton-hadron process:

l1(p1) +N(P ) → l2(p2) +H(pH) +X(PX) , (2.1)

at the lowest order in the electro-weak interactions, as depicted in Fig. 2.1, and where
we require a heavy quark H of momentum pµH and mass MH in the final state(1). This

p1

p2

P

pH

PX

q

Figure 2.1: Lepton Hadron production amplitude for a heavy quark.

process takes place by the exchange of a vector boson B = γ,W,Z having momentum q.
As already shown in Chapter 1, the differential cross section of this process can be

factorized as follows:
d2σ

dxdy
∝ LµνW

µν , (2.2)

where Lµν is the leptonic tensor given in eq. (1.5) and Wµν is the hadronic tensor that
here we write in the more general form:

Wµν =
1

4π

∑
〈P |Jµ|pH , PX〉(2π)4δ(4)(P + q − pH − PX)〈PX , pH |Jν†|P 〉 , (2.3)

1The requirement of having a heavy quark in the final state is the way heavy quark structure functions
are experimentally measured. Nonetheless, this definition, when considering higher-order corrections, is
infrared unsafe, thus perturbative calculations are usually carried out using a different definition of heavy
quark structure function. This issue, anyhow, appears only at higher orders and it is irrelevant for the
qualitative description of the mass schemes which follows. We will instead return on this in Chapter 3
where the implementation of the FONLL method up to order α2

s will be considered.
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where
∑

denotes a sum over all hadronic states containing the final-state quark H of
momentum pH and the average over the incoming helicity states.

The factorization theorem asserts that, to the leading power in 1/Q2 (leading twist),
the hadronic tensor can be factorized as:

Wµν(x,Q,MH) =
∑

i

wµν
i (x,Q,MH ,αs(µ))⊗ fi(x, µ) , (2.4)

where the short notation ⊗ denotes the Mellin convolution already defined in eq. (1.7).
We recall here that fi and wµν

i are the PDFs and coefficient functions, respectively.
Moreover, for simplicity renormalization and the factorization scales have been set to
µR = µF = µ.

In the presence of non-zero masses, the helicity amplitudes provide the simplest con-
nection between the physical (scalar) structure functions and the corresponding parton-
level quantities wµν

i . Projecting out the helicity components of the hadronic tensor,
eq. (2.4) reads:

W λ =
∑

i

wλ
i ⊗ fi , (2.5)

where:

W λ = ε(λ)∗µ (q, P )Wµνε(λ)ν (q, P ) and wλ
i = ε(λ)∗µ (q, k)wµν

i ε(λ)ν (q, k) , (2.6)

being ε(λ)ν (q, r) the polarization vector of the vector boson with momentum q and helicity
λ = +, 0,− defined with respect to the reference vector r. The more familiar structure
functions F1, F2 and F3 are then given by a linear combination of the helicity structure
functions according to the following relations (cf. Appendix B of [52]):

W+ = FH
1 −

1

2

√
1 +

Q2

ν2
FH
3

W− = FH
1 +

1

2

√
1 +

Q2

ν2
FH
3

W 0 = −FH
1 +

1

2x

(
1 +

Q2

ν2

)
FH
2 .

(2.7)

In addition, the longitudinal structure function FH
L is defined in terms of the structure

functions FH
1 and FH

2 as:

FH
L = FH

2 − 2xFH
1 . (2.8)

From now on, we will only refer to the heavy quark structure functions FH
k . Moreover,

in order to avoid unnecessary complications arising from higher-order corrections, we
will work only with expressions up to order αs. Using these simplifications, the DIS
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heavy quark structure functions reduce to the following factorization formula(2):

FH
k (x,Q,MH) =

∑

i=g,H,H

Ck,i(x,Q,MH ,αs(µ))⊗ fi(x, µ)

= C(0)
k,H ⊗ f+

H +
αs

4π

∑

i=g,H,H

C(1)
k,i ⊗ fi ,

(2.9)

where C(j)
k,i are the coefficient functions and f+

H ≡ fH + fH . Notice that the sum runs
only over the gluon and the heavy quark PDFs. In fact, limiting ourselves to order αs,
the only graphs that contribute to the heavy quark structure functions are either gluon-
initiated or heavy quark-initiated graphs. Moreover, since no gluon-initiated graph is
present at LO, we have explicitly set to zero the order α0

s gluon coefficient function in
the second line of eq. (2.9).

One possibility to calculate the coefficient functions C(j)
k,i is to set to zero the masses of

the internal lines and external partons in graphs for the partonic subprocesses. This way,
the calculation presents infrared (IR) divergences that are usually regularized using the
dimensional regularization and subtracted in the MS scheme (see Chapter 1), obtaining
the structure functions in the zero-mass (ZM) scheme:

FH,ZM
k (x,Q) =

∑

i=g,H,H

CZM
k,i (x,Q,αs(µ))⊗ fi(x, µ)

= CZM,(0)
k,H ⊗ f+

H +
αs

4π

∑

i=g,H,H

CZM,(1)
k,i ⊗ fi .

(2.10)

where and CZM,(j)
k,i are the ZM MS coefficient functions. The IR singularities arising

from setting MH = 0 in the coefficient functions reflect the presence of large collinear
logarithms of the kind ln(Q/MH) and the natural way to resum these contributions
is to reabsorb them into the heavy quark PDFs fH and fH which, as a consequence,
start evolving according to the standard DGLAP evolution equation as discussed in
Chapter 1. Of course, this scheme does not depend explicitly on the value of the heavy
quark mass MH , however both coefficient functions and DGLAP evolution will depend
on the number of active (i.e. massless) flavours, which we take to be (N + 1), and
only the lightest (N + 1) flavours and the gluon will have an associated PDF, while the
remaining heavy flavour PDFs will be identically zero. As a consequence, there will be
as many such schemes as there are flavours. Of course, the lightest flavours up, down
and strange will always be considered massless. Therefore eq. (2.10) can be written in
the ZM 3-flavour scheme, where the number of active flavours entering the coefficient
functions and the DGLAP evolution equation is three and only up, down and strange
have a non-vanishing PDF, or in the ZM 4-flavour scheme, where the number of active
flavours entering the coefficient functions and the DGLAP evolution equation is now
four and up, down, strange and charm have a non-vanishing PDF, and so on.

2Here and for the rest of this chapter an overall factor e2H , being eH the electric charge of the heavy
quark H, in understood in the definition of the structure functions as a convolution between coefficient
functions and PDFs. In addition in the case of FH

2 also a factor x is understood.
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Although schemes with different numbers of active flavours come from different renor-
malization and factorization procedures, the relation between them is just a matter of
a transformation between different schemes and can be calculated order by order in αs.
The corresponding matching conditions are presently known up to O(α2

s) [48] and such
conditions allow to match the ZM N -flavour with the (N + 1)-flavour scheme at any
given scale µmatch. For a question of naturalness, µmatch is usually taken to be the mass
of the (N + 1)-th flavour MH(3). In practice, the matching can be done in such a way
that if Q < Mc eq. (2.4) is evaluated in the ZM 3-flavour scheme, if Mc ≤ Q < Mb the
ZM 4-flavour scheme is used, and so on. This defines the so-called ZM Variable-Flavour-
Number Scheme (ZM-VFNS).

The ZM-VFNS works well if the scale Q is sufficiently distant from any heavy quark
mass threshold. When, instead, Q $ MH this approach turns out not to be accurate
because it neglects potentially large contributions proportional to powers of MH/Q in
the coefficient functions.

Alternatively to the ZM scheme, one can retain the full dependence on the heavy
quark mass MH in the calculation of Ck,i in eq. (2.9). The presence of the mass MH

provides a natural regulator for the IR collinear divergences which, therefore, do not
need to be resummed requiring the DGLAP evolution for the heavy quark PDF f+

H .
However, this approach gives rise to terms proportional to ln(Q/MH) in the coeffi-

cient functions which blow up either if Q ( MH or if Q ) MH . Particularly in the
limit Q ( MH , these logarithms prevent the desirable decoupling of the heavy flavour
H. The natural solution to this problem is provided by the so-called Collins-Wilczek-Zee
(CWZ) method [32]. Assuming that H is the (N +1)-th flavour (e.g., if H is the charm,
N = 3), the CWZ prescription is very simple: for Q < MH switch to the ZM N -flavour
scheme. This method has the following advantages: satisfies manifest decoupling of the
(N +1)-th flavour, the evolution equations for αs and PDFs are the same for QCD with
N flavours with pure MS subtraction, the parton distribution of the (N + 1)-th flavour
is identically zero and the quark mass MH only appears in the coefficient functions for
Q > MH .

The procedure described above is called Fixed Flavour Number Scheme (FFNS) and
in practice in this scheme one sets at the beginning the number of active flavours to
N and keeps the contributions due to the mass of the (N + 1)-th flavour only in the
coefficient functions for scales above the heavy quark mass threshold. In the FFNS,
given that the heavy quark PDFs are identically zero, the structure functions look like
this:

FH,FF

k (x,Q,MH) =
αs

4π
CFF,(1)
k,g (x,Q,MH)⊗ fg(x, µ) . (2.11)

Of course, using the CWZ prescription one can define a FFNS for any number of active
flavours: the 3-flavour FFNS where up, down and strange are the only active flavours
but with the charm mass contributions in the coefficient functions, the 4-flavour FFNS
where now up, down, strange and charm are the active flavours and with the bottom
mass contributions in the coefficient function, and so on.

3This choice is somehow arbitrary but it simplifies substantially the matching conditions because all
the terms proportional to powers of ln(µmatch/MH) vanish. Accidentally, with this choice the matching
is continuous up to order αs, meaning that αs and PDFs are equal in µmatch = MH when switching from
the N -flavour to the (N + 1)-flavour scheme. Unfortunately, this is no longer true at order α2

s.
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The CWZ prescription, however, does not solve the problems forQ ) MH . Therefore
the FFNS turns out to be accurate for scales Q of the order or below MH but, due to
the presence of unresummed large logarithms ln(MH/Q), it becomes unreliable when
Q ) MH .

The ZM-VFNS and the FFNS are therefore two distinct mass schemes that are
accurate in two complementary energy regions: Q ) MH and Q ! MH , respectively.

What is actually needed then is a mass scheme able to interpolate smoothly between
the FFNS for Q ! MH and the ZM-VFNS for Q ) MH . As we will see, there are several
prescriptions that achieve this goal and they are commonly referred to as General-Mass
Variable-Flavour-Number Schemes (GM-VFNS). In the following a description of such
schemes, along with their possible variants, will be given.

2.2 The ACOT Method

The ACOT scheme [31, 52], used by the CTEQ collaboration, provides a framework to
incorporate the heavy quark mass effects into the theoretical calculation of heavy quark
production. This is built upon the CWZ renormalization procedure [32] which provides
a formal foundation for the ACOT scheme which is valid to all orders.

As already explained in Sec. 2.1, the CWZ renormalization yields manifest decoupling
of the heavy quarks in the Q ( MH limit. In addition, in 1998 Collins [12] extended
the factorization theorem to address the case of heavy quarks ensuring that heavy quark
processes can be computed to all orders. Based on these ingredients, the ACOT scheme
yields the complete quark mass dependence from the low- to high-energy regime: for
Q ( MH it ensures manifest decoupling behaving like the FFNS, and in the limit
Q ) MH it reduces precisely to the ZM-VFNS.

To describe the ACOT method in more details, we will focus on the relation between

the ACOT coefficient functions CACOT,(j)
k,i and the coefficient functions C(j)

k,i appearing
in eq. (2.9) that come from a straight calculation of the DIS heavy quark production
amplitude retaining the heavy quark mass MH . The basic relation is established by
applying the factorization formula at the parton amplitude level. This provides the
definition for the ACOT coefficient functions:

Ck,i ≡
∑

j=g,H,H

CACOT
k,j ⊗ Γji , (2.12)

where the functions Γji, which admit the following perturbative expansion:

Γji(x) = δjiδ(1− x) +
αs

4π
ln

Q2

M2
H

P (0)
ji (x) +O(α2

s) , (2.13)

where P (0)
ji , the LO splitting functions introduced in Chapter 1, account for the splitting

of the incoming partons. Notice that the logarithm ln(Q2/M2
H) in eq. (2.13) embodies

the collinear divergence in the limit Q ) MH . At the same time we have the expansion:

CACOT
k,j (x) = CACOT,(0)

k,j (x) +
αs

4π
CACOT,(1)
k,j (x) +O(α2

s) , (2.14)
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with CACOT,(0)
k,g (x) = 0, given that at order α0

s the gluon does not couple to the photon.
Plugging eqs. (2.13) and (2.14) into eq. (2.12) we get:

Ck,i = C(0)
k,i +

αs

4π
C(1)
k,i +O(α2

s)

= CACOT,(0)
k,i +

αs

4π




∑

j

CACOT,(0)
k,j ⊗ Γji + CACOT,(1)

k,i



+O(α2
s) ,

(2.15)

so that:
CACOT,(0)
k,i = C(0)

k,i , (2.16)

consistent with the fact that C(0)
k,i comes from a tree level diagram and therefore does

not contain any collinear divergence, while:

CACOT,(1)
k,i = C(1)

k,i − ln
Q2

M2
H

∑

j

C(0)
k,j ⊗ P (0)

ji . (2.17)

Gathering everything, the ACOT coefficient functions are given by:

CACOT
k,i = C(0)

k,i +
αs

4π



C(1)
k,i − ln

Q2

M2
H

∑

j

C(0)
k,j ⊗ P (0)

ji



+O(α2
s) , (2.18)

so that the order αs heavy quark structure structure functions take the form:

FH,ACOT

k = C(0)
k,H ⊗ f+

H +
αs

4π



C(1)
k,H − ln

Q2

M2
H

∑

j

C(0)
k,j ⊗ P (0)

jH



⊗ f+
H

+
αs

4π



C(1)
k,g − ln

Q2

M2
H

∑

j

C(0)
k,j ⊗ P (0)

j,g



⊗ fg .

(2.19)

Eq. (2.19) is the master formula for heavy quark structure functions in the ACOT
scheme and Fig. 2.2 is its pictorial representation.

This scheme contains all the ingredients of a consistent QCD theory of heavy quark
production over a wide range of energy scales. In particular, if the initial-state quark
is massive and the energy scale Q is of the same order of its mass MH , the terms
proportional to ln(Q2/M2

H) (subtraction terms) in eq. (2.19) vanish. Moreover, applying
the CWZ prescription, the PDF f+

H is either identically zero or very small for Q < MH ,
thus the result is:

FH,ACOT

k −→
Q!MH

αs

4π
CFF,(1)
k,g ⊗ fg , (2.20)

i.e. dominance of the gluon-fusion mechanism which reproduces the usual picture of
heavy quark production in the FFNS.

On the other hand, if either H is a usual light quark (i.e., MH $ 0) or H is massive
but Q ) MH , the subtraction terms become large (collinear divergence), hence the
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Figure 2.2: Graphical representation of the master equation eq. (2.19) for the helicity structure
functions.

collinear divergences of the terms in brackets in eq. (2.19) cancel leaving only a correction
term of order αs with no large logarithmic factors. This way, we obtain:

FH,ACOT

k −→
Q$MH

CZM,(0)
k,H ⊗ f+

H +
αs

4π
(CZM,(1)

k,q ⊗ f+
H + CZM,(1)

k,g ⊗ fg) (2.21)

which reproduces the ZM-VFNS, appropriate for energies much higher than all masses.
In conclusion, eq. (2.19) provides a smooth interpolation between FFNS and ZM-

VFNS, and contains both as special cases.
As an example, in Fig. 2.3 we show the order αs heavy quark structure function F c

2

as a function of the energy Q calculated in the ZM-VFNS, FFNS, ACOT and S-ACOT
schemes (see Sec. 2.2.1). We see that the ACOT scheme coincides with the FFNS for
small values of Q and tends to the ZM-VFNS for large values of Q.

2.2.1 The S-ACOT Variant

In the application of the ACOT method, it was observed that the heavy quark mass
could be set to zero in certain pieces of the hard scattering terms without any loss of
accuracy. This modification of the ACOT scheme goes by the name Simplified-ACOT
(S-ACOT) and can be summarized as follows [33]: for hard-scattering processes with
incoming heavy quarks or with internal on-shell cuts on a heavy quark line, the heavy
quark mass can be set to zero (MH = 0) for these pieces.
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Figure 2.3: F c
2 for x = 0.1 for order αs DIS heavy quark production as a function of the energy

Q. We display calculations using the schemes ACOT, S-ACOT, FFNS and ZM-VFNS [53].

Considering the order αs DIS heavy quark production, this prescription states that
one can set MH = 0 for the order α0

s and for the heavy quark-initiated terms of the
order αs contributions (first two terms on the r.h.s. of eq. (2.19)), and for the subtraction
terms (on-shell cut on an internal heavy quark line, third and fifth terms on the r.h.s. of
eq. (2.19)). Hence, the only contribution which requires a calculation for finite values
of MH is the order αs gluon coefficient function(4). Fig. 2.3 displays a comparison of a
calculation using the plain ACOT scheme with the S-ACOT scheme. As expected, these
two results match throughout the full kinematic region.

It is important to notice that the S-ACOT scheme is not an approximation, this is an
exact renormalization scheme extensible to all orders. On the other hand, the S-ACOT
prescription has the advantage of being more straightforward to state and simpler to
implement than the plain ACOT method.

2.2.2 The ACOT-χ Variant

A crucial point of any GM-VFNS and more in particular of the ACOT method is that
the appearance of the mass MH has both a dynamical origin, in the coefficient functions,
and a kinematic origin in the phase space of the process. In fact, for a process where
one or more heavy quarks are present in the final state, any convolution between PDFs
and coefficient functions should be correctly written as:

Ck,i ⊗ fi =

∫ 1

χ

dy

y
Ck,i

(
x

y
,MH , Q,αs(µ)

)
fi(y, µ) , (2.22)

4The S-ACOT prescription is not to be taken literally. In fact, the procedure described above would
lead to logarithmic divergences when setting MH to zero in the subtraction terms. This, of course, is
not the way the S-ACOT proceeds. Perhaps, a more comprehensible way to understand the S-ACOT
prescription could be seen in terms “relocation” of the power terms of the form MH/Q. As stated in [33],
essentially one has the freedom to move all the power suppressed terms of the kind MH/Q from the quark
to the gluon coefficient function and afterwards apply the limit MH → 0 in the remaining terms, making
sure that appropriate cancellation of logarithmic divergent terms takes place.
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where χ takes into account the reduction of the phase space of the final state due to heavy
quarks having massMH . In particular, if n heavy quarks of massMH are produced in the
final state, by requiring that the partonic invariant mass W 2 = Q2(1−x)/x > (nMH)2,
one finds that the lower kinematic bound is given by:

χ = x

[
1 +

(
nMH

Q

)2
]
. (2.23)

This was the original idea behind the slow-rescaling prescription of Ref. [54], which
considered DIS charm production (e.g. γc → c) introducing the shift x → χ = x[1 +
(Mc/Q)2].

The generalization of this prescription is implemented in the variant of the ACOT
scheme called ACOT-χ that accounts for the charm quark mass by effectively reducing
the phase space for the final state relative to the lighter quarks by an amount proportional
to (Mc/Q)2.

More details on this scheme can be found in Ref. [53], where it was shown that (up
to order αs) the phase space mass dependence is generally the dominant contribution
with respect to the dynamical dependence to the DIS heavy quark structure functions.

As a last remark, we point out that the S-ACOT and the ACOT-χ schemes are not
incompatible and can be combined into the so-called S-ACOT-χ scheme.

2.3 The TR Method

The TR scheme, presently used by the MSTW collaboration, was introduced in Refs. [37,
38] as an alternative to the ACOT scheme [31] with more emphasis on correct threshold
behavior of the structure functions.

Like ACOT, the TR scheme is based on the existence of two different regions sepa-
rated by a transition point, chosen by default to be the heavy quark mass MH . Below
this point a heavy quark is not an active parton but is generated in the final state us-
ing the FFNS coefficient functions, while above this point the heavy quark becomes a
new parton, evolving according to the massless evolution equations, and the structure
functions are obtained using the GM-VFNS coefficient functions which must tend to the
correct ZM-VFNS limits as Q ) MH , up to possibly higher-order corrections.

Apart from these similarities, the basic difference, and somehow the improvement
with respect to the ACOT method, is the demand of a smooth transition when crossing
the heavy quark mass thresholds. In fact, when crossing the threshold Q = MH the
ACOT scheme leads to an abrupt rise of the heavy quark structure functions, which
is in contrast with the smooth behavior required physically. In particular, though the
structure function itself is continuous at the threshold, its derivative is not.

In order to better reflect the true physics around the heavy quark thresholds, the
TR scheme imposes the continuity of the derivative of the structure functions at the
thresholds.

Assuming that the structure function in the TR scheme admits the perturbative
expansion:

FH,TR

k = CTR,(0)
k,H ⊗ f+

H +
αs

4π

[
CTR,(1)
k,H ⊗ f+

H + CTR,(1)
k,g ⊗ fg

]
+O(αs) , (2.24)
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the aim is to determine the coefficient functions CTR,(i)
k,j in such a way that eq. (2.24)

extrapolates smoothly from the FFNS at low Q to the ZM-VFNS at high Q with a
smooth transition at the heavy quark threshold MH .

First of all, the equivalence of the structure function in the TR scheme FH,TR

k with

that in the FFNS FH,FF

k in eq. (2.11) for Q ! MH is required. However, in the FFNS
the flavour H is not active while the TR scheme it is. Therefore, before equating the two
structure functions, one needs to express the PDFs in eq. (2.24) in terms of the PDFs
in eq. (2.11) and this can be done using the matching conditions evaluated in Ref. [48]
and that we report here up to order αs:

f+
H (x,Q) =

αs

4π
ln

Q2

M2
H

P (0)
qg (x)⊗ f (N)

g (x,Q)

f (N+1)
g (x,Q) =

[
1 +

αs

6π
ln

Q2

M2
H

]
f (N)
g (x,Q) ,

(2.25)

where the upper index in the gluon PDF (N) or (N+1) denotes the factorization scheme,
i.e. the number of active flavours. Therefore, plugging eq. (2.25) into eq. (2.24), retaining
the terms up order αs and equating it to eq. (2.11), we obtain the relation:

CFF,(1)
k,g = CTR,(1)

k,g + ln
Q2

M2
H

CTR,(0)
k,H ⊗ P (0)

qg , (2.26)

connecting the gluon coefficient functions in the FFNS and in the TR scheme. Eq. (2.26),
rearranged as:

CTR,(1)
k,g = CFF,(1)

k,g − ln

(
Q2

M2
H

)
CTR,(0)
k,H ⊗ P (0)

qg , (2.27)

can be read as the iterative definition of CTR,(1)
k,g in terms CTR,(0)

k,g . Any choice of CTR,(1)
k,g

and CTR,(0)
k,g satisfying eq. (2.26) is equally correct. Therefore it is possible to use this

freedom(5) to choose CTR,(0)
k,g in such a way that the transition of the structure function

at the heavy quark threshold MH is smooth.
To this end, we take the derivative with respect respect to lnQ2 of the LO term of

eq. (2.24) obtaining:

dFH,TR

k

d lnQ2
=

dCTR,(0)
k,H

d lnQ2
⊗ f+

H +
αs

4π
CTR,(0)
k,H ⊗

(
P (0)
qq ⊗ f+

H + P (0)
qg ⊗ fg

)
+ . . . , (2.28)

where we used the DGLAP equation for f+
H which reads:

df+
H

d lnQ2
=
αs

4π

(
P (0)
qq ⊗ f+

H + P (0)
qg ⊗ fg

)
. (2.29)

The derivative of the heavy quark structure function in the FFNS in eq. (2.11) instead
is:

dFH,FF

k

d lnQ2
=
αs

4π

dCFF,(1)
k,g

d lnQ2
⊗ fg , (2.30)

5This is exactly the same freedom that allowed to define S-ACOT from the ACOT scheme.
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where we have omitted the order α2
s terms coming from the derivative of the gluon parton

density fg.
In order to have a smooth transition at the heavy quark threshold, the TR method

requires that:

dFH,TR

k

d lnQ2

∣∣∣∣∣
Q=MH

=
dFH,FF

k

d lnQ2

∣∣∣∣∣
Q=MH

(2.31)

The choice of the matching threshold Q = MH leads to a further simplification in
eq. (2.28). In fact, using eq. (2.25), we find that f+

H (x,MH) = 0 and finally we have
that: 

CTR,(0)
k,H ⊗ P (0)

qg =
dCFF,(1)

k,g

d lnQ2




∣∣∣∣∣
Q=MH

. (2.32)

This relations allows to achieve the required smooth transition at the heavy quark thresh-

old. Generalizing eq. (2.32) to be the definition of CTR,(0)
k,H for all Q, identifies the TR

scheme at LO.
From a phenomenological point of view, eq. (2.32) guarantees a smooth passage for

the heavy quark structure function from Q < MH to Q > MH . Moreover, taking the

explicit derivative of CFF,(1)
k,g in the limit Q → ∞ one easily finds that:

dCFF,(1)
k,g

d lnQ2
→ P (0)

qg (x) . (2.33)

Hence, from eq. (2.32), we see that CTR,(0)
k,H must indeed tend to δ(1 − x) reproducing

this way the correct ZM limit.

Furthermore, since CFF,(1)
k,g contains the factor θ(W 2−4M2

H), that ensures the correct

threshold behavior, so does its derivative and in turn also CTR,(0)
k,H . Using eq. (2.32), then,

guarantees the correct threshold behavior for FH,TR

k at LO.

Moreover, once CTR,(0)
k,H is known, eq. (2.27) allows to calculate CTR,(1)

k,g that again,
due to the presence of the θ-function in both terms on the r.h.s., has the same threshold

behavior as CFF,(1)
k,g .

Finally, using the explicit form of CFF,(1)
k,g , it is easy to check that in the limit Q → ∞,

CTR,(1)
k,g does indeed tend to the correct asymptotic ZM MS limit.

In order to obtain the full order αs structure function FH,TR

k , only the coefficient

function CTR,(1)
k,H is missing. This contribution, though very small, requires the extension

of FH,FF

k and of the matching conditions in eq. (2.25) to order α2
s and again CTR,(1)

k,H is
determined by imposing the continuity in the gluon sector. The details of the calculation
are extensively worked out in Ref. [37].

In Fig. 2.4 the LO calculation for F c
2 in the TR scheme for two values of x is shown. It

is evident that also the TR scheme, like the ACOT scheme, ensures a smooth transition
from the description at low Q in terms of the FFNS to high Q in terms of the ZM-VFNS.
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Figure 2.4: F c
2 for x = 0.05 and x = 0.005 calculated using the TR prescription at LO. Also

shown are the LO FFNS and ZM-VFNS expressions [38].

2.3.1 The TR’ Variant

The pure TRmethod, as described in the previous section, was used in the global analyses
up to MRST 2004 [42]. However, it results in expressions which become increasingly more
and more complicated at higher orders. Moreover, as clear from Fig. 2.4, it overshoots
the ZM-VFNS before approaching it asymptotically from above. Here the need for a
mass scheme that had the same threshold behavior as the TR scheme but simpler and
more well-behaved in the central region.

In Ref. [34] the correct threshold behavior was already achieved simply by replacing
the lower limit x of convolution integrals with the rescaled variable χ = x(1+4M2

H/Q2).
If the heavy flavour coefficient functions are just the ZM ones, with this restriction,
one obtains the ACOT-χ scheme. A very similar definition for heavy flavour coefficient
functions was then adopted in Ref. [43], resulting in the TR’ scheme, and extended
explicitly to NNLO. The TR’ scheme was first used in the MRST 2006 analysis [36] and
for all the subsequent MSTW analyses.

The basic point of the TR’ scheme is the requirement that the following relation for
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the quark coefficient functions holds at any order(6):

CTR’,(n)
k,H (Q/MH , x) = CZM,(n)

k,H (x/xmax) , xmax =
Q2

Q2 +M2
H

. (2.34)

This way, the TR’ coefficient functions tend to the standard ZM-VFNS coefficient func-
tions in the limit Q ) MH but respect the threshold requirement W 2 ≥ 4M2

H for heavy
pair production.

Adopting this convention for the quark coefficient functions, one can easily derive the
gluon coefficient functions using the usual matching conditions. In particular eq. (2.27)

to derive the order αs gluon coefficient function CTR’,(1)
k,g knowing the α0

s quark coefficient

function CTR’,(0)
k,H .

In the TR/TR’ schemes there is an ambiguity stemming from the fact that ZM-
VFNS and FFNS expressions for FH

k in eqs. (2.10) and (2.11) have a different absolute
perturbative ordering. Indeed the LO of the former is order α0

s while the LO of the latter
is order αs. Since any GM-VFNS interpolates between the two, there are two possible
choices. One could simply adopt the absolute ordering, i.e. the same power of αs, above
and below the transition point Q = MH . But at order αs this would mean to use the
LO expression for the FFNS contribution and the NLO for the ZM-VFNS contribution.
In the TR/TR’ schemes instead adopt a relative ordering where LO FFNS goes with LO
ZM-VFNS, NLO FFNS goes with NLO ZM-VFNS and so on. The problem here is that
at NNLO this requires the knowledge of the order α3

s FFNS coefficient functions which
have not been calculated yet. In the MSTW NNLO analyses, however, the small-x and
threshold limits are employed to this purpose [43].

2.4 The FONLL Method

The FONLL scheme was first introduced in the context of heavy flavour (bottom) hadro-
production in Ref. [46]. It is based upon the idea of looking at both the massless and
massive scheme calculations as power expansions in the strong coupling constant αs,
and replacing the coefficients of the expansion in the former with their exact massive
counterparts in the latter, when available. The FONLL method has been subsequently
applied to DIS in Ref. [47].

The FONLL method is presently implemented in the NNPDF analyses since 2011.
The first set to implement it was the NNPDF2.1 set at NLO presented in Ref. [55], which
was at a later stage extended to NNLO in Ref. [56]. The implementation of the FONLL
method up to NNLO in the NNPDF framework is the central topic of this thesis and in
Chapter 3 a detailed description of the method will be given. In this chapter, instead,
we limit ourselves to a general introduction.

Exactly like the other GM-VFNS presented above, also the FONLL method is in-
tended to provide a framework capable to be accurate over a wide range of energies.
But differently from ACOT and TR, the FONLL method is simply based on the idea
of combining the FFNS with the ZM-VFNS and subtracting the double counting terms
between the two order by order in the expansion in powers of αs and ln(Q2/M2

H). In

6This relation is strictly valid only for FH
2 , while for FH

L it becomes a proportionally relation due to
requirement that FH

L is zero at Q = MH .
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practice, starting from the αs expansion of ZM-VFNS expression, one replaces all the
terms whose mass dependence is known with their exact massive expression.

Let us now see explicitly how the FONLL scheme works in the case of the heavy
quark structure functions FH

k [47]. Again the starting point are the structure functions
in the FFNS and in the ZM-VFNS. Given that in Chapter 3 we will work out the full
expressions of the FONLL scheme to NNLO, in the following we will not limit ourselves
to order αs as we did to illustrate the ACOT and the TR schemes. As a consequence,
eqs. (2.10) and (2.11) will need to be generalized to order α2

s. At order α
2
s it is no longer

true that only the gluon and the heavy quark H contribute to the structure function
FH
k , but also the light quark-initiated channels open up(7). Furthermore, the matching

conditions to splice schemes having different number of active flavours are necessarily
discontinuous at order α2

s, meaning that even performing the match at Q = MH , both
αs and PDFs present a step in the matching point.

For the sake of simplicity, for the rest of the discussion we will assume N light flavours
q and one single heavy flavour H having mass MH . Moreover, we take the factorization
and the renormalization scales µF and µR equal to each other and to the transferred
energy Q, i.e. µF = µR = µ = Q.

Under these assumptions, we can write in a more general form the structure functions
in the ZM-VFNS as:

FH,ZM
k (x,Q) =

∑

i=g,q,q,H,H

CZM
k,i (x,α

(N+1)
s (Q))⊗ f (N+1)

i (x,Q) . (2.35)

Notice that in eq. (2.35) the sum runs over gluon, light and heavy flavours and the
number of active flavours is explicitly shown in αs and in the PDFs. Here, indeed, the
heavy quarks are treated on the same footing as the light flavours and αs and PDFs
satisfy the standard evolution equations with (N + 1) flavours.

The expression for the structure functions in the FFNS is instead given by:

FH,FF

k (x,Q) =
∑

i=g,q,q

CFF
k,i

(
x,

MH

Q
,α(N)

s (Q)

)
⊗ f (N)

i (x,Q) . (2.36)

Here the sum runs only over gluon and light flavours and the number of active flavours
in the αs and PDFs is equal to N .

We recall here that the ZM coefficient functions CZM
k,i in eq. (2.35) at any given order

k in αs are obtained by setting explicitly MH = 0 in the calculation and the arising
IR singularities are subtracted in the MS scheme. This is equivalent to resumming the
logarithmic terms αs ln(Q/MH) up to NkLL.

The FFNS coefficient functions CFF
k,i in eq. (2.36), instead, are obtained retaining the

full dependence on MH which in turn works as a regulator for the IR singularities. This
is a pure NkLO fixed order calculation. Furthermore, in order to ensure the decoupling
of the heavy flavour H, only N active flavours are present.

In order to work out the FONLL method, we first need to express the structure

functions in the FFNS in eq. (2.36) in terms of α(N+1)
s and f (N+1)

i for i 1= H,H. Exactly

7This complication, apart from making the implementation much more involved, also causes an
ambiguity in the definition of heavy quark structure function which is absent up to order αs. We will
return on this issues in Chapter 3.
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like in the TR scheme, this is done using the matching conditions for αs and PDFs
reported in Refs. [57] and [48], respectively. In general, they have the form:

a(N+1)
s (Q) = a(N)

s (Q)

[
1 +

P∑

k=1

ck(L)
[
a(N)
s (Q)

]k
]

(2.37)

f (N+1)
i (x,Q) = f (N)

j (x,Q)

⊗



δijδ(1− x) +
P∑

k=1

[
a(N)
s (Q)

]k ∑

j=g,q,q

K(k)
ij (x, L)



 ,

where i, j = g, q, q,H,H and:

as ≡
αs(Q)

4π
, L ≡ ln

(
MH

Q

)
. (2.38)

Both the coefficients ck(L) and the functions K(k)
ij (x, L) are polynomials in L and they

have the general form:

ck(L) =
k∑

n=0

bnL
n

K(k)
ij (x, L) =

k∑

n=0

g(n)ij (x)Ln .

(2.39)

Inverting both the equations in eq. (2.37), in such a way to express α(N)
s in terms of

α(N+1)
s and f (N)

i in terms of f (N+1)
i , and plugging the result into eq. (2.36), one obtains

the expression for FH,FF

k in terms of α(N+1)
s and f (N+1)

i :

FH,FF

k (x,Q) =
∑

i=g,q,q

BFF
k,i

(
x,

MH

Q
,α(N+1)

s (Q)

)
⊗ f (N+1)

i (x,Q) , (2.40)

where the coefficient functions BFF
k,i are such that, substituting the matching conditions

given in eq. (2.37) into eq. (2.40), one gets back the original expression in eq. (2.36) up
to subleading terms. The expression given in eq. (2.40) for FH,FF

k allows one to avoid

any further reference to α(N)
s and f (N)

i .
In order to match the two expressions for FH

k in the ZM-VFNS, eq. (2.35), and in
the FFNS, eq. (2.40), we need to work out the perturbative expansion of the respective
coefficient functions.

In the ZM-VFNS at order NPLO (or better to say NPLL) we have that:

CZM
k,i (x,α

(N+1)
s (Q)) =

P∑

p=0

[
a(N+1)
s (Q)

]p
CZM,(p)
k,i (x)

(2.41)

=
P∑

p=0

[
a(N+1)
s (Q)

]p ∞∑

j=0

A(p,j)
k,i (x)

[
a(N+1)
s (Q)L

]j
,
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where the resummation of the logarithms L is embedded in the infinite series in j in the
second line of eq. (2.41). Ordering the powers of αs, eq. (2.41) can be rearranged in the
following way:

CZM
k,i (x,α

(N+1)
s (Q)) =

P∑

p=0

[
a(N+1)
s (Q)

]p p∑

j=0

A(p−j,j)
k,i (x)Lj

+ O
([

a(N+1)
s (Q)

]P+1
)

.

