NNPDF 2.0: NLO global fit using the NNPDF methodology

Alberto Guffanti

Albert-Ludwigs-Universität Freiburg

On behalf of the NNPDF Collaboration:

R. D. Ball, L. Del Debbio, M. Ubiali (Edinburgh), S. Forte, J. Rojo (Milano), J. I. Latorre (Barcelona)

PDF4LHC Meeting CERN, January 29, 2010

Dataset

 3477 data points (for comparison MSTW08 includes 2699 data points)

OBS	Data set		
Deep Inelastic Scattering			
F_2^d/F_2^p F_2^p	NMC-pd		
F_2^p	NMC		
_	SLAC		
	BCDMS		
F_2^d	SLAC		
_	BCDMS		
σ_{NC}^{+}	ZEUS		
,,,,	H1		
σ_{NC}^{-}	ZEUS		
1	H1		
F_L	H1		
$\sigma_{ u},\sigma_{ar{ u}}$	CHORUS		
dimuon prod.	NuTeV		

Drell-Yan & Vector Boson prod.			
$d\sigma^{\mathrm{DY}}/dM^2dy$	E605		
$d\sigma^{\rm DY}/dM^2dx_F$	E866		
W asymm.	CDF		
Z rap. distr.	D0/CDF		
In almatica tak maa d			

molacivo jot prodi		
Incl. $\sigma^{(ext{jet})}$	CDF (k_T) - Run II	
Incl. $\sigma^{(ext{jet})}$	D0 (cone) - Run II	

NNPDF 2.0

Technical improvements

- Fast DGLAP evolution based on higher-order interpolating polynomials
- Improved treatment of normalization errors (t₀ method)
 - For details see R. Ball's talk at August '09 Meeting (and [arXiv:0912.2276])
- Improvements in training/stopping
 - Target Weighted Training
 - Improved stopping for avoiding under-/over-learning

NLO QCD

FastDY

- Inclusion of higher order corrections to hadronic processes in parton fits is often too expensive
- Often higher order corrections are included as (local) K factors rescaling the LO cross section
- We use FastNLO for inclusive jet cross section
- We developed our own FastDY for fixed target Drell-Yan and vector boson production at colliders

Relative Accuracy w.r.t to Exact calc. 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ E886p E886p E886p Wasy Zrap 10⁻⁵ -0.5 0 0.5 1 y 1.5 2 2.5

General features of the fit

Partons - Comparison to older NNPDF set

Partons - Comparison to other global fits

Partons - A couple of upshots

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data

 Uncertainties on PDFs competitive with results from other groups

Quantitative assesment of impact of modifications

We define the distance between central values of PDFs

$$d(q_j) = \sqrt{\left\langle rac{ig(\langle q_j
angle_{(1)} - \langle q_j
angle_{(2)}ig)^2}{\sigma_1^2[q_j] + \sigma_2^2[q_j]}
ight
angle_{N_{
m part}}}$$

and the similarly for Standard Deviations

- Comparisons we have performed for NNPDF2.0
 - NNPDF1.2 vs. NNPDF1.2 + minimization/training improvements
 - Improved NNPDF1.2 vs. Improved NNPDF1.2 + t₀-method
 - Fit to DIS dataset with H1/ZEUS data vs. Fit with HERA-I combined
 - Fit to DIS dataset vs. Fit to DIS+JET
 - Fit to DIS+JET vs. NNPDF2.0 final

Quantitative assesment of impact of modifications

We define the distance between central values of PDFs

$$d(q_j) = \sqrt{\left\langle rac{ig(\langle q_j
angle_{(1)} - \langle q_j
angle_{(2)}ig)^2}{\sigma_1^2[q_j] + \sigma_2^2[q_j]}
ight
angle_{N_{
m part}}}$$

and the similarly for Standard Deviations

- Comparisons we have performed for NNPDF2.0
 - NNPDF1.2 vs. NNPDF1.2 + minimization/training improvements
 - Improved NNPDF1.2 vs. Improved NNPDF1.2 + t₀-method
 - Fit to DIS dataset with H1/ZEUS data vs. Fit with HERA-I combined
 - Fit to DIS dataset vs. Fit to DIS+JET
 - Fit to DIS+JET vs. NNPDF2.0 final

