NNPDF in the LHC Era

Valerio Bertone

Albert-Ludwigs-Universität Freiburg, Physikalisches Institut

$\begin{array}{c} RADCOR \ 2011 \\ \mbox{September} \ 26^{\rm th} \ - \ 30^{\rm th} \ 2011, \ \mbox{Mamallapuram}, \ \mbox{India} \end{array}$

On behalf of the **NNPDF Collaboration**: R.D.Ball¹, V.B.², F.Cerutti³, L.Del Debbio¹, S.Forte⁴, A.Guffanti⁵, J.I.Latorre³, J. Rojo⁴, M.Ubiali⁶ ¹ PPT Group, School of Physics, University of Edinburgh ² Physikalisches Institut, Albert-Ludwigs-Universität Freiburg ³ Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona ⁴ Dipartimento di Fisica, Università di Milano ⁵ The Niels Bohr International Accademy and Discovery Center, Copenhagen ⁶ Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University

Outline

Introduction

- Issues in Standard PDF Determination
- NNPDF Methodology

NNPDF2.1

- Data set
- Implementation
- NNLO Parton Distributions
- Perturbative Stability
- Phenomenology

NNPDF2.2

- Included data
- Results

Conclusions

2

<ロト <回ト < 回ト < 回ト

Part I

Introduction

Ξ.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

- Extraction of a set of functions with errors from a set of data points.
- We need an error band, i.e. a probability density $\mathcal{P}[f(x)]$ in the space of PDFs :

$$\langle \mathcal{O} \rangle = \int \mathcal{D} f \mathcal{P}[f] \mathcal{O}[f]$$

$$\sigma_{\mathcal{O}}^{2} = \int \mathcal{D}f \mathcal{P}[f] \left(\mathcal{O}[f] - \langle \mathcal{O} \rangle \right)^{2}$$

Standard approach:

Choose a specific functional form:

$$q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+...).$$

Errors determined by means of linear error propagation.

But:

- Is the parametrization flexible enough?
- What is the error associated to any particular choice?
- Need to rely on linear propagation of errors.

イロト イ団ト イヨト イヨト

- Generate Monte Carlo replicas of the experimental data:
 - Generation through Monte Carlo sampling of data,
 - Validation against experimental data.
 - \Rightarrow No need to rely on **linear propagation** of errors,
 - \Rightarrow possibility to test for **non-gaussian behaviour** in fitted PDFs.
- Fit PDFs with a set of Neural Networks on each replica:
 - Redundant Parametrization: 7 independent PDFs \Rightarrow 259 free parameters.
 - Dynamical Stopping Criterion: Cross-Validation method.
 - \Rightarrow Neural Networks provide an **unbiased** parametrization.
- Expectation values for observables are Monte Carlo integrals:

$$\langle \mathcal{O}[f] \rangle = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[f_k]$$

... and the same is true for errors, correlations, etc.

イロン イヨン イヨン イヨン

Part II

NNPDF2.1 LO, NLO and NNLO sets

2

イロト イヨト イヨト イヨト

NNPDF2.1 is an ensemble of PDF sets presently available at LO, NLO and NNLO. The NNPDF Collaboration, R.D. Ball et al., [arXiv:1107.2652]

Features:

- Global Fit: DIS + DY + JET data.
- Heavy quark mass effects included using the FONLL method up to NNLO, S. Forte et al., Nucl. Phys. B834 (2010) 116, [arXiv:1001.2312]
- FastKernel method for the inclusion of the higher order corrections:
 - DIS up to NNLO,
 - DY and JET up to NLO.

The NNPDF Collaboration, R.D. Ball et al., Nucl. Phys. B838 (2010) 136, [arXiv:1002.4407]

- NNLO corrections to DY included by means of K-factors,
- NNLO corrections to inclusive JET implemented using FastNLO:
 - approximated NNLO corrections based on threshold resummation.
 - T. Kluge, K. Rabbertz and M. Wobisch, (2006), [hep-ph/0609285]

・ロン ・四 と ・ ヨン ・ ヨン

- Inclusion of the HERA F_2^c data.
- Inclusion of systematics.