(2.42)

The massive FFNS coefficient functions BFF
k,i, instead, admit a fixed order expansion

of the form:

BFF
k,i

(
x,

MH

Q
,α(N+1)

s (Q)

)
=

P∑

p=0

[
a(N+1)
s (Q)

]p
BFF,(p)

k,i

(
x,

MH

Q

)
. (2.43)

Each of the perturbative contributions BFF,(p)
k,i to the FFNS coefficient functions in

eq. (2.43) can be decomposed into a power suppressed part, which vanishes when Q )
MH , and a logarithmically enhanced part which instead blows up in the same limit. In
particular, we can write:

BFF,(p)
k,i

(
x,

MH

Q

)
= BFF0,(p)

k,i (x, L) +O
(
MH

Q

)
, (2.44)

so that:

BFF,(p)
k,i

(
x,

MH

Q

)
−→

Q$MH

BFF0,(p)
k,i (x, L) . (2.45)

We can then define the so-called zero mass limit of the FFNS coefficient functions (FF0)
as follows:

BFF0
k,i

(
x, L,α(N+1)

s (Q)
)
=

P∑

p=0

[
a(N+1)
s (Q)

]p
BFF0,(p)

k,i (x, L) , (2.46)

from which we define the zero mass limit of the structure functions in the FFNS as:

FH,FF0

k (x,Q) =
∑

i=g,q,q

BFF0
k,i

(
x, L,α(N+1)

s (Q)
)
⊗ f (N+1)

i (x,Q) . (2.47)

Now, all the contributions to the FFNS coefficient functions in eq. (2.43) which do
not vanish when Q ) MH must also be present in the ZM-VFNS coefficient functions in
eq. (2.42). But this terms are exactly the FF0 coefficient functions defined in eq. (2.45).
Therefore, comparing eq. (2.42) with eq. (2.46), we deduce that:

BFF0,(p)
k,i (x, L) =

p∑

j=0

A(p−j,j)
k,i (x)Lj . (2.48)

This allows us to formulate the FONLL scheme as follows:

FH,FONLL

k (x,Q) = FH,FF

k (x,Q) + FH,ZM
k (x,Q)− FH,FF0

k (x,Q) . (2.49)
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The interpretation of eq. (2.49) is straightforward: we start from FH,ZM
k , then we subtract

from it all the constant and logarithmically enhanced terms subtracting FH,FF0

k , and

finally we replace these terms with the exact massive contributions adding FH,FF

k .
Now let us see how the FONLL scheme behaves in the two different energy regimes

Q ) MH and Q ! MH . Because of eq. (2.45), when Q ) MH the massive structure
functions FH,FF

k and FH,FF0

k cancel in eq. (2.49) so that FH,FONLL

k reduces to FH,ZM
k .

When instead Q ! MH , FH,FONLL

k tends to FH,FF

k because in this regime the difference

FH,ZM
k − FH,FF0

k , due to eq. (2.48) and to the fact that the logarithm L is not large, is
genuinely subleading in αs.

As a conclusion, the FONLL scheme has the features that a GM-VFNS needs to
have: it tends to the ZM-VFNS for Q ) MH and to the FFNS for Q ! MH .

It should be observed that near the threshold the difference FH,ZM
k −FH,FF0

k , though
formally subleading, could in practice be non-negligible. It may thus be convenient
to suppress this term through a suitable kinematic factor when Q is near MH . The
suppression can be obtained modifying eq. (2.49) in the following way:

FH,FONLL

k (x,Q) = FH,FF

k (x,Q)

+ Dth(Q)
[
FH,ZM
k (x,Q)− FH,FF0

k (x,Q)
]
,

(2.50)

where the empirical function Dth should be monotonically increasing, approach to one
when Q ) MH and be identically zero for Q ≤ MH . A suitable choice is then:

Dth(Q) = θ(Q2 −M2
H)

(
1−

M2
H

Q2

)2

. (2.51)

This particular choice guarantees a smooth transition from zero to one as Q increases,
ensuring also a continuous derivative in Q = MH . In Chapter 6 the impact of the
inclusion of the damping function Dth for the determination of the proton PDFs will be
discussed.

Finally, in Fig. 2.5 the results for F c
2 in the FONLL-C scheme, which is the order α2

s

implementation of the FONLL scheme (see Chapter 3), for two values of x are shown.
This proves that, like the ACOT and the TR schemes, also the FONLL scheme presents
a smooth transition from low Q, where it tends to the FFNS, to high Q, where it tends
to the ZM-VFNS.

2.5 The BMSN Method

The structure functions in the FONLL scheme eq. (2.49) may look similar to a pre-
scription suggested in Ref. [48], and then further discussed in Ref. [49] (see in particular
eq. (5) of the latter), sometimes referred to as the BMSN prescription. This scheme is
also based on the idea of combining computations performed in schemes which differ in
the number of active flavours. However, in the BMSN method the issue of using PDFs
defined in a single factorization scheme in all terms is not addressed (unlike in FONLL,

where it is accomplished by expressing everything in terms of α(N+1)
s and f (N+1)

i ). This
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Figure 2.5: F c
2 for x = 0.1 and x = 0.01 calculated using the FONLL-C scheme (see Sec. 3.1.2).

Also shown are the NNLO FFNS and ZM-VFNS predictions.

leads to inconsistent results beyond order αs, as stated in Ref. [49], where it is argued
that the inconsistency is however numerically small in practice.

Also, contributions proportional to the light or heavy quark electric charge are not
easily separated in the BMSN method, again leading to (possibly small [49]) inconsisten-
cies beyond order αs, unlike in FONLL where this separation can be treated in a fully
consistent way up to order α2

s as we will explicitly do in Chapter 3.
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Chapter 3

Implementation of the FONLL
Method

In this chapter the practical implementation of the FONLL scheme up to order α2
s will

be discussed. In order to elucidate the details of the method, in Sec. 3.1 we shall first
assume that the generic heavy quark structure functions FH

k refer to the electromagnetic
DIS structure functions, where only a virtual photon is exchanged between the incoming
lepton and hadron. The more general case of the electro-weak boson mediated DIS
structure functions will be instead presented in Sec. 3.2. Finally, in Sec. 3.3, the Mellin
space implementation of the FONLL scheme is discussed.

3.1 Practical Implementation

First of all, we need to write the FONLL heavy quark structure functions explicitly in
terms of coefficient functions and PDFs. To this end, we plug eqs. (2.35), (2.40) and
(2.47) into eq. (2.49), obtaining:

FH,FONLL

k =
∑

i=g,q,q

[
BFF

k,i + CZM
k,i −BFF0

k,i

]
⊗ f (N+1)

i +
∑

i=H,H

CZM
k,i ⊗ f (N+1)

i , (3.1)

where, to simplify the notation, in eq. (3.1) all the dependencies on x and Q have been
dropped. The sum on the r.h.s. of eq. (3.1) has been split in two pieces because the heavy
quark PDFs fH and fH are convoluted only with the ZM-VFNS coefficient functions.
This stems from the fact that heavy quark-initiated diagrams are present only in the ZM-
VFNS and not in the FFNS. Finally, PDFs fi and αs entering eq. (3.1) are all expressed
in the (N + 1) scheme. This is an important simplification that makes the method
particularly suitable for PDF fits. The price to pay is that the coefficient functions BFF

k,i
and BFF0

k,i are obtained from the combination of the standard FFNS coefficient functions
with the matching conditions.

The next step is the perturbative expansion in αs of eq. (3.1). This is the right point
to get back to the issue that we raised in the previous chapter regarding the definition
of heavy quark structure function. In Sec. 2.1, to define the heavy quark structure
functions, we required a heavy quark in the final state as this is indeed the only possible
experimental definition. Notwithstanding this fact, from the theoretical point of view
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this is not a particularly suitable definition because the resulting observable is affected
by final-state mass singularities in the limit MH → 0, which are due to the absence
of virtual diagrams that prevent the cancellation of the collinear and soft singularities
arising from the real diagrams [47]. For this reason the following definition is adopted
here: the heavy quark structure functions FH

k are obtained from the inclusive structure

functions Fk when only the electric charge eH of the heavy quark H is different from

zero. In practice this means that the incoming virtual vector boson γ∗ couples only to
H and not to the other light quarks. It can be show that this definition is free of mass
singularities for MH → 0.

Now we can expand eq. (3.1) using eqs. (2.41), (2.43) and (2.46) as follows:

FH,FONLL

k = e2H

P∑

p=1

[
a(N+1)
s

]p [
BFF,(p)

k,g + CZM,(p)
k,g −BFF0,(p)

k,g

]
⊗ f (N+1)

g

+ e2H
∑

i=q,q

P∑

p=2

[
a(N+1)
s

]p [
BFF,(p)

k,i + CZM,(p)
k,i −BFF0,(p)

k,i

]
⊗ f (N+1)

i

+ e2H
∑

i=H,H

P∑

p=0

[
a(N+1)
s

]p
CZM,(p)
k,i ⊗ f (N+1)

i . (3.2)

Notice that the overall factor e2H , which had been omitted in Chapter 2, has been restored
here.

The first line on the r.h.s. of eq. (3.2) corresponds to the gluon-initiated diagrams.
All such diagrams, up to order α2

s, are shown in Fig. 3.1. Notice that the LO diagram
is order αs, and this is reflected in the sum over p in the first line of eq. (3.2) that starts
from one. Furthermore, in the FONLL scheme both ZM-VFNS and FFNS contribute to

this channel, thus all the coefficient functions BFF,(p)
k,g , CZM,(p)

k,g and BFF0,(p)
k,g are present.

The second line on the r.h.s. of eq. (3.2), instead, corresponds to the light quark-
initiated diagrams. Up to order α2

s, the only diagram that contributes to this channel is
shown in Fig. 3.2. This is an order-α2

s diagram and thus the sum over p in the second
line of eq. (3.2) starts from two. Again, both ZM-VFNS and FFNS contribute here.

Finally, the third line on the r.h.s. of eq. (3.2) corresponds to the heavy quark-
initiated diagrams. Given that in the FFNS there are no such diagrams, this channel is

purely ZM-VFNS, and indeed only the ZM coefficient functions CZM,(p)
k,i appear. In this

case, the first non-vanishing order is α0
s, thus the sum over p starts from zero.

In order to completely work out the FONLL scheme for the heavy quark structure
functions FH

k , one essentially needs to express the r.h.s. of eq. (3.2) in terms of the basic
ingredients currently available, that are:

• the ZM-VFNS coefficient functions CZM,(p)
k,i whose exact expressions are presently

known up to order α3
s [58, 59, 60, 61, 62, 63],

• the FFNS coefficient functions CFF,(p)
k,i and CFF0,(p)

k,i , whose exact expressions are

known, only for k = 1, 2 and not for k = 3, up to order α2
s for the Neutral Current

process [64] and up to order αs for the Charged Current process [65],



3.1. PRACTICAL IMPLEMENTATION 37

O(αs) = O(α2
s) =

Figure 3.1: Gluon-initiated diagrams contributing to the heavy quark structure functions FH
k

up to order α2
s according to the definition given in the text. In these diagrams the thicker lines

correspond to the heavy quark H while the thinner lines correspond to any light quark.

• the matching conditions for αs and PDFs given by the functions ck(L) andK(k)
ij (x, L)

in eq. (2.39), which are currently known up to order α2
s [48].

Starting from expansion in terms α(N)
s of the massive coefficient functions:

CFF
k,i =

∑

p

[
a(N)
s

]p
CFF,(p)
k,i and CFF0

k,i =
∑

p

[
a(N)
s

]p
CFF0,(p)
k,i , (3.3)

where the first P terms are assumed to be known, what we need to do in practice is to
solve the equations:

∑

p

[
a(N+1)
s

]p
Bm,(p)

k,i ⊗ f (N+1)
i =

∑

p

[
a(N)
s

]p
Cm,(p)
k,i ⊗ f (N)

i (3.4)

with m = FF, FF0, with respect to Bm,(p)
k,i order by order, using the matching condi-

tions for αs and PDFs given in eq. (2.37). This requires the inversion of the matching
conditions in order to express the quantities in the N -flavour scheme in terms of the
corresponding quantities in the (N + 1)-flavour scheme.

In the light quark-initiated channel the first non-vanishing order is α2
s, therefore

eq. (3.4) reduces to:

[
a(N+1)
s

]2
Bm,(2)

k,q ⊗ f (N+1)
q =

[
a(N)
s

]2
Cm,(2)
k,q ⊗ f (N)

q , (3.5)
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O(α2
s) =

Figure 3.2: Light quark-initiated diagram contributing to the heavy quark structure functions
FH
k up to order α2

s according to the definition given in the text.

and given that a(N)
s = a(N+1)

s +O(α2
s) and f (N)

i = f (N+1)
i +O(αs) (cf. eq. (2.37)), one

does not really need to invert the matching conditions because:

[
a(N+1)
s

]2
Bm,(2)

k,q ⊗ f (N+1)
q =

[
a(N+1)
s

]2
Cm,(2)
k,q ⊗ f (N+1)

q +O(α3
s) , (3.6)

so that:
Bm,(2)

k,q = Cm,(2)
k,q . (3.7)

Of course, the corresponding quantity for the antiquark q is identical to that for the
quark q. Therefore, in the second line of the r.h.s. of eq. (3.2), up to order α2

s, one needs

to replace Bm,(p)
k,i with Cm,(p)

k,i .
For the gluon-initiated channel, instead, the matching conditions need to be explicitly

inverted. However, since in this case the first non-vanishing order is αs, we just need to
invert the matching conditions only up to order αs.

From eq. (2.37), for αs we have:

a(N+1)
s (Q) = a(N)

s (Q)
[
1 + c1(L)a

(N)
s (Q) +O(α2

s)
]
, (3.8)

whose inverse is:

a(N)
s (Q) = a(N+1)

s (Q)
[
1− c1(L)a

(N+1)
s (Q) +O(α2

s)
]
. (3.9)

Similarly, for the PDFs we have:

f (N+1)
i =



δijδ(1− x) + a(N)
s

∑

j=g,q,q

K(1)
ij (x, L) +O(α2

s)



⊗ f (N)
j , (3.10)

that, again, are easily inverted as:

f (N)
i =



δijδ(1− x)− a(N+1)
s

∑

j=g,q,q

K(1)
ij (x, L) +O(α2

s)



⊗ f (N+1)
j . (3.11)



3.1. PRACTICAL IMPLEMENTATION 39

Now, plugging eqs. (3.9) and (3.11) into eq. (3.4), for the gluon coefficient functions
one gets:

a(N+1)
s Bm,(1)

k,g ⊗ f (N+1)
g +

[
a(N+1)
s

]2
Bm,(2)

k,g ⊗ f (N+1)
g

= a(N+1)
s Cm,(1)

k,g ⊗ f (N+1)
g

+
[
a(N+1)
s

]2 [
Cm,(2)
k,g − c1(L)δ(1− x)−K(1)

gg (x, L)
]
⊗ f (N+1)

g +O(α3
s) .

(3.12)

In the third line of eq. (3.12), we have used the fact that K(1)
qg (x, L) = 0 [48]. Moreover,

quite fortuitously, it turns out that:

K(1)
gg (x, L) = −c1(L)δ(1− x) , (3.13)

so that the second and the third term in the square brackets in the third line of eq. (3.12)
cancel. This leaves us with:

Bm,(1)
k,g = Cm,(1)

k,g

Bm,(2)
k,g = Cm,(2)

k,g .

(3.14)

Finally, inserting eqs. (3.7) and (3.14) into eq. (3.2) and truncating the series at
order α2

s (P = 2), we have that the heavy quark structure functions in the FONLL
scheme in terms of the basic ingredients take the following form:

FH,FONLL

k =
2∑

p=1

[
a(N+1)
s

]p [
CFF,(p)
k,g + CZM,(p)

k,g − CFF0,(p)
k,g

]
⊗ f (N+1)

g

+
[
a(N+1)
s

]2 ∑

i=q,q

[
CFF,(2)
k,i + CZM,(2)

k,i − CFF0,(2)
k,i

]
⊗ f (N+1)

i

+
∑

i=H,H

2∑

p=0

[
a(N+1)
s

]p
CZM,(p)
k,i ⊗ f (N+1)

i +O(α3
s) . (3.15)

3.1.1 Light Structure Functions at order α2
s

So far we have only considered the heavy quark structure functions FH
k , whose exact

definition has been given above. Given this definition, it is easy to deduce the comple-
mentary definition of light quark structure functions F l

k as being the part of the inclusive
structure functions Fk setting to zero the electric charge of all the heavy quarks. In prac-
tice, this means that the incoming virtual photon γ∗ couples only to the light quarks.

In this section we will see how the light structure functions F l
k are obtained in the

FONLL framework. The starting point is the definition of FONLL light structure func-
tion, which is identical to that of heavy quark structure function given in eq. (2.49):

F l,FONLL

k (x,Q) = F l,FF

k (x,Q) + F l,ZM
k (x,Q)− F l,FF0

k (x,Q) . (3.16)

In this case, however, the expansion in powers of αs gives much simpler results. In
fact, the first diagrams involving heavy quarks which contribute to the light structure
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functions F l,FONLL

k are the order α2
s light quark-initiated ones shown in Fig. 3.3, where a

gluon radiates a heavy-quark pair. In practice, this means that(1):

Figure 3.3: Light quark-initiated diagrams contributing to the light quark structure functions
F l
K involving the heavy quark H.

F l,FONLL

k (x,Q) = F l,ZM
k (x,Q) +

[
a(N+1)
s

]2
F l,GR,(2)
k +O(α3

s) , (3.17)

where:

F l,GR,(2)
k =

∑

i=q,q

e2i

[
BFF,(2)

k,GR
−BFF0,(2)

k,GR

]
⊗ f (N+1)

i (3.18)

is the contribution associated to the diagrams in Fig. 3.3. Now we just need to write

BFF,(2)
k,GR

and BFF0,(2)
k,GR

, i.e. the massive coefficient functions in the (N +1)-flavour scheme,

in terms of the coefficient functions CFF,(2)
k,GR

and CFF0,(2)
k,GR

, that are the “standard” mas-
sive coefficient functions in the N -flavour scheme. To this end, we use the very same
procedure followed to obtain eq. (3.12) but we omit here the calculations that, involving
also order α0

s coefficient functions are pretty lengthy, and only quote the result:

Bm,(2)
k,GR

= Cm,(2)
k,GR

− c1C
ZM,(1)
k,q −K(2)

qq , (3.19)

with m = FF, FF0.
Once also the light structure functions F l,FONLL

k has been defined in the FONLL
scheme, taking the flavours up, down and strange as light and charm, bottom and top
as heavy, one can obtain the inclusive FONLL structure functions F FONLL

k as the sum of
light and heavy components as follows:

F FONLL
k (x,Q) = F l,FONLL

k (x,Q) +
∑

H=c,b,t

FH,FONLL

k (x,Q) . (3.20)

1Actually, this is not as straightforward as it looks. In fact, in principle contributions coming from
the inversion of the matching conditions could already appear at order αs. However, due to the fact that
in eq. (2.37) K(1)

qq (x, L) = 0 [48], it does not happen.
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3.1.2 Perturbative Ordering

As already mentioned in Chapter 2, the perturbative ordering in matching ZM-VFNS
and FFNS in the FONLL structure functions is somehow a matter of definition. The
central point is that the LO contribution to heavy quark production in the ZM-VFNS is
order α0

s (heavy quark-initiated diagram) while in the FFNS it is order αs (gluon-initiated
diagrams). There are then two possibilities: either the two schemes are combined order
by order in αs (absolute ordering) or the combination is done matching LO with LO,
NLO with NLO and so on (relative ordering). Until now we have worked implicitly
assuming the absolute ordering in the construction of the FONLL structure functions.
However, this issue is in general non-trivial because in a global parton fit one may want
to combine data for observables whose LO starts at different orders in αs.

One option is then to simply adopt an absolute perturbative ordering, whereby at
NLO all quantities are computed at order αs. We will refer to it as scheme A henceforth.

However, we can also adopt the relative approach and use different accuracies in
αs but same relative ordering in the computation of the different contributions to the
FONLL structure functions. At NLO, it is then necessary to compute the ZM coefficient
functions CZM

k,i only up αs because this is the NLO in the ZM sector, but all massive
coefficient functions BFF

k,i and their zero-mass limits BFF0
k,i should be computed to order

α2
s in order to have the same relative accuracy in the massive sector. However, to ensure

consistency of the subtraction of the large logarithms it is sufficient to include only
logarithmic terms in BFF0

k,i , because the corresponding non-logarithmic terms are not
included in the massless coefficient functions CZM

k,i . We will refer to this as scheme B.

We can finally also pursue a full order α2
s computation, by simply performing the

absolute-ordered computation of scheme A to one extra order. We will refer to this as
scheme C.

In summary, there are three options for perturbative ordering, namely:

• Scheme A: the order αs FONLL of eqs. (3.15) and (3.17).

• Scheme B: the order αs ZM coefficient functions and retaining the order α2
s con-

tributions to the massive coefficient functions in eqs. (3.15) and (3.17). In this
case, however, the massive expressions exceed in accuracy the massless ones when
Q $ MH . Thus, in the zero-mass limit expressions of the FFNS coefficient func-
tions, the non-logarithmic terms of order α2

s should not be included.

• Scheme C: the order α2
s FONLL of eqs. (3.15) and (3.17).

We should finally remark that schemes A and B, being formally NLO schemes, require
αs and PDFs evolved using the respective NLO evolution equations. The scheme C
instead, being a NNLO scheme, requires the NNLO evolution.

3.2 Electro-weak Structure Functions

In the previous sections we have considered the implementation of the DIS heavy quark
structure functions only in the case in which the heavy quark was produced in an
electron-hadron process via the exchange of virtual photon γ∗. Strictly speaking, this
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is correct only if Q ( MW , i.e. when the transferred energy is not sufficient to gener-
ate a massive electro-weak vector boson Z0 or W±. If this is not the case, the above
treatment must be generalized and there are essentially two categories to be considered:
the Neutral Current (NC) processes, where a neutral massive virtual boson γ∗/Z0 is
exchanged, and the Charged Current (CC) processes, where instead a charged massive
virtual boson W± is exchanged.

It is straightforward to generalize the above discussion to the case of a general NC
process. The only modifications needed with respect to pure photon exchange is the
replacement of the electric charges with the corresponding weak charges.

In the case of the structure functions F1 and F2, one has to perform the following
replacement:

e2q → Bq(Q) = e2q − 2eqVeVqPZ(Q) + (V 2
e +A2

e)(V
2
q +A2

q)P
2
Z(Q) , (3.21)

where:

PZ(Q) =
1

4 sin2 θW (1− sin2 θW )

(
Q2

Q2 +M2
Z

)
, (3.22)

being θW the weak mixing angle, eq the electric charge of the quark flavour q and Vf

and Af , with f = q, e, the vector and axial couplings of the fermion f to the Z0 boson.
The specific values of the couplings are collected in Tab. 3.1.

f ef Vf Af

u, c, t +2
3 +1

2 − 4
3 sin

2 θW +1
2

d, s, b −1
3 −1

2 + 2
3 sin

2 θW −1
2

νe, νµ, ντ 0 +1
2 +1

2

e, µ, τ −1 −1
2 + 2 sin2 θW −1

2

Table 3.1: Coupling of fermions to the Z0 boson.

The structure function F3, instead, is absent in a purely electromagnetic scattering.
In fact, it embodies the parity violating part of the scattering and it appears only when
the Z0 boson starts contributing. The weak charge to associate to the quark flavour q
in F3 is given by:

Dq(Q) = −2eqAqAePZ(Q) + 4VqAqVeAeP
2
Z(Q) . (3.23)

The generalization to CC process is slightly more complicated. In fact, here we need
a different definition for the heavy structure functions and, consequently, for the light
ones. To this end, we consider the general form of the inclusive CC proton structure
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functions from neutrino scattering F ν
k , writing explicitly the CKM matrix elements(2):

F ν
k = 2

{
Ck,q ⊗

[ (
|Vud|2 + |Vcd|2 + |Vtd|2

)
fd

±
(
|Vud|2 + |Vus|2 + |Vub|2

)
fu

+
(
|Vus|2 + |Vcs|2 + |Vts|2

)
fs

±
(
|Vcd|2 + |Vcs|2 + |Vcb|2

)
fc

+
(
|Vub|2 + |Vcb|2 + |Vtb|2

)
fb

±
(
|Vtd|2 + |Vts|2 + |Vtb|2

)
ft

]

+ cCC
g Ck,g ⊗ fg

}
,

(3.24)

where the + signs in eq. (3.24) have to be taken for k = 1, 2 and the − signs for k = 3,
moreover:

cCC
g ≡ 2

∑

i=u,c,t

∑

j=d,s,b

|Vij |2 . (3.25)

The CC anti-neutrino structure functions F ν
k can be easily obtained from eq. (3.24)

replacing each PDF with the PDF of the respective antiquark and, only for k = 3,
changing the overall sign.

As in the NC heavy quark structure functions, a suitable definition is based on the
use of the couplings, which in this case are the CKM matrix elements: such a definition is
indeed free of mass singularity when MH → ∞. We adopt then the following definitions:

1. the CC light structure functions are composed by the terms of eq. (3.24) which
are proportional to those CKM matrix elements containing only light flavours (i.e.
u, d and s),

2. the CC heavy structure functions associated to the heavy flavour H are instead
given by the terms proportional to VHK or VKH , such that MH > MK .

In practice, this means dividing the CKM matrix in the following way:

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 (3.26)

where the red terms contribute to the light structure functions, the blue terms to the
charm, the green terms to the bottom and the violet terms to the top structure functions.

This definition, that may look a bit peculiar, turns out to be useful when mass effects
are taken into account. In fact, one does not want bottom mass effects to contribute to
the charm structure functions and this definition is formulated in such a way that, for a
given heavy flavour H, no flavour heavier than H itself enters the respective structure
functions. In particular, only light flavours contribute to the light structure functions.

2The form eq. (3.24) is strictly valid in the ZM-VFNS and using the unitarity of the CKM matrix it
reduces to a much simpler formula where the CKM matrix element do not enter at all (cf. eqs. (2.39)-
(2.42) of Ref. [66]). However, the FFNS form can be obtained setting to zero the heavy quark PDFs in
eq. (3.24) and limiting only to the light flavours the sum in eq. (3.25).
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Putting into practice this recipe, the explicit form of the CC structure functions is
given by:

F ν,l
k = 2

{
Ck,q ⊗

[
|Vud|2fd +

(
|Vud|2 + |Vus|2

)
fu + |Vus|2fs

]

+ 2
(
|Vud|2 + |Vus|2

)
Ck,g ⊗ fg

}

F ν,c
k = 2

{
Ck,q ⊗

[
|Vcd|2(fd + fc) + |Vcs|2(fs + fc)

]

+ 2
(
|Vcd|2 + |Vcs|2

)
Ck,g ⊗ g

}

F ν,b
k = 2

{
Ck,q ⊗

[
|Vub|2(fu + fb) + |Vcb|2(fc + fb)

]

+ 2
(
|Vub|2 + |Vcb|2

)
Ck,g ⊗ fg

}

F ν,t
k = 2

{
Ck,q ⊗

[
|Vtd|2(fd + ft) + |Vts|2(fs + ft) + |Vtb|2(fb + ft)

]

+ 2
(
|Vtd|2 + |Vts|2 + |Vtb|2

)
Ck,g ⊗ fg

}
,

(3.27)

for k = 1, 2 and:

F ν,l
3 = 2

{
C3,q ⊗

[
|Vud|2fd −

(
|Vud|2 + |Vus|2

)
fu + |Vus|2fs

]

+
(
|Vud|2 + |Vus|2

)
C3,g ⊗ fg

}

F ν,c
3 = 2

{
C3,q ⊗

[
|Vcd|2(fd − fc) + |Vcs|2(fs − fc)

]

+
(
|Vcd|2 + |Vcs|2

)
C3,g ⊗ fg

}

F ν,b
3 = 2

{
C3,q ⊗

[
|Vub|2(−fu + fb) + |Vcb|2(−fc + fb)

]

+
(
|Vub|2 + |Vcb|2

)
C3,g ⊗ fg

}

F ν,t
3 = 2

{
C3,q ⊗

[
|Vtd|2(fd − ft) + |Vts|2(fs − ft) + |Vtb|2(fb − ft)

]

+
(
|Vtd|2 + |Vts|2 + |Vtb|2

)
C3,g ⊗ fg

}
.

(3.28)

Finally, it is easy to verify that:

F ν
k (x,Q) = F ν,l

k (x,Q) +
∑

H=c,b,t

F ν,H
k (x,Q) . (3.29)

Having eqs. (3.27) and (3.28) for F ν
k , one can construct the respective FONLL struc-

ture functions following the very same procedure described in Sec. 3.1. However, while
the full order α2

s ZM CC coefficient functions are known (being identical to the NC ones),
the order α2

s massive CC are not available yet. Only their asymptotic Q ) MH limit [67]
and their threshold behavior [68] are currently known, so that the FONLL can be fully
implemented only up to order αs. Nonetheless, a partial order α2

s implementation, where
the respective massive coefficient functions are set to zero, can still be employed.
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3.3 Mellin Space Implementation

In order to illustrate how the FONLL scheme is implemented in the NNPDF code, we
start recalling here that a generic structure function F is given by the Mellin convolution
of coefficient functions with PDFs:

F (x,Q) =
∑

i

Ci(x,Q)⊗ fi(x,Q) . (3.30)

However, one is usually interested in expressing all the observables in terms of the PDFs
fi at some initial scale Q0. To do so, one must solve the DGLAP equation whose solution
can be written again as the following Mellin convolution:

fi(x,Q) =
∑

j

Γij(x,Q,Q0)⊗ fj(x,Q0) , (3.31)

where Γij(x,Q,Q0) are the evolution operators that evolve PDFs from the scale Q0 to
the scale Q. Plugging eq. (3.31) into eq. (3.30), we get:

F (x,Q) =
∑

ij

Ci(x,Q)⊗ Γij(x,Q,Q0)⊗ fj(x,Q0) . (3.32)

The implementation of eq. (3.32) in a numerical code can follow (at least) two ways.
The first is the direct numerical integration of the double convolution between coeffi-

cient functions, evolution operators and PDFs. This, of course, requires also a numerical
solution of the DGLAP equation, which is an integro-differential equation. This is cer-
tainly the most direct and intuitive way to give a prediction for F (x,Q). This approach,
however, strongly relies on numerical algorithms given that the convolutions and the
solution of the DGLAP equation cannot be performed analytically.

A second and alternative approach, adopted by the NNPDF collaboration, allows
for a more analytical treatment of the problem and is the so-called Mellin space (or N -
space) method. This is based on the Mellin transformation which, for a function f(x),
is defined as:

f(N) ≡ M [f(x)] (N) =

∫ 1

0
dx xN−1f(x) , N ∈ C . (3.33)

As is well known, the great advantage of the Mellin transformation is that the Mellin
convolution, that understands an integral over the Bjorken variable x, in the N -space is
turned into a simple product.

As a consequence, eq. (3.32) in N -space takes the simpler multiplicative form:

F (N,Q) =
∑

ij

Ci(N,Q)Γij(N,Q,Q0)fj(N,Q0) . (3.34)

In addition, the N -space evolution operators Γij(N,Q,Q0) are the solutions of the
DGLAP equation in the N -space that is no longer an integro-differential equation but
a much simpler first order differential equation that can be solved analytically.

The better analytical control of the Mellin method with respect to the direct x-space
solution however comes with a price to be paid.
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First of all, it requires the analytical Mellin transform of all the expressions involved,
in particular coefficient functions and evolution operators(3). This point will be exten-
sively discussed later.

Secondly, once the structure functions in the N -space have been obtained, in order
to have a prediction that can be compared to data, one needs to get back to the x-space.
This requires the inverse Mellin transformation whose definition is:

f(x) =
1

2πi

∫ c+i∞

c−i∞
dN x−Nf(N) , (3.35)

where the real number c has to be such that the integral
∫ 1
0 dx xc−1f(x) is absolutely

convergent. Hence c has to lie to the right of the rightmost singularity of f(N) in the
complex plane. The contour of the integration in eq. (3.35) is shown in Fig. 3.4 and
denoted by the green line while the (hypothetical) poles of f(N) by the blue crosses.

Under the assumption that f(N) is an analytical (or holomorphic) function, the
Cauchy theorem states that one can deform the integration path in a continuous way
without changing the result of the integral, provided that no pole of the function f(N)
is crossed during the deformation. This allows us to cleverly choose a different path that
makes the solution of the integral in eq. (3.35) easy to implement in a numerical code.
A possible choice is the so-called Talbot path CT , such that eq. (3.35) is equivalent to:

f(x) =
1

2πi

∫

CT

dN x−Nf(N) , (3.36)

where:
CT : {N(θ) = rθ(cot θ + i); θ ∈ (−π,+π)} (3.37)

being r a parameter possibly depending only on x. The Talbot path in eq. (3.37) is
showed in Fig. 3.4 and denoted by the red line.

Performing a variable substitution in eq. (3.36) using eq. (3.37) and defining t ≡
− lnx, one gets:

f(x) =
1

2πi

∫ +π

−π
dθ

dN(θ)

dθ
etN(θ)f(N(θ))

=
r

2π

∫ +π

−π
dθ [1 + iσ(θ)] etN(θ)f(N(θ)) ,

(3.38)

with:
σ(θ) = θ + cot θ(θ cot θ − 1) . (3.39)

From eq. (3.37) one can easily see that N(−θ) = N∗(θ), while from eq. (3.39) it is evident
that σ(θ) is an odd function of θ. Moreover, f(N) being the Mellin transform of a real
function, one automatically has that f(N∗) = f∗(N). Using this information, one gets:

f(x) =
r

π

∫ +π

0
dθRe

{
[1 + iσ(θ)] etN(θ)f(N(θ))

}
, (3.40)

3In principle also the Mellin transform of the PDFs would be required but, using the so called
FastKernel method [69], one can essentially keep the second convolution on the r.h.s. of eq. (3.32)
performing the integration interpolating over an x-space grid with a set of cubic Hermite polynomials.
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Figure 3.4: Talbot path on the N plane.

where Re{ . . . } is the real part of its argument. Finally, eq. (3.40) can be solved numer-
ically using, for instance, the trapezoidal approximation.

Once we know how to get back from the N -space to the x-space, we can go back
to the question of the analytical Mellin transforms of coefficient functions and evolution
operators appearing in eq. (3.34). We will treat this issue separately for splitting func-
tions, on which evolution operators depend, and coefficient functions in the following
sections.

3.3.1 Splitting Functions

The splitting functions Pij(x, µ) entering the DGLAP equation were already introduced
in Chapter 1. As is well known, they admit the perturbative expansion:

Pij(x, µ) =
m∑

k=0

aks(µ)P
(k)
ij (x) , (3.41)

where the coefficients of the expansion are presently known up to three loops (i.e. m =

2) [16, 19, 20, 21, 22]. The LO contributions to eq. (3.41) [16], two of which (P (0)
qq and

P (0)
gq ) were already given in Chapter 1, are compact enough and we report them in here
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along with the corresponding splitting diagrams:

P (0)
qq (x) = 2CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]x
1− x

P (0)
gq (x) = 2TR

[
x2 + (1− x)2

]1− x
x

P (0)
gq (x) = 2CF

[
1 + (1− x)2

x

]
1− x

x

P (0)
gq (x) = 4CA

[
x

(1− x)+
+

1− x

x
+ x(1− x)

]
+ δ(1− x)

11CA − 4NfTR

3
.