Impact of HERA-I combined dataset

Impact of HERA-I combined dataset

- Overall fit quality to the whole dataset is good ($\chi^2 = 1.14$)
 - $\sigma_{\rm NC}^+$ dataset has relatively high $\chi^2 \sim$ 1.3
 - $\sigma_{\rm CC}^-$ dataset has very low $\chi^2 \sim$ 0.55
- ullet Same χ^2 -pattern observed in the HERAPDF1.0 analysis
- Impact on PDFs is moderate, affecting mainly Singlet and Gluon at small-x

Impact of Tevatron inclusive Jet data

- We include Tevatron Run-II inclusive jet data
- They provide a valuable constrain on large-x gluon
- No signs of tension with other datasets included in the analysis
- Run-I data not included but compatibility with the outcome of the fit has been checked

Impact of Drell-Yan and Vector Boson production data

- Good description of fixed target Drell-Yan data (E605 proton and E886 proton and p/d ratio)
- Vector boson production at colliders (CDF W-asymmetry and Z rapidity distribution) harder to fit
- All valence-type PDF combinations are affected by these data
- Sizable reduction in the uncertainty of the strange valence (possible impact on NuTeV anomaly)

Vector Boson production at colliders

- Z rapidity distribution:
 - Very good description of D0 data ($\chi^2 = 0.57$)
 - Poor description of CDF data ($\chi^2 = 2.02$)
 - MSTW08 has the same pattern
 - · Possible inconsistency of the two datasets?
- CDF W-asymmetry
 - We fit the direct W-asymmetry data, not the leptoinc asymmetry
 - Poor description of the data $(\gamma^2 = 1.85)$

Phenomenological implications

LHC standard Candles

	$\sigma(W^+)$ Br $(W^+ \to l^+ \nu_l)$	$\sigma(W^-)$ Br $(W^- \to l^+ \nu_l)$	$\sigma(Z^0)$ Br $\left(Z^0 \to I^+I^-\right)$
NNPDF1.2	11.99 ± 0.34 nb	$8.47 \pm 0.21 \; \text{nb}$	1.94 ± 0.04 nb
NNPDF2.0	11.57 \pm 0.19 nb	$8.52 \pm 0.14 \mathrm{nb}$	$1.93 \pm 0.03 \ { m nb}$
CTEQ6.6	12.41 \pm 0.28 nb	$9.11 \pm 0.22 \mathrm{nb}$	$2.07 \pm 0.05 \mathrm{nb}$
MSTW08	12.03 \pm 0.22 nb	$9.09 \pm 0.17 { m nb}$	$2.03 \pm 0.04 \; \text{nb}$

• Impact on NuTeV determination of $\sin^2 \theta_W$

Conclusions and Outlook

The way ahead of NNPDF fits ...

- NNPDF2.0 is the first global NNPDF fit
- No signs of strong tensions among datasets
- Competitive errors on PDF and precision studies of observables (see NuTeV anomaly) possible
- Next step is the improved treatment of Heavy Flavour contributions (FONLL scheme)

Backup Slides

NLO QCD

Fast Evolution

- Implementation of a new strategy to solve DGLAP evolution equation
- Evolution is performed as interpolation using higher-oder interpolating polynomials (Hermite polynomials)
- Implementation benchmarked against the Les Houches tables
- Gain in speed by a factor 30 (for a fit to 3000 datapoints)
- Speed of the evolution scales with number of points in the interpolating grid (compare to older implementations which scaled with number of datapoints).

Methodology

Impact of improved trainig/stopping

Methodology

Impact of t₀-method

Some more phenomenological implications

	$\sigma(t\overline{t})$	$\sigma(H, m_H = 120 \mathrm{GeV})$
NNPDF1.2	901 ± 21 pb	$36.6 \pm 1.2 \ \text{pb}$
NNPDF2.0	$913 \pm 17 \text{pb}$	$37.3 \pm 0.4 \text{ pb}$
CTEQ6.6	$844\pm17~\mathrm{pb}$	$36.3\pm0.9~\mathrm{pb}$
MSTW08	$905\pm18~\mathrm{pb}$	38.4 ± 0.5 pb