<ロト <回ト < 回ト < 回ト

• NNPDF2.1 implements the **FONLL method**:

prescription for combining massive quarks in the decoupling scheme $N_F = 3$ and massless quarks in the \overline{MS} scheme $N_F = 4$, at any given order, avoiding double counting. S.Forte, E.Laenen, P.Nason, J. Rojo [ArXiv:1001.2312]

FONLL interpolates smoothly between massive (low Q^2) and massless (high Q^2) scheme.

<ロ> (日) (日) (日) (日) (日)

Stability going from NLO to NNLO

Valerio Bertone (Albert-Ludwigs-Universität Freiburg,

10 / 46

NNPDF2.1 NNLO Parton Distributions: Impact of the NNLO corrections

In order to quantify the impact on the NNLO corrections, one defines the distance:

- NLO and NNLO PDFs very similar at small-x,
- Largest distances for quarks at $x \sim 0.1 0.2$,
- very small distances for PDF uncertainties:
 - same (and only) experimental uncertainties for both NLO and NNLO fit.

イロン イヨン イヨン イヨン

- Apart from NNPDF2.1, MSTW08 is presently the only NNLO PDF set available for different values of α_s.
- Comparison performed with a common value of $\alpha_s(M_Z) = 0.119$ (NNPDF2.1 default value).

- Reasonable agreement between central values,
- MSTW08 uncertainties unusually small,
- MSTW08 gluon unstable at small x:
 - it becomes markedly negative.

• Sizable differences in the Strange distributions,

・ロト ・個ト ・ヨト ・ヨト

restictive MSTW parametrization for s⁺ and s⁻ (only 4 parameters).

NNPDF2.1 now available at LO, NLO and NNLO \Longrightarrow

study of **Perturbative Stability**

- Excellent convergence of the perturbative expansion,
- NLO and NNLO always agree within uncertainties.

イロン イヨン イヨン イヨン

Total momentum carried by partons:

$$[q](Q^2) \equiv \int_0^1 dx \, xq(x, Q^2) \quad \Rightarrow \quad [M] = [\Sigma] + [g] \stackrel{!}{=} 1$$

strong consistency check of global analysis framework.

- Default NNPDF2.1 sets produced imposing the momentum sum rule (MSR).
- Sets NNPDF2.1 LO*, NLO* and NNLO* produced relaxing MSR:

Momentum fractions in NNPDE2 1 NNLO*

Parabolic fit of the global χ^2 as a function of the input parameter $\alpha_s(M_z)$:

NNLO α_s (M_Z) from PDF Analyses

- NNPDF2.1 global determination consistent with the PDG determination at 1- σ level,
- NNPDF2.1 global and DIS-only determinations agree within uncertainties,
- MSTW08 and ABKM09 values of α_s extracted as a fitting parameter,
- NNPDF2.1 and MSTW08 determinations in good agreement.

<ロ> (日) (日) (日) (日) (日)

NNPDF2.1

Phenomenology: NNLO vs. NLO Parton Luminosities

At LHC observables depend on PDFs through Parton Luminosities:

$$\Phi_{ij}(\tau) = \frac{1}{s} \int_{\tau}^{1} \frac{dx}{x} f_i(x, M_X^2) f_j(\tau/x, M_X^2) \quad \text{with} \quad \tau = \frac{M_X^2}{s}$$

- All luminosities reasonably compatible.
- Gluon-gluon luminosity relevant for the Higgs production:
 - particularly stable in the "standard Higgs" region ($\sqrt{\tau} \simeq 2 \times 10^{-2}$).
- Quark-antiquark luminosity relevant for the *W*/*Z* production:

<ロト <回ト < 回ト < 回ト

• NNLO significantly larger than NLO in the W/Z mass region ($\sqrt{\tau} \simeq 10^{-2}$).

Valerio Bertone (Albert-Ludwigs-Universität Freiburg,

Higgs production from gluon-gluon fusion: Higgs exclusion bounds.

- Strong dependence on α_s .
- NNPDF2.1 and MSTW08 in excellent agreement, provided the same value of α_s .
- Sizable differences between NNPDF2.1 and ABKM09:
 - partially accounted by the different value of α_s (right plot).

(日) (同) (三) (三)

$t\overline{t}$ cross-section: senstive probe of the gluon distribution.