1− x
x

(3.42)

CF , TR and CA being the usual SU(3) color factors:

CF =
4

3
, TR =

1

2
, CA = 3 . (3.43)

Notice that in the splitting functions in eq. (3.42) the so-called plus prescription appears
which is meant to regulate the soft x → 1 singularities. Its definition, when the integra-
tion bounds are 0 and 1 has already been given in eq. (1.16). However, given the generic
function f(x), the following more general definition that holds for any integration bound
can be given:

[f(x)]+ ≡ lim
β→0

[
θ(1− β − x)f(x)− δ(1− β − x)

∫ 1−β

0
dy f(y)

]
. (3.44)

Using eq. (3.44), it is easy to derive eq. (1.16) as a special case for the function 1/(1−x).
The plus prescription is an important ingredient for the computation of the Mellin
transform of functions like those appearing in eq. (3.42). In fact, using eqs. (3.33)
and (3.44) the Mellin transform of the splitting functions in eq. (3.42), called anomalous
dimensions, is given by:

P (0)
qq (N) = 2CF

[
1

N(N + 1)
− 2S1(N) +

3

2

]

P (0)
gq (N) = 2TR

[
2 +N +N2

N(N + 1)(N + 2)

]

P (0)
qg (N) = 2CF

[
2 +N +N2

N(N2 − 1)

]

P (0)
gg (N) = 4CA

[
1

N(N − 1)
+

1

(N + 1)(N + 2)
− S1(N) +

11

12

]
−

4

3
NFTR .

(3.45)



3.3. MELLIN SPACE IMPLEMENTATION 49

The results in eq. (3.45) are given in terms of the harmonic function S1(N) whose
definition is [70]:

Sl(N) ≡ ζ(l)−
(−1)l

(l − 1)!
ψ(l−1)(N − 1) . (3.46)

Here ζ(1) = γE, where γE is the Euler-Mascheroni constant, while ζ(l > 1) is the Riemann
ζ-function evaluated in the integer l, and ψ(l−1) is the l-th logarithmic derivative of the
Euler Γ-function also called polygamma.

The NLO and NNLO contributions to the splitting functions P (1)
ij (x) and P (2)

ij (x),

reported in Refs. [21, 22], are definitely more involved than P (0)
ij (x) and so are their Mellin

transforms. However, while the expressions for P (1)
ij (x), though pretty lengthy, are still

reasonably short to be implemented in an efficient numerical code, the expressions for

P (2)
ij (x) are instead huge and would require many calls to special external functions (cf .

for instance eqs. (4.9), (4.10) and (4.11) of Ref. [21] and eqs. (3.10), (3.11), (3.12) and
(3.13) of Ref. [22]). This makes their implementation very inefficient. It is then useful to
have at one’s disposal also compact approximate representations [70] involving, besides
powers of x, only simple functions like:

D0 =
1

(1− x)+
, L1 = ln(1− x), L0 = ln(x) , (3.47)

and possibly their powers.
These compact expressions are determined fitting a template functions, constructed

using the simple functions in eq. (3.47) to the exact expressions. Besides the regular
functions in eq. (3.47), also a “local” term proportional to δ(1 − x) could be included
in the parametrization, and its numerical coefficient is determined fitting the template
expression to the exact expression of the first Mellin moments of the coefficient functions.

An example of such compact parametrization is the pure-singlet component P (2)
ps of

splitting functions P (2)
qq ≡ P (2)

ps + P (2)
ns whose parametrized form is [22]:

P (2)
ps (x) $

{
Nf

(
− 5.926L3

1 − 9.751L2
1 − 72.11L1 + 177.4 + 392.9x

−101.4x2 − 57.04L0L1 − 661.6L0 + 131.4L2
0 − 400/9L3

0

+160/27L4
0 − 506.0x−1 − 3584/27x−1L0

)

+ N2
f

(
1.778L2

1 + 5.944L1 + 100.1− 125.2x+ 49.26x2

−12.59x3 − 1.889L0L1 + 61.75L0 + 17.89L2
0 + 32/27L3

0

+256/81x−1
)}

(1− x) .

(3.48)

Except for x values very close to zeros of the exact expressions, such parametrizations
deviate from the exact results typically by less than one part in thousand, which is
a more than sufficient accuracy for any foreseeable numerical application. In Fig. 3.5

we show the comparison for P (2)
ps between the exact result and the respective compact

parametrization given in eq. (3.48) [22]: no visible difference is observed.
As a consequence of such a simple parametrization, the Mellin transform of the

splitting functions can be readily obtained from them to a perfectly sufficient accuracy
and their expressions involve only simple harmonic functions Sl(N).
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Figure 3.5: The order α3
s pure-singlet splitting function, multiplied by x for display purposes:

exact vs. parametrization [22].

The splitting functions are responsible for the PDF evolution through the use of the
DGLAP equation. In addition, if the evolution is performed in the VFNS (as required
by the FONLL method) where the number of active flavours changes when the heavy
quark mass thresholds are crossed, also the PDF matching conditions [48] play a role in
the evolution. Therefore, for an N -space implementation, also the Mellin transform of
the PDF matching conditions needs to be evaluated.

In order to assess the accuracy of the parametrization discussed above as well as
the correctness of the implementation, a benchmark of the NNLO PDF evolution in the
VFNS as implemented in the NNPDF framework against the Les Houches benchmark
tables [71] has been performed [56]. In Table 3.2 the relative difference εrel between the
NNPDF implementation and the benchmark tables of Ref. [71] for various combinations
of PDFs is shown. It is clear that the accuracy is perfectly satisfactory for precision
phenomenology.

3.3.2 Coefficient Functions

Now we come to the issue of the Mellin transform of the coefficient functions. First
of all, looking for instance at eq. (3.15) we notice that the FONLL method to order α2

s

needs three kinds of coefficient functions: the ZM coefficient functions CZM,(p)
k,i , the FFNS

coefficient functions CFF,(p)
k,i and the zero-mass limit of the FFNS coefficient functions

CFF0,(p)
k,i , all of them for p = 0, 1, 2 when possible. In the next sections we will address,

one by one, the issue of Mellin transforming these typologies of coefficient functions.

ZM Coefficient Functions

Let us first discuss the ZM coefficient functions CZM,(p)
k,g . As we already mentioned,

the order α2
s x-space expressions for the ZM coefficient functions are known since long
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x εrel(fu − fu) εrel(fd − fd) εrel(fd − fu) εrel(fd + fu) εrel(fs + fs) εrel(fg)

10−7 2.5 · 10−4 2.5 · 10−4 3.4 · 10−5 2.7 · 10−5 4.7 · 10−5 5.7 · 10−5

10−6 1.5 · 10−4 1.0 · 10−4 1.0 · 10−4 6.1 · 10−5 5.0 · 10−5 5.8 · 10−5

10−5 1.7 · 10−4 1.6 · 10−4 1.1 · 10−4 5.2 · 10−5 3.6 · 10−5 7.8 · 10−5

10−4 1.6 · 10−4 1.7 · 10−4 6.5 · 10−5 4.3 · 10−5 7.7 · 10−5 8.6 · 10−5

10−3 9.4 · 10−5 6.9 · 10−5 1.9 · 10−5 7.6 · 10−5 7.5 · 10−5 1.0 · 10−4

10−2 2.9 · 10−4 3.2 · 10−4 4.5 · 10−4 1.0 · 10−4 1.3 · 10−4 1.2 · 10−4

10−1 2.6 · 10−4 3.8 · 10−4 5.9 · 10−4 5.2 · 10−4 3.4 · 10−4 7.5 · 10−5

3 · 10−1 1.3 · 10−5 1.3 · 10−5 4.7 · 10−5 1.3 · 10−5 9.9 · 10−5 4.8 · 10−5

5 · 10−1 3.8 · 10−5 5.8 · 10−5 3.1 · 10−5 4.2 · 10−4 8.5 · 10−4 2.3 · 10−4

7 · 10−1 1.8 · 10−4 7.9 · 10−5 2.4 · 10−3 4.2 · 10−3 9.4 · 10−3 1.1 · 10−3

Table 3.2: Relative accuracy of NNLO PDF evolution in the VFNS as implemented in the
NNPDF framework in comparison to the Les Houches benchmark tables [71].

time [58, 59, 60, 61] and more recently even the order α3
s contributions have been calcu-

lated [62, 63]. A nice feature of this kind of calculations, where all the quark masses are
set to zero, is that their kinematics is completely determined by the incoming momenta
only. This means that, in the lowest order of the electro-weak interactions where the
electro-weak coupling factorizes out, NC and CC hard processes are totally equivalent,
with the consequence that their coefficient functions are exactly the same. This allows,
when treating ZM coefficient functions, not to distinguish between NC and CC processes.

The x-space expressions of the ZM coefficient functions up to order αs have a rea-
sonably short expression and we can explicitly report some of them here. For example,
the order α0

s coefficient functions for F ZM
2 are:

CZM,(0)
2,q (x) = δ(1− x)

CZM,(0)
2,g (x) = 0 ,

(3.49)

while the order αs are [72]:

CZM,(1)
2,q (x) = 2CF

[
2

(
ln(1− x)

1− x

)

+

−
3

2

(
1

1− x

)

+

− (1 + x) ln(1− x)

−
1 + x2

1− x
lnx+ 3 + 2x−

(
π2

3
−

9

2

)
δ(1− x)

]

CZM,(1)
2,g (x) = 2TR

[
(2x2 − 2x+ 1) ln

(
1− x

x

)
− (8x2 − 8x+ 1)

]
.

(3.50)

The Mellin transform of these coefficient functions can be easily obtained (using, for
instance Tabs. A.1 and A.2 in Appendix A) and they read:

CZM,(0)
2,q (N) = 1

CZM,(0)
2,g (N) = 0

(3.51)
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and:

CZM,(1)
2,q (N) = 2CF

[
− S2(N) + S2

1(N)−
S1(N)

N(N + 1)
+

3

2
S1(N)

+
1

N2
+

2

N + 1
+

3

2N
−

9

2

]

CZM,(1)
2,g (N) = 2TR

[
− S1(N)

(
2

N + 2
−

2

N + 1
+

1

N

)

−
2

(N + 1)(N + 2)
+

1

N2
−

8

N + 2
+

8

N + 1
−

1

N

]
.

(3.52)

Unfortunately, the respective expressions beyond order αs are much more involved.
Therefore, exactly like the case of the splitting functions, in order to implement such
expressions in an efficient numerical code, one fits the exact results with more compact
parametric functions determining the coefficients. The results of this procedure for F2

are given in Ref. [63], those for FL in Ref. [62] and those for F3 can instead be found
in Refs. [70, 73]. They usually ensure an accuracy of order 0.1 % or less. Again, these
simplified functions can be easily Mellin transformed and the result involves only simple
harmonic functions Sl(N). In Fig. 3.6 we show the relative accuracy of the first even

moments (N = 2, 4, 6, 8) for CZM,(2)
2,g (N) between the approximated expressions reported

in Ref. [63] and the exact results given in Ref. [74]. With an accuracy below 10−4, this
confirms the goodness of the parametrized expressions.

10-6

10-5

10-4

 2  3  4  5  6  7  8

ΔC
2,

gZM
,(2

) (N
)

N

Moment accuracy

Figure 3.6: Relative accuracy of the first even moments (N = 2, 4, 6, 8) for CZM,(2)
2,g (N) of the

expressions reported in Ref. [63] with respect to the exact results given in Ref. [74].

Finally, in Fig. 3.7 the relative accuracy for the charm structure functions F c
2 and

F c
L in the ZM-VFNS at order α2

s for three different energies Q2 = 10, 100, 1000 GeV2

between the NNPDF implementation and the FONLLdis public code [47] is shown. The
difference between the two is below the 0.2% all over the relevant range, providing
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perfectly satisfactory accuracy. A similar accuracy has been found for the light structure
functions F l

2 and F l
2.
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Figure 3.7: Relative difference for the order α2
s charm structure function F c

2 (left panel) and F c
L

(right panel) at Q2 = 10, 100, 1000 GeV2 in the ZM-VFNS between the NNPDF code and
FONLLdis.

Massive Coefficient Functions

In this Section we consider the FFNS coefficient functions CFF,(p)
k,i and CFF0,(p)

k,i . In this
case, given that the non-vanishing masses affect the kinematics of the process, we need
to distinguish between NC and CC.

The Mellin transform of the FFNS coefficient functions represents the trickiest part
of the implementation of the FONLL scheme in N -space. In fact, the presence of the
mass contributions makes the analytical solution of the Mellin transforms much more
involved and requires the use, for instance, of the hypergeometric function for which a
suitable implementation becomes necessary. In addition, an analytical x-space solution
for the Mellin transforms is not even always possible. This is the case, for instance, for
the order α2

s FFNS coefficient functions for which fully analytical expressions are not
available. The Mellin transform of these coefficient functions has been however possible
employing the parametrization presented in Ref. [75].

In Appendix A all the results for the Mellin transform of the FFNS coefficient func-
tions are collected. In particular, the Mellin transform of the NC coefficient functions
up to order α2

s and the CC ones up to order αs are presented. A numerical benchmark
of their implementation is also included, showing that the derived formulas provide a
more than satisfactory accuracy.

Here we limit ourselves to compare the predictions for the FFNS structure functions
obtained using NNPDF N -space implementation [69] with other independent codes that
instead employ a direct x-space implementation.

As far as the NC structure functions are concerned, the NNPDF implementation
has been benchmarked against the x-space code FONLLdis [47]. Regarding CC structure
functions, instead, a private x-space benchmark code able to produce predictions for all
the CC and NC cross sections included in the NNPDF fits up to order αs was written
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with the precise purpose to benchmark the N -space implementation(4).
In Fig. 3.8 the relative accuracy for the NC charm structure functions F c

2 and F c
L in

the FFNS at order α2
s for three different energies Q2 = 10, 100, 1000 GeV2 between the

NNPDF implementation and the FONLLdis public code [47] is shown. A good accuracy
well below the 1% level is found.
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Figure 3.8: Relative difference between the order α2
s NC charm structure function F c

2 (left
panel) and F c

L (right panel) at Q2 = 10, 100, 1000 GeV2 in the FFNS.

In Fig. 3.9 the same accuracy plots as in Fig. 3.8 are shown but this time for structure
functions in the zero-mass limit of the FFNS (FFNS0) are shown. Here the accuracy is
even slightly better than in the FFNS. The reason is that, while in FFNS an approximate
parametrization of the order α2

s coefficient functions is used [75], in the zero-mass limit
of the FFNS the exact analytical Mellin transform of the respective coefficient functions
has been employed (see Appendix A).
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Figure 3.9: Same as Fig 3.8 but in the zero-mass limit of the FFNS (FFNS0).

In Fig. 3.10 the relative accuracy for the CC charm structure function F c
2 and F c

L in

4Presently, also the code OpenQCDrad [76], which allows to have predictions for both NC and CC
observables, is publicly available but, at the time of our implementation, it was not. However, we have
compared a posteriori both our N -space and x-space implementation with OpenQCDrad [76] finding good
agreement.
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the FFNS at order αs for the same energies as before between the NNPDF implemen-
tation and the private x-space benchmark code is shown. Also in this case the accuracy
is very good.
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Figure 3.10: Relative difference between the order αs CC charm structure function F c
2 (left

panel) and F c
L (right panel) at Q2 = 10, 100, 1000 GeV2 in the FFNS.

Finally, in Fig. 3.11 the same accuracy plots as in Fig. 3.10 are shown in for the
structure functions in the zero-mass limit of the FFNS. Again, a very good agreement
is found.
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Figure 3.11: Same as Fig 3.10 but in the zero-mass limit of the FFNS (FFNS0).

The same benchmark of NNPDF implementation has been performed also for the
respective FFNS light structure functions finding similar accuracies. It should be re-
marked that a real full benchmark of the order α2

s neutral current structure functions
was not possible because the FONLLdis code does not implement the gluon radiation
term mentioned in Sec. 3.1.1. However, it was shown in Ref. [56] that the contribution
due to this term is usually below the 1% level.

After benchmarking the implementation of the structure functions for all three sectors
ZM-VFNS, FFNS and zero-mass limit of the FFNS, one can be reasonably sure that also
the FONLL prediction, which is a combination of those three schemes, works well. This
is indeed the case, as shown in Fig. 3.12 where the predictions for F c

2 at Q2 = 10 GeV2 in
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the FONLL-C scheme as implemented in the NNPDF code and in FONLLdis are shown.
No visible difference is observed.
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Chapter 4

Structure Functions with MS
Masses

In a recent paper [77] it has been claimed that the implementation of the MS masses in
the heavy quark structure functions may result in an improvement of the perturbative
stability and in a reduction of the theoretical uncertainty due to variations of the renor-
malization and factorization scales. This turns out to be useful for a PDF determination
because it helps to constrain potentially large higher order corrections.

In this chapter a detailed strategy on how to implement heavy quark structure func-
tions in terms of MS masses in the FONLL scheme will be discussed. There are two
distinct steps to be taken. The first is the modification of the VFNS PDF and αs evo-
lution. In fact, introducing the MS masses, the threshold matching conditions, which
are usually expressed in terms of pole masses [48], need to be adjusted. The second
step consists in expressing the FFNS coefficient functions, which are also usually given
in terms of the pole mass, in terms of MS masses. Once these steps have been carried
out, given that the ZM coefficient functions do not depend on the heavy quark masses,
the FONLL structure functions can be fully expressed in terms of MS masses. With this
setup it will be possible to determine the MS charm mass mc(mc) in the context of a
PDF determination.

4.1 MS Running Mass vs. Pole Mass

For the rest of this chapter, we will only consider a single heavy quark mass and, in
order to make the notation lighter, the pole mass will be denoted by M while the MS
mass by m(µ).

The pole (or on-shell) massM is defined as the pole of the renormalized propagator of
the heavy quark. Although M depends on the perturbative order, it is independent from
the renormalization scale µ. The MS mass m(µ) refers instead to the mass parameter in
the QCD Lagrangian renormalized according to the MS scheme prescription. Differently
from the pole mass, the MS mass is renormalization scale dependent and its evolution
is regulated by a differential equation, similar to that for αs, called the Renormalization
Group Equation (RGE).

Therefore M and m(µ) come from two different renormalization procedures and thus
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one can be expressed in terms of the other through a perturbative series in αs. This is
exactly what has been done in Ref. [78] and in particular from eq. (31) one reads:

M

m(µ)
= 1 + h(1)as + CF

[
CFh

(2)
1 + CAh

(2)
2 + TR

(
NLh

(2)
3 + h(2)4

)]

︸ ︷︷ ︸
h(2)

a2s +O(α3
s) , (4.1)

with:

h(1)(µ,m(µ)) = CF (4 + 3Lµm)

h(2)1 (µ,m(µ)) = −
7

8
+ 30ζ2 + 12ζ3 − 48ζ2 ln(2)−

9

2
Lµm +

9

2
L2
µm

h(2)2 (µ,m(µ)) =
1111

24
− 8ζ2 − 6ζ3 + 24ζ2 ln(2) +

185

6
Lµm +

11

2
L2
µm

h(2)3 (µ,m(µ)) = −
71

6
− 8ζ2 −

26

3
Lµm − 2L2

µm

h(2)4 (µ,m(µ)) = −
143

6
+ 16ζ2 −

26

3
Lµm − 2L2

µm ,

(4.2)

where:

Lµm ≡ ln
µ2

m2(µ)
, (4.3)

and NL is the number of lighter flavours. In practice, if M or m(µ) is the mass of the
n-th flavour, then NL = n− 1. In the following eq. (4.1) will be used to replace the pole
mass M with the MS mass m(µ) wherever needed.

4.2 RGE Solution for the MS Running Mass

As already mentioned, the MS mass m(µ) is renormalization scale dependent and its
evolution is regulated by the RGE which gives rise to the following differential equation
for the running:

µ2 dm

dµ2
= m(µ)γm(as) = −m(µ)

P∑

n=0

γ(N)
m an+1

s . (4.4)

From eqs. (46), (47) and (48) of Ref.[79] for SU(3) (taking into account a factor four
difference in the definition of as), the first three coefficients of the series on the r.h.s. of
eq. (4.4) read:

γ(0)m = 4 (4.5a)

γ(1)m =
202

3
−

20

9
N (4.5b)

γ(2)m = 1249−
(
2216

27
+

160

3
ζ3

)
N −

140

81
N2 , (4.5c)

where N is the number of active flavours at the scale µ.
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The evolution equation for as instead reads:

µ2 das
dµ2

= β(as) = −
P∑

n=0

βna
n+2
s , (4.6)

with:

β0 = 11−
2

3
N (4.7a)

β1 = 102−
38

3
N (4.7b)

β2 =
2857

2
−

5033

18
N +

325

54
N2 . (4.7c)

Using eq. (4.6), eq. (4.4) can be written as:

dm

das
=
γm(as)

β(as)
m(as) , (4.8)

whose solution is:

m(µ) = m(µ0) exp

[∫ as(µ)

as(µ0)

γm(as)

β(as)
das

]
. (4.9)

Expanding the integrand in eq. (4.9) using the perturbative expansions of γm(as) and
β(as) given in eqs. (4.4) and (4.6) respectively, one gets the following polynomial in as:

γm(a)

β(a)
=

1

a

[
c0 + (c1 − b1c0)a+ (c2 − c1b1 − b2c0 + b21c0)a

2 +O(a3)
]
, (4.10)

where:

bi ≡
βi
β0

and ci ≡
γ(i)m

β0
. (4.11)

Now the integral in eq. (4.9) can be explicitly solved obtaining:
∫ a

a0

γm(a)

β(a)
da = c0 ln

a

a0
+(c1−b1c0)(a−a0)+

1

2
(c2−c1b1−b2c0+b21c0)(a

2−a20) , (4.12)

where a ≡ as(µ) and a0 ≡ as(µ0).
Substituting eq. (4.12) into eq. (4.9) and expanding the exponential functions, one

finally obtains:

m(µ) = m(µ0)

(
a

a0

)c0

×
1 + (c1 − b1c0)a+ 1

2 [c2 − c1b1 − b2c0 + b21c0 + (c1 − b1c0)2]a2

1 + (c1 − b1c0)a0 +
1
2 [c2 − c1b1 − b2c0 + b21c0 + (c1 − b1c0)2]a20

,

(4.13)

which gives the NNLO running for m(µ). Of course, to obtain the NLO running one
has just to disregard the terms proportional to a2 and a20 in eq. (4.13), while at LO
m(µ) = m(µ0), i.e. there is no running at all(1).

1Note that, to be consistent, the evolution of a and a0 must be done at the same perturbative order
as m(µ).
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4.3 Matching Conditions

The matching conditions for PDFs and αs at the heavy quark thresholds are usually
given in terms of the pole mass M [48]. However, in order to consistently implement the
MS scheme for the heavy quark masses, they need to be expressed in terms of m(µ). This
will be done in the next sections. In addition, the matching conditions for the running
of m(µ) itself will also be derived. As discussed is Sec. 4.4, since the FFNS coefficient
functions will also need to be expressed in terms of MS masses, the knowledge m(µ) for
any value of the renormalization scale µ is required as well.

4.3.1 Matching of αs(µ)

The explicit expression of the matching condition for αs between the (N − 1)- and the
N -flavour scheme can be found in eq. (9) of Ref. [57]. Up to order α2

s, it reads:

a(N−1)(µ)

a(N)(µ)
= 1−

2

3
LµMa(N)(µ) +

(
4

9
L2
µM −

38

3
LµM −

14

3

)
[a(N)(µ)]2 , (4.14)

where M is the pole mass of the N -th flavour. But from eq. (4.1) it follows that:

lnM2 = lnm2(µ) + 2 ln[1 + h(1)(µ)a(N)(µ)] , with h(1)(µ) =
16

3
+ 4Lµm , (4.15)

that, using the expansion:

ln(1 + x) =
∞∑

k=1

(−1)k+1

k
xk , (4.16)

can be written as:

lnM2 = lnm2(µ) + 2h(1)(µ)a(N)(µ) +O([a(N)]2) . (4.17)

It is straightforward then to see that:

LµM = Lµm − 2h(1)a(N) = Lµm −
(
32

3
+ 8Lµm

)
a(N) , (4.18)

that, substituted into eq. (4.14), gives the matching condition for αs in terms of the MS
mass m(µ):

a(N−1)(µ)

a(N)(µ)
= 1−

2

3
Lµma(N)(µ) +

(
4

9
L2
µm −

22

3
Lµm +

22

9

)
[a(N)(µ)]2 . (4.19)

In order to get rid of the logarithmic terms, one can choose to match a(N−1) and
a(N) at µ = m(µ) = m(m), so that eq. (4.19) reduces to:

a(N−1)(m) = a(N)(m)

(
1 +

22

9
[a(N)(m)]2

)
, (4.20)

which can be easily inverted obtaining:

a(N)(m) = a(N−1)(m)

(
1−

22

9
[a(N−1)(m)]2

)
. (4.21)
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Exactly like in the case of the pole mass [80], also in the MS mass scheme it is possible
to choose the matching scale for αs is such a way that the running is continuous at the
heavy quark mass thresholds up to order αs and the discontinuity appears only at order
α2
s. The only difference is that the coefficient of the matching is −22/9 in the MS mass

scheme and 14/3 in the pole mass scheme. It is interesting to observe that, in order to
perform the matching as described above, one just needs to know the value of m(m)
which is an input parameter that in the MS scheme plays the role of the M in the pole
mass scheme. m(m) is usually referred to as the RG-invariant MS mass.

4.3.2 Matching of m(µ)

Also the running of m(µ) needs to be matched. In particular, one might need to match
the (N − 1)-flavour scheme to the N -flavour scheme of the mass mq(µ), with q = c, b, t,
at the N -th heavy quark mass threshold mh(µ), with again h = c, b, t. From eqs. (26)
and (27) of Ref. [81] one reads:

m(N−1)
q (µ)

m(N)
q (µ)

= 1 +

(
4

3
L(h)2
µm −

20

9
L(h)
µm +

89

27

)
[a(N)(µ)]2 , (4.22)

where:

L(h)
µm = ln

µ2

m2
h(µ)

. (4.23)

If one chooses to match the two schemes at the scale µ = mh(µ) = mh(mh), the loga-
rithmic terms vanish and one is left with:

m(N−1)
q (mh) =

(
1 +

89

27
[a(N)(mh)]

2

)
m(N)

q (mh) , (4.24)

whose inverse is:

m(N)
q (mh) =

(
1−

89

27
[a(N−1)(mh)]

2

)
m(N−1)

q (mh) . (4.25)

4.3.3 Matching of the PDFs

In this section the replacement of the pole mass M with the MS mass m(µ) in the
matching conditions for PDFs is discussed. As is well known, the quark and the gluon
PDFs (singlet sector) in the (N+1)-flavour scheme in terms of those in N -flavour scheme
at any scale µ are given by the coupled equation:

(
f (N+1)
q

f (N+1)
g

)
=

(
1 + a2s[A

NS,(2)
qq,h + ÃS,(2)

hq ] asÃ
S,(1)
hg + a2sÃ

S,(2)
hg

a2sA
S,(2)
gq,h 1 + asA

S,(1)
gg,h + a2sA

S,(2)
gg,h

)
⊗
(
f (N)
q

f (N)
g

)
, (4.26)

where the form of the (x-space) functions entering the transformation matrix above
are given in Appendix B of Ref. [48]. It should be noticed that, at the generic scale

µ, also the order αs contributions ÃS,(1)
hg and AS,(1)

gg,h are present. However, they are

both proportional to ln(µ2/M2) and therefore they disappear if one chooses µ = M
as a matching threshold. The matching condition for the non-singlet sector, i.e. those



62 4.3. MATCHING CONDITIONS

combinations of PDFs that evolve multiplicatively, is omitted here because it does not
contain any αs contribution, and therefore it is not affected by the mass scheme change
up to order α2

s.
In order to replace the pole mass M with the MS mass m(µ), one just needs to

substitute eq. (4.17) into eq. (4.26). In the order α2
s functions in eq. (4.26), the second

term on the l.h.s. of eq. (4.17) would give rise to subleading terms of order α3
s. Therefore

in those functions it is enough to replace M with m(µ). On the other hand, the second
term on the l.h.s. of eq. (4.17) is important for the order αs terms in eq. (4.26). Since

both functions ÃS,(1)
hg and AS,(1)

gg,h are proportional to ln(µ2/M2), they can be written as:

ÃS,(1)
hg

(
x,

µ2

M2

)
= g1(x) ln

µ2

M2

AS,(1)
gg,h

(
x,

µ2

M2

)
= g2(x) ln

µ2

M2
,

(4.27)

where:
g1(x) = 4TR[x

2 + (1− x)2]

g2(x) = −
4

3
TRδ(1− x) .

(4.28)

Replacing M with m in eq. (4.27) using eq. (4.17), one gets:

ÃS,(1)
hg

(
x,

µ2

m2

)
= g1(x) ln

µ2

m2
− 2h(1)(µ)as(µ)g1(x)

AS,(1)
gg,h

(
x,

µ2

m2

)
= g2(x) ln

µ2

m2
− 2h(1)(µ)as(µ)g2(x) .

(4.29)

Finally, eq. (4.26) in terms of m(µ) becomes:

(
f (N+1)
q

f (N+1)
g

)
=

(
1 + a2s[A

NS,(2)
qq,h + ÃS,(2)

hq ] asÃ
S,(1)
hg + a2s[Ã

S,(2)
hg − 2h(1)g1]

a2sA
S,(2)
gq,h 1 + asA

S,(1)
gg,h + a2s[A

S,(2)
gg,h − 2h(1)g2]

)
⊗
(
f (N)
q

f (N)
g

)
.

(4.30)
Given that the matching conditions for the PDFs are to be implemented in a code

based on the solution of the DGLAP equation in Mellin space, it is necessary to compute
the Mellin transform of the functions g1(x) and g2(x) which is:

g1(N) = M[g1(x)])(N) = 4TR

[
2

N + 2
−

2

N + 1
+

1

N

]

g2(N) = M[g2(x)])(N) = −
4

3
TR .

(4.31)

Choosing to match the (N +1)-flavour scheme and N -flavour scheme at µ = m(µ) =

m(m), all the logarithmic terms vanish (including the functions ÃS,(1)
hg and AS,(1)

gg,h ), there-
fore we obtain:
(
f (N+1)
q

f (N+1)
g

)
=

(
1 + a2s[A

NS,(2)
qq,h + ÃS,(2)

hq ] a2s[Ã
S,(2)
hg − 2h(1)g1]

a2sA
S,(2)
gq,h 1 + a2s[A

S,(2)
gg,h − 2h(1)g2]

)
⊗
(
f (N)
q

f (N)
g

)
. (4.32)
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x εrel(fu − fu) εrel(fd − fd) εrel(fd − fu) εrel(fd + fu) εrel(fs + fs) εrel(fg)

10−7 2.6 · 10−4 1.9 · 10−4 3.5 · 10−5 7.4 · 10−5 6.0 · 10−5 9.8 · 10−5

10−6 1.4 · 10−4 1.1 · 10−4 1.2 · 10−4 5.7 · 10−5 5.9 · 10−5 6.0 · 10−5

10−5 1.9 · 10−4 1.6 · 10−4 9.3 · 10−5 5.9 · 10−5 6.1 · 10−5 4.4 · 10−5

10−4 1.5 · 10−4 1.7 · 10−4 7.0 · 10−5 6.5 · 10−5 7.0 · 10−5 7.6 · 10−5

10−3 1.2 · 10−4 8.8 · 10−5 0.0 7.8 · 10−5 1.1 · 10−4 9.5 · 10−5

10−2 2.6 · 10−4 3.1 · 10−4 4.5 · 10−4 1.3 · 10−4 1.3 · 10−4 1.3 · 10−4

10−1 2.7 · 10−4 3.7 · 10−4 6.0 · 10−4 5.1 · 10−4 3.5 · 10−4 1.0 · 10−4

3 · 10−1 0.0 0.0 6.7 · 10−5 5.7 · 10−5 5.6 · 10−5 3.6 · 10−5

5 · 10−1 0.0 3.2 · 10−5 8.0 · 10−5 0.0 3.5 · 10−5 1.2 · 10−4

7 · 10−1 2.0 · 10−4 9.8 · 10−5 1.4 · 10−3 2.2 · 10−3 1.2 · 10−3 6.0 · 10−4

Table 4.1: Relative differences at Q2 = 104 GeV2 for NNLO PDF evolution in the MS mass
scheme as described in Sec. 4.3.3 in comparison to HOPPET for various flavor combinations.

Once again, if the matching point is chosen cleverly, also in the MS mass scheme the
matching conditions for PDFs start to play a role only at order α2

s, with the only
difference that some coefficients of the matching matrix for gluon and singlet is modified
by some simple functions.

4.3.4 Benchmark of the Evolution

The implementation of the prescriptions described above for the evolution in the VFNS
in the presence of MS masses has been benchmarked against publicly available codes.

The running and the matching for the MS mass m(µ) described in Sec. 4.3.2 has been
checked against the Mathematica package RunDec [81]; we found a perfect agreement.

In order to asses the goodness of the implementation for the evolution in the VFNS
of PDFs and αs, in Tab. 4.1 the relative accuracy against the x-space evolution code
HOPPET [82], that also has the option to perform evolution with MS heavy quark masses,
is reported [83]. Evidently, a very good agreement is found.

4.4 Structure Functions

Once the evolution for αs(µ), m(µ) and PDFs is settled, we turn to the implementation
in the Mellin space of FFNS structure functions in terms of the MS mass. This will be
done separately first for the NC structure functions and then for the CC ones.

4.4.1 Neutral Current

In this section we discuss the explicit substitution of the pole mass with MS mass in the
FFNS NC heavy quark structure functions (FH

2 and FH
L ). Dropping all the unnecessary

dependencies, the generic FFNS NC structure function has the form:

F (M) = asF
(1)(M) + a2sF

(2)(M) +O(α3
s) . (4.33)
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The Taylor expansion of F (1)(M) and F (2)(M) around M = m reads:

F (l)(M) =
∞∑

n=0

1

n!

dnF (l)

dMn

∣∣∣∣
M=m

(M −m)n , l = 1, 2 , (4.34)

and in particular what is needed are the relations:

F (1)(M) = F (1)(m) + asmh(1)
dF (1)

dM

∣∣∣∣
M=m

+O(α2
s)

F (2)(M) = F (2)(m) +O(αs) ,

(4.35)

where eq. (4.1) has been used in the first relation.
Finally, substituting eq. (4.35) into eq. (4.33), one gets:

F (M) = asF
(1)(m) + a2s

[
F (2)(m) +mh(1)

dF (1)

dM

∣∣∣∣
M=m

]
+O(α3

s) . (4.36)

In the NC case the difference between pole and MS mass scheme is given by a
correction of order α2

s proportional to the derivative of the order αs term F (1). Of
course, the implementation requires the analytical calculation of such a derivative and
the starting point is the relation:

F (1)(M) = x

∫ xmax(M)

x

dz

z
g
(x
z

)
C(1)
g (η(z,M), ξ(M),χ(M)) , (4.37)

where the explicit N -space expressions for C(1)
g are given in Appendix A for both F2 and

FL. In eq. (4.37) the following definitions are also used:

xmax =
1

1 + 4M2

Q2

, η =
Q2

4M2

(
1

z
− 1

)
− 1, ξ =

Q2

M2
, χ =

µ2

M2
. (4.38)

Defining:

G(z,M) ≡
x

z
g
(x
z

)
C(1)
g (η(z,M), ξ(M),χ(M)) , (4.39)

eq. (4.37) can be written as:

F (1)(M) =

∫ xmax(M)

x
dz G(z,M) . (4.40)

Therefore:

dF (1)

dM
=

d

dM

∫ xmax(M)

x
dzG(z,M) =

dG̃(xmax(M),M)

dM
−

dG̃(x,M)

dM
, (4.41)

where G̃(z,M) is the primitive function of G(z,M) with respect to z (i.e. ∂G̃/∂z ≡ G).
But:

dG̃(xmax(M),M)

dM
=
∂G̃(xmax,M)

∂M
+

dxmax

dM

∂G̃(xmax,M)

∂xmax︸ ︷︷ ︸
G(xmax,M)

(4.42)
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and:
dG̃(x,M)

dM
=
∂G̃(x,M)

∂M
, (4.43)

thus:
dF (1)

dM
=

∂G̃(xmax,M)

∂M
−
∂G̃(x,M)

∂M
+

dxmax

dM
G(xmax,M)

=

∫ xmax(M)

x
dz
∂G(z,M)

∂M
+

dxmax

dM
G(xmax,M) .

(4.44)

As discussed in Ref. [77], the boundary term in eq. (4.44) vanishes and thus can be
omitted. Finally, since:

∂G(z,M)

∂M
=

x

z
g
(x
z

) ∂C(1)
g

∂M
, (4.45)

one has that:

dF (1)

dM

∣∣∣∣
M=m

=

[
x

∫ xmax(M)

x

dz

z
g
(x
z

) ∂C(1)
g

∂M

] ∣∣∣∣∣
M=m

= x

∫ xmax(m)

x

dz

z
g
(x
z

)[∂C(1)
g

∂M

] ∣∣∣∣∣
M=m

.

(4.46)

Now, taking into account the fact that:

F (2)(M) =
∑

i=q,q,g

x

∫ xmax(M)

x

dz

z
qi
(x
z

)
C(2)
i (z,M) (4.47)

and using eqs. (4.36) and (4.46), one can explicitly write down the massive structure
function up to order α2

s in terms of the MS mass as following:

F (m) = x

∫ xmax(m)

x

dz

z
g
(x
z

)[
asC

(1)
g (z,m) + a2s

(
C(2)
g (z,m) +mh(1)

[
∂C(1)

g

∂M

] ∣∣∣∣∣
M=m

)]

+
∑

i=q,q

x

∫ xmax(m)

x

dz

z
qi
(x
z

)
a2sC

(2)
i (z,m) .

(4.48)
In conclusion the NC heavy quark FFNS structure function (F2 or FL) in terms of

the MS mass m can be obtained from the pole mass expression by replacing everywhere

the pole mass M with m and correcting the order α2
s gluon coefficient function C(1)

g with
the term:

m(µ)h(1)(µ,m(µ))

[
∂C(1)

g

∂M

] ∣∣∣∣∣
M=m(µ)

. (4.49)

Of course, for the zero-mass limit of the FFNS structure function the same recipe holds,
with the only obvious difference that the correct massive coefficient functions are to be

used. The explicit derivative of C(1)
g in eq. (4.48) for the NC massive structure functions

F2 and FL in the Mellin space have been completely worked out in Appendix B.
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4.4.2 Charged Current

In this section the MS mass implementation for the generic CC FFNS heavy quark
structure function is discussed. The treatment is exactly the same as for the NC structure
functions, with the only difference that in the CC case the perturbative expansion starts
at order α0

s and presently the full massive coefficient functions are only known up to
order αs, i.e. we have:

F (M) = F (0)(M) + asF
(1)(M) +O(α2

s) . (4.50)

Therefore, expanding F (0) and F (1) around M = m and keeping only the terms up to
order αs, one obtains:

F (m) = F (0)(m) + as

[
F (1)(m) +mh(1)

dF (0)

dM

∣∣∣∣
M=m

]
+O(α2

s) . (4.51)

Therefore, in order to consistently replace the pole mass M with the MS mass m in the
CC FFNS coefficient functions, one has just to replace M with m and then correct the
order αs quark coefficient functions adding the contributions given in eq. (B.24). For
the detail of the calculation, I refer to Appendix B.

4.4.3 Benchmark of the Structure Functions

Finally, in order to check that the above derivation for the massive structure functions
is correct, the implementation presented above has been compared to the OpenQCDrad

code [76]. In Ref. [83] a benchmark table for the NC charm structure function F c
2 was

presented and reported here in Tab. 4.2. As one can see, the agreement is good over a
wide kinematic range. Also the CC FFNS structure functions have been benchmarked
against the same code and the same good accuracy was found.

x\Q2 εrel(Q2 = 10 GeV2) εrel(Q2 = 100 GeV2) εrel(Q2 = 1000 GeV2)

10−4 1.8% 1.8% 1.1%
10−3 0.1% 0.1% 0.4%
10−2 0.2% 0.1% 0.8%

Table 4.2: Relative differences between the implementation of the charm structure function F c
2

with MS heavy quark masses discussed in this section and the OpenQCDrad results.



Chapter 5

The NNPDF Methodology

The acronym NNPDF stands for Neural Network Parton Distribution Functions and
this is the name of the methodology adopted for the determination of PDFs described
in this chapter.

The NNPDF approach is based on the combination of the Monte Carlo method for
the treatment of uncertainties with the use of neural networks as basic interpolating
functions. The general idea is twofold. First, problems related to the possibility of non-
Gaussian errors and non-trivial error propagation are best addressed through the use
of a representation whereby central values are obtained from a Monte Carlo sample as
averages, uncertainties as standard deviations, and so forth. Second, problems which
require the reconstruction of a function through its discrete sampling, without making
assumptions on its functional form, are best addressed using neural networks as unbiased
interpolants.

In the first stage, one generates a Monte Carlo ensemble of replicas of the original
data. The ensemble is generated with the probability distribution of the data, and it is
large enough to reproduce the statistical properties of the data to the desired accuracy.
In practice, data are assumed to be distributed according to a given multi-Gaussian
probability distribution of statistical and systematic errors, described by a covariance
matrix and a normalization error, and thus this is the distribution that is used to generate
the replicas. However, any other probability distribution can be used if required by
the experimental data. Each element in the Monte Carlo set is then a replica of the
experimental data and contains as many data points as are originally available. The
ensemble contains all the available experimental information, which can be reproduced
a posteriori by performing statistical operations on the replicas that form the ensemble.

In the second stage, a set of PDFs is extracted from each replica of the data. Each
PDF at a given scale is parametrized by an individual neural network. A neural net-
work is just an especially convenient functional form used in place of the more usual
polynomials. In practice, One first chooses a basis set of initial PDFs, typically smaller
than the maximal set of twelve quarks and antiquarks plus one gluon, and then evolves
from the initial scale to the scale at which data are available by using standard DGLAP
evolution equations described in Chapter 1. Finally, physical observables are computed
by convoluting the evolved PDFs with the coefficient functions. The best fit set of PDFs
is finally determined by comparing the theoretical computation of the observable for a
given PDF set with the respective experimental values contained in each Monte Carlo
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replica. The experimental values will of course be different in each replica, as they will
fluctuate according to their distribution in the Monte Carlo ensemble, and the best fit
PDFs will be accordingly different for each replica. The ensemble of these best fit PDFs,
which contains as many elements as the set of replicas of the data, is the final result of
the PDF determination in the NNPDF approach.

The way in which the best fit set of PDFs is determined from each data replica is
especially important. A first obvious requirement is that the best fit be independent
of any assumption made about the parton parametrization. This requirement is met
by adopting a redundant parametrization: the size of the neural networks used, i.e.
the number of parameters used to parametrize them, is much larger than the minimum
required in order to reproduce the data.

A more subtle issue is that of establishing how the best fit is to be determined. A
first possible answer might be to determine the best fit as the absolute minimum of the
χ2 (i.e. absolute maximum of the likelihood). However, this procedure does not produce
the optimal fit. Indeed, even for fully compatible data, independent measurements
of the same quantity at the same point will fluctuate within the uncertainty of the
measurement. If fitted by maximum likelihood, such independent measurements will
automatically be combined into their weighted average. However, assume now that
two independent measurements of the same observable are performed, but measured
at very close values of the underlying kinematic variables: for example the structure
function F2(x,Q) at the same Q and two different but close values of x. Then, if
a redundant parametrization is used, a fit which goes through the central values of
both measurements might be possible, but in the limit in which the two measurements
are performed at infinitesimally close points this would correspond to a discontinuous
behavior of the observable, which is surely unphysical. This problem is exacerbated in
the case of incompatible measurements.

It was thus suggested [84] that the best fit should be characterized by a value of
the χ2 which is not the smallest possible, but rather equal to the value expected on
the basis of the fluctuations of the data. In order to determine this value, a strategy
was developed in Ref. [85], based on the so-called cross-validation method used quite
generally in neural network studies [86].

In Sec. 5.1 the Monte Carlo generation of artificial data will be described, while in
Sec. 5.2 the particular neural network architecture as well as the minimization strategy
and the stopping criterion adopted in the NNPDF fits will be exposed. Finally, in
Sec. 5.3, some of the statistical estimators that are commonly used to asses the quality
and the stability of a given fit will be given for future use.

5.1 Monte Carlo Generation

In order to explain how the Monte Carlo generation of the artificial data works, we start
with the observation that the experimental covariance matrix for each experiment can
be computed from knowledge of statistical, systematic and normalization uncertainties
as follows:

covpq =

(
Nc∑

i=1

σ(i)p,cσ
(i)
q,c +

Na∑

i=1

σ(i)p,aσ
(i)
q,a +

Nr∑

i=1

σ(i)p,rσ
(i)
q,r + δpqσ

2
p,s

)
Fp,IFq,J , (5.1)
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where the indices p and q run over the experimental points, FI,p ≡ FI(xp, Q2
p) and

FJ,q ≡ FJ(xq, Q2
q) are the measured central values for the observables I and J , and the

various uncertainties, given as relative values, are:

• σ(i)p,c, the Nc correlated systematic uncertainties,

• σ(i)p,a(r), the Na (Nr) absolute (relative) normalization uncertainties,

• σp,s the statistical uncertainty.

The correlation matrix is then defined as:

ρpq =
covpq

σp,totσq,totFI,pFJ,q
, (5.2)

where the total uncertainty σp,tot for the p-th point is given by:

σp,tot =
√
σ2p,s + σ2p,c + σ2p,N , (5.3)

being the total correlated uncertainty σp,c the sum of all correlated systematics:

σ2p,c =
Nc∑

i=1

[
σ(i)p,c

]2
(5.4)

and the total normalization uncertainty:

σ2p,N =
Na∑

i=1

[
σ(i)p,a

]2
+

Nr∑

i=1

[
1

2
σ(i)p,r

]2
. (5.5)

The factor one half in the relative normalization uncertainties in eq. (5.5) comes from
the first order expansion of eq. (5.7) below.

The statistical sample is obtained by generating Nrep artificial replicas of data points
following a multi-Gaussian distribution centered around the central value of each data
point with the variance given by the experimental uncertainty. More precisely, given

the experimental data point F (exp)
I,p ≡ FI(xp, Q2

p), the Nrep artificial points F (art)(k)
I,p are

generated as follows:

F (art)(k)
I,p = S(k)

p,NF (exp)
I,p

(
1 +

Nc∑

i=1

r(k)p,cσ
(i)
p,c + r(k)p,sσp,s

)
, k = 1, . . . , Nrep , (5.6)

where:

S(k)
p,N =

Na∏

i=1

(
1 + r(k)p,aσ

(i)
p,a

) Nr∏

i=1

√
1 + r(k)p,rσ

(i)
p,r . (5.7)

The variables r(k)p,c , r
(k)
p,s , r

(k)
p,a and r(k)p,r are all univariate Gaussian random numbers that

generate fluctuations of the artificial data around the central value given by the experi-
ments. For each replica k, if two experimental points p and p′ have correlated systematic

uncertainties, then r(k)p,c = r(k)p′,c, i.e. the fluctuations due to the correlated systematic
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uncertainties are the same for both points. A similar condition on r(k)p,n ensures that
correlations between normalization uncertainties are properly taken into account.

The treatment of normalization uncertainties needs some more care. As is well
known, including normalization uncertainties in the covariance matrix, as done in eq. (5.1),
would lead to a fit that is systematically biased to lie below the data: this is the so-called
D’Agostini bias. In Ref. [87] an unbiased method based on a self-consistent iterative pro-
cedure, called t0 method, is developed and implemented in the present NNPDF fits since
NNPDF2.0 [69].

In Ref. [84] it has been shown that, in order to reach accuracies of order 1% on
central values, errors and correlations, a sample of about Nrep = 1000 Monte Carlo
replicas would be necessary. Nevertheless, such a large number of Monte Carlo replicas
would result in as many PDFs and this turns out not to be very practical. In fact,
assuming to use such a PDF set with a numerical code that computes a cross section for
a specific process, the evaluation of the uncertainty associated to PDFs would require
1000 runs for each kinematical configuration. In addition, the tabulation of such a set
would also result in very large files difficult to handle.

However, it has been observed that choosing Nrep = 100 is still enough for having
accuracies at the percent level for central values and errors and only the accuracy of
the correlations slightly worsens reaching a few percent level. Therefore, most of the
NNPDF sets come with Nrep = 100, though also some sets with Nrep = 1000, useful for
very accurate statistical studies, have been made public.

5.2 Neural Networks and Fitting Strategy

In this section the parametrization used to represent PDFs at the initial scale, the
training (i.e. fitting) strategy and the method used to determine the best fit PDF set in
the NNPDF analyses is discussed.

In the NNPDF approach the parametrization of PDFs is rather different from that
which is most commonly adopted. Instead of choosing an optimized basis of functions
with a relatively small number of physically motivated parameters, an unbiased basis of
functions (provided by neural networks) parametrized by a very large and redundant set
of parameters is used.

The fit of neural networks to data is performed by minimizing a suitably defined
error function. This is a complex task because it requires to find the minimum in a
very large parameter space of the error function, which is a non-local functional of the
functions which are being determined in the minimization. A carefully tuned genetic

algorithm [86] turns out to provide an efficient solution to this problem. In addition, as
already mentioned, the determination of the best fit is not trivial since it is not just given
by the absolute minimum of some error function. Indeed, a redundant parametrization
may accommodate not only the smooth shape of the “true” underlying PDFs, but also
the random fluctuations of the experimental data about it.

This raises the question of how the best fit should be determined. In the NNPDF
approach this problem is addressed through the so-called cross-validation method [86],
which provides the desired stopping criterion.

In summary, the main ingredients of the NNPDF fitting procedure are:
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1. neural networks, in order to have a flexible and redundant parametrization of
PDFs,

2. genetic algorithm, which allows an efficient minimization on a large parameter
space,

3. determination of the best fit by cross-validation, in order to determine the smooth
physical law which underlies statistical fluctuations.

In the following each of the above points will be discussed in more detail.

5.2.1 Neural Network Parametrization

In the present NNPDF analyses seven PDFs, parametrized at a initial evolution scale
Q2

0 = 2 GeV2, are extracted. The seven parametrized PDFs correspond to the gluon
g PDF and to six linear combinations of the light quark PDFs u, u, d, d, s and s. The
heavy quark PDFs c, c, b, b etc., are eventually radiatively generated at higher scales
by means of the DGLAP evolution. Any intrinsic heavy quark contributions is thus
neglected(1).

Once the PDFs to be determined have been chosen, any linearly independent com-
bination of them is a viable choice to perform the fit. In this respect neural networks
are particularly suitable because they provide sufficient flexibility to accommodate any
reasonable choice. The specific basis chosen in the NNPDF analyses is given by the
following linear combinations:

• gluon: g(x,Q0) ≡ fg(x,Q0),

• singlet: Σ(x,Q0) ≡
∑

q=u,d,s

[fq(x,Q0) + fq(x,Q0)],

• total valence: V (x,Q0) ≡
∑

q=u,d,s

[fq(x,Q0)− fq(x,Q0)],

• non-singlet triplet: T3(x,Q0) ≡ [fu(x,Q0) + fu(x,Q0)]− [fd(x,Q0) + fd(x,Q0)],

• sea asymmetry: ∆S(x,Q0) ≡ fd(x,Q0)− fu(x,Q0),

• total strangeness: s+(x,Q0) ≡ fs(x,Q0) + fs(x,Q0),

• strange valence: s−(x,Q0) ≡ fs(x,Q0)− fs(x,Q0).

1The vanishing of intrinsic heavy flavour contributions is an assumption that in principle could be
relaxed. In fact, within the NNPDF collaboration, the inclusion of an intrinsic charm component in a
PDF determination is presently being considered.
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The assumption that all heavy quark PDFs are generated only radiatively at higher
scales, is implemented by requiring that:

c(x,Q0) = c(x,Q0) = b(x,Q0) = b(x,Q0) = t(x,Q0) = t(x,Q0) = 0 . (5.8)

Each independent PDF is parametrized using a multi-layer feed-forward neural net-
work [86]. This typology of neural network can be visualized as composed by neurons
arranged into L layers and where the k-th layer contains nk neurons (see for example
Fig. 5.1). The output of the neural network is then given by the neurons in the last
layer as a function of the output of all neurons in the preceding layer, which in turn is a
function of the output of all neurons in the preceding layer and so on, back to the first
layer, which provides the input. Each neuron in a given layer processes the output of

all the neurons of the preceding layer, in particular the output ξ(k)i of the i-th neuron in
the k-th layer is given by a nonlinear activation function g(x) according to the formula:

ξ(k)i = g
(
h(k)i

)
, i = 1, . . . , nk , k = 2, . . . , L , (5.9)

whose argument h(k)i is the linear combination of the output ξ(k−1)
i of all neurons in the

previous layers:

h(k)i =

nk−1∑

j=1

ω(k)
ij ξ

(k−1)
j − θ(k)i , (5.10)

where ω(k)
ij (weights) and θ(k)i (biases) are the free parameters to be determined by the

fitting procedure. In the NNPDF approach g(x) is taken to be a sigmoid:

g(x) =
1

1 + e−x
(5.11)

in the inner layers and the linear function g(x) = x for the last (output) neurons(s).
In practice, it turns out to be convenient to rescale both the input and the output

of the neural network, in such a way that they both take values between 0 and 1: this

avoids having weights ω(k)
ij and biases θ(k)i whose numerical values span many orders of

magnitude.

In short, a neural network outputs the value(s) ξ(L)j as a function of the input value(s)

ξ(1)j and the parameters ω(k)
ij and θ(k)i . The training of such a neural network consists in

the determination of the best fit values of these parameters.
The choice of the architecture of the neural network cannot be derived from general

rules and it must be adapted to each specific problem. One can roughly guess the size
of the neural network and then determine by actual fitting the critical size above which
results become independent of the size of the networks. Finally, one chooses a size which
is somewhat larger than the critical one.

It was found that a neural network with architecture 2-5-3-1, as shown in Fig. 5.1 (i.e.
two neurons in the input layer, five neurons in the first hidden layer, three neurons in
the second hidden layer and one neuron in the output layer), for all PDFs is an adequate
choice for this particular task. In fact, it turned out to be more efficient for the fitting
procedure to take simultaneously as input both x and lnx as inputs.
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Figure 5.1: Neural network having architecture 2-5-3-1. This architecture is chose to
parametrize the independent PDFs in the NNPDF fits.

This configuration corresponds to 37 free parameters for each PDF, i.e. a total of
259 free parameters(2). The use of such a redundant architecture reduces a priori the
possibility of a functional bias. The absence of any bias has been explicitly checked in
Ref. [88], by verifying the independence of results on the choice of architecture.

Large enough neural networks can reproduce any functional form. However, the
training can be made more efficient by adding a preprocessing step, i.e. by multiplying
the output of the neural networks by an appropriately chosen function. The neural
network then only fits the deviation from this function.

In practice, the input PDF basis in terms of the neural networks NNi(x) and pre-
processing functions is:

g(x,Q0) = Ag xαg (1− x)βg NNg(x) ,
Σ(x,Q0) = xαΣ (1− x)βΣ NNΣ(x) ,
V (x,Q0) = AV xαV (1− x)βV NNV (x) ,
T3(x,Q0) = xαT3 (1− x)βT3 NNT3(x) ,
∆S(x,Q0) = A∆S

xα∆S (1− x)β∆S NN∆S
(x) ,

s+(x,Q0) = xαs+ (1− x)βs+ NNs+(x) ,
s−(x,Q0) = xαs− (1− x)βs− NNs−(x)− saux(x,Q0) ,

(5.12)

where:
saux(x,Q0) = As−x

rs− (1− x)ts− . (5.13)

The values of the preprocessing exponents α and β are randomly chosen, replica by
replica, within a reasonably wide range that ensures the integrability of PDFs and the
absence of any bias at the same time. The exponents rs− and ts− , instead, are chosen in

2To be compared to less than a total of 30 free parameters for parton fits based on standard functional
parametrizations [24, 23, 28].
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such a way that saux(x,Q0) peaks in the valence region (x ∼ 0.1÷0.5), and that the small-
x and large-x behavior of s−(x,Q0) are not controlled by the saux(x,Q0) contribution.
The four normalization constants Ag, AV , A∆S

and As− that have been factored out,
are instead determined dynamically during the fit requiring that the momentum sum
rule: ∫ 1

0
dx x [Σ(x,Q0) + g(x,Q0)] = 1 (5.14)

and the valence sum rules:
∫ 1

0
dx [fu(x,Q0)− fu(x,Q0)] = 2

∫ 1

0
dx
[
fd(x,Q0)− fd(x,Q0)

]
= 1

∫ 1

0
dx [fs(x,Q0)− fs(x,Q0)] = 0

(5.15)

be satisfied.

5.2.2 Genetic Algorithm Minimization

Now we turn to the fitting strategy for the parametrized PDFs. The fit of neural networks
on the k-th Monte Carlo replica is performed by minimizing the error function:

E(k) =
1

Ndat

Ndat∑

p,q=1

[
F (art)(k)
I,p − F (net)(k)

I,p

] [(
cov(k)

)−1
]

pq

[
F (art)(k)
J,q − F (net)(k)

J,q

]
, (5.16)

where F (art)(k)
I,p is defined in eq. (5.6) while F (net)(k)

I,p is the prediction of the observable FI

for the i-th experimental data point computed with the PDF set which is being fitted.
Notice that the covariance matrix cov(k) used in eq. (5.16) for the minimization is not

that defined in eq. (5.1), but it is constructed from it using the t0 prescription [87] that
ensures a proper treatment of the normalization errors. The precise definition of cov(k)

can be found in Appendix A of Ref. [89].
Due to the non-local nature of the error function (5.16) and the complex structure

of the parameter space, the genetic algorithm [90] turns out to be the most efficient
method for its minimization.

The genetic algorithm applied to this problem works in the following way. For each
Monte Carlo replica and for each independent PDF, the state of the corresponding neural
network is represented by the state vector:

ω =
(
ω1,ω2, . . . ,ωNpar

)
, (5.17)

where each element ωi corresponds either to a weight ω(k)
ij or to threshold θ(k)i of the

neural network, being Npar the total number of free parameters. At each iteration of
the genetic algorithm, Ncop − 1 copies of the state vector ω are generated. For each
copy, Nmut randomly chosen elements of the state vector ω are replaced by new values,
according to the rule:

ωk → ωk + η

(
r −

1

2

)
, (5.18)
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where r is a uniform random number between 0 and 1 and η (mutation rate) is a free
parameter of the minimization algorithm which can be optimized either for the given
problem or dynamically during the minimization. At the end of this procedure, there
will be Ncop − 1 variants of the starting state vector ω (mutants) plus the starting state
vector itself. At this point the error function in eq. (5.16) is computed for each one of
the Ncop state vectors and the one that yields the lowest value (which could possibly be
the starting configuration) is then chosen as a starting point for the following iteration.

The procedure is then iterated until the vector with smallest value of the error func-
tion E(k) meets a suitable stopping criterion. Notice that the minimization procedure is
such that the value of the error function E(k) never increases.

The main advantage of genetic minimization is that it is able to explore many regions
of parameter space simultaneously. This lowers the possibility of getting trapped into
local minima of the error function allowing a more reliable determination of the best fit
configuration.

5.2.3 Cross-Validation Method

The crucial feature which guarantees a bias-free fit is the possibility of stopping the
training, not at the lowest value of the error function (which might not reflect the true
underlying physical law), but rather when suitable criteria are met. These criteria should
single out the point where the fit reproduces the information contained in the data, but
not the statistical noise. Namely, the best fit should have the lowest possible value of
the error function compatible with the requirement of not fitting statistical fluctuations.

To this end, the so-called cross-validation criterion is adopted and it works as follows.
The dataset is separated into two disjoint sets and the error function E(k) in eq. (5.16)
minimized only using the data points of the first set (training set). During the mini-
mization process, the error function from the data of the second set (validation set) is
however computed. The best fit is reached when the error function computed on the
validation set ceases to decrease. In fact, a situation where the training error function
keeps decreasing (recall that the training error function only decreases if the genetic al-
gorithm is used) while the validation error function starts increasing, signals that the fit
is merely reproducing the fluctuations of the specific training set. This procedure does
not lead to loss of information if both the training and the validation sets reproduce
the features of the full dataset. This can be simply achieved on average by choosing a
different random partition for each Monte Carlo replica of the dataset.

In practice, the stopping criterion is implemented as follows. One first defines the
training fraction 0 ≤ ftr ≤ 1 (typically ftr = 0.5, i.e. half of the data go into the training
set and half into the validation set) and for each Monte Carlo replica selects randomly
a fraction ftr of points for each experiment, which are used for training, while the
remaining points are assigned to the validation set. At the l-th iteration of the genetic
algorithm the error function in eq. (5.16) is separately computed on both the training

and validation sets defining the quantities E(k)
tr (l) and E(k)

val (l). The training proceeds

at least until E(k)
tr has reached the threshold value E(k)

tr = Emin, typically Emin $ 3.
This ensures that the training does not stop due to fluctuations in the early stages. If

E(k)
tr ≤ Emin, the training is stopped at the l-th generation if the following conditions
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are met:

rtr < 1− δtr , rval > 1 + δval , (5.19)

where the slopes rtr and rval are defined as:

rtr,val ≡
〈Etr,val(l)〉

〈Etr,val(l −∆sm)〉
, (5.20)

and the moving averages 〈E(k)
tr (l)〉 and 〈E(k)

val (l)〉 as:

〈E(k)
tr,val(l)〉 ≡

1

Nsm

l∑

i=l−Nsm+1

E(k)
tr,val(i) , (5.21)

being Nsm the width of the smearing interval over which the moving average is computed
and ∆sm the distance between two points used to evaluate the slope on the error function
profiles. Typically, the values Nsm = ∆sm = 200 are chosen. In other words, the fit is
stopped if the training error function has a negative slope (rtr < 1 up to some tolerance
given by δtr) while the slope of validation error function is positive (rval > 1+ δval). The
values of the tolerances δtr and δval must be determined by analyzing the behavior of
the fit for the particular dataset which is being used for neural network training. It was
found that δtr, δval ∼ 10−4 is a suitable choice.

Finally, in order to avoid unacceptably long fits, an upper length for the training
process, i.e. a maximum number of iterations Ngen of the genetic algorithm, is also set.
This is typically chosen to be Ngen = 50000. It has been checked that, though about
10% of the Monte Carlo replicas do not meet the stopping criterion before reaching the
maximum number of allowed iterations, this does not spoil the overall quality of the
fit. This is essentially due to the fact that, after such a big number of iterations, both
training and validation error functions have reached a point where they do not decrease
any more.

5.3 Statistical Tools

One of the biggest advantages of the Monte Carlo approach is that it allows for the
use of the standard statistical tools. In this last section we will briefly review how to
compute the most important statistical estimators given a Monte Carlo PDF set {fk},
with k = 1, . . . , Nrep.

The expectation value of any observable Fi which depends on PDFs is given by the
average over replicas:

〈Fi〉 =
1

Nrep

Nrep∑

k=1

Fi[fk] . (5.22)

Similarly the uncertainty is given by the standard deviation:

σi =

√
Nrep

Nrep − 1

(
〈F 2

i 〉 − 〈Fi〉2
)
. (5.23)
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Given a second observable Fj depending on PDFs, the associated covariance is given by:

covij = ρijσiσj , (5.24)

with:

ρij =
Nrep

Nrep − 1

〈FiFj〉 − 〈Fi〉〈Fj〉
σiσj

. (5.25)

Another important statistical estimator, which will be extensively used in Chapter 6,
is the statistical distance between Monte Carlo samples. Given two different sets of

Monte Carlo PDFs {f (1)k } and {f (2)k } having N (1)
rep and N (2)

rep replicas respectively, the

statistical distance of the observable Fi with respect to the two samples {f (1)k } and

{f (2)k } is defined as:

d
[
〈Fi〉(1), 〈Fi〉(2)

]
=

√√√√
(
〈Fi〉(1) − 〈Fi〉(2)

)2

(σ(1)i )2 + (σ(2)i )2
(5.26)

where the quantities 〈Fi〉(i) and σ(i)Fi
have been evaluated using eqs. (5.22) and (5.23)

using the Monte Carlo PDFs {f (i)k }. The analogous definition for the statistical distance
between uncertainties can be found in Appendix A of Ref. [69].

In practice the distance d defined in eq. (5.26) measures whether the Monte Carlo

samples {f (1)k } and {f (2)k } do or do not come from the same underlying probability
distribution. In other words, eq. (5.26) and its analogous for the uncertainty test whether
the two distributions from which the two samples are taken have respectively the same
mean and the same standard deviation.

If N (1)
rep = N (2)

rep = Nrep, with Nrep large enough, it can be shown that d scales as√
Nrep. In particular, if the two samples are statistically equivalent, one gets d $ 1,

while if they differ by one standard deviation, one gets d $
√
Nrep.

Notice that the observable Fi in eq. (5.26) could well be a PDF so that d would
measure the statistical distance between that PDF belonging to two different Monte
Carlo samples. In particular, this is how the statistical distance will be largely used in
Chapter 6 to asses the statistical “compatibility” of different sets of PDFs.
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Chapter 6

Impact of Higher Orders and
Heavy Flavours on PDFs

The implementation of the FONLL scheme up to order α2
s, described in detail in Chap-

ter 3, has been recently employed for the determination of the proton PDFs using the
NNPDF methodology, presented in Chapter 5. This originally resulted in the PDF sets
of the NNPDF2.1 family [55, 56].

The NNPDF2.1 analysis was based on a wide set of data including: DIS, fixed-target
Drell-Yan and pre-LHC electro-weak vector boson and inclusive jet production data
at colliders. Since its release, however, different LHC data with potential to further
constrain PDFs have been released and they have been included in the NNPDF2.3
analysis [29].

In Sec. 6.1 a description of the dataset included in the NNPDF2.3 analysis will be
given. In Sec. 6.2 the NNPDF2.3 sets will be presented highlighting the impact of the
inclusion high order corrections and heavy quark mass effects. Finally in Sec. 6.3 some
phenomenology relevant for the LHC will be studied.

6.1 Experimental Data

In this section the experimental data used for the NNPDF2.3 analysis will be presented.
In the first place, the kinematic cuts applied to the dataset and their motivation will be
discussed. Secondly, the full dataset included in the fit will be discussed and, finally, the
issue of the implementation of positivity constraints on PDFs will be addressed.

6.1.1 Kinematic Cuts

As is well known, DIS structure function data are affected by both power corrections
of kinematic origin, due to the mass of the target mN , as well as corrections related to
higher twist contributions to the operator product expansion (OPE). The former can be
determined exactly in the form of an expansion in powers of m2

N/Q2, while the latter
are of dynamical origin and thus, if included, they must be fitted just like the leading
twist PDFs.

The target mass corrections are included up to order m2
N/Q2 [85] in the NNPDF2.3

fits. Dynamical higher twist corrections, on the other hand, are not and they are kept
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under control by imposing suitable kinematic cuts. In particular, only data having
invariant mass of the final state W 2 = Q2(1 − x)/x ≥ W 2

min = 12.5 GeV2 and energy
Q2 ≥ Q2

min = 3 GeV2 are included in the fit. Very recently, it has been explicitly
shown [91] that, imposing the aforementioned cuts, the higher twist corrections have
indeed a negligible impact on the PDF determination.

A further reason for selecting data with Q2 ≥ Q2
min is the fact that, very close to

the charm quark threshold M2
c $ 2 GeV2, the predictions for charm structure function

F c
2 in the GM-VFNS might suffer from instabilities due to the threshold behavior. This

suggests to use a value of Q2
min reasonably larger than M2

c and Q2
min = 3 GeV2 is then

a suitable choice.
Furthermore, there is an indication of possible deviations from the NLO DGLAP

evolution in the small-x HERA data [92, 93] and these deviations are mostly relevant in
the smaller Q2 region.

On top of the cuts just described, additional cuts on the HERA F c
2 data are applied

for the NLO fit. The motivation is discussed in detail in Ref. [47] and essentially is that
the FONLL-A scheme, which is used for the NLO fits (see Sec. 3.1.2), provides a poor
description of the data in the smallest x and Q2 region due to missing large order α2

s

corrections(1). Therefore, the HERA F c
2 data with Q2 ≤ 4 GeV2 and with Q2 ≤ 10

GeV2 for x ≤ 10−3 are removed from the fit. These cuts ensure that all F c
2 experimental

data included in the fit are well described by a theory accurate at order αs. These
additional cuts on F c

2 are instead removed for the NNLO fits, where all the large order
α2
s corrections are consistently included.
Finally, it should be remarked that only DIS data undergo kinematic cuts. On the

contrary, all the hadronic data are included in the fits because, given their kinematic
coverage, they are not affected by power corrections.

6.1.2 The Dataset

The NNPDF2.3 dataset is summarized in Tab. 6.1, where experimental data are sepa-
rated into DIS, fixed target Drell-Yan production, electro-weak vector boson production
and inclusive jet data. For each dataset the number of points after the kinematic cuts
described in the previous section as well as and their kinematic ranges are provided.

It should be noticed that, on top of all the data already present in NNPDF2.1, 146
LHC data points have been included in the NNPDF2.3 analysis: the ATLAS W and Z
lepton rapidity distributions from the 2010 data set [94], the CMSW electron asymmetry
from the 2011 data set [95], the LHCb W lepton rapidity distributions from the 2010
data set [96] and the ATLAS inclusive jet cross sections from the 2010 run [97].

A scatter plot in the (x,Q2) plane of the dataset included in the NNPDF2.3 fit
NNLO (the widest) is displayed in Fig. 6.1, with the values of x determined using LO
kinematics.

6.1.3 Positivity constraints

An important theoretical constraint which should be enforced when PDFs are determined
is the positivity and, as discussed in Ref. [126], it should be imposed on cross sections

1Note that this is true for any heavy quark scheme that does not include order α2
s corrections.
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Experiment Observable Ref. Ndat [xmin, xmax] [Q2
min, Q

2
max] [GeV2]

Deep-Inelastic scattering

NMC pd F p
2 /F

d
2 [98] 132 [0.008, 0.68] [3.5, 99.0]

NMC F p
2 [99] 224 [0.009, 0.48] [3.2, 62.3]

SLAC F p
2 [100] 37 [0.10, 0.55] [3.0, 19.5]

F d
2 [100] 37 [0.10, 0.55] [3.3, 19.5]

BCDMS F p
2 p [101] 333 [0.07, 0.75] [7.5, 230.0]

F d
2 d [102] 248 [0.07, 0.75] [8.8, 230.0]

HERA1-AV NC red. xsec. e+ [103] 379 [4.3 · 10−5, 0.65] [3.5, 30000.0]
NC red. xsec. e− [103] 145 [1.3 · 10−3, 0.65] [90.0, 30000.0]
CC red. xsec. e+ [103] 34 [0.008, 0.40] [300.0, 15000.0]
CC red. xsec. e− [103] 34 [0.013, 0.40] [300.0, 30000.0]

CHORUS CC red. xsec. ν [104] 431 [0.045, 0.65] [3.0, 95.2]
CC red. xsec. ν [104] 431 [0.045, 0.65] [3.0, 95.2]

FLH108 FL [105] 8 [2.8 · 10−4, 0.0036] [12.0, 90.0]
NuTeV CC Dimuon ν [106, 107] 41 [0.021, 0.33] [3.1, 116.5]

CC Dimuon ν [106, 107] 38 [0.015, 0.21] [3.1, 68.3]
ZEUS-H2 NC red. xsec. e− [108] 90 [0.005, 0.65] [200.0, 30000.0]

CC res. xsec. e− [109] 37 [0.015, 0.65] [280.0, 30000.0]
ZEUS F c

2 F c
2 ’99 [110] 14/18 [1.3 · 10−4, 0.02] [7.0/4.0, 130.0]

F c
2 ’03 [111] 21/27 [7.0 · 10−5, 0.03] [7.0/4.0, 500.0]

F c
2 ’08 [112] 7/9 [2.2 · 10−4, 0.032] [7.0, 112.0]

F c
2 ’09 [113] 8 [8.0 · 10−4, 0.03] [30.0, 1000.0]

H1 F c
2 F c

2 ’01 [114] 6/10 [1.3 · 10−4, 0.0032] [12.0/3.5, 60.0]
F c
2 ’09 [115] 6 [2.4 · 10−3, 0.025] [120.0, 400.0]

F c
2 ’10 [116] 26 [2.0 · 10−4, 0.05] [12.0/5.0, 2000.0]

Fixed Target Drell-Yan production

DYE605 double diff. distr. d [117] 119 [0.14, 0.65] [50.5, 286.0]
DYE866 double diff. distr. p [118, 119] 184 [0.017, 0.87] [19.8, 251.2]

double diff. distr. p/d [120] 15 [0.026, 0.55] [21.2, 166.4]

Collider vector boson production

CDF W asy W asymmetry [121] 13 [3.0 · 10−3, 0.57] [6463.8, 6463.8]
CDF Z rap Z rapidity distr. [122] 29 [2.7 · 10−3, 0.80] [8315.2, 8315.2]
D0 Z rap Z rapidity distr. [123] 28 [3.0 · 10−3, 0.73] [8315.2, 8315.2]

ATLAS W/Z rap W/Z rapidity distr. [94] 30 [4.7 · 10−4, 0.28] [6464.0, 6464.0]
CMS W el asy W electron asymmetry [95] 11 [1.2 · 10−3, 0.11] [6463.8, 6463.8]

LHCb W W/Z rapidity distr. [96] 10 [1.6 · 10−4, 0.91] [6463.8, 8315.2]

Collider inclusive jet production

CDF RII kT kT jets [124] 76 [4.6 · 10−3, 0.90] [3364.0, 376382.3]
D0 RII cone cone jets [125] 110 [3.1 · 10−3, 0.97] [2970.3, 341991.0]
ATLAS jets anti-kT jets [97] 90 [5.2 · 10−5, 0.91] [400.0, 140000.0]

Total

Total NLO 3482 [4.3 · 10−5, 0.97] [3.0, 140000.0]
Total NNLO 3501 [4.3 · 10−5, 0.97] [3.0, 140000.0]

Table 6.1: Experimental datasets included in the NNPDF2.3 global analysis. For each
experiment the number of data points and the kinematic coverage (after the kinematic cuts
described in Sec. 6.1.1) are provided. Notice that for some of the HERA charm structure

function datasets there are two values for the number of data points and of the energy ranges:
the first corresponds to the data included in the NLO fit and the second in the NNLO fit. For

hadronic data the x-ranges are determined using LO kinematics.
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Figure 6.1: Kinematic coverage of the experimental data used in the NNPDF2.3 PDF
determination.

rather than directly on PDFs, which do not necessarily satisfy this constraint (except at
leading order where the probabilistic interpretation holds).