- Comparison with CMS and ATLAS measurements:
 - Discrimination between PDF sets,
 - NNPDF2.1 and MSTW08 in good agreement with LHC data,
 - ABKM09 does not agree with the present LHC measurements.
- NNPDF2.1 and MSTW08 in good agreement with each other:
 - consistently, using the same value of α_s improves the agreement.

イロト イポト イヨト イヨト

W and Z production: light flavour decomposition.

- Weaker dependence on α_s for these processes:
 - but higher order correction not negligible.
- Less significant differences between PDF sets.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Part III

The first PDF set including LHC data: NNPDF2.2

・ロト ・回ト ・ヨト ・ヨト

The NNPDF Collaboration, R.D. Ball et al., [arXiv:1108.1758]

NNPDF2.2 NLO: ↓

PDF set including D0 and LHC data

Reweighting NNPDF2.1 NLO using **D0**, **ATLAS** and **CMS** *W* asymmetry data:

$$A_W^{l} = \frac{d\sigma_{I^+}/d\eta_I - d\sigma_{I^-}/d\eta_I}{d\sigma_{I^+}/d\eta_I + d\sigma_{I^-}/d\eta_I}$$

Experiment	$N_{ m dat}$	χ^2 (NNPDF2.1)	χ^2 (NNPDF2.2)
ATLASmuASY	11	[0.77]	1.07
CMSeASY	6	[1.83]	1.08
CMSmuASY	6	[1.24]	0.56
D0eASY	12	[4.39]	1.38
D0muASY	10	[1.48]	0.35
Total		1.165	1.157

*In NNPDF2.2 no deterioration in the χ^2 of the other experiments.

21 / 46

э

・ロト ・個ト ・ヨト ・ヨト

NNPDF2.2 Results: NNPDF2.2 vs. NNPDF2.1

Light flavour PDFs more affected by the *W* asimmetry data:

• d distribution and light sea asymmetry $\Delta_s = (\overline{d} - \overline{u})$ most affected.

Most noticeable effect in two separate regions:

- x ~ 10⁻³, mostly affected by the ATLAS data.
- $x \sim 10^{-2} 10^{-1}$, mostly affected by the CMS and D0 data.
- Deviation up to $1-\sigma$ in the high x region:

<ロト <回ト < 回ト < 回ト

mostly due to D0 data.

Sizable uncertainties reduction:

- ~ 20% in the low-x region,
- up to 30% at the higher x.

NNPDF2.2 Results: NNPDF vs. CT10 and MSTW08

- NNPDF2.1 and MSTW08 do not include any W asymmetry data,
- CT10 includes only D0 data,
- NNPDF2.2 includes **D0**, **ATLAS** and **CMS** data (⇒ most reliable).

Rather good agreement among NLO global PDFs, but:

• MSTW08 prediction too high at medium x and too low at large x.

Part IV

Conclusions

2

イロト イロト イヨト イヨト

NNPDF Methodology:

- Monte Carlo sampling of data \Rightarrow No need for linear propagation of errors,
- **Neural Networks** as interpolating functions \Rightarrow Unbiased parametrization.

NNPDF2.1:

- global fit including heavy quark mass effects,
- available at LO, NLO and NNLO,

NNPDF2.2:

• Presently, the only PDF set including ATLAS and CMS data.

All the NNPDF PDF sets are available either on the web site:

http://sophia.ecm.ub.es/nnpdf

or through the LHAPDF inteface.

Valerio Bertone (Albert-Ludwigs-Universität Freiburg,

< ロ > < 同 > < 回 > < 回 > < 回 > <

Part V

Backup Slides

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

OBS	Data sets	
DIS		
F_2^p	NMC,SLAC,BDCMS	
F_2^d	SLAC,BCDMS	
F_2^d/F_2^p	NMC-pd	
σ_{NC}	HERA-I AV, ZEUS-H2	
σ_{CC}	HERA-I AV, ZEUS-H2	
F_L	H1	
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS	
dimuon prod.	NuTeV	
F_2^c	ZEUS (99,03,08,09)	
F_2^c	H1 (01,09,10)	