Positivity constraint may be implemented in various ways and in the NNPDF2.3 fits
it is imposed using the so-called the Lagrange multipliers method. In practice, a given
number of pseudo-experimental datasets having the desired kinematics are added to the
real dataset and they are such that, by construction, the “experimental” value of each
point belonging to the pseudo-dataset coincides with theoretical prediction for any set of
PDFs. This way the global χ2 of the fit is not affected by the presence of the positivity
constraint datasets. At the k-th iteration of fitting procedure, it is checked whether one
or more pseudo-points become negative. If this is the case, the absolute value of the
largest violation, say ∆V , multiplied by a given factor λ (Lagrange multiplier) is added
to the training error function given in eq. (5.16), in practice the following substitution
is performed:

E(k)
tr → E(k)

tr + λ∆V . (6.1)

This way, configurations of the PDF parameter space that result in negative predictions
for the pseudo-data are “discouraged” and the fitting algorithm spontaneously tends to
minimize the amount of violation ∆V .

In the NNPDF2.3 fits positivity is imposed producing pseudo datasets for the fol-
lowing observables:
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• the DIS longitudinal structure function FL, which constrains the gluon positivity
at small-x.

• The charm production cross section in neutrino DIS, d2σν,c/dxdy [127], which
constrains the strange PDFs both at large and at small-x, beyond the reach of
existing data.

• The neutral current DIS charm structure function F c
2 , useful to impose the posi-

tivity of the gluon at very large-x, where it is not constrained by any experimental
dataset.

All the positivity constraints are implemented at a low scale Qpos, that is taken to be
Q2

pos = 5 GeV2, by means of 50 pseudo-data points for each observable logarithmically
distributed over the range x ∈ [10−6, xmax] with xmax = 0.1 for the NC observables FL

and F c
2 and xmax = 0.4 for CC cross section d2σν,c/dxdy. The pseudo-data used to

implement positivity are computed consistently at the same perturbative order as all
the other physical observables.

6.1.4 Treatment of Hadronic Data

As is clear from Tab. 6.1 and Fig. 6.1, the energies covered by the hadronic data (Drell-
Yan, electro-weak boson production and jet production) are typically well above the
charm quark threshold. In this regime, as shown in Sec. 2.4, the FONLL schemes reduces
automatically to the ZM-VFNS. Therefore, in the NNPDF analyses only the DIS data,
which however represent the majority of the whole dataset (around 3000 points points
out of 3500), are treated using the FONLL scheme. The hadronic data, instead, are
treated using the ZM-VFNS. This provides a big practical simplification but does not
affect the accuracy of the determination of PDFs.

In the NLO analyses, Drell-Yan and electro-weak vector boson production are con-
sistently included at NLO in perturbative QCD. The extension to NNLO would be in
principle straightforward, but in practice challenging because of the distribution struc-
ture and intricate choice of kinematic dependence of the NNLO coefficient functions of
Ref. [128]. Therefore, an approximate computation is adopted for the NNLO analyses,
which leads to an accuracy which is fully adequate for our purposes.

In this approximation, Drell-Yan and electro-weak vector boson production observ-
ables are computed with NNLO αs and PDF evolution but NLO partonic cross sections
supplemented by local K-factors that account for the missing order α2

s partonic coef-
ficient functions. The K-factors are defined as the ratio of differential cross sections,
where in the numerator the full NNLO expression is used, and in the denominator the
same expression but with the order α2

s corrections to the partonic cross section set to
zero. In this definition the same NNLO αs and PDF evolution are used both in the
numerator and the denominator. This minimizes the impact of the NNLO K-factor
corrections, which are then reduced to the missing order α2

s partonic cross sections.
The K-factors are found to be rather small for most processes of interest, especially

for collider kinematics. It turns out that the NNLO K-factors are of order 2 ÷ 3% for
the collider data, while they are more important for fixed-target Drell-Yan data, where
they are typically of order 10% but sometimes as large as 25%. However, the average
total experimental uncertainty on these data is typically larger than 20%.
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As far as the inclusive jet production data are concerned, exact NNLO corrections
are not known yet. NNLO theoretical predictions for CDF and D0 inclusive jet data
are computed using the approximate NNLO matrix elements obtained from threshold
resummation [129] as implemented in the FastNLO framework [130, 131]. This provides
an approximate NNLO calculation which combines the most accurate perturbative in-
formation available. For the ATLAS jet data, instead, the threshold approximation is
expected to be worse because of the higher center-of-mass energy, and thus only the
NLO matrix elements are used but with NNLO PDF and αs evolution. However, it
was checked in Ref. [56] that the difference between fits with approximate NNLO jet
matrix elements and fits with purely NLO matrix elements is significantly smaller than
the difference between fits with and without jet data.

6.2 Results

We are finally ready to present the results of the implementation of the FONLL scheme
up to order α2

s using the NNPDF methodology for the determination of the proton PDFs.

The first step will be the assessment of the higher order corrections. This will be
done in Sec. 6.2.1 comparing the NNPDF2.3 NLO set with the NNLO one.

As a second step, the impact of the heavy quark mass effects will be studied in
Sec. 6.2.2 by comparing at NNLO the NNPDF2.3 fit obtained using three different mass
schemes, namely: FONLL-C scheme, ZM-VFNS and FFNS as described in Chapter 2.

In order to isolate the effects one is interested in, it is necessary that a common
setting be used. In particular, a common value for the reference value of αs and the
heavy quark masses should be taken. For this reason, all the NNPDF fits presented in
the following have been produced using as a reference for the MS strong coupling the
value αs(MZ) = 0.119(2), being MZ the mass of the Z boson. However, it should be
stressed that αs(MZ) = 0.119 is not the preferred value for the NNPDF fits. In fact,
the NNPDF fits have been produced for all the values of αs(MZ) spanning from 0.114
to 0.124 in steps of 0.001 and thus the users can utilize the parton set corresponding to
the value of αs(MZ) that they find appropriate for their study. Eventually, combined
PDF+αs uncertainties may be determined by combining replicas from sets corresponding
to different values of αS , as discussed in Sec. 3.2 of Ref. [135].

As for the heavy quark masses, throughout this chapter the pole mass scheme will
be used. The use of the MS masses as described in Chapter 4 for a PDF determination,
however, is close to its completion and in the near future the NNPDF collaboration will
probably be able to release a PDF set based on the MS masses.

In Tab. 6.2 the values for the charm and bottom masses Mc and Mb used in the
NNPDF2.3 analysis, along with the values used in other recent PDF determinations, are
shown.

As a final remark, we recall that all the NNPDF sets presented in the following
sections contain Nrep = 100 Monte Carlo replicas.

2Notice that this value is perfectly consistent with the PDG [132] value αs(MZ) = 0.1184 ± 0.0007.
In addition, in Refs. [133, 134] a determination of αs(MZ) at NLO and NNLO using the NNPDF2.1
parton sets [55, 56] has been performed finding similar values.
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Mc [GeV] Mb [GeV]

NNPDF2.3
√
2 4.75

CT10 [24] 1.30 4.75
MSTW2008 [28] 1.40 4.75
ABKM09 [50] 1.50 4.50

HERAPDF1.5 [26] 1.40 4.75

Table 6.2: The default values of the heavy quark masses used in NNPDF2.3 and in several
recent PDF sets.

NNPDF2.3

NLO NNLO
χ2
tot 1.12 1.13

〈χ2〉± σχ2 1.15 ± 0.06 1.18 ± 0.05
〈E〉± σE 2.17 ± 0.05 2.20 ± 0.06

〈Etr〉± σEtr 2.15 ± 0.07 2.18 ± 0.08
〈Eval〉± σEval 2.21 ± 0.07 2.24 ± 0.09

Table 6.3: Table of statistical estimators for the NNPDF2.3 NLO and NNLO fits with
Nrep = 100 replicas.

6.2.1 Impact of the Higher Order Corrections

In this sections the inclusion of the NNLO corrections will be discussed. In Tab. 6.3 the
statistical estimators for the NNPDF2.3 NLO and NNLO fits are reported. It should
be borne in mind that the NLO fit has been obtained using the FONLL-A scheme,
while the NNLO fit using the FONLL-C scheme (see Sec. 3.1.2). In Tab. 6.3 χ2

tot is
computed by comparing the average of the Nrep replicas to the original experimental
data, 〈χ2〉 is instead computed by comparing each replica to the data and averaging
over replicas, while 〈E〉 is the quantity that is actually minimized, i.e. the error function
in eq. (5.16) and it coincides with the χ2 computed by comparing each replica to the data
replica it is fitted to, with the three values given corresponding to the total, training,
and validation datasets. The distribution of χ2 and Etr among the NNPDF2.3 NLO
and NNLO replicas are shown in Fig. 6.2. Notice that a value 〈E〉 $ 2 is expected for
a good fit because, if errors are correctly estimated, the average standard deviation of
true values about the measured value should equal the total uncertainty, but replicas
are generated about the measured values, so their average standard deviation about the
true values should be twice the total uncertainty. It should be finally noticed that all
the statistical estimators reported in Tab. 6.3, and specifically the χ2, are determined
using the t0 covariance matrix, needed for a proper treatment of the normalization
uncertainties [87], and normalized to the total number of data points.

In Tab. 6.4 the χ2
tot values for the individual experiments for both NNPDF2.3 NLO

and NNLO are reported along with the percent difference of the NNLO fit with respect
to the NLO one.

From Tabs. 6.3 and 6.4, it is evident that all the statistical indicators are quite
similar between NLO and NNLO. More in particular, the χ2

tot in Tab. 6.4 differ by less
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Figure 6.2: Distribution of χ2 (upper plots) and E(k)
tr (lower plots), over the sample of

Nrep = 100 replicas, for the NNPDF2.3 NLO (left plots) and NNLO (right plots) PDF sets.

than 10% for all experiments, except SLAC and CMS W electron asymmetry data (for
which NNLO is better) and the NuTeV, ZEUS F c

2 and LHCb W rapidity distribution
data (for which NNLO is worse). It is however interesting to observe that a very good
description of the HERA F c

2 data is obtained at NNLO without the need of any ad hoc

cut as described in Sec. 6.1.1.

A one-to-one comparison for the NNPDF2.3 NLO and NNLO PDFs is given in
Figs. 6.3 and 6.4 at the input scale Q2

0 = 2 GeV2, in the basis in which they are
parametrized (see Sec. 5.2.1). In each plot the PDF central values are obtained taking the
average over the Nrep replicas of each set while the error bands are given by the respective
standard deviations (see Sec. 5.3). A visual comparison confirms that NLO and NNLO
analyses lead to very similar results, but at the same time it also reveals some differences.
In order to precisely quantify the statistical significance of the differences between the
NNPDF2.3 NLO and NNLO PDFs, we plot in Fig. 6.5 the statistical distances at the
initial scale Q2

0 between central values and uncertainties for each one of the parametrized
PDFs. We recall that the statistical distance d between two Monte Carlo samples, defined
in eq. (5.26), measures their departure in unit of standard deviations and an average
distance d $ 1 corresponds to statistical equivalence while, for sets ofNrep = 100 replicas,
an average distance d $

√
Nrep = 10 corresponds to one standard deviation difference.

It is evident that the NLO and NNLO sets are statistically non-equivalent, but differ
by typically less than one sigma (d < 10). This in particular means that the NNPDF2.3
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Experiment χ2
tot

NNPDF2.3 NLO NNPDF2.3 NNLO

NMC pd 0.95 0.95 (+0.0%)
NMC 1.65 1.63 (−1.2%)
SLAC 1.29 1.00 (−22.5%)

BCDMS 1.25 1.33 (+6.4%)
HERA1-AV 1.02 1.04 (+2.0%)
CHORUS 1.14 1.11 (−2.6%)
FLH108 1.31 1.22 (−6.9%)
NuTeV 0.44 0.57 (+29.5%)

ZEUS-H2 1.27 1.29 (+1.6%)

ZEUS F c
2 0.83 1.00 (+20.5%)

H1 F c
2 1.59 1.54 (−3.1%)

DYE886 0.46 0.49 (+6.5%)
DYE605 0.82 0.83 (+1.2%)

CDF W asy 1.56 1.54 (−1.3%)
CDF Z rap 1.70 1.86 (+9.4%)
D0 Z rap 0.61 0.63 (+3.3%)

ATLAS W/Z rap 1.29 1.41 (+9.3%)
CMS W el asy 0.87 0.77 (−11.5%)

LHCb W 0.67 0.76 (+13.4%)

D0 RII cone 0.78 0.82 (+5.1%)
CDF RII kT 0.78 0.74 (−5.1%)
ATLAS jets 0.84 0.80 (−4.8%)

Table 6.4: χ2 values per data point for individual experiments computed using NNPDF2.3
NLO and NNLO. In the last column also the percent difference of the NNLO fit with respect to

the NLO one is shown.

PDF sets are quite stable when going from NLO to NNLO. The largest variations are
observed for the central values of the singlet distribution Σ and the total valence V at
x ∼ 0.2 ÷ 0.4 where the distances reveal differences slightly above the one sigma level.
However, it should be noticed that PDF uncertainties are particularly small in this region
and thus relatively small changes in the central value lead to relatively more significant
distances. The small-x NNLO PDFs (x ! 0.01), instead, are very similar to their NLO
counterparts. Finally, it is worth noticing that the distances for the PDF uncertainties
in right panel of Fig. 6.5 are all around d $ 1 all over the x range. This is consistent
with the fact that the PDF error bands do not include theory uncertainties and only
reflect the experimental uncertainties which are common to NLO and NNLO fits.

In order to assess the impact of NNLO corrections on physical observables, it is useful
to compare NLO and NNLO PDFs for individual flavours at a typical hard scale. This is
done in Fig. 6.6, where the NLO/NNLO ratio is shown as a function of x at Q2 = 104

GeV2. The general picture does not change and the biggest differences are observed
for the light quarks and, correspondingly by evolution, for the gluon around x $ 10−3,
where the NLO and NNLO bands barely overlap.

From the comparison between NNPDF2.3 NLO and NNLO, it is clear that the inclu-
sion of the NNLO corrections has a visible but small impact on the PDF determination
and NLO and NNLO PDFs are (almost) always compatible within one standard devia-
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Figure 6.3: Comparison of NNPDF2.3 NLO and NNLO singlet sector PDFs.

tion. This leads to an important conclusion. As already mentioned, PDF uncertainties
only reflect experimental errors and do not include the theory uncertainties due to higher
perturbative orders, which could be estimated by varying the renormalization and fac-
torization scales. Alternatively, at NLO, an estimate of the impact of the higher order
corrections could be assessed by means of a direct comparison to the NNLO results.
This is exactly what has been done in this sections and the result shows that, at NLO
(and beyond), it is at present a reasonable approximation to neglect PDF theoretical
uncertainties, since they are usually smaller than the experimental ones.

6.2.2 Impact of the Heavy Flavour Corrections

To assess the impact of the inclusion of the heavy quark mass corrections, in this section
the baseline NNPDF2.3 NNLO set, which implements the FONLL-C mass scheme, will
be compared to two variants obtained employing the FFNS and the ZM-VFNS, described
in Chapter 2, as mass schemes.

In Tab. 6.5 the main statistical estimators for NNPDF2.3 NNLO FONLL-C, FFNS
and ZM-VFNS are compared. The total χ2

tot, in particular, indicates that the description
of data provided by FONLL-C scheme is very good (χ2

tot = 1.13), the FFNS is instead
slightly worse but still adequate (χ2

tot = 1.16), while the ZM-VFNS turns out to be worse
(χ2

tot = 1.26). The χ2 and Etr distributions for NNPDF2.3 NNLO in the FFNS and in
the ZM-VFNS, to be compared with the lower plots of Fig. 6.2, are shown in Fig. 6.7.

In Tab. 6.6 the χ2
tot values for the single experiments are reported. As expected
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Figure 6.4: Same as Fig. 6.3 for the non-singlet sector PDFs.

from the global χ2
tot, the differences between FONLL-C and FFNS are rather small and

typically below 10% with a few exceptions. In particular, data from SLAC, BCDMS,
ZEUS-H2, LHCb W and CDF RII jets are sensibly better described by the FONLL-C
scheme, while the ZEUS F c

2 structure functions are better described by the FFNS.

The differences between FONLL-C and ZM-VFNS are instead more pronounced. In
particular, the entire DIS sector is indeed much better described by the FONLL-C (see,
for instance, NMC and ZEUS F c

2 ). On the other hand, as expected, the description of
the hadronic sector is in better agreement.

In the following, in order to find out the source of the differences, a more detailed
one-to-one comparison between FONLL-C and FFNS first and FONLL-C and ZM-VFNS
will be presented.
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NNPDF2.3 NLO vs. NNPDF2.3 NNLO
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Figure 6.5: Distances between the NNPDF2.3 NLO and NNLO parton sets shown in Figs. 6.3
and 6.4. All distances are computed from sets of Nrep = 100 replicas.
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Figure 6.6: Comparison between NNPDF2.3 NLO and NNLO light quark and gluon PDFs at
Q2 = 104 GeV2. The results have been obtained with Nrep = 100 replicas. All curves are shown

as ratios to the central NNPDF2.3 NLO result.

FONLL-C vs. FFNS

In Fig. 6.8 the distances between NNPDF2.3 NNLO FONLL-C and FFNS at the initial
scale Q2

0 = 2 GeV2 are shown. It is clear that the two fits are statistically non-equivalent,
but differences are moderate, at the half sigma level (d ∼ 5) or so, with the largest change
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NNPDF2.3

FONLL-C FFNS ZM-VFNS
χ2
tot 1.13 1.16 1.26

〈χ2〉± σχ2 1.18 ± 0.05 1.20 ± 0.05 1.26 ± 0.05
〈E〉± σE 2.20 ± 0.06 2.21 ± 0.06 2.31 ± 0.06

〈Etr〉± σEtr 2.18 ± 0.08 2.21 ± 0.08 2.27 ± 0.08
〈Eval〉± σEval 2.24 ± 0.09 2.27 ± 0.08 2.37 ± 0.10

Table 6.5: Table of statistical estimators for the NNPDF2.3 NNLO fits with Nrep = 100
replicas n the FONLL-C scheme, FFNS and ZM-VFNS.
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Figure 6.7: Distribution of χ2 (upper plots) and E(k)
tr (lower plots), over the sample of

Nrep = 100 replicas, for the NNPDF2.3 NLO (left plots) and NNLO (right plots) PDF sets.

observed in the central values and with no significant change in uncertainties. The PDF
which varies most is the gluon: this is easily understandable given that the gluon is
mostly determined by scaling violations, which are different in the two cases. As a
consequence of the evolution, also the singlet Σ and the total strangeness s+ present
differences of the same order.

For collider physics applications, the initial PDFs, regardless whether determined in
a GM-VFNS or in a FFNS [50, 23], are evolved upwards using the usual VFNS evolution
equations. It turns out that this evolution amplifies differences between FONLL-C and
FFNS PDFs. The amplification is demonstrated in Fig. 6.9, where the same distances
of Fig. 6.8 are shown, but now at the scale Q2 = 104 GeV2 (relevant e.g. for W , Z
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Experiment χ2
tot

FONLL-C FFNS ZM-VFNS

NMC pd 0.95 0.96 (+1.1%) 0.95 (+0.0%)
NMC 1.63 1.56 (−4.3%) 2.35 (+44.2%)
SLAC 1.00 1.20 (+20.0%) 1.05 (+5.0%)

BCDMS 1.33 1.50 (+12.8%) 1.31 (−1.5%)
HERA1-AV 1.04 1.05 (+1.0%) 1.42 (+36.5%)
CHORUS 1.11 1.08 (−2.7%) 1.12 (+0.9%)
FLH108 1.22 1.24 (+1.6%) 1.29 (+5.7%)
NuTeV 0.57 0.53 (−7.0%) 0.62 (+8.8%)

ZEUS-H2 1.29 1.46 (+13.2%) 1.31 (+1.6%)

ZEUS F c
2 1.00 0.88 (−12.0%) 1.22 (+22.0%)

H1 F c
2 1.54 1.52 (−1.3%) 1.77 (+14.9%)

DYE886 0.49 0.51 (+4.1%) 0.48 (−2.0%)
DYE605 0.83 0.83 (+0.0%) 0.81 (−2.4%)

CDF W asy 1.54 1.54 (+0.0%) 1.55 (+0.6%)
CDF Z rap 1.86 1.89 (+1.6%) 1.97 (+5.9%)
D0 Z rap 0.63 0.62 (−1.6%) 0.65 (+3.2%)

ATLAS W/Z rap 1.41 1.37 (−2.8%) 1.56 (+10.6%)
CMS W el asy 0.77 0.77 (+0.0%) 0.76 (−1.3%)

LHCb W 0.76 0.92 (+21.1%) 0.78 (+2.6%)

D0 RII cone 0.82 0.83 (+1.2%) 0.86 (+4.9%)
CDF RII kT 0.74 0.99 (+33.8%) 0.71 (−4.1%)
ATLAS jets 0.80 0.83 (+3.8%) 0.89 (+11.3%)

Table 6.6: χ2 values per data point for individual experiments computed using NNPDF2.3
NNLO FONLL-C, FFNS and ZM-VFNS. In the last two columns also the percent difference

with respect to the FONLL-C fit are shown.

NNPDF2.3 NNLO - FONLL-C vs. FFNS, Q2 = 2 GeV2
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Figure 6.8: Distances between NNPDF2.3 NNLO FONLL-C and FFNS. Distances are shown at
the scale Q2 = 2 GeV2 at which PDFs are parametrized, both between central values (left) and

uncertainties (right).

or Higgs production). While uncertainties are still unchanged, central values for some
PDFs (specifically the gluon and the quark singlet Σ) now differ by more than one sigma.
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The increase of the differences when evolving to higher scales can be understood as a
consequence of the fact that differences in the large-x region (where uncertainties are
large) at low scale lead upon evolution to high scale to differences in the small-x region,
where uncertainties are relatively small. In addition the coupled evolution between Σ
and gluon tends to amplify the differences even further. In Fig. 6.10 the most different

NNPDF2.3 NNLO - FONLL-C vs. FFNS, Q2 = 10000 GeV2
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Figure 6.9: Same as Fig. 6.8, but at Q2 = 10000 GeV2. All PDFs have been evolved upwards
using the same VFNS evolution equations.

PDFs between FONLL-C and FFNS are shown as a ratio to FONLL-C.
Having ascertained that the difference between PDFs obtained in the FONLL-C

scheme and FFNS is not negligible, one can ask what is the source of the difference.
In order to understand this, the statistical quality of the two fits needs to be carefully
studied [91]. In Fig. 6.11 we show the kinematic coverage of the DIS datasets whose
χ2 in the FFNS worsens (left panel) and improves (right panel) in a substantial way
as compared to the FONLL-C scheme. It is clear that the data with worse χ2 place
themselves mainly in the large-x region (x " 0.1).

This is consistent with the behavior observed for the heavy quark structure functions.
In Fig. 6.12 we show the predictions for the charm structure function F c

2 as a function
of the energy Q2 for four different values of x in the three mass schemes considered here,
i.e. FONLL-C scheme, FFNS and ZM-VFNS. It is clear that at smaller values of x the
three predictions are very close to each other over the whole Q2 range considered. As
the values of x becomes larger, instead, the three predictions start to diverge and, while
at smaller values of Q2 (! 10 GeV2) as expected the FONLL-C scheme is closer to the
FFNS, for larger values of Q2 (" 10 GeV2) the FONLL-C and the FFNS predictions
markedly depart from each other.

In conclusion, the difference between FONLL-C and FFNS fits stems from data
placed in a particular kinematic region (large-Q and large-x) which, according to the fit
quality, are more accurately described by the FONLL scheme.

FONLL-C vs. ZM-VFNS

We now turn to the direct comparison between NNPDF2.3 NNLO FONLL-C and ZM-
VFNS. In Fig. 6.13 the distances at the initial scale Q2 = 2 GeV2 are shown. In this
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Figure 6.10: Comparison between NNPDF2.3 NNLO FONLL-C and FFNS PDFs, displayed as
a ratio to FONLL-C at Q2 = 104 GeV2: gluon (top left), quark singlet (top right), up (bottom

left) and down (bottom right).
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Figure 6.11: Kinematic coverage of the experimental datasets whose χ2 worsens (left panel)
and improves (right panel) in the FFNS as compared to the FONLL-C scheme in the

NNPDF2.3 NNLO PDF determination.

case the departure is much more pronounced and in particular the medium-x gluons
differ by almost two sigmas. As already observed for the FFNS case, the discrepancy
results amplified at higher scales. Indeed Fig. 6.14, where the distances at Q2 = 104

GeV2 are displayed, shows that at the typical collider energies the difference can reach
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Figure 6.12: Theoretical predictions for the charm structure function F c
2 as a function of Q2 for

four different values of x = 0.001, 0.01, 0.1, 0.2 in the three mass schemes considered in this
section, i.e. FONLL-C scheme, FFNS and ZM-VFNS.

NNPDF2.3 NNLO - FONLL-C vs. ZM-VFNS, Q2 = 2 GeV2
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Figure 6.13: Distances between NNPDF2.3 NNLO FONLL-C and ZM-VFNS. Distances are
shown at the scale Q2 = 2 GeV2 at which PDFs are parametrized, both between central values

(left) and uncertainties (right).

the 3.5 sigma level. In Fig. 6.15 the most different PDFs, i.e. the singlet Σ and the
gluon, between FONLL-C and ZM-VFNS are shown as a ratio to FONLL-C.

The origin of the discrepancy between FONLL-C and ZM-VFNS can be traced back
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NNPDF2.3 NNLO - FONLL-C vs. ZM-VFNS, Q2 = 10000 GeV2
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Figure 6.14: Same as Fig. 6.13, but at Q2 = 10000 GeV2. All PDFs have been evolved upwards
using the same VFNS evolution equations.
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Figure 6.15: Comparison between NNPDF2.3 NNLO FONLL-C and ZM-VFNS (ZM), displayed
as a ratio to FONLL-C at Q2 = 104 GeV2, for gluon (left) and quark singlet (right) PDFs.

to the NC low-energy data. In fact, looking at Tab. 6.6, the experiments whose de-
terioration of χ2 with respect to the FONLL-C scheme is more pronounced are NMC,
HERA1-AV the H1 and ZEUS charm structure functions which contain indeed many
low energy data (see Fig. 6.16). Here, the absence of the power terms MH/Q in the
ZM-VFNS as compared to the FONLL-C scheme causes the gluon to be much softer in
the small-x region (x < 0.1) and consequently, due to the momentum sum rule, harder
in the large-x region. The low-energy inaccuracy of the ZM-VFNS as compared to the
FONLL-C scheme is also confirmed by Fig. 6.12, where the ZM-VFNS predictions for
Q2 ! 10 GeV2 and more markedly in the larger-x region (x " 0.1), where many of
the NMC data lay, tend to depart from the FONLL-C predictions with a consequent
deterioration of the χ2.

6.2.3 Impact of the Threshold Prescription

Finally, we consider the impact of the threshold prescription introduced in eq. (2.50)
to damp down the potentially large subleading terms around the heavy quark mass
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Figure 6.16: Kinematic coverage of the experimental datasets whose χ2 worsens in the
ZM-VFNS as compared to the FONLL-C scheme in the NNPDF2.3 NNLO PDF determination.

threshold in the definition of the FONLL structure function. The explicit form of the
damping function implemented if the NNPDF2.3 fits is given in eq. (2.51). This is an
“artificial” factor introduced to keep under control potential numerical instabilities and
thus one can ask whether the inclusion of such an empirical factor has some impact on
the determination of PDFs. To this end the NNPDF2.3 NNLO fit in the FONLL-C
scheme has been repeated switching off the damping function (Dth(Q) = 1).

The distances between the NNPDF2.3 NNLO FONLL-C with and without the damp-
ing functions are shown in Fig. 6.17: it is evident that the two fits are statistically equiv-
alent. One can then conclude that the inclusion of a damping function has no visible
impact on the PDF determination.

NNPDF2.3 NNLO - Dump vs. no Dump, Q2 = 2 GeV2
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Figure 6.17: Distances between the NNPDF2.3 NNLO FONLL-C with and without damping
factor give in eq. 2.51. All distances are computed from sets of Nrep = 100 replicas.
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6.3 LHC Phenomenology

Once the impact of the heavy quark mass corrections at the level of PDFs has been
assessed, in this section we turn to present some results relevant for the phenomenology
at the LHC at

√
s = 8 TeV.

As is well known, at a hadron collider the factorized observables depend on PDFs
through the parton luminosities [136], which can be defined as:

Φij(MX) ≡
1

s

∫ 1

τ

dx

x
fi(x,MX)fj

(τ
x
,MX

)
, (6.2)

where s is the center of mass energy of the collider, MX is the invariant mass of the
partonic system and τ ≡ M2

X/s. In the following we will mostly consider gluon-gluon
luminosity Φgg and the total quark-antiquark and quark-gluon luminosities, respectively
defined as:

Φqq ≡
∑

i=u,...,t

Φii and Φqg ≡
∑

i=u,...,t

Φig . (6.3)

These luminosities at
√
s = 8 TeV are plotted in Fig. 6.18 as a function of Mx for

NNPDF2.3 NNLO FONLL-C, FFNS and ZM-VFNS, all normalized to the FONLL-C
central value.
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Figure 6.18: Comparison between NNPDF2.3 NNLO FONLL-C, FFNS and ZM-VFNS parton
luminosities at LHC 8 TeV, displayed as a ratio to FONLL-C. The for the gluon-gluon

(top-left), the quark-antiquark (top-right) and the quark-gluon (bottom) luminosities are
shown.
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As expected from the direct comparison between PDFs, the gluon-gluon luminosity
Φgg (upper-left panel in Fig. 6.18) is the most affected by the different treatment of
the heavy quark contributions. In particular, as compared to the FONLL-C scheme, the
FFNS gluon-gluon luminosity is sensibly larger at smaller invariant values of the invariant
mass MX < 100 GeV while it is smaller for MX > 100 GeV, though still compatible
within the error band. The ZM-VFNS gluon-gluon luminosity, instead, behaves in the
opposite way, but the discrepancies both at small and large values of MX are even more
enhanced and only in the range MX $ 100 ÷ 200 GeV there is agreement with the
FONLL-C determination. Regarding the quark-antiquark luminosities Φqq (upper-right
panel in Fig. 6.18), we observe a much better agreement all over the MX range and
essentially both FFNS and ZM-VFNS are in agreement with FONLL-C within errors.
Finally the quark-gluon luminosities Φqg (bottom panel in Fig. 6.18), driven by the gluon
PDF, have a very similar relative behavior as the gluon-gluon luminosity Φgg.

In order to assess the impact of the mass scheme choice for PDFs in the hadronic
sector, in the following we will present the results for some benchmark total cross sec-
tions at the LHC 8 TeV comparing, when possible, the theoretical predictions obtained
with the NNPDF2.3 NNLO FONLL-C, FFNS and ZM-VFNS sets to the most recent
experimental data.

We will consider the following observables:

• electro-weak vector boson production total cross sections and the W+/W− and
W/Z cross-section ratios at NNLO using the Vrap code [128].

• Top-pair production total cross section using the top++ code [137] which imple-
ments the full NNLO+NNLL corrections. The top quark mass is taken to be
Mt = 173.3 GeV.

• Standard Model Higgs boson production cross sections via gluon-gluon fusion at
NNLO as implemented in the iHixs code [138]. Here the Higgs mass is taken to
be MHiggs = 125 GeV.

It should be stressed that all the errors associated with the theoretical predictions
presented in this section are PDF uncertainties only, thus they do not include αs as well
as theoretical uncertainties due to missing higher orders, usually estimated by varying
renormalization and factorization scales.

The numerical results for the electro-weak vector boson production are reported in
Tab. 6.7 and in Fig. 6.19 their graphical representation, along with the most recent
experimental measurements provided by the CMS collaboration [139], is shown. We
start noticing that all the theoretical predictions are in general good agreement amongst
themselves. This is a consequence of the fact that the quark-antiquark luminosity Φqq

associated with the qq production channel, which is the dominant one in the electro-weak
vector boson production, is very similar for all the three PDF determinations consid-
ered (see Fig. 6.18). In addition, the predictions are in general good agreement with
data. Only the ratio σ(W+)/σ(W−) seems to be slightly overshooting the experimental
determination and a difference at the two-sigma level is observed.

Now we turn to top-pair production for which the theoretical predictions are given
in Tab. 6.8 and the respective graphical representation, along with the experimental
value measured by CMS [140] and ATLAS [141], is shown in Fig. 6.8. The top-pair
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NNPDF2.3 NNLO
σ(W+) [nb] σ(W−) [nb] σ(Z) [nb] σ(W )/σ(Z) σ(W+)/σ(W−)

FONLL-C 7.027 ± 0.101 4.908 ± 0.073 1.126 ± 0.015 10.599 ± 0.031 1.432 ± 0.012
FFNS 7.209 ± 0.095 5.047 ± 0.064 1.152 ± 0.013 10.637 ± 0.027 1.428 ± 0.013

ZM-VFNS 7.014 ± 0.073 4.890 ± 0.054 1.122 ± 0.011 10.607 ± 0.024 1.434 ± 0.011

Table 6.7: Predictions for the inclusive cross sections for W and Z production at the LHC at√
s = 8 TeV at NNLO using the Vrap code [128], obtained with the PDF sets NNPDF2.3

NNLO FONLL-C, FFNS and ZM-VFNS. All the uncertainties are one sigma and are due only
to PDFs. The branching ratios are understood.
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Figure 6.19: Graphical representation of Tab. 6.7 along with the CMS results [139].
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production at LHC 8 TeV is dominated by the gluon-gluon fusion channel [142], there-
fore the predictions are particularly sensitive to the gluon-gluon luminosity Φgg around
MX $ 2Mt $ 350 GeV. Looking at Fig. 6.18, it is evident that the ZM-VFNS gluon-
gluon luminosity in this region is much larger than the FONLL-C one which in turn
is larger but compatible with the FFNS determination. This is exactly the same trend
observed for the theoretical predictions in Tab. 6.8. However, given the large experimen-
tal uncertainties, at present all the determinations obtained with the three NNPDF2.3
NNLO sets considered here are in agreement with (at least one of) the experimental
measurements.

NNPDF2.3 NNLO
σ(tt) [pb]

FONLL-C 252.8 ± 6.1
FFNS 247.3 ± 5.7

ZM-VFNS 267.7 ± 5.5

Table 6.8: Predictions for the inclusive cross sections for the Higgs production at the LHC at√
s = 8 TeV at NNLO using the iHixs code [138], obtained with the PDF sets NNPDF2.3

NNLO FONLL-C, FFNS and ZM-VFNS. All the uncertainties are one sigma and are due only
to PDFs.
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Figure 6.20: Graphical representation of Tab. 6.8 along with the CMS results [140].

Finally, we consider the Higgs production via gluon-gluon fusion. The values for
the theoretical predictions are reported in Tab. 6.9 and their graphical representation is
given in Fig. 6.21. By definition, this observable is mostly sensitive to the gluon-gluon
luminosity around MX $ MH = 125 GeV. From Fig. 6.18 we see that, in this particular
region, all the three gluon-gluon luminosities are in good agreement. As a consequence,
the predictions shown in Fig. 6.21 are all compatible within uncertainties. However, we
also observe that the FFNS luminosity is slightly larger than the FONLL-C while ZM-
VFNS one is slightly smaller and, as expected, the predictions for the Higgs production
cross section in Fig. 6.21 follow the same trend.
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NNPDF2.3 NNLO
σ(H) [pb]

FONLL-C 19.54 ± 0.24
FFNS 19.84 ± 0.20

ZM-VFNS 19.37 ± 0.22

Table 6.9: Predictions for the inclusive cross sections for tt production at the LHC at
√
s = 8

TeV at NNLO using the Top++ code [137], obtained with the PDF sets NNPDF2.3 NNLO
FONLL-C, FFNS and ZM-VFNS. All the uncertainties are one sigma and are due only to

PDFs.
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Figure 6.21: Graphical representation of Tab. 6.9.



Chapter 7

Summary and Conclusions

The present thesis was devoted to the study of the inclusion of higher-order corrections
and heavy quark mass effects in a PDF determination. This has been carried out in the
NNPDF framework resulting originally in the NNPDF2.1 sets [55, 56], which were at a
later stage supplemented by the first LHC data leading to the most recent NNPDF2.3
sets [29].

In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced.
We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS)
process at order αs in QCD leads to initial-stale collinear divergences which, using the
factorization theorem, can be reabsorbed into the PDFs. This “relocation” of divergences
from hard coefficients (coefficient functions) to PDFs can be performed only at the price
of introducing an arbitrary scale µF , called factorization scale, on which both the renor-
malized coefficient functions and PDFs start depending. The requirement that physical
observables do not depend on µF , imposed by demanding the logarithmic derivative to
vanish, leads to the formulation of the DGLAP equation that regulates the energy de-
pendence of PDFs. The DGLAP equation is one of the most important ingredients for
the present PDF determinations. In fact, thanks to it, the energy dependence of PDFs
is fully determined and the task is then reduced to the determination of the x (Bjorken
variable) dependence.

In Chapter 2 a detailed discussion of the factorization schemes presently available
to include heavy quark mass effects into DIS structure functions has been given. It
emerged that there are two possible basic approaches to the calculation of the DIS
structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme
(FFNS), the calculation is performed retaining the quark mass of the heavy flavours
which provide a “natural” regulator for the infrared divergences. As a consequence,
there is no need to introduce a PDF for the heavy quark flavours so that the number
of active flavours is kept fixed and in particular it does not change with the energy. In
the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS),
the heavy quark masses are instead set to zero and this gives rise to the usual final-state
collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS,
the number of active flavours is assumed to increase by one unity as the energy of the
process crosses the energy threshold of a given heavy quark.

It turns out that the FFNS provides an accurate description for energies around
and below the heavy quark mass while it deteriorates at high energies. The ZM-VFNS
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is instead more accurate when the energy is much larger than the heavy quark mass
thresholds and conversely it becomes less and less accurate as the energy approaches
them.

In order to obtain a factorization scheme that is accurate both at large and low ener-
gies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS
at large energy have been proposed and implemented in as many PDF fits. In Chapter 2
they have been described showing how they behave for different energy regimes. They
are: the ACOT, the TR, the FONLL and the BMSN schemes, more generally called
General-Mass Variable-Flavour-Number Schemes (GM-VFNS).

The topic of Chapter 3 was the implementation of the FONLL scheme, which is
the scheme adopted by the NNPDF collaboration. All the relevant formulas have been
derived up to order α2

s, discussing how a suitable definition of heavy quark structure
functions for both Neutral-Current (NC) and Charged-Current (CC) processes emerges
from the requirement of infrared safety in the limit of vanishing heavy quark mass. In
a second stage the formalism of the Mellin transformation has been introduced show-
ing how it provides a more analytical approach to the implementation of the structure
functions. In fact, the only non-analytical step required is the inverse Mellin transfor-
mation, which makes possible to go back from the N -space to the x-space. In addition,
this procedure requires the computation of the Mellin transform of all the expressions
involved, i.e. splitting functions and coefficient functions, up to the desired perturbative
order. Some of the higher-order coefficient functions were unknown and they have been
derived and benchmarked in Appendix A. Finally, the heavy quark structure functions
have been benchmarked.

In Chapter 4 the implementation of the MS heavy quark masses in the DIS structure
functions has been worked out. All the relevant formulas for PDF, αs and mass evolution
in the presence of MS heavy quark masses have been derived and benchmarked against
publicly available codes. In addition, the heavy quark coefficient functions, which are
commonly given in terms of pole masses, have been adapted to the MS and benchmarked.
The Mellin transform of the relevant expressions have been collected in Appendix B.

All the expressions presented in the previous chapters for the inclusion of the heavy
quark mass effects into a PDF determination have been implemented in the NNPDF
framework which thus needs to be properly introduced. Chapter 5 was then devoted
to the description of the NNPDF methodology. The main features of the NNPDF
methodology are the use of the Monte Carlo method for the treatment of uncertainties
combined with neural networks as basic interpolating functions.

The PDF sets resulting from the implementation of the FONLL method up to order
α2
s in the NNPDF framework have been finally presented in Chapter 6. In the first place,

a description of the dataset included in the fits has been given. Secondly, the impact
of the inclusion of the order α2

s corrections has been assessed comparing the NNPDF2.3
NLO set, obtained using the FONLL-A scheme, to the NNPDF2.3 NNLO set, obtained
using the NNLO. It emerged that the NLO and the NNLO sets, though statistically non-
equivalent, give rise to only moderate differences. In particular, it turned out that the
inclusion on the order α2

s corrections in a PDF determination based on a global dataset
has presently an impact which is typically smaller than the experimental uncertainties.
As a consequence, we could conclude that neglecting the systematic uncertainty due to
the higher order corrections is presently a good approximation for NLO or higher PDF
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determination.
We then turned to the impact of the heavy quark mass effects in a PDF determina-

tion. To this end, we have compared the NNPDF2.3 NNLO fit obtained in the FONLL-C
scheme, the FFNS and the ZM-VFNS, which include heavy quark mass effects in three
different ways. Based on the quality of the fits, we observed that the FONLL-C scheme
provides the best description of data. In order to spot the sources of the differences, we
have also performed the one-to-one comparisons FONLL-C vs. FFNS and FONLL-C vs.
ZM-VFNS. In both cases it emerged that the differences arise from data placed in spe-
cific kinematic regions. In particular, the FFNS as compared to the FONLL-C scheme
provides a worse description of data placed in the large-x and large-energy region while
the ZM-VFNS is not able to properly describe the low-energy data.

After having ascertained that the implementation of the FONLL scheme in a PDF
fit leads to an improvement in the accuracy, we turned to study some phenomenological
implications of such a determination. The theoretical predictions for some of the stan-
dard candles at the LHC 8 TeV, that is electro-weak vector boson production, top-pair
production and Higgs production via gluon-gluon fusion, have been evaluated using the
most up to date public codes using the NNPDF2.3 NNLO fits in the three different mass
schemes discussed above and compared, when possible, to the most recent experimental
measurements. The essential outcome of the comparison is that the present accuracy of
LHC measurements is not enough yet to discriminate between different mass schemes.
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Appendix A

Massive Coefficient Functions
Mellin Transform

In this appendix we collect all the analytical results for the Mellin transforms that has
been possible to derive for the massive coefficient functions.

A.1 NC Processes

We first consider the NC processes. In this case, the first non-vanishing massive con-
tribution is given by the order αs diagram shown on the left side of Fig. 3.1, which is
proportional to the gluon density. Moreover, in FFNS this is the only contribution of
order αs to the structure function.

We will first evaluate the Mellin transform of the order αs coefficient function con-
tributing to FH,FF

2 and then to the longitudinal component FH,FF

L . After that we will
take the limit MH → 0 of the massive expressions in order to obtain the Mellin transform
of the order αs coefficient functions for F FF0

2 and F FF0
L .

A.1.1 Order αs

The explicit expression of the order αs massive coefficient function for the gluon con-
tributing to FH,FF

2 is given in eq. (50) of [47] and we report it here:

CFF,(1)
2,g (z,Q,MH) = θ(a− z)TR

{[
2(1− 6ε− 4ε2)z2 − 2(1− 2ε)z + 1

]
ln

1 + v

1− v

+
[
− 4(2− ε)z2 + 4(2− ε)z − 1

]
v

}
,

(A.1)
with:

ε ≡
M2

H

Q2
, v ≡

√
1− χ

z

1− z
and a ≡

1

1 + χ
, (A.2)

being:

χ = 4ε ≡
4M2

H

Q2
. (A.3)
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Now we want to transform the above coefficient function in the Mellin space. In
practice, we must evaluate the following integral:

CFF,(1)
2,g (N,Q,MH) =

∫ 1

0
dz zN−1CFF,(1)

2,g (z,Q) =

∫ a

0
dz zN−1CFF,(1)

2,g (z,Q) . (A.4)

where in the r.h.s. we already let the θ-function act.
At first, let us deal only with the first line of eq. (A.1), i.e. the term proportional to

the logarithm. We are essentially dealing with integrals of the form:

Iq(N) =

∫ zth

0
dz zN−1 zq ln

1 + v

1− v
, (A.5)

with q = 0, 1, 2.
Now we perform the following change of variable in eq. (A.5):

t =
z

a
⇒ z = at ⇒ dz = a dt ⇒

{
z = 0 → t = 0
z = a → t = 1

, (A.6)

so that:
v = (1− t)1/2(1− at)−1/2 . (A.7)

Therefore Iq(N) becomes:

Iq(N) = aNaq
∫ 1

0
dt tN+q−1 ln

(
1 + v

1− v

)
. (A.8)

The integral above can be integrated by parts and to this end we need:

d

dt
ln

(
1 + v

1− v

)
=

dv

dt

d

dv
ln

(
1 + v

1− v

)

=

(
−
1

2

1− a

(1− t)1/2(1− at)3/2

)(
2(1− at)

(1− a)t

)

= −
1

t

1

(1− t)1/2(1− at)1/2
,

(A.9)

thus:

Iq(N) =
aNaq

N + q

∫ 1

0
dt tN+q−1(1− t)−1/2(1− at)−1/2 . (A.10)

But, since the Gauss hypergeometric function has the following integral representa-
tion(1):

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dx xb−1(1− x)c−b−1(1− zx)−a , (A.11)

1Note that this integral representation of the hypergeometric function converges only if Re(c) >
Re(b) > 0 and |arg(1 − z)| < π. The first condition is needed to ensure the convergence of the integral
at 0 and 1 and also to avoid the poles of the functions, while the second is needed to avoid the crossing
of any cut in the complex plane.
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we can match eqs. (A.10) and (A.11) obtaining:





b− 1 = N + q − 1
c− b− 1 = −1

2
a = 1

2

⇒






a = 1
2

b = N + q
c = N + q + 1

2 = a+ b
, (A.12)

so that we get the following close form:

Iq(N) =
aNaq

N + q

Γ(N + q)Γ(12)

Γ(N + q + 1
2)

2F1

(
1

2
, N + q,N + q +

1

2
; a

)
. (A.13)

It follows that the Mellin transform of the first line of eq. (A.1) is:

TR
{
2(1− 6ε− 4ε2)I2(N)− 2(1− 2ε)I1(N) + I0(N)

}
. (A.14)

Now, we consider the second line of eq. (A.1). In this case we should solve the
integrals:

Jq(N) =

∫ zth

0
dz zN−1 zq v =

∫ zth

0
dz zN−1 zq

√
1− χ

z

1− z
(A.15)

with q = 0, 1, 2. Once again we perform the following change of variable:

t =
z

a
, (A.16)

so that, considering eq. (A.7), we have:

Jq(N) = aNaq
∫ 1

0
dt tN+q−1(1− t)1/2(1− at)1/2 , (A.17)

which can be written as:

Jq(N) = aNaq
{∫ 1

0
dt tN+q−1(1− t)−1/2(1− at)1/2

−
∫ 1

0
dt tN+q(1− t)−1/2(1− at)1/2

}
.

(A.18)

which in turn, given eq. (A.11), reduces to:

Jq(N) = aNaq
{
Γ(N + q)Γ(12)

Γ(N + q + 1
2)

2F1

(
1

2
, N + q,N + q +

1

2
; a

)

−
Γ(N + q + 1)Γ(12)

Γ(N + q + 3
2)

2F1

(
1

2
, N + q + 1, N + q +

3

2
; a

)}

= aNaq
Γ(N + q)Γ(12)

Γ(N + q + 1
2)

{
2F1

(
1

2
, N + q,N + q +

1

2
; a

)

−
N + q

N + q + 1
2
2F1

(
1

2
, N + q + 1, N + q +

3

2
; a

)}
.

(A.19)
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Finally, The Mellin transform of the second line of eq. (A.1) takes the form:

TR {−4(2− ε)J2(N) + 4(2− ε)J1(N)− J0(N)} . (A.20)

At the end of the day we have that the final expression for the order αs massive
gluon coefficient function for FH,FF

2 in the Mellin space is:

CFF,(1)
2,g (N,Q,MH) = TR

{
2(1− 6ε− 4ε2)I2(N)− 2(1− 2ε)I1(N) + I0(N)

− 4(2− ε)J2(N) + 4(2− ε)J1(N)− J0(N)
}
.

(A.21)

Notice that the arguments of both the hypergeometric functions contained in Iq(N)
(eq. (A.13)) and Jq(N) (eq. (A.19)) are such that c = a+ b. This is useful for numerical
reasons. In fact, as we will show below, the code responsible for the evaluation of the
hypergeometric functions can be made much more efficient if the assumption c = a + b
is taken.

Now we consider the order αs massive coefficient function for the gluon contributing
to FH,FF

L whose explicit x-space expression of can be found in eq. (7) of Ref. [75] (up to
a factor 4πεz) and reads:

CFF,(1)
L,g (z,Q,MH) = θ(a− z)TR

[
−8εz2 ln

1 + v

1− v
− 4z2v + 4zv

]
. (A.22)

Using the results obtained for FH,FF

2 , the evaluation of the Mellin transform of the
expression is straightforward and gives:

CFF,(1)
L,g (N,Q,MH) = TR[8εI2(N)− 4J2(N) + 4J1(N)] , (A.23)

where Iq(N) and Jq(N) are given in eqs. (A.13) and (A.19), respectively.
In order to check the correctness of the results given in eqs. (A.21) and. (A.23), we

have compared their numerical inverse Mellin, using the inversion algorithm based on the
Talbot path presented in Sec. 3.3, with exact x-space expressions of Ref. [64] obtaining
an excellent accuracy. As an example, Fig. A.1 shows that the relative accuracy of the

numerical Mellin inverse of CFF,(1)
2,g with respect to exact x-space expression is always

better than 10−6 all over the range in x.

Implementation of the Gauss Hypergeometric Function

As we mentioned before, we have written the result for the Mellin transforms of the
order αs NC gluon massive coefficient function in terms of the Gauss hypergeometric
functions having the form 2F1(a, b, a + b; z). Moreover the rightmost argument of all
the hypergeometric functions entering the expressions for Iq(N) in eq. (A.13) and Jq(N)
in eq. (A.19) is always a (defined in eq. (A.2)) which is evidently a real variable such
that 0 < a < 1. Therefore we need a numerical implementation of the hypergeometric
function 2F1(a, b, c; z) such that c = a+ b which is accurate on the interval z ∈ (0, 1). To
this end, we have implemented an “hybrid” routine that makes use of the hypergeometric
series:

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n
cn

zn

n!
, (A.24)
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Figure A.1: Relative accuracy of the numerical Mellin inverse of CFF,(1)
2,g in eq. (A.21) with

respect to exact x-space expression of Ref. [64].

where (x)n is the so-called Pochhammer symbol defined as:

(x)n =
Γ(x+ n)

Γ(x)
, (A.25)

which converges for |z| < 1 and is accurate for z $ 0, and the expansion of 2F1(a, b, a+
b; z) around z = 1 [143] that reads:

2F1(a, b, c; z) =
Γ(a+ b)

Γ(a)Γ(b)

∞∑

n=0

(a)n(b)n
(n!)2

[
2ψ(n+ 1)− ψ(a+ n)

− ψ(b+ n)− ln(1− z)
]
(1− z)n ,

(A.26)

which is indeed more accurate for z $ 1. In our implementation we use the expansion
given in eq. (A.24) for z ≤ 0.1 and the expansion in eq. (A.26) for z > 0.1 and in both
case we take the first 81 terms of the series. This provides an approximation for the
hypergeometric function which is accurate enough all over the needed range.

Zero-Mass Limit

Once the order αs gluon massive coefficient functions have been Mellin transformed,
we need to do the same for the respective the zero-mass limit coefficient functions. To
this end, there are two possible ways: either we directly take the limit MH → 0 of the
N -space expressions of the full massive coefficient functions, or we first take the limit
MH → 0 of the x-space expressions and then we transform them in the Mellin space.
Of course, the two approaches must lead to the same result, but we take the second one
because, from a computational point of view, it is much simpler. However, as a cross

check we have verified that for the easier case of CFF,(1)
L,g they actually give the same

result.
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Using the definitions given in eq. (A.2), in the limit MH → 0 we directly have:

ε −→
MH→0

0

v −→
MH→0

1

a −→
MH→0

1

, (A.27)

while one can easily show that:

ln

(
1 + v

1− v

)
−→

MH→0
ln

Q2(1− z)

M2
Hz

. (A.28)

Therefore, in the zero-mass limit, eq. (A.1) is given by:

CFF0,(1)
2,g (z,Q,MH) = TR

[
(2z2 − 2z + 1) ln

Q2(1− z)

m2
Hz

− (8z2 − 8z + 1)

]

= TR

[
2

(
ln

Q2

m2
H

− 4

)
z2 − 2

(
ln

Q2

m2
H

− 4

)
z

+

(
ln

Q2

m2
H

− 1

)
+ 2z2 ln(1− z)− 2z ln(1− z)

+ ln(1− z)− 2z2 ln z + 2z ln z − ln z

]
,

(A.29)

while the zero-mass limit of eq. (A.22) is:

CFF0,(1)
L,g (z,Q) = TR

[
−4z2 + 4z

]
. (A.30)

It is interesting to notice how both the zero-mass limit of the massive coefficient func-
tions in eqs. (A.29) and (A.30) correspond exactly to the order αs ZM-VFNS coefficient

functions (cf. eq. (3.276) of Ref. [14]) plus, in the case of CFF0,(1)
2,g , a collinear logarithmic

divergent term proportional to the splitting function P (0)
qg (x). This structure was ex-

pected from eq. (2.48) and is the consequence of the absence, in the FFNS, of the heavy
quark parton densities that would reabsorb this divergence by means of the DGLAP
evolution.

The Mellin transform of eq. (A.29) is:

CFF0,(1)
2,g (N,Q,MH) = TR

[
2

(
ln

Q2

m2
h

− 4

)
1

N + 2
− 2

(
ln

Q2

m2
h

− 4

)
1

N + 1

+

(
ln

Q2

m2
h

− 1

)
1

N
− 2

S1(N + 2)

N + 2
+ 2

S1(N + 1)

N + 1

−
S1(N)

N
+

2

(N + 2)2
−

2

(N + 1)2
+

1

N2

]
,

(A.31)
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but since:

S1(N + 1) = S1(N) +
1

N + 1
, (A.32)

and:

S1(N + 2) = S1(N) +
1

N + 1
+

1

N + 2
(A.33)

we finally have:

CFF0,(1)
2,g (N,Q) = TR

[
2

(
ln

Q2

m2
h

− 4

)
1

N + 2
− 2

(
ln

Q2

m2
h

− 4

)
1

N + 1

+

(
ln

Q2

m2
h

+ 1

)
1

N
+ S1(N)

(
−

2

N + 2
+

2

N + 1
−

1

N

)

−
2

(N + 1)(N + 2)
+

1

N2

]
.

(A.34)

The Mellin transform of eq. (A.30) is instead much simpler and it is:

CFF0,(1)
L,g (N,Q) = TR

[
−

4

N + 2
+

4

N + 1

]
. (A.35)

A.1.2 Order α2
s

The complete order α2
s x-space massive coefficient functions CFF,(2)

2,i and CFF,(2)
L,i for FH,FF

2

and FH,FF

L was computed long time ago in Ref. [64]. However, they are given in a semi-
numerical form and thus analytic results for their Mellin transforms are impossible to
obtain. A very efficient method to represent higher order functions to high precision,
employed in Ref. [75], consists in the MINIMAX-method. This method is very similar to
what is usually done for higher order splitting functions and ZM coefficient functions. In
particular, the exact x-space expressions are fitted with a simpler function that is easy to
transform in the Mellin space. The MINIMAX-method uses the following parametrization:

CFF,(2)(x,Q,MH) $ (x− a)−κ
K∑

k=0

bk(a)x
k , (A.36)

where K is the order at which the series in eq. (A.36) is truncated and it is typically
K = 14 and:

a ≡
Q2

Q2 + 4M2
H

. (A.37)

The coefficients bk(a) are then determined fitting the parametrization in eq. (A.36) to
the exact expressions for a discrete set a values of a that spans a wide enough range
(a ∈ [0.4, 104]). Then the result for a generic value of a is evaluate by linear interpolation.
The exponent κ is not fitted but appropriately chosen case by case.

The functional form of the series in eq. (A.36) is particularly suitable because, in-
cluding the kinematic θ-function θ(a− z) that reduces the phase space available for the
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final state in presence of two massive particles having mass MH , its Mellin transform is
given by:

CFF,(2)(N,Q,MH) =
K∑

k=0

bk(a)a
N+k−κB(N + k, 1− κ) . (A.38)

Here, B denotes the Euler β-function which can be conveniently written in terms of
Γ-functions as:

B(N + k, 1− κ) =
Γ(N + k)Γ(1− κ)

Γ(N + k + 1− κ)
, (A.39)

and, since the Γ-functions can be iteratively evaluated using the identity Γ(x + 1) =
xΓ(x), this provides a particularly fast algorithm to be implemented in a numerical
code.

As an example, in Fig. A.2 we show the relative accuracy of the numerical Mellin

inverse of CFF,(2)
2,g as parametrized in Ref. [75] with respect to exact x-space expression

from of Ref. [64]. As one can see, the accuracy is pretty good and totally adequate for
the precision required by the present experimental data.

10-4

10-3

10-2

10-1

10-4 10-3 10-2 10-1

ΔC
2,

gFF
,(2

) (x
,Q

,M
H,

µ)

x

Q2 = µ2 = 10000 GeV2, MH
2 = 2 GeV2

Figure A.2: Relative accuracy of the numerical Mellin inverse of CFF,(2)
2,g of the parametrization

given in Ref. [75] with respect to exact x-space expression of Ref. [64].

Zero-Mass Limit

Now we turn to the order α2
s massive heavy quark coefficient functions in the zero-mass

limit. These asymptotic coefficient functions were first computed in Ref. [144] in x-space,
but their explicit Mellin transforms were not available yet.

In order to perform the Mellin transformation of those x-space coefficient functions,
it is convenient to rewrite them in terms of independent Mellin integrals which we can
then tabulate. Following the notation introduced in Ref. [144], we first consider the
gluon coefficient function for F FF0

L . The corresponding Mellin transform can be written
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as:

CFF0,(2)
L,g

(
N,

Q2

M2
H

,
µ2

M2
H

)
= 4TR

[
Cconst
L,g (N) + CQ

L,g(N) ln
Q2

M2
H

− Cµ
L,g(N) ln

µ2

M2
H

]
.

(A.40)
The coefficient function has been separated into three terms: a Q2-independent term
Cconst(N), a collinear logarithmic term CQ(N) and a factorization scale variation term
Cµ(N) that comes from taking Q 1= µ. A similar decomposition will be performed for
all the following coefficient functions.

The individual terms can be written as:

Cconst
L,g = CF

[
16
15A

(−2)
10 − 16

3 A
(1)
10 + 32

5 A
(3)
10 + 8A(1)

8 + 8A(1)
6 − 16

3 A
(1)
3

−16
5 A

(3)
3 − ζ(2)

(
16
3 A

(1)
1 − 32

5 A
(3)
1

)
+ 4A(0)

4 + 12A(1)
4

−16A(2)
4 − 16

15A
(−1)
2 − 52

15A
(0)
2 − 104

5 A(1)
2 + 48

5 A
(2)
2

+16
15A

(−1)
1 − 64

15A
(0)
1 − 152

5 A(1)
1 + 168

5 A(2)
1

]

+CA

[
16A(1)

10 + 16A(2)
10 − 32A(1)

8 + 16ζ(2)A(2)
1 − 48A(1)

6 + 16A(2)
6

+8A(1)
5 − 8A(2)

5 + 24A(1)
3 + 8

3A
(−1)
4 − 8A(0)

4 − 72A(1)
4

+232
3 A(2)

4 + 8A(0)
2 + 64A(1)

2 − 104A(2)
2 − 8

9A
(−1)
1 + 8

3A
(0)
1

+136
3 A(1)

1 − 424
9 A(2)

1

]
,

(A.41a)

CQ
L,g = CF

[
8A(1)

2 + 4A(0)
1 + 4A(1)

1 − 8A(2)
1

]

+CA

[
16A(1)

4 − 16A(2)
4 − 32A(1)

2 + 8
3A

(−1)
1 − 8A(0)

1

−40A(1)
1 + 136

3 A(2)
1

]
,

(A.41b)

Cµ
L,g = CA

[
16A(1)

4 − 16A(2)
4 − 32A(1)

2 + 8
3A

(−1)
1 − 8A(0)

1

−40A(1)
1 + 136

3 A(2)
1

]
,

(A.41c)

where the A(l)
N are the independent Mellin integrals:

A(l)
n ≡ An(N + l). (A.42)

Those for which we will use closed-form analytic expressions are collected in Tabs. A.1
and A.2. Some of these Mellin transforms were already computed in Ref. [145] and are
repeated here for completeness. The remaining terms, for which we will use numerical
approximations, are evaluated at the end of this section.

The quark coefficient function for F FF0
L can be similarly written as:

CFF0,(2)
L,q

(
N,

Q2

M2
H

,
µ2

M2
H

)
= 4TR

[
Cconst
L,q (N) + CQ

L,q(N) ln
Q2

M2
H

− Cµ
L,q(N) ln

µ2

M2
H

]
,

(A.43)
where:

Cconst
L,q = CF

[
− 8A(1)

8 − 8A(1)
6 + 8A(1)

3 + 8
3A

(−1)
4 − 8A(0)

4 + 16
3 A

(2)
4

+8A(0)
2 − 8A(1)

2 − 16A(2)
2 − 8

9A
(−1)
1 + 8

3A
(0)
1

−32
3 A

(1)
1 + 80

9 A
(2)
1

]
,

(A.44a)
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n fn(z) An(N) = M[fn(z)](N)

1 1
1

N

2 ln(z) −
1

N2

3 ln2(z)
2

N3

4 ln(1− z) −
S1(N)

N

5 ln2(1− z)
S2
1(N) + S2(N)

N

6 ln(z) ln(1− z)
S1(N)

N2
+

S2(N)− ζ(2)

N

8 Li2(1− z) −
S2(N)− ζ(2)

N

10 Li2(−z) + ln(z) ln(1 + z) −
ζ(2)

2N
−

1

4N

[
S2

(
N − 1

2

)
− S2

(
N

2

)]

11 ln3(z) −
6

N4

12 ln2(z) ln(1− z)
2

N

[
ζ(3) +

ζ(2)

N
−

S1(N)

N2
−

S2(N)

N
− S3(N)

]

13 ln(1− z)Li2(1− z)− Li3(1− z)
S1(N)S2(N)− ζ(2)S1(N) + S3(N)− ζ(3)

N

14 ln(z) ln2(1− z)

2

N

{
ζ(3) + ζ(2)S1(N)−

1

2N

[
S2
1(N) + S2(N)

]

−S1(N)S2(N)− S3(N)

}

15 S1,2(1− z) −
1

N
[S3(N)− ζ(3)]

17 ln(1 + z)
ln(2)

N
+

1

2N

[
S1

(
N − 1

2

)
− S1

(
N

2

)]

18 ln3(1− z) −
S3
1(N) + 3S1(N)S2(N) + 2S3(N)

N

19 Li3(−z) −
3ζ(3)

4N
+
ζ(2)

2N2
−

ln(2)

N3
−

1

2N3

[
S1

(
N − 1

2

)
− S1

(
N

2

)]

Table A.1: Elementary transforms used for the computation of the Mellin transform of the
order α2

s NC zero-mass limit of FFNS coefficient functions.

CQ
L,q = Cµ

L,q = CF

[
− 8A(1)

2 + 8
3A

(−1)
1 − 8A(0)

1 + 16
3 A

(2)
1

]
. (A.44b)
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n fn(z) An(N) = M[f(z)](N)

20 ln(z)Li2(−z)
−

1

2N2

[
2

N
S1

(
N − 1

2

)
+

1

2
S2

(
N − 1

2

)
+

4 ln(2)

N

]

+
1

2N2

[
2

N
S1

(
N

2

)
+

1

2
S2

(
N

2

)
+ ζ(2)

]

21 ln2(z) ln(1 + z)

1

2N

[
2

N2
S1

(
N − 1

2

)
+

1

N
S2

(
N − 1

2

)
+

1

2
S3

(
N − 1

2

)
+

4 ln(2)

N2

]

−
1

2N

[
2

N2
S1

(
N

2

)
+

1

N
S2

(
N

2

)
+

1

2
S3

(
N

2

)]

23 ln(z)Li2(1− z)
1

N2
[S2(N)− ζ(2)] +

2

N
[S3(N)− ζ(3)]

27

(
1

1− z

)

+

−S1(N − 1)

28

(
ln(1− z)

1− z

)

+

1

2
S2
1(N − 1) +

1

2
S2(N − 1)

29
ln(z)

1− z
S2(N − 1)− ζ(2)

30

(
ln2(1− z)

1− z

)

+

−
1

3
S2
1(N − 1)− S1(N − 1)S2(N − 1)−

2

3
S3(N − 1)

31
ln2(z)

1− z
−2[S3(N − 1)− ζ(3)]

32
ln(z) ln(1− z)

1− z
ζ(3) + ζ(2)S1(N − 1)− S1(N − 1)S2(N − 1)− S3(N + l − 1)

Table A.2: Continuation of Tab. A.1.