DY		
$d\sigma^{\rm DY}/dM^2 dy$	E605	
$d\sigma^{\rm DY}/dM^2 dx_F$	E886	
W asymmetry	CDF	
Z rap. distr.	CDF,D0	

JET	
incl. $\sigma^{(jet)}$	D0(cone) Run II
incl. $\sigma^{(jet)}$	$CDF(k_T)$ Run II

NLO cuts:

- $W^2 = Q^2(1-x)/x > 12.5 \text{ GeV}^2$,
- $Q^2 > 3 \text{ GeV}^2 + \text{further cuts on } F_2^c$:
 - no data below m_c ($m_c^2 = 2, 2.25, 2.56, 2.89 \text{ GeV}^2$),
- no cuts on hadronic data.

LO cuts:

- NLO cuts,
- F_L data removed (null at LO).

NNLO cuts:

- NLO cuts,
- further cuts on F_2^c removed,
- conversion of the E866 data from x_F to y distributions,

• NMC proton data included as reduced cross-sections, rather than structure functions.

æ

• NNPDF2.1 implements the FONLL method:

prescription for combining massive quarks in the decoupling scheme $N_F = 3$ and massless quarks in the \overline{MS} scheme $N_F = 4$, at any given order, avoiding double counting. Reference: S.Forte, E.Laenen, P.Nason, J. Rojo [ArXiv:1001.2312]

• Definition of FONLL structure function:

 $F^{\text{FONLL}}(x, Q^2) = F^{(n_f+1)}(x, Q^2) + F^{(n_f)}(x, Q^2) - F^{(n_f, 0)}(x, Q^2)$

 $F^{(n_f+1)}(x, Q^2)$: massless-scheme structure function $F^{(n_f)}(x, Q^2)$: massive-scheme structure function \Rightarrow inclusion of the mass suppressed terms $F^{(n_f,0)}(x, Q^2)$: massless limit of $F^{(n_f)}(x, Q^2) \Rightarrow$ subtraction of the double counting terms

- At the moment, three possibilities:
 - FONLL-A: $\mathcal{O}(\alpha_s)$ PDFs + $\mathcal{O}(\alpha_s)$ coefficient functions (NNPDF2.1 NLO set),
 - FONLL-B: $\mathcal{O}(\alpha_s)$ PDFs + $\mathcal{O}(\alpha_s^2)$ coefficient functions,
 - FONLL-C: $\mathcal{O}(\alpha_s^2)$ PDFs + $\mathcal{O}(\alpha_s^2)$ coefficient functions (NNPDF2.1 NNLO set).
- $\mathcal{O}(\alpha_s^2)$ coefficient functions available only in the NC and not the CC sector.
- NNPDF2.1 is presently available in all the above schemes.

NNPDF2.1 Implementation: Hadronic Data

- Hadronic data treated consistently in pQCD up to NLO.
- DY NNLO effects included by means of K-factors:

$${\cal K}=rac{(d^2\sigma/dydM^2)_{
m NNLO}}{(d^2\sigma/dydM^2)_{
m NLO}}$$

- Collider data: a few percent level,
- fixed-target data: up to $25\% \Rightarrow$ but experimental errors $\mathcal{O}(20\%)$.
- *K*-factor recomputed with NNPDF2.1 NNLO set:
 - accuracy <2% \Rightarrow cross-section uncertainty <0.5%
- Inclusive JET data, exact NNLO corrections not known yet, but:
 - approximated NNLO corrections based on threshold resummation,
 - exact NNLO PDF evolution.

<ロ> (日) (日) (日) (日) (日)

- Interesting comparison with the ABKM09 ($N_f = 3$) NNLO set, but some *caveat*:
 - only one value of α_s available for the ABKM set: $\alpha_s(M_Z) = 0.1135 \pm 0.0014$,
 - the ABKM distributions account for the combined PDF+ α_{s} error.

NNPDF2.1 Phenomenology: NNPDF2.1 vs. MSTW08 Parton Luminosities

At LHC observables depend on PDFs through Parton Luminosities:

- Same value of $\alpha_s = 0.119$.
- General good agreement in the region of τ of the typical electoweak final states at LHC ($M_x \sim 100$ GeV).
- Huge disagreement at high M_X :
 - MSTW08 NNLO gluon instability at small->

イロン イヨン イヨン イヨン 三日

The **NNPDF approach** allows to obtain reliable PDFs from datasets of widely varying size without having to modify any aspect of the methodology.