Finally, the gluon radiation coefficient function for F FF0
L , that is the massive coeffi-

cient function associated to the diagrams in Fig. 3.2, can be written as:

CFF0,(2)
L,GR

(
N,

Q2

M2
H

,
µ2

M2
H

)
= 4TR

[
Cconst
L,GR (N) + CQ

L,GR
(N) ln

Q2

M2
H

]
, (A.45)

where:

Cconst
L,GR

= CF

[
4
3(A

(1)
4 − 2A(1)

2 +A(0)
1 )− 50

9 A
(1)
1

]
, (A.46a)

and:

CQ
L,GR

= CF
4
3A

(1)
1 . (A.46b)

Let us now turn to the F FF0
2 heavy quark coefficient functions. In comparison to the

longitudinal structure function, there are extra pieces C2Q(N) and CµQ(N) arising from
the double collinear logarithm.
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The gluon coefficient function for F FF0
2 can be written as:

CFF0,(2)
2,g

(
N,

Q2

M2
H

,
µ2

M2
H

)
= 4TR

[
Cconst
2,g (N) + C2Q

2,g (N) ln2
Q2

M2
H

+ CQ
2,g(N) ln

Q2

M2
H

− Cµ
2,g(N) ln

µ2

M2
H

− CµQ
2,g (N) ln

µ2

M2
H

ln
Q2

M2
H

]
,

(A.47)
where:

Cconst
2,g = CF

[
4
(
− 2B+

16 − 2ζ(2)B+
17 +B+

21 −
3
2B

+
8

)

+2
(
− 4B−

15 − 2B−
22 + 12B−

19 +B−
18 −

5
2B

−
14 + 2B−

12 +B−
13

−4B−
20 + 4ζ(2)B−

2 − 1
3B

−
11 + 3B−

6

)
+ 2
(
4A(2)

15 − 2A(2)
22 +A(2)

18

−7
2A

(2)
14 + 4A(2)

12 −A(2)
13 − 4ζ(2)A(2)

4 + 4A(2)
23

+4ζ(2)A(2)
2 −A(2)

11 + 11A(2)
8

)
+ 32A(1)

19 + ζ(3)(28A(0)
1

−24A(1)
1 + 48A(2)

1 )− 28A(1)
6 + 36A(2)

6 + 4
15A

(−2)
10 + 24A(0)

10

+32
3 A

(1)
10 + 48

5 A
(3)
10 + ζ(2)

(
12A(0)

1 − 52
3 A

(1)
1 + 26A(2)

1 + 48
5 A

(3)
1

)

−11
2 A

(0)
5 + 22A(1)

5 − 21A(2)
5 −A(0)

3 + 2
3A

(1)
3 − 13A(2)

3 − 24
5 A

(3)
3

+7A(0)
4 − 33A(1)

4 + 24A(2)
4 − 4

15A
(−1)
2 − 178

15 A
(0)
2 + 34

5 A
(1)
2

−168
5 A(2)

2 + 4
15A

(−1)
1 − 226

15 A
(0)
1 + 17

5 A
(1)
1 + 82

5 A
(2)
1

]

(A.48a)

+CA

[
4
(
C24 − C25 − C26 +

3
4C21 +

3
2C20

)

+2
(
5(A(0)

15 + 2A(1)
15 ) + (A(0)

16 + 2A(1)
16 )− 3(A(0)

19 + 2A(1)
19 )

+ζ(2)(A(0)
17 + 2A(1)

17 )
)

+8(2A(1)
15 +A(1)

23 )− 16A(1)
22 + 2A(2)

21 − 4A(2)
20 + 12A(1)

14 − 4A(2)
14

−2A(0)
12 − 16A(1)

12 + 4A(2)
12 + 4A(0)

13 + 16A(1)
13 − ζ(2)(10A(0)

4 − 12A(1)
4

+16A(2)
4 ) + 4

3A
(0)
11 + 4A(1)

11 − ζ(2)(4A(0)
2 + 40A(1)

2 − 8A(2)
2 )

−ζ(3)(3A(0)
1 + 14A(1)

1 + 2A(2)
1 )− 8

3A
(−1)
10 − 12A(0)

10 + 4A(1)
10

+52
3 A

(2)
10 + 16

3 A
(−1)
8 + 5A(0)

8 − 16A(1)
8 + 20

3 A
(2)
8

−ζ(2)
(
8A(−1)

1 +A(0)
1 + 52A(1)

1 − 199
3 A(2)

1

)
+ 4A(0)

6

−72A(1)
6 + 73A(2)

6 + 4
3A

(−1)
5 − 3

2A
(0)
5 + 16A(1)

5 − 107
6 A(2)

5

+46A(1)
3 − 57

2 A
(2)
3 + 52

9 A
(−1)
4 − 28

3 A
(0)
4 − 215

3 A(1)
4 + 749

9 A(2)
4

+73
3 A

(0)
2 + 83A(1)

2 − 1445
9 A(2)

2 + 20
9 A

(−1)
1 + 233

18 A
(0)
1 + 65

9 A
(1)
1

−439
18 A

(2)
1

]
,

(A.48b)

C2Q
2,g = CF

[
2A(0)

4 − 4A(1)
4 + 4A(2)

4 −A(0)
2 + 2A(1)

2 − 4A(2)
2 − 1

2A
(0)
1 + 2A(1)

1

]

+CA

[
2A(0)

4 − 4A(1)
4 + 4A(2)

4 + 2A(0)
2 + 8A(1)

2 + 4
3A

(−1)
1 +A(0)

1 + 8A(1)
1

−31
3 A

(2)
1

]
,

(A.48c)
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CQ
2,g = CF

[
2A(0)

8 − 4A(1)
8 − (8A(0)

1 − 16A(1)
1 + 16A(2)

1 )ζ(2)− 6A(0)
6

+12A(1)
6 − 16A(2)

6 + 4A(0)
5 − 8A(1)

5 + 8A(2)
5 + 2A(0)

3 − 4A(1)
3

+8A(2)
3 − 7A(0)

4 + 24A(1)
4 − 20A(2)

4 + 2A(0)
2 − 12A(1)

2 + 20A(2)
2

+9A(0)
1 − 17A(1)

1 + 4A(2)
1

]

+CA

[
− 4A(0)

10 − 8A(1)
10 − 8A(2)

10 + 4A(0)
8 + 16A(1)

8

−(4A(0)
1 + 8A(2)

1 )ζ(2) + 24A(1)
6 − 8A(2)

6 + 2A(0)
5 − 4A(1)

5

+4A(2)
5 − 4A(0)

3 − 12A(1)
3 + 8

3A
(−1)
4 − 2A(0)

4 + 40A(1)
4 − 134

3 A(2)
4

−48A(1)
2 + 50A(2)

2 + 52
9 A

(−1)
1 − 55

3 A
(0)
1 − 92

3 A
(1)
1 + 407

9 A(2)
1

]
,

(A.48d)

Cµ
2,g = CA

[
4A(0)

8 + 16A(1)
8 − (4A(0)

1 − 8A(1)
1 + 8A(2)

1 )ζ(2) + 24A(1)
6

−8A(2)
6 + 4A(0)

5 − 8A(1)
5 + 8A(2)

5 − 2A(0)
3 − 8A(1)

3 + 8
3A

(−1)
4

−2A(0)
4 + 48A(1)

4 − 158
3 A(2)

4 − 2A(0)
2 − 64A(1)

2

+62
3 A

(2)
2 + 4

3A
(−1)
1 − 43

3 A
(0)
1 − 242

3 A(1)
1 + 281

3 A(2)
1

]
,

(A.48e)

CµQ
2,g = CA

[
4A(0)

4 − 8A(1)
4 + 8A(2)

4 + 4A(0)
2 + 16A(1)

2 + 8
3A

(−1)
1 + 2A(0)

1

+16A(1)
1 − 62

3 A
(2)
1

]
,

(A.48f)

where:

B±
n ≡ A(0)

n ± 2A(1)
n +A(2)

n and Cn ≡ A(0)
n + 2A(1)

n + 2A(2)
n . (A.49)

The quark coefficient function for F FF0
2 can be written similarly as:

CFF0,(2)
2,q

(
N,

Q2

M2
H

,
µ2

M2
H

)
= 4TR

[
Cconst
2,q (N) + C2Q

2,q (N) ln2
Q2

M2
H

+ CQ
2,q(N) ln

Q2

M2
H

− Cµ
2,q(N) ln

µ2

M2
H

− CµQ
2,q (N) ln

µ2

M2
H

ln
Q2

M2
H

]
,

(A.50)
where:

Cconst
2,q = CF

[
8(A(0)

15 +A(1)
15 ) + 4(A(0)

13 +A(1)
13 ) + 2(A(0)

14 +A(1)
14 )− 4(A(0)

12 +A(1)
12 )

−8ζ(2)(A(0)
2 +A(1)

2 ) + 4
3(A

(0)
11 +A(1)

11 )−
8
3A

(−1)
10 − 8A(0)

10 − 8A(1)
10

−8
3A

(2)
10 + 16

3 A
(−1)
8 + 4A(0)

8 − 4A(1)
8 + 8

3A
(2)
8 − ζ(2)

(
8A(−1)

1 + 4A(0)
1

+4A(1)
1 − 16

3 A
(2)
1

)
+ 8A(2)

6 + 4
3A

(−1)
5 +A(0)

5 −A(1)
5 − 4

3A
(2)
5

+10A(1)
3 − 4A(2)

3 + 52
9 A

(−1)
4 − 52

3 A
(0)
4 + 40

3 A
(1)
4 − 16

9 A
(2)
4 + 70

3 A
(0)
2

−22A(1)
2 − 176

9 A(2)
2 + 20

9 A
(−1)
1 + 76

9 A
(0)
1 − 304

9 A(1)
1 + 208

9 A(2)
1

]
,

(A.51a)

C2Q
2,q = CF

[
2A(0)

2 + 2A(1)
2 + 4

3A
(−1)
1 +A(0)

1 −A(1)
1 − 4

3A
(2)
1

]
, (A.51b)

CQ
2,q = CF

[
4A(0)

8 + 4A(1)
8 + 4A(0)

6 + 4A(1)
6 − 4A(0)

3 − 4A(1)
3 + 8

3A
(−1)
4

+2A(0)
4 − 2A(1)

4 − 8
3A

(2)
4 + 8A(2)

2 + 52
9 A

(−1)
1 − 52

3 A
(0)
1

+40
3 A

(1)
1 − 16

9 A
(2)
1

]
,

(A.51c)
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Cµ
2,q = CF

[
4A(0)

8 + 4A(1)
8 + 4A(0)

6 + 4A(1)
6 − 2A(0)

3 − 2A(1)
3 + 8

3A
(−1)
4

+2A(0)
4 − 2A(1)

4 − 8
3A

(2)
4 − 2A(0)

2 − 10A(1)
2 + 8

3A
(2)
2 + 4

3A
(−1)
1

−40
3 A

(0)
1 + 4

3A
(1)
1 + 32

3 A
(2)
1

]
,

(A.51d)

CµQ
2,q = CF

[
4A(0)

2 + 4A(1)
2 + 8

3A
(−1)
1 + 2A(0)

1 − 2A(1)
1 − 8

3A
(2)
1

]
. (A.51e)

The gluon radiation coefficient function for F FF0
2 can be written as:

CFF0,(2)
2,GR

(
N,

Q2

M2
H

,
µ2

M2
H

)
= 4TR

[
Cconst
2,GR (N) + C2Q

2,GR(N) ln2
Q2

M2
H

+ CQ
2,GR(N) ln

Q2

M2
H

]
,

(A.52)
where:

Cconst
2,GR = CF

[
− 2

3(A
(0)
33 +A(2)

33 )−
2ζ(2)
3 (2A(0)

27 −A(0)
1 −A(1)

1 )− 4
3(A

(0)
32 +A(2)

32 )

+1
3(2A

(0)
30 −A(0)

5 −A(1)
5 ) +A(0)

31 +A(2)
31 − 29

18(2A
(0)
28 −A(0)

4 −A(1)
4 )

+67
18(A

(0)
29 +A(2)

29 ) +
359
108(2A

(0)
27 −A(0)

1 −A(1)
1 ) + 1

6A
(0)
4 + 13

6 A
(1)
4

−1
2A

(0)
2 − 23

6 A
(1)
2 + 29

36A
(0)
1 − 295

36 A
(1)
1 + 134ζ(2)

18 + 265
36

]
,

(A.53a)

C2Q
2,GR = CF

[
1
3(2A

(0)
27 −A(0)

1 −A(1)
1 ) + 1

2

]
, (A.53b)

CQ
2,GR = CF

[
2
3(2A

(0)
28 −A(0)

4 −A(1)
4 )− 29

18(2A
(0)
27 −A(0)

1 −A(1)
1 )

−4
3(A

(0)
29 +A(2)

29 ) +
1
6A

(0)
1 + 13

6 A
(1)
1 − 8ζ(2)

3 − 19
6

]
.

(A.53c)

In addition to the elementary Mellin transforms listed in Tabs. A.1 and A.2, the
coefficient functions also contain terms whose Mellin transform is known in closed form,
but is expressed in terms of generalized harmonic sums Si1,...,in(N). Given that, at
the best of our knowledge, no numerical implementation of the functions Si1,...,in(N),
for N ∈ C, exists, we have evaluated the Mellin transform of these functions through
suitable numerical approximations. The x-space expressions whose Mellin transform has
been implemented in an approximate way are the following:

f16(z) = 2Li2(−z) ln(1 + z) + ln(z) ln2(1 + z) + 2S1,2(−z), (A.54a)

f22(z) = Li3(1− z), (A.54b)

f24(z) = Li3

(
1− z

1 + z

)
− Li3

(
−
1− z

1 + z

)
, (A.54c)

f25(z) = ln(z) ln(1− z) ln(1 + z), (A.54d)

f26(z) = ln(1− z)Li2(−z), (A.54e)

f33(z) =
Li2(1− z)

1− z
. (A.54f)

We will consider one by one each of these functions.
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In order to determine the Mellin transform of eq. (A.54a), we use eq. (32) of Ref. [145],
which can be written as:

A16(N) = M[f16(z)](N) =
1

N
M

[
zΦ̃(z)

1 + z

]
−
ζ(2) ln(2)

N
+
ζ(3)

4N

−
1

2N
M

[
z ln2(z)

1 + z

]
+
ζ(2)

N
M

[
z

1 + z

]
.

(A.55)

The last two Mellin transforms of the r.h.s. of eq. (A.55) are respectively(2):

M

[
z ln2(z)

1 + z

]
= −

1

4

[
S3

(
N − 1

2

)
− S3

(
N

2

)]
, (A.57)

and:

M

[
z

1 + z

]
= −

1

2

[
S1

(
N − 1

2

)
− S1

(
N

2

)]
. (A.58)

The Mellin transform of the term involving the special function Φ̃(z) in eq. (A.55) is
instead given in Ref. [145] in terms of the generalized harmonic sum S1,2(N). We instead
rewrite it as:

zΦ̃(z)

1 + z
∼=

10∑

k=1

akz
kΦ̃(z), (A.59)

where the values of the coefficients ak are determined by fitting the polynomial
∑10

k=1 akz
k

to the function z/(1+ z) on the unit interval. One can then use the Mellin transform of
the function zkΦ̃(z), which reads:

M[zkΦ̃(z)] =
1

(N + k)3
+

1

2(N + k)

[
S2

(
N + k − 1

2

)
− S2

(
N + k

2

)]
. (A.60)

The desired Mellin transform A16(N) is immediately found combining eqs. (A.57),
(A.58), (A.59) and (A.60).

In order to determine the Mellin transform of eq. (A.54b) we use the expansion:

Li3(z) =
∞∑

k=1

zk

k3
. (A.61)

It follows that:

A22(N) = M[f22(z)](N) =
∞∑

k=1

1

k3

∫ 1

0
zN−1(1− z)kdz, (A.62)

2In general:

M

[

z lnn(z)
1 + z

]

=
(−1)n+1n!

2n+1

[

Sn+1

(

N − 1
2

)

− Sn+1

(

N
2

)]

. (A.56)

This Mellin transform is superficially different from the Mellin transform number 15 in Appendix of
Ref. [145], but they turn out to be equivalent after suitable simplifications. This apparent difference
is also responsible for the mismatch between entries 13, 28, 43, and 62 in the Table in Appendix of
Ref. [145] and entries 17, 21, 20 and 19 in Tabs. A.1 and A.2, respectively. For the same reason entries
number 4 and 57 of [145] look different from our eqs. (A.57) and (A.60).
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but: ∫ 1

0
zN−1(1− z)kdz =

Γ(N)Γ(k + 1)

Γ(N + k + 1)
=

k!

(N + k) . . . (N + 1)N
, (A.63)

so that:

A22(N) =
∞∑

k=1

k!

k3(N + k) . . . (N + 1)N
. (A.64)

In our implementation we have truncated this series at k = 30.
Next, we turn to the Mellin transform of eq. (A.54c). In this case we fit the function:

g(z) = (1− z)b−1
10∑

k=0

ckz
k (A.65)

to the function f24(z). However, one can show that:

f24(0) = Li3(1)− Li3(−1) =
7

4
ζ(3) = c0, (A.66)

so that c0 is fixed, and we only have to fit:

g(z) = (1− z)b−1

[
7

4
ζ(3) +

10∑

k=1

ckz
k

]
. (A.67)

The Mellin transform of eq. (A.54c) follows immediately:

A24(N) = M[f24(z)](N) =
10∑

k=0

ck

∫ 1

0
zN+k−1(1− z)b−1dz

=
Γ(N)Γ(b)

Γ(N + b)

10∑

k=0

ck
(N + k) . . . (N + 1)N

(N + b+ l + k) . . . (N + b+ l)
.

(A.68)
In order to determine the Mellin transform of eq. (A.54d), we use the representation

given as eq. (21) of Ref. [146], in which the function ln(1 + z) is approximated by the
polynomial:

ln(1 + z) ∼=
8∑

k=1

dkz
k. (A.69)

Using also Tab. A.1, we then get:

A25(N) = M[f25(z)](N) =
8∑

k=1

dkM[zk ln(z) ln(1− z)]

=
8∑

k=1

dk

[
S1(N + k)

(N + k)2
+

S2(N + k)− ζ(2)

N + k

]
.

(A.70)
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In order to determine the Mellin transform of eq. (A.54e), we use the expansion:

Li2(−z) =
∞∑

k=1

(−1)kzk

k2
, (A.71)

so:

A26(N) = M[f26(z)](N) =
∞∑

k=1

(−1)k

k2
M[zk ln(1− z)] =

∞∑

k=1

(−1)k+1

k2
S1(N + k)

N + k
. (A.72)

In this case we have chosen to truncate the series at k = 100.
Finally, we determine the Mellin transform of eq. (A.54f). In this case we use the

geometric series for 1/(1− z) so that:

A33(N)M [f33(z)] (N) =
∞∑

k=0

M[zkLi2(1− z)] = −
∞∑

k=0

S2(N + k)− ζ(2)

N + k
. (A.73)

Also in this case, the series has been truncated at k = 100.
Note that the Mellin transform of the x-space coefficient functions involve terms of the

form zlfn(z). The Mellin transform M[zlfn(z)](N) can be obtained from M[fn(z)](N)
using the identity M[zlfn(z)](N) = M[fn(z)](N + l). Thus the Mellin transform of
any of the terms in Tabs. A.1 and A.2 and also any of the terms eqs.(A.54a)-(A.54f)
multiplied by a factor zl can be obtained replacing N with N + l.

In conclusion, we have checked our calculation by comparing the inverse Mellin trans-
form of the N -space coefficients with the exact x-space results. In Fig. A.3 we show the

relative accuracy of for CFF0,(2)
2,g , CFF0,(2)

L,g , CFF0,(2)
2,q , CFF0,(2)

L,q , CFF0,(2)
L,GR

and CFF0,(2)
2,GR . As

evident, the accuracy is always excellent.

A.2 CC Processes

As we already mentioned, exact expressions for the CC coefficient functions are know
only up to order αs. We report here their Mellin transforms as implemented in the
NNPDF code.

The procedure followed to evaluate the Mellin transform of the CC coefficient func-
tions is slightly different from that used in the NC case. The essential difference comes
from the fact that, for the NC coefficient functions, we have Mellin transformed, not
only the coefficient function themselves, but also the θ-function that takes into account
the reduction of the available phase space for the final state in the presence of massive
particles. This allows to extend the integral between coefficient functions and parton
densities over the “massless” kinematic range [x, 1]. From the point of view of the im-
plementation of the FONLL method, this provides a simplification because it allows to
put the massive structure functions on the same footing of the massless ones. In the CC
case, instead, the inclusion of the kinematic θ-function in the coefficient functions makes
the analytical computation of the Mellin transforms impossible.

Therefore, in order not to rely on numerical approximations, we have chosen to
transform in the Mellin space the CC massive coefficient functions without including the
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fore-mentioned θ-function, but limiting the convolution with the parton densities only
to the allowed phase space.

Furthermore, the kinematics of the CC processes is different is different with respect
to the NC case. In fact, in the NC heavy quark production, up to order α2

s, there are
two heavy quarks having mass MH in the final state and this limits the available phase
space to W 2 ≥ 4M2

H which is equivalent to x ≤ (1 + 4M2
H/Q2)−1. In the CC heavy

quark production, instead, up to order αs only one heavy quark is present in the final
state. This means that W 2 ≥ M2

H , i.e. x ≤ (1 +M2
H/Q2)−1.

In the following, without loss of generality, we limit ourselves to the charm structure
functions whose general definitions are given in eqs. (3.27) and (3.28). In fact, one has
just to use the appropriate formula amongst those given in eqs. (3.27) and (3.28) and,
for the bottom and top structure functions, use the respective value for the mass in the
coefficient functions.

Using the notation of Ref. [65] the order αs charm structure functions in the FFNS
can be written as:

Fc
k(x,Q

2) =
1

2
fs′(ξ, µ

2) +
1

2

αs(µ2)

2π

{ 1∫

ξ

dz

z

[
CFF,(1)
k,q

(
z,

Q2

M2
c
,
µ2

M2
c

)
fs′

(
ξ

z
, µ2

)

+ CFF,(1)
k,g

(
z,

Q2

M2
c
,
µ2

M2
c

)
fg

(
ξ

z
, µ2

)]}
, (A.74)

with k = 1, 2, 3. In the above expression we have used the following definitions:

fs′ ≡ 2|Vcs|2fs + 2|Vcd|2fd

ξ = x

(
1 +

M2
c

Q2

)
with λ =

Q2

Q2 +M2
c
.

(A.75)

The explicit x-space expressions of the order αs coefficient functions CFF,(1)
k,i are given

in Refs. [147, 65]. The standard structure functions are related to those defined in
Eq. (A.74) through:

F c
1 ≡ Fc

1 , F c
2 ≡ 2ξFc

2 , F c
3 ≡ 2Fc

3 . (A.76)

Reabsorbing the LO term into the integral, eq. (A.74) can be written as:

Fc
k(x,Q

2) =

1∫

ξ

dz

z

{[
CFF,(0)
k,q (z) + asC

FF,(1)
k,q

(
z,

Q2

M2
c
,
µ2

M2
c

)]
fs′

(
ξ

z
, µ2

)

+asC
FF,(1)
k,f

(
z,

Q2

M2
c
,
µ2

M2
c

)
fg

(
ξ

z
, µ2

)} (A.77)

where, as usual, as = αs/4π, from which, comparing to eq. (A.74), we read:

CFF,(0)
k,q (z) =

1

2
δ(1− z) , (A.78)
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whose Mellin transform is trivially:

CFF,(0)
k,q (N) =

1

2
. (A.79)

Therefore, we have that the order α0
s quark coefficient functions in the CC case, differ-

ently from the NC case, are different from zero.

Now we turn to the order αs coefficient functions. Before Mellin-transforming the
x-space expressions, we rewrite them in the form:

CFF,(1)
k,q

(
z,

Q2

M2
c
,
µ2

M2
c

)
= Kδ(1− z) + f(z) + [g(z)]+, (A.80)

where K is a constant, f(z) is regular function in z ∈ [0, 1] and g(z) is instead singular
in z = 1. This way, setting µ = Q for simplicity, we get:

CFF,(1)
1,q (z) = −

4

3

(
4 +

1

2λ
+
π2

3
+

1 + 3λ

2λ
KA

)
δ(1− z)

+
4

3

[
−

(1 + z2) ln z

1− z
− 2(1 + z) ln(1− z)

+(1 + z) ln(1− λz) + (3− z) +
z − z2

1− λz

]

+
4

3

[
4
ln(1− z)

1− z
− 2

ln(1− λz)

1− z
− 2

1

1− z

+
1

2

1− z

(1− λz)2
−

1 + z2

1− z
lnλ

]

+

,

(A.81)

CFF,(1)
2,q (z) = −

4

3

(
4 +

1

2λ
+
π2

3
+

1 + λ

2λ
KA

)
δ(1− z)

+
4

3

[
−

(1 + z2) ln z

1− z
− 2(1 + z) ln(1− z)

+(1 + z) ln(1− λz) +

(
2z + 2−

2

z

)
+

2
z − 1− z

1− λz

]

+
4

3

[
4
ln(1− z)

1− z
− 2

ln(1− λz)

1− z
− 2

1

1− z

+
1

2

1− z

(1− λz)2
−

1 + z2

1− z
lnλ

]

+

,

(A.82)
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CFF,(1)
3,q (z) = −

4

3

(
4 +

1

2λ
+
π2

3
+

1 + 3λ

2λ
KA

)
δ(1− z)

+
4

3

[
−

(1 + z2) ln z

1− z
− 2(1 + z) ln(1− z)

+(1 + z) ln(1− λz) + (1 + z) +
1− z

1− λz

]

+
4

3

[
4
ln(1− z)

1− z
− 2

ln(1− λz)

1− z
− 2

1

1− z

+
1

2

1− z

(1− λz)2
−

1 + z2

1− z
lnλ

]

+

,

(A.83)

with KA = (1−λ) ln(1−λ)/λ. The gluon coefficient functions, instead, do not need any
further work and are given by:

CFF,(1)
1,g (z) =

1

2
(2z2 − 2z + 1) {2 ln(1− z)− 2 ln z − ln[λ(1− λ)]}

+ [4− 4(1− λ)]z(1− z) + (1− λ)
z

1− λz

+ 2(1− λ)

[
z ln

1− λz

(1− λ)z
− 2λz2 ln

1− λz

(1− λ)z

]
− 1 ,

(A.84)

CFF,(1)
2,g (z) =

1

2
(2z2 − 2z + 1) {2 ln(1− z)− 2 ln z − ln[λ(1− λ)]}

+ [8− 18(1− λ) + 12(1− λ)2]z(1− z) + (1− λ)
1

1− λz

+ 6λ(1− λ)

[
z ln

1− λz

(1− λ)z
− 2λz2 ln

1− λz

(1− λ)z

]
− 1 ,

(A.85)

CFF,(1)
3,g (z) =

1

2
(2z2 − 2z + 1)

{
2 ln(1− z)− 2 ln(1− λz) + ln

(
1− λ

λ

)}

+ 2(1− λ)z(1− z) + 2(1− λ)

[
(1 + λ)z2 ln

1− λz

(1− λ)z
− z ln

1− λz

(1− λ)z

]
.

(A.86)
In order to transform to the N -space the above x-space expressions, in Tabs. A.3

and A.4 we have tabulated the Mellin transforms of all terms involved. Naming them
Bn, with n = 1, . . . , 22, these expressions take the very compact form:

CFF,(1)
1,q (N) = −4

3

(
4 + 1

2λ + π2

3 + 1+3λ
2λ KA

)

+ 4
3 [−B1 − 2B3 +B9 +B10]

+ 4
3

[
4B4 − 2B5 − 2B6 +

1
2B7 −B8 lnλ

]
.,

(A.87)
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CFF,(1)
2,q (N) = −4

3

(
4 + 1

2λ + π2

3 + 1+λ
2λ KA

)

+ 4
3 [−B1 − 2B2 +B3 +B11 +B12]

+ 4
3

[
4B4 − 2B5 − 2B6 +

1
2B7 −B8 lnλ

]
,

(A.88)

CFF,(1)
3,q (N) = −4

3

(
4 + 1

2λ + π2

3 + 1+3λ
2λ KA

)

+ 4
3 [−B1 − 2B2 +B3 +B13 +B14]

+ 4
3

[
4B4 − 2B5 − 2B6 +

1
2B7 −B8 lnλ

]
,

(A.89)

CFF,(1)
1,g (N) = 1

2B18 + [4− 4(1− λ)]B15 + (1− λ)B19

+ 2(1− λ) [B16 − 2λB17]−B20 ,
(A.90)

CFF,(1)
2,g (N) = 1

2B18 + [8− 18(1− λ) + 12(1− λ)2]B15

+ (1− λ)B21 + 6λ(1− λ) [B16 − 2λB17]−B20 ,
(A.91)

CFF,(1)
3,g (N) = 1

2B22 + 2(1− λ)B15

+ 2(1− λ) [(1 + λ)B17 −B16] .
(A.92)

It is interesting to show how the Mellin transform B5 has been obtained. In fact,
given that we could not find close analytical expression for the Mellin transform of the
respective x-space expressions, we can only evaluate it in an approximate way.

We have to evaluate the following integral:

B5 = M

[[
ln(1− λz)

1− z

]

+

]
=

∫ 1

0
(zN−1 − 1)

ln(1− λz)

1− z
. (A.93)

To this end, let us show how one can evaluate the generic Mellin transform:

Iq(N) = M

[
zq
[
ln(1− λz)

1− z

]

+

]
=

∫ 1

0

zN+q−1 − 1

1− z
ln(1− λz) , (A.94)

where q is an integer.
At first, we assume that N is a positive integer number. Under this hypothesis we

can use the geometric series:

zN+q−1 − 1

1− z
= −

N+q−2∑

n=0

zn . (A.95)

Moreover, we expand the logarithmic function around λz = 0, so that we get:

ln(1− λz) = −
∞∑

k=1

λkzk

k
. (A.96)

Altogether, we have:

Iq(N) =
∞∑

k=1

λk

k

N+q−2∑

n=0

∫ 1

0
zk+ndz =

∞∑

k=1

λk

k

N+q−2∑

n=0

1

n+ k + 1
=

∞∑

k=1

λk

k

N+q+k−1∑

l=k+1

1

l
=

∞∑

k=1

λk

k

[ N+q+k−1∑

l=1

1

l
︸ ︷︷ ︸
S1(N+q+k−1)

−
k∑

l=1

1

l
︸ ︷︷ ︸
S1(k)

]
.

(A.97)
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Therefore:

B5 = I0(N) =
∞∑

k=1

λk

k
[S1(N + k − 1)− S1(k)] , (A.98)

but since:

S1(N + k − 1) = S1(N + k)−
1

N + k
, (A.99)

at the end of the day we have:

B5 =
∞∑

k=1

λk

k

[
S1(N + k)− S1(k)−

1

N + k

]
. (A.100)

One may notice that there is a certain overlap between the Mellin transforms pre-
sented in Tabs. A.1 and A.2 and those presented in Tabs. A.3 and A.4. The point is
that they are transforms belonging to two different implementation procedures, namely
the order α2

s zero-mass limit of the NC massive coefficient functions and the order αs

CC coefficient functions, therefore for completeness we prefer to report both of them
separately.

Finally, to check our calculations we compared the Mellin inverse of the order αs

N -space CC coefficient functions to the exact x-expressions given in Ref. [65]. The plots
for the relative accuracies are given in Fig. A.4. One more time we have an excellent
agreement.
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Figure A.3: Relative accuracy for the numerical Mellin inverse of the NC coefficient functions
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L,GR of the parametrization given in
Ref. [75] with respect to exact x-space expression of Ref. [64].
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n gn(z) Bn = M[gn(z)](N)

1
(1 + z2) ln z

1− z
2(S2 − ζ2)−

1

N2
+

1

(N + 1)2

2 (1 + z) ln(1− z) −
S1

N
−

S1

N + 1
−

1

(N + 1)2

3 (1 + z) ln(1− λz) λ2F1(1, N + 1, N + 2;λ)

N(N + 1)
+

ln(1− λ)

N
+

λ2F1(1, N + 2, N + 3;λ)

(N + 1)(N + 2)
+

ln(1− λ)

N + 1

4

[
ln(1− z)

1− z

]

+

1

2

(
S2
1 + S2 − 2

S1

N

)

5

[
ln(1− λz)

1− z

]

+

Jλ(N) =
∞∑

k=1

λk

k

[
S1(N + k)− S1(k)−

1

N + k

]

6

[
1

1− z

]

+

1

N
− S1

7

[
1− z

(1− λz)2

]

+

2F1(2, N,N + 2,λ)

N(N + 1)
+
λ+ ln(1− λ)

λ2

8

[
1 + z2

1− z

]

+

1

N
−

1

N + 1
− 2S1 +

3

2

9 3− z
3

N
−

1

N + 1

10
z − z2

1− λz
2F1(1, N + 1, N + 2,λ)

N + 1
− 2F1(1, N + 2, N + 3,λ)

N + 2

11 2z + 2−
2

z

2

N + 1
+

2

N
−

2

N − 1

12
2
z − 1− z

1− λz
22F1(1, N − 1, N,λ)

N − 1
− 2F1(1, N,N + 1,λ)

N

−2F1(1, N + 1, N + 2,λ)

N + 1

13 1 + z
1

N
+

1

N + 1

14
1− z

1− λz
2F1(1, N,N + 1,λ)

N
− 2F1(1, N + 1, N + 2,λ)

N + 1

Table A.3: Elementary transforms used for the computation of the Mellin transform of the
order αS CC FFNS coefficient functions.
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n gn(z) Bn = M[gn(z)](N)

15 z(1− z)
1

N + 1
−

1

N + 2

16 z ln
1− λz

(1− λ)z
2F1(1, N + 1, N + 2;λ)

(N + 1)2

17 z2 ln
1− λz

(1− λ)z
2F1(1, N + 1, N + 2;λ)− 1

λ(N + 1)(N + 2)

18 [z2 + (1− z)2]×
4− 2N(N − 3)−N(N2 +N + 2){2S1 + ln[λ(1− λ)]}

N2(N + 1)(N + 2)
{
2 ln

(
1− z

z

)
− ln[λ(1− λ)]

}

19
z

1− λz
2F1(1, N + 1, N + 2;λ)

N + 1

20 1
1

N

21
1

1− λz
2F1(1, N,N + 1;λ)

N

22 [z2 + (1− z)2)]× −
2

λ

(
λ2

N
−

2λ

N + 1
+

2

N + 2

)
2F1(1, N + 1, N + 2,λ)

N + 1
{
2 ln

(
1− z

1− λz

)
+ ln

(
1− λ

λ

)}
−

4(λ− 1)

λ(N + 1)(N + 2)
−

(N2 +N + 2)
{
2S1 − ln

(
1−λ
λ

)}

N(N + 1)(N + 2)

Table A.4: Continuation of Tab. A.3.
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Figure A.4: Relative accuracy of the numerical Mellin inverse of the CC coefficient functions

CFF,(1)
1,q , CFF,(1)

1,g , CFF,(1)
2,q , CFF,(1)

2,g , CFF,(1)
3,g and CFF,(1)

3,q of our results with respect to exact
x-space expression of Ref. [65].



Appendix B

Mellin Transform of the MS
Coefficient Functions

In this appendix we collect all the explicit analytical results for the Mellin transforms of
the correction terms arising when the heavy quark structure functions are expressed in
terms of the MS mass m rather than the pole mass M as discussed in Chapter 4. The
NC and the CC cases will be treated separately.

B.1 Neutral Current

In this Section the Mellin transform of the correction term to the gluon massive coefficient
function in eq. (4.48) for both F2 and FL will be given. In addition, the respective zero
mass limit will be evaluated.

B.1.1 F2

We consider first F2. The starting point is the Mellin transform of the gluon massive

coefficient function CFF,(1)
2,g given in eq. (A.21) of Appendix A. From the definitions given

in eq. (A.2), it follows that:

∂

∂M
=

∂ε

∂M

∂

∂ε
=

2ε

M

∂

∂ε
,

∂

∂M
=

∂ε

∂M

∂a

∂ε

∂

∂a
= −

8a2ε

M

∂

∂a
.

(B.1)
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Therefore:

∂CFF,(1)
2,g

∂M
= TR

{
2ε

M

[
2(−6− 8ε)I2 + 4I1 + 4J2 − 4J1

]

−
8a2ε

M

[
2(1− 6ε− 4ε2)

∂I2
∂a

− 2(1− 2ε)
∂I1
∂a

+
∂I0
∂a

− 4(2− ε)
∂J2
∂a

+ 4(2− ε)
∂J1
∂a

−
∂J0
∂a

]}
.

(B.2)

Now, starting from eqs. (A.13) and (A.19), the derivative of the functions Iq and Jq can
be evaluated using the relation valid for the derivative of the hypergeometric function:

∂

∂x
2F1(a, b, c;x) =

b

x
[2F1(a, b+ 1, c;x)− 2F1(a, b, c;x)] , (B.3)

so that:
d

da
aN+q

2F1

(
1

2
, N + q,N + q +

1

2
; a

)

= aN+q−1(N + q)2F1

(
1

2
, N + q + 1, N + q +

1

2
; a

)
,

d

da
aN+q

2F1

(
1

2
, N + q + 1, N + q +

3

2
; a

)

= aN+q−1(N + q + 1)2F1

(
1

2
, N + q + 2, N + q +

3

2
; a

)

−aN+q−1
2F1

(
1

2
, N + q + 1, N + q +

3

2
; a

)
,

(B.4)

and:

∂Iq
∂a

= aN+q−1Γ(N + q)Γ(12)

Γ(N + q + 1
2)

2F1

(
1

2
, N + q + 1, N + q +

1

2
; a

)
,

∂Jq
∂a

= aN+q−1Γ(N + q + 1)Γ(12)

Γ(N + q + 1
2)

{
2F1

(
1

2
, N + q + 1, N + q +

1

2
; a

)

−
N + q + 1

N + q + 1
2
2F1

(
1

2
, N + q + 2, N + q +

3

2
; a

)

+
1

N + q + 1
2
2F1

(
1

2
, N + q + 1, N + q +

3

2
; a

)}
.

(B.5)

Looking at these expressions, one can see that in these derivatives, a part from
hypergeometric functions of the form 2F1(a, b, a+ b;x) which were already present in
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CFF,(1)
2,g itself, also hypergeometric functions of the form 2F1(a, b, a+ b− 1;x) appear.

The implementation of the Gauss hypergeometric function discussed in Appendix A can
be extended to the case c = a+ b− 1 using the expansion around x = 1 reported in
eq. (15.3.12) of Ref. [143].

The Mellin transform of the zero mass limit CFF0,(1)
2,g of CFF,(1)

2,g is given in eq. (A.31).
Here, considering that:

∂

∂M
ln

Q2

M2
= −

2

M
, (B.6)

the derivative of CFF0,(1)
2,g is given by:

∂CFF0,(1)
2,g

∂M
= −TR

2

M

[
2

N + 2
−

2

N + 1
+

1

N

]
. (B.7)

B.1.2 FL

Now we turn to FL. In this case the Mellin transform of the gluon massive coefficient

function CFF,(1)
L,g takes the simpler form given in eq. (A.23). Therefore, using eq. (B.1),

one gets:

∂CFF,(1)
L,g

∂M
= TR

{
−
16ε

M
I2 −

8a2ε

M

[
−8ε

∂I2
∂a

− 4
∂J2
∂a

+ 4
∂J1
∂a

]}
, (B.8)

where the derivatives of Iq and Jq with respect of a are given in eq. (B.5).

The zero mass limit CFF0,(1)
L,g , given in eq. (A.35), turns out to be independent from

M . This directly means that:

∂C0,(0)
L,g

∂M
= 0 . (B.9)

B.2 Charged Current

As discussed in Sec. A.2, the LO order contribution to the heavy (charm) massive CC
structure functions can be written as:

F (0)
k (M) = bk(M)fs′(ξ(M)) , (B.10)

where:

ξ = x

(
1 +

M2

Q2

)

︸ ︷︷ ︸
1
λ

=
x

λ
and






b1 =
1
2

b2 = ξ
b3 = 1

(B.11)

and where, for a proton target, one has:

fs′ ≡ 2|Vcs|2fs + 2|Vcd|2fd . (B.12)
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Therefore the derivative in the r.h.s. of eq. (4.51) can be explicitly written as:

mh(1)
dF (0)

k

dM

∣∣∣∣
M=m

= mh(1)
dξ

dM

dF (0)
k

dξ

∣∣∣∣
M=m

= 2h(1)(1− λ)ξ

[
dbk
dξ

fs′(ξ) + bk(ξ)
dfs′

dξ

] ∣∣∣∣
M=m

.

(B.13)

Eq. (B.13) involves the derivative of the parton density fs′ and this makes the imple-
mentation a little bit more troublesome. In fact, the functional form of fs′ is in general
unknown and thus an analytical derivative is impossible to evaluate.

Using the same arguments of eq. (4.44), one can show that:

dfs′

dξ
=

d

dξ

∫ 1

ξ

dy

y
δ(1− y)fs′

(
ξ

y

)
=

∫ 1

ξ

dy

y
δ(1− y)

d

dξ
fs′

(
ξ

y

)
. (B.14)

Therefore eq. (B.13) can be written as:

mh(1)
dF (0)

k

dM

∣∣∣∣
M=m

= 2h(1)(1− λ)ξ

∫ 1

ξ

dy

y
δ(1− y)

[
dbk
dξ

+ bk(ξ)
d

dξ

]
fs′

(
ξ

y

)
, (B.15)

where in the r.h.s. of eq. (B.15) we are assuming that the pole mass M , which appears
only through ξ, has been replaced everywhere by the MS mass m. But since:

d

dx
f

(
x

y

)
=

1

y

d

d
(
x
y

)f
(
x

y

)
=

1

xy

d

d
(
1
y

)f
(
x

y

)
(B.16)

and:

d

(
1

y

)
= −

1

y2
dy ⇒

d

dx
f

(
x

y

)
= −

y

x

d

dy
f

(
x

y

)
, (B.17)

it follows that:

∫ 1

ξ

dy

y
δ(1− y)

d

dξ
fs′

(
ξ

y

)
= −

∫ 1

ξ

dy

ξ
δ(1− y)

d

dy
fs′

(
ξ

y

)
. (B.18)

Now, integrating by parts the r.h.s. of the equation above, one gets:

∫ 1

ξ

dy

y
δ(1− y)

d

dξ
fs′

(
ξ

y

)
=

∫ 1

ξ

dy

y

{
y

ξ

[
d

dy
δ(1− y)

]}
fs′

(
ξ

y

)
. (B.19)

Therefore eq. (B.15) can we rewritten as:

mh(1)
dF (0)

k

dM

∣∣∣∣
M=m

= 2h(1)(1−λ)ξ
∫ 1

ξ

dy

y

{
dbk
dξ

δ(1− y) +
bk(ξ)

ξ

[
y
d

dy
δ(1− y)

]}
fs′

(
ξ

y

)
.

(B.20)
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In eq. (B.20) a coefficient function can be isolated and, considering the form of bk given
in eq. (B.11), one has:

C̃1,q(y) = h(1)(1− λ)

{
δ(1− y) +

[
y
d

dy
δ(1− y)

]}

C̃2,q(y) = 2h(1)(1− λ)

{
δ(1− y) +

[
y
d

dy
δ(1− y)

]}

C̃3,q(y) = 2h(1)(1− λ)

[
y
d

dy
δ(1− y)

]
,

(B.21)

in such a way that:

mh(1)
dF (0)

2

dM

∣∣∣∣
M=m

= ξ

∫ 1

ξ

dy

y
C̃2,q(y)fs′

(
ξ

y

)

mh(1)
dF (0)

k

dM

∣∣∣∣
M=m

=

∫ 1

ξ

dy

y
C̃k,q(y)fs′

(
ξ

y

)
,

(B.22)

where now k = 1, 3 and whose Mellin transforms, taking into account that:

M

[
y
d

dy
δ(1− y)

]
(N) = −N , (B.23)

can be easily evaluated obtaining:

C̃1,q(N) = M[C̃1,q(y)](N) = −h(1)(1− λ)N

C̃2,q(N) = M[C̃2,q(y)](N) = 2h(1)(1− λ)(1−N)

C̃3,q(N) = M[C̃3,q(y)](N) = −2h(1)(1− λ)N .

(B.24)

Now, since the non-derivative order αs contributions in (4.51) take the form:

F (1)
2 (m) = ξ

∫ 1

ξ

dy

y

{
C2,q(y)fs′

(
ξ

y

)
+ C2,g(y)fg

(
ξ

y

)}
(B.25a)

F (1)
k (m) =

∫ 1

ξ

dy

y

{
Ck,q(y)fs′

(
ξ

y

)
+ Ck,g(y)fg

(
ξ

y

)}
, (B.25b)

the whole order αs term in eq. (4.51) can be written as:

F (1)
2 (m)+mh(1)

dF (0)
2

dM

∣∣∣∣
M=m

= ξ

∫ 1

ξ

dy

y

{[
C2,q(y) + C̃2,q(y)

]
fs′

(
ξ

y

)
+ C2,g(y)fg

(
ξ

y

)}

(B.26a)

F (1)
k (m)+mh(1)

dF (0)
k

dM

∣∣∣∣
M=m

=

∫ 1

ξ

dy

y

{[
Ck,q(y) + C̃k,q(y)

]
fs′

(
ξ

y

)
+ Ck,g(y)fg

(
ξ

y

)}
.

(B.26b)
It is interesting to observe that in the zero-mass limit, where λ→ 1, all the coefficient

functions in eq. (B.24) vanish. As a consequence, the zero-mass limit of the CC massive
structure functions up to order αs in terms of the pole mass M or the MS mass m have
exactly the same form.
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Alternative Calculation

We sketch here an alternative calculation that looks more transparent and confirms the
result found in eq. (B.24). We start directly calculating the Mellin transform of the term
proportional to the derivative in eq. (B.13), that is, disregarding the overall constant:

Ik(N) =

∫ 1

0
dξξN−1

[
ξbk(ξ)

dfs′

dξ

]
. (B.27)

But since:
d

dξ
ξNbk(ξ)fs′(ξ) =

[
d

dξ
ξNbk(ξ)

]
fs′(ξ) + ξNbk(ξ)

dfs′

dξ
, (B.28)

it follows that:

Ik(N) = ξNbk(ξ)fs′(ξ)
∣∣∣
1

0︸ ︷︷ ︸
=0

−
∫ 1

0
dξ

[
d

dξ
ξNbk(ξ)

]
fs′(ξ) . (B.29)

Now, using the definition of bk(ξ) given in eq. (B.11), we can easily find that:

I1(N) = −1
2Nfs′(N)

I2(N) = −(N + 1)fs′(N + 1)
I3(N) = −Nfs′(N)

. (B.30)

If one now calculates the Mellin transform of the remaining part of eq. (B.13), one finds
the results given in eq. (B.24).



Bibliography

[1] K. G. Wilson, “Confinement of quarks,” Phys. Rev. D, vol. 10, pp. 2445–2459, Oct
1974.

[2] Z. Fodor and C. Hoelbling, “Light Hadron Masses from Lattice QCD,”
Rev.Mod.Phys., vol. 84, p. 449, 2012.

[3] D. J. Gross and F. Wilczek, “Asymptotically free gauge theories. i,” Phys. Rev.

D, vol. 8, pp. 3633–3652, Nov 1973.

[4] D. Gross and F. Wilczek, “Ultraviolet Behavior of Nonabelian Gauge Theories,”
Phys.Rev.Lett., vol. 30, pp. 1343–1346, 1973.

[5] T. Kinoshita, “Mass singularities of Feynman amplitudes,” J.Math.Phys., vol. 3,
pp. 650–677, 1962.

[6] T. D. Lee and M. Nauenberg, “Degenerate systems and mass singularities,” Phys.

Rev., vol. 133, pp. B1549–B1562, Mar 1964.

[7] J. C. Collins, D. E. Soper, and G. F. Sterman, “Factorization of Hard Processes
in QCD,” Adv.Ser.Direct.High Energy Phys., vol. 5, pp. 1–91, 1988.

[8] R. Feynman, “The behavior of hadron collisions at extreme energies,” Conf.Proc.,
vol. C690905, pp. 237–258, 1969.

[9] J. Bjorken and E. A. Paschos, “Inelastic Electron Proton and gamma Proton
Scattering, and the Structure of the Nucleon,” Phys.Rev., vol. 185, pp. 1975–1982,
1969.

[10] J. Callan, Curtis G. and D. J. Gross, “High-energy electroproduction and the
constitution of the electric current,” Phys.Rev.Lett., vol. 22, pp. 156–159, 1969.

[11] H. Fritzsch, M. Gell-Mann, and H. Leutwyler, “Advantages of the Color Octet
Gluon Picture,” Phys.Lett., vol. B47, pp. 365–368, 1973.

[12] J. C. Collins, “Hard scattering factorization with heavy quarks: A General treat-
ment,” Phys.Rev., vol. D58, p. 094002, 1998.

[13] H. van Dam and M. Veltman, “Massive and massless Yang-Mills and gravitational
fields,” Nucl.Phys., vol. B22, pp. 397–411, 1970.



140 BIBLIOGRAPHY

[14] G. Dissertori, I. Knowles, and M. Schmelling, QCD and Collider Physics. Oxford
University Press, 2003.

[15] S. Chekanov et al., “Measurement of the neutral current cross section and F2

structure function for deep inelastic e+p scattering at HERA,” Eur. Phys. J.,
vol. C21, pp. 443–471, 2001.

[16] G. Altarelli and G. Parisi, “Asymptotic Freedom in Parton Language,” Nucl.Phys.,
vol. B126, p. 298, 1977.

[17] V. Gribov and L. Lipatov, “Deep inelastic e p scattering in perturbation theory,”
Sov.J.Nucl.Phys., vol. 15, pp. 438–450, 1972.

[18] Y. L. Dokshitzer, “Calculation of the Structure Functions for Deep Inelastic Scat-
tering and e+ e- Annihilation by Perturbation Theory in Quantum Chromody-
namics.,” Sov.Phys.JETP, vol. 46, pp. 641–653, 1977.

[19] G. Curci, W. Furmanski, and R. Petronzio, “Evolution of Parton Densities Beyond
Leading Order: The Nonsinglet Case,” Nucl.Phys., vol. B175, p. 27, 1980.

[20] W. Furmanski and R. Petronzio, “Singlet Parton Densities Beyond Leading Or-
der,” Phys.Lett., vol. B97, p. 437, 1980.

[21] S. Moch, J. Vermaseren, and A. Vogt, “The Three loop splitting functions in QCD:
The Nonsinglet case,” Nucl.Phys., vol. B688, pp. 101–134, 2004.

[22] A. Vogt, S. Moch, and J. Vermaseren, “The Three-loop splitting functions in QCD:
The Singlet case,” Nucl.Phys., vol. B691, pp. 129–181, 2004.

[23] S. Alekhin, J. Blumlein, and S. Moch, “Parton Distribution Functions and Bench-
mark Cross Sections at NNLO,” Phys.Rev., vol. D86, p. 054009, 2012.

[24] J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, et al., “The CT10 NNLO Global
Analysis of QCD,” 2013.

[25] P. Jimenez-Delgado and E. Reya, “Variable Flavor Number Parton Distributions
and Weak Gauge and Higgs Boson Production at Hadron Colliders at NNLO of
QCD,” Phys.Rev., vol. D80, p. 114011, 2009.

[26] A. Cooper-Sarkar, “PDF Fits at HERA,” PoS, vol. EPS-HEP2011, p. 320, 2011.

[27] V. Radescu, “Parton distributions from HERA,” AIP Conf.Proc., vol. 1369,
pp. 37–42, 2011.

[28] A. Martin, W. Stirling, R. Thorne, and G. Watt, “Parton distributions for the
LHC,” Eur.Phys.J., vol. C63, pp. 189–285, 2009.

[29] R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. Del Debbio, et al., “Parton
distributions with LHC data,” Nucl.Phys., vol. B867, pp. 244–289, 2013.

[30] W. Tung, H. Lai, A. Belyaev, J. Pumplin, D. Stump, et al., “Heavy Quark Mass
Effects in Deep Inelastic Scattering and Global QCD Analysis,” JHEP, vol. 0702,
p. 053, 2007.



BIBLIOGRAPHY 141

[31] M. Aivazis, J. C. Collins, F. I. Olness, and W.-K. Tung, “Leptoproduction of heavy
quarks. 2. A Unified QCD formulation of charged and neutral current processes
from fixed target to collider energies,” Phys.Rev., vol. D50, pp. 3102–3118, 1994.

[32] J. C. Collins, F. Wilczek, and A. Zee, “Low-Energy Manifestations of Heavy Par-
ticles: Application to the Neutral Current,” Phys.Rev., vol. D18, p. 242, 1978.

[33] M. Kramer, F. I. Olness, and D. E. Soper, “Treatment of heavy quarks in deeply
inelastic scattering,” Phys.Rev., vol. D62, p. 096007, 2000.

[34] W.-K. Tung, S. Kretzer, and C. Schmidt, “Open heavy flavor production in QCD:
Conceptual framework and implementation issues,” J.Phys., vol. G28, pp. 983–996,
2002.

[35] S. Kretzer, H. Lai, F. Olness, and W. Tung, “Cteq6 parton distributions with
heavy quark mass effects,” Phys.Rev., vol. D69, p. 114005, 2004.

[36] A. Martin, W. Stirling, R. Thorne, and G. Watt, “Update of parton distributions
at NNLO,” Phys.Lett., vol. B652, pp. 292–299, 2007.

[37] R. Thorne and R. Roberts, “An Ordered analysis of heavy flavor production in
deep inelastic scattering,” Phys.Rev., vol. D57, pp. 6871–6898, 1998.

[38] R. Thorne and R. Roberts, “A Practical procedure for evolving heavy flavor struc-
ture functions,” Phys.Lett., vol. B421, pp. 303–311, 1998.

[39] A. D. Martin, R. Roberts, W. J. Stirling, and R. Thorne, “Parton distributions:
A New global analysis,” Eur.Phys.J., vol. C4, pp. 463–496, 1998.

[40] A. D. Martin, R. Roberts, W. Stirling, and R. Thorne, “MRST2001: Partons
and αs from precise deep inelastic scattering and Tevatron jet data,” Eur.Phys.J.,
vol. C23, pp. 73–87, 2002.

[41] A. Martin, R. Roberts, W. Stirling, and R. Thorne, “Uncertainties of predictions
from parton distributions. 1: Experimental errors,” Eur.Phys.J., vol. C28, pp. 455–
473, 2003.

[42] A. Martin, R. Roberts, W. Stirling, and R. Thorne, “Physical gluons and high
E(T ) jets,” Phys.Lett., vol. B604, pp. 61–68, 2004.

[43] R. Thorne, “A Variable-flavor number scheme for NNLO,” Phys.Rev., vol. D73,
p. 054019, 2006.

[44] R. Thorne and W. Tung, “PQCD Formulations with Heavy Quark Masses and
Global Analysis,” 2008.

[45] F. Olness and I. Schienbein, “Heavy Quarks: Lessons Learned from HERA and
Tevatron,” Nucl.Phys.Proc.Suppl., vol. 191, pp. 44–53, 2009.

[46] M. Cacciari, M. Greco, and P. Nason, “The P(T) spectrum in heavy flavor
hadroproduction,” JHEP, vol. 9805, p. 007, 1998.



142 BIBLIOGRAPHY

[47] S. Forte, E. Laenen, P. Nason, and J. Rojo, “Heavy quarks in deep-inelastic scat-
tering,” Nucl.Phys., vol. B834, pp. 116–162, 2010.

[48] M. Buza, Y. Matiounine, J. Smith, and W. van Neerven, “Charm electroproduc-
tion viewed in the variable flavor number scheme versus fixed order perturbation
theory,” Eur.Phys.J., vol. C1, pp. 301–320, 1998.

[49] M. Buza, Y. Matiounine, J. Smith, and W. van Neerven, “Comparison between the
various descriptions for charm electroproduction and the HERA data,” Phys.Lett.,
vol. B411, pp. 211–217, 1997.

[50] S. Alekhin, J. Blumlein, S. Klein, and S. Moch, “The 3, 4, and 5-flavor NNLO
Parton from Deep-Inelastic-Scattering Data and at Hadron Colliders,” Phys.Rev.,
vol. D81, p. 014032, 2010.

[51] J. Andersen et al., “The SM and NLOMultileg Working Group: Summary report,”
pp. 21–189, 2010.

[52] M. Aivazis, F. I. Olness, and W.-K. Tung, “Leptoproduction of heavy quarks. 1.
General formalism and kinematics of charged current and neutral current produc-
tion processes,” Phys.Rev., vol. D50, pp. 3085–3101, 1994.

[53] T. Stavreva, F. Olness, I. Schienbein, T. Jezo, A. Kusina, et al., “Heavy Quark Pro-
duction in the ACOT Scheme beyond NLO,” Acta Phys.Polon., vol. B43, pp. 1607–
1622, 2012.

[54] R. M. Barnett, “Evidence for New Quarks and New Currents,” Phys.Rev.Lett.,
vol. 36, pp. 1163–1166, 1976.

[55] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, et al., “Impact of Heavy
Quark Masses on Parton Distributions and LHC Phenomenology,” Nucl.Phys.,
vol. B849, pp. 296–363, 2011.

[56] R. D. Ball et al., “Unbiased global determination of parton distributions and their
uncertainties at NNLO and at LO,” Nucl.Phys., vol. B855, pp. 153–221, 2012.

[57] K. Chetyrkin, B. A. Kniehl, and M. Steinhauser, “Strong coupling constant with
flavor thresholds at four loops in the MS scheme,” Phys.Rev.Lett., vol. 79, pp. 2184–
2187, 1997.

[58] W. van Neerven and E. Zijlstra, “Order α2
s contributions to the deep inelastic

Wilson coefficient,” Phys.Lett., vol. B272, pp. 127–133, 1991.

[59] E. Zijlstra and W. van Neerven, “Contribution of the second order gluonic Wilson
coefficient to the deep inelastic structure function,” Phys.Lett., vol. B273, pp. 476–
482, 1991.

[60] E. Zijlstra and W. van Neerven, “Order α2
s correction to the structure function

F3(x,Q2) in deep inelastic neutrino - hadron scattering,” Phys.Lett., vol. B297,
pp. 377–384, 1992.



BIBLIOGRAPHY 143

[61] E. Zijlstra and W. van Neerven, “Order α2
s QCD corrections to the deep inelas-

tic proton structure functions F2(x,Q2) and FL(x,Q2),” Nucl.Phys., vol. B383,
pp. 525–574, 1992.

[62] S. Moch, J. Vermaseren, and A. Vogt, “The Longitudinal structure function at the
third order,” Phys.Lett., vol. B606, pp. 123–129, 2005.

[63] J. Vermaseren, A. Vogt, and S. Moch, “The Third-order QCD corrections to deep-
inelastic scattering by photon exchange,” Nucl.Phys., vol. B724, pp. 3–182, 2005.

[64] E. Laenen, S. Riemersma, J. Smith, and W. van Neerven, “Complete O(α2
s) cor-

rections to heavy flavor structure functions in electroproduction,” Nucl.Phys.,
vol. B392, pp. 162–228, 1993.

[65] M. Gluck, S. Kretzer, and E. Reya, “The Strange sea density and charm production
in deep inelastic charged current processes,” Phys.Lett., vol. B380, pp. 171–176,
1996.

[66] A. Arbuzov, D. Y. Bardin, J. Blumlein, L. Kalinovskaya, and T. Riemann, “Hector
1.00: A Program for the calculation of QED, QCD and electroweak corrections
to e p and lepton+- N deep inelastic neutral and charged current scattering,”
Comput.Phys.Commun., vol. 94, pp. 128–184, 1996.

[67] M. Buza and W. van Neerven, “O(α2
s) contributions to charm production in

charged current deep inelastic lepton - hadron scattering,” Nucl.Phys., vol. B500,
pp. 301–324, 1997.

[68] G. Corcella and A. D. Mitov, “Soft gluon resummation for heavy quark production
in charged current deep inelastic scattering,” Nucl.Phys., vol. B676, pp. 346–364,
2004.

[69] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, et al., “A first un-
biased global NLO determination of parton distributions and their uncertainties,”
Nucl.Phys., vol. B838, pp. 136–206, 2010.

[70] W. van Neerven and A. Vogt, “NNLO evolution of deep inelastic structure func-
tions: The Nonsinglet case,” Nucl.Phys., vol. B568, pp. 263–286, 2000.

[71] M. Dittmar, S. Forte, A. Glazov, S. Moch, S. Alekhin, et al., “Working Group
I: Parton distributions: Summary report for the HERA LHC Workshop Proceed-
ings,” 2005.

[72] R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and Collider Physics. Cam-
bridge University Press, 1996.

[73] W. van Neerven and A. Vogt, “NNLO evolution of deep inelastic structure func-
tions: The Singlet case,” Nucl.Phys., vol. B588, pp. 345–373, 2000.

[74] S. Larin, P. Nogueira, T. van Ritbergen, and J. Vermaseren, “The Three loop
QCD calculation of the moments of deep inelastic structure functions,” Nucl.Phys.,
vol. B492, pp. 338–378, 1997.



144 BIBLIOGRAPHY

[75] S. I. Alekhin and J. Blumlein, “Mellin representation for the heavy flavor contri-
butions to deep inelastic structure functions,” Phys.Lett., vol. B594, pp. 299–307,
2004.

[76] OpenQCDrad, http://www-zeuthen.desy.de/∼alekhin/OPENQCDRAD

[77] S. Alekhin and S. Moch, “Heavy-quark deep-inelastic scattering with a running
mass,” Phys.Lett., vol. B699, pp. 345–353, 2011.

[78] K. Chetyrkin and M. Steinhauser, “The Relation between the MS and the on-shell
quark mass at order α3

s,” Nucl.Phys., vol. B573, pp. 617–651, 2000.

[79] K. Chetyrkin and A. Retey, “Renormalization and running of quark mass and field
in the regularization invariant and MS schemes at three loops and four loops,”
Nucl.Phys., vol. B583, pp. 3–34, 2000.

[80] A. Vogt, “Efficient evolution of unpolarized and polarized parton distributions
with QCD-PEGASUS,” Comput.Phys.Commun., vol. 170, pp. 65–92, 2005.

[81] K. Chetyrkin, J. H. Kuhn, and M. Steinhauser, “RunDec: A Mathematica pack-
age for running and decoupling of the strong coupling and quark masses,” Com-

put.Phys.Commun., vol. 133, pp. 43–65, 2000.

[82] G. P. Salam and J. Rojo, “A Higher Order Perturbative Parton Evolution Toolkit
(HOPPET),” Comput.Phys.Commun., vol. 180, pp. 120–156, 2009.

[83] V. Bertone and J. Rojo, “Parton Distributions with the Combined HERA Charm
Production Cross Sections,” 2012.

[84] S. Forte, L. Garrido, J. I. Latorre, and A. Piccione, “Neural network parametriza-
tion of deep inelastic structure functions,” JHEP, vol. 0205, p. 062, 2002.

[85] L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione, and J. Rojo, “Neural network
determination of parton distributions: The Nonsinglet case,” JHEP, vol. 0703,
p. 039, 2007.

[86] C. M. Bishop, Neural Network for Pattern Recongnition. Clarendon Press - Oxford,
1995.

[87] R. D. Ball et al., “Fitting Parton Distribution Data with Multiplicative Normal-
ization Uncertainties,” JHEP, vol. 1005, p. 075, 2010.

[88] R. D. Ball et al., “A Determination of parton distributions with faithful uncertainty
estimation,” Nucl.Phys., vol. B809, pp. 1–63, 2009.

[89] R. D. Ball, S. Carrazza, L. Del Debbio, S. Forte, J. Gao, et al., “Parton Distribution
Benchmarking with LHC Data,” 2012.

[90] Y. A. Kanev, “Application of neural networks and genetic algorithms in high-
energy physics,” 1998.



BIBLIOGRAPHY 145

[91] R. D. Ball et al., “Theoretical issues in PDF determination and associated uncer-
tainties,” 2013.

[92] F. Caola, S. Forte, and J. Rojo, “HERA data and DGLAP evolution: theory and
phenomenology,” 2010. accepted for publication in Nucl. Phys. A.

[93] F. Caola, S. Forte, and J. Rojo, “Deviations from NLO QCD evolution in inclusive
HERA data,” Phys. Lett., vol. B686, pp. 127–135, 2010.

[94] G. Aad et al., “Measurement of the inclusive W± and Z/γ cross sections in the
electron and muon decay channels in pp collisions at

√
s = 7 TeV with the ATLAS

detector,” Phys.Rev., vol. D85, p. 072004, 2012.

[95] S. Chatrchyan et al., “Measurement of the electron charge asymmetry in inclusive
W production in pp collisions at

√
s = 7 TeV,” Phys.Rev.Lett., vol. 109, p. 111806,

2012.

[96] R. Aaij et al., “Inclusive W and Z production in the forward region at
√
s = 7

TeV,” JHEP, vol. 1206, p. 058, 2012.

[97] G. Aad et al., “Measurement of inclusive jet and dijet production in pp collisions
at

√
s = 7 TeV using the ATLAS detector,” Phys.Rev., vol. D86, p. 014022, 2012.

[98] M. Arneodo et al., “Accurate measurement of F2(d)/F2(p) and R(d)−R(p),” Nucl.

Phys., vol. B487, pp. 3–26, 1997.

[99] M. Arneodo et al., “Measurement of the proton and deuteron structure functions,
F2(p) and F2(d), and of the ratio σL/σT ,” Nucl. Phys., vol. B483, pp. 3–43, 1997.

[100] L. W. Whitlow, E. M. Riordan, S. Dasu, S. Rock, and A. Bodek, “Precise mea-
surements of the proton and deuteron structure functions from a global analysis of
the SLAC deep inelastic electron scattering cross-sections,” Phys. Lett., vol. B282,
pp. 475–482, 1992.

[101] A. C. Benvenuti et al., “A high statistics measurement of the proton structure
functions F2(x,Q2) and R from Deep Inelastic muon cattering at high Q2,” Phys.

Lett., vol. B223, p. 485, 1989.

[102] A. C. Benvenuti et al., “A high statistics measurement of the deuteron structure
functions F2(x,Q2) and R from Deep Inelastic muon cattering at high Q2,” Phys.

Lett., vol. B237, p. 592, 1990.

[103] A. F. et al., “Combined Measurement and QCD Analysis of the Inclusive ep Scat-
tering Cross Sections at HERA,” 2009.

[104] G. Onengut et al., “Measurement of nucleon structure functions in neutrino scat-
tering,” Phys. Lett., vol. B632, pp. 65–75, 2006.

[105] F. D. Aaron et al., “Measurement of the Proton Structure Function FL at Low x,”
Phys. Lett., vol. B665, pp. 139–146, 2008.



146 BIBLIOGRAPHY

[106] M. Goncharov et al., “Precise measurement of dimuon production cross-sections
in ν/µ Fe and ν/µ Fe deep inelastic scattering at the Tevatron,” Phys. Rev.,
vol. D64, p. 112006, 2001.

[107] D. A. Mason, “Measurement of the strange - antistrange asymmetry at NLO in
QCD from NuTeV dimuon data,” FERMILAB-THESIS-2006-01.

[108] S. Chekanov et al., “Measurement of high Q2 neutral current deep inelastic e−p
scattering cross sections with a longitudinally polarised electron beam at HERA,”
Eur. Phys. J., vol. C62, pp. 625–658, 2009.

[109] S. Chekanov et al., “Measurement of charged current deep inelastic scattering cross
sections with a longitudinally polarised electron beam at HERA,” Eur. Phys. J.,
vol. C61, pp. 223–235, 2009.

[110] J. Breitweg et al., “Measurement of D∗± production and the charm contribution
to F2 in deep inelastic scattering at HERA,” Eur. Phys. J., vol. C12, pp. 35–52,
2000.

[111] S. Chekanov et al., “Measurement of D∗± production in deep inelastic e±p scat-
tering at HERA,” Phys. Rev., vol. D69, p. 012004, 2004.

[112] S. Chekanov et al., “Measurement of D± and D0 production in deep inelastic
scattering using a lifetime tag at HERA,” Eur. Phys. J., vol. C63, pp. 171–188,
2009.

[113] S. Chekanov et al., “Measurement of charm and beauty production in deep inelastic
ep scattering from decays into muons at HERA,” Eur. Phys. J., vol. C65, pp. 65–
79, 2010.

[114] C. Adloff et al., “Measurement of D∗± meson production and F c
2 in deep inelastic

scattering at HERA,” Phys. Lett., vol. B528, pp. 199–214, 2002.

[115] F. D. Aaron et al., “Measurement of the D∗ Meson Production Cross Section and
F cc
2 , at High Q2, in ep Scattering at HERA,” Phys. Lett., vol. B686, pp. 91–100,

2010.

[116] F. D. Aaron et al., “Measurement of the Charm and Beauty Structure Functions
using the H1 Vertex Detector at HERA,” Eur. Phys. J., vol. C65, pp. 89–109,
2010.

[117] G. Moreno et al., “Dimuon production in proton - copper collisions at
√
s = 38.8

GeV,” Phys. Rev., vol. D43, pp. 2815–2836, 1991.

[118] J. C. Webb et al., “Absolute Drell-Yan dimuon cross sections in 800 GeV/c pp and
pd collisions,” 2003.

[119] J. C. Webb, “Measurement of continuum dimuon production in 800 GeV/c proton
nucleon collisions,” 2003.

[120] R. S. Towell et al., “Improved measurement of the d/u asymmetry in the nucleon
sea,” Phys. Rev., vol. D64, p. 052002, 2001.



BIBLIOGRAPHY 147

[121] T. Aaltonen et al., “Direct Measurement of the W Production Charge Asymmetry
in pp̄ Collisions at

√
s = 1.96 TeV,” Phys. Rev. Lett., vol. 102, p. 181801, 2009.

[122] V. M. Abazov et al., “Measurement of the shape of the boson rapidity distribution
for pp̄ → Z/γ∗ → e+e− + X events produced at

√
s of 1.96-TeV,” Phys. Rev.,

vol. D76, p. 012003, 2007.

[123] T. Aaltonen et al., “Measurement of dσ/dy of Drell-Yan e+e− pairs in the Z Mass
Region from pp̄ Collisions at

√
s = 1.96 TeV,” 2009.

[124] A. Abulencia et al., “Measurement of the Inclusive Jet Cross Section using the kT

algorithm in pp Collisions at
√

s = 1.96 TeV with the CDF II Detector,” Phys.

Rev., vol. D75, p. 092006, 2007.

[125] V. M. Abazov et al., “Measurement of the inclusive jet cross-section in pp̄ collisions
at s91/2) =1.96-TeV,” Phys. Rev. Lett., vol. 101, p. 062001, 2008.

[126] G. Altarelli, S. Forte, and G. Ridolfi, “On positivity of parton distributions,”
Nucl.Phys., vol. B534, pp. 277–296, 1998.

[127] R. D. Ball et al., “Precision determination of electroweak parameters and the
strange content of the proton from neutrino deep-inelastic scattering,” Nucl.Phys.,
vol. B823, pp. 195–233, 2009.

[128] C. Anastasiou, L. J. Dixon, K. Melnikov, and F. Petriello, “High precision QCD
at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO,”
Phys.Rev., vol. D69, p. 094008, 2004.

[129] N. Kidonakis and J. Owens, “Effects of higher order threshold corrections in high
E(T) jet production,” Phys.Rev., vol. D63, p. 054019, 2001.

[130] T. Kluge, K. Rabbertz, and M. Wobisch, “FastNLO: Fast pQCD calculations for
PDF fits,” pp. 483–486, 2006.

[131] M. Wobisch, D. Britzger, T. Kluge, K. Rabbertz, and F. Stober, “Theory-Data
Comparisons for Jet Measurements in Hadron-Induced Processes,” 2011.

[132] “Review of particle physics,” Phys. Rev. D, vol. 86, p. 010001, Jul 2012.

[133] S. Lionetti, R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, et al., “Precision de-
termination of αs using an unbiased global NLO parton set,” Phys.Lett., vol. B701,
pp. 346–352, 2011.

[134] R. D. Ball, V. Bertone, L. Del Debbio, S. Forte, A. Guffanti, et al., “Precision
NNLO determination of αs(MZ) using an unbiased global parton set,” Phys.Lett.,
vol. B707, pp. 66–71, 2012.

[135] F. Demartin, S. Forte, E. Mariani, J. Rojo, and A. Vicini, “The impact of PDF
and αs uncertainties on Higgs Production in gluon fusion at hadron colliders,”
Phys.Rev., vol. D82, p. 014002, 2010.



148 BIBLIOGRAPHY

[136] J. M. Campbell, J. Huston, and W. Stirling, “Hard Interactions of Quarks and
Gluons: A Primer for LHC Physics,” Rept.Prog.Phys., vol. 70, p. 89, 2007.

[137] M. Czakon, P. Fiedler, and A. Mitov, “The total top quark pair production cross-
section at hadron colliders through O(α4

s),” 2013.

[138] C. Anastasiou, S. Buehler, F. Herzog, and A. Lazopoulos, “Total cross-section
for Higgs boson hadroproduction with anomalous Standard Model interactions,”
JHEP, vol. 1112, p. 058, 2011.

[139] “Inclusive w/z cross section at 8 tev,” Tech. Rep. CMS-PAS-SMP-12-011, CERN,
Geneva, 2012.

[140] “Top pair cross section in dileptons,” Tech. Rep. CMS-PAS-TOP-12-007, CERN,
Geneva, 2012.

[141] “Measurement of the top quark pair production cross section in the single-lepton
channel with atlas in proton-proton collisions at 8 tev using kinematic fits with
b-tagging,” Tech. Rep. ATLAS-CONF-2012-149, CERN, Geneva, Nov 2012.

[142] M. Czakon, M. L. Mangano, A. Mitov, and J. Rojo, “Constraints on the gluon
PDF from top quark pair production at hadron colliders,” 2013.

[143] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions. National
Bureau of Standards Applied Mathematics Series - 55, 1964.

[144] M. Buza, Y. Matiounine, J. Smith, R. Migneron, and W. van Neerven, “Heavy
quark coefficient functions at asymptotic values Q2 ) m2

H ,” Nucl.Phys., vol. B472,
pp. 611–658, 1996.

[145] J. Blumlein and S. Kurth, “Harmonic sums and Mellin transforms up to two loop
order,” Phys.Rev., vol. D60, p. 014018, 1999.

[146] J. Blumlein and S. Kurth, “On the Mellin transform of the coefficient functions of
FL(x,Q2),” 1997.

[147] T. Gottschalk, “Chromodynamic corrections to neutrino production of heavy
quarks,” Phys.Rev., vol. D23, p. 56, 1981.


	Introduction
	Parton Distribution Functions
	The Asymptotic Freedom
	The Collinear Factorization
	DIS in QCD
	The DGLAP Equation
	Recent PDF Determinations

	Treatment of Heavy Flavours
	FFNS and VFNS
	The ACOT Method
	The S-ACOT Variant
	The ACOT- Variant

	The TR Method
	The TR' Variant

	The FONLL Method
	The BMSN Method

	Implementation of the FONLL Method
	Practical Implementation
	Light Structure Functions at order s2
	Perturbative Ordering

	Electro-weak Structure Functions
	Mellin Space Implementation
	Splitting Functions
	Coefficient Functions


	Structure Functions with MS Masses
	MS Running Mass vs. Pole Mass
	RGE Solution for the MS Running Mass
	Matching Conditions
	Matching of s()
	Matching of m()
	Matching of the PDFs
	Benchmark of the Evolution

	Structure Functions
	Neutral Current
	Charged Current
	Benchmark of the Structure Functions


	The NNPDF Methodology
	Monte Carlo Generation
	Neural Networks and Fitting Strategy
	Neural Network Parametrization
	Genetic Algorithm Minimization
	Cross-Validation Method

	Statistical Tools

	Impact of Higher Orders and Heavy Flavours on PDFs
	Experimental Data
	Kinematic Cuts
	The Dataset
	Positivity constraints
	Treatment of Hadronic Data

	Results
	Impact of the Higher Order Corrections
	Impact of the Heavy Flavour Corrections
	Impact of the Threshold Prescription

	LHC Phenomenology

	Summary and Conclusions
	Massive Coefficient Functions Mellin Transform
	NC Processes
	Order s
	Order s2

	CC Processes

	Mellin Transform of the MS Coefficient Functions
	Neutral Current
	F2
	FL

	Charged Current

	Aknowledgments