∜

Study of the dependece of PDFs on the underlying dataset.

NNPDF provides four new NNLO PDF set, based on subsets of the full dataset:

INNPDF2.1 NNLO HERA-only: only HERA data

- the HERAPDF group provides PDFs based on the same dataset.
- INPDF2.1 NNLO DIS-only: no hadron-hadron data
 - DIS data theoretically and experimentally more clean.
- INNPDF2.1 NNLO DIS+DY: no JET data
 - approximated NNLO JET.
- INNPDF2.1 NNLO Colliders-only: no fixed-target data
 - fixed-target data less clean: low energy and nuclear targets.

< ロ > < 同 > < 回 > < 回 > < 回 > <

NNPDF2.1 Accuracy of the NNLO Determination: Full Set vs. Subsets

- HERA-only: general poor description of data, s^+ very uncertain $\Rightarrow \chi^2$ NuTeV data very poor.
 - bad Singlet-Triplet (Σ and T_3) decomposition, ٠
 - bad light sea (Δ_s) decomposition. ٥

DIS-only: reasonably accurate flavour decomposition.

- Σ and g in perfect agreement with the global fit,
- also V, s^+ and Δ_s in good agreement,
- substantial deviation of T_{3} . (???)

DIS+DY: quite close to the global fit,

- almost al PDFs statistically equivalent,
- reduction of the uncertainties.

Colliders-only: fixed-target data description very poor.

- almost all PDFs disagree with the global fit,
- collider only dataset more consistent (global $\chi^2 = 1.02$),
- improvement expected with the upcoming HERA-II and LHC data. A D > A B > A B >

Experiment	Global	HERA-only	DIS-only	DIS+DY	Collider-only
$N_{\rm dat}$	3507	976	2933	3321	1232
Total	1.16	1.07	1.15	1.18	1.02
NMC-pd	0.93	[13.15]	0.88	0.94	[3.43]
NMC	1.63	[1.91]	1.69	1.69	[2.06]
SLAC	1.01	[3.17]	0.97	1.03	[1.23]
BCDMS	1.32	[2.15]	1.28	1.30	[2.22]
HERAI-AV	1.10	1.05	1.09	1.09	1.06
CHORUS	1.12	[2.63]	1.08	1.13	[1.74]
FLH108	1.26	1.32	1.27	1.26	1.26
NTVDMN	0.49	[60.51]	0.45	0.54	[23.02]
ZEUS-H2	1.31	1.21	1.26	1.28	1.30
ZEUSF2C	0.88	0.77	0.86	0.88	0.75
H1F2C	1.46	1.30	1.47	1.50	1.24
DYE605	0.81	[9.06]	[6.86]	0.82	[1.34]
DYE866	1.32	[12.41]	[2.70]	1.32	[5.76]
CDFWASY	1.65	[7.71]	[13.94]	1.64	1.07
CDFZRAP	2.12	[3.74]	[2.15]	1.91	1.22
D0ZRAP	0.67	[1.11]	[0.67]	0.65	0.61
CDFR2KT	0.74	[1.15]	[0.99]	[1.25]	0.64
D0R2CON	0.82	[1.28]	[0.88]	[1.03]	0.83

* $[\ldots]$ not fitted sets.

Reweighting allows to incorporate a new dataset into an PDF set without refitting.

For users:

- Take an NNPDF parton ditribution set $\{f_k\}$, with $k = 1, ..., N_{rep}$ (NNPDF2.1 for instance),
- 3 take the new dataset $y = \{y_1, \dots, y_n\}$ and its eventual covariance matrix σ_{ij} ,
- **(3)** compute the χ^2 of each replica on the new set y according to usual formula:

$$\chi_k^2 = \sum_{i,j=1}^n (y_i - y_i[f_k]) \sigma_{ij}^{-1} (y_j - y_j[f_k])$$

where $y_i[f_k]$ is the prediction for the experimental point y_i using the *k*-th replica, evaluate the weights according to the formula:

$$w_k \propto (\chi_k^2)^{rac{1}{2}(n-1)} e^{-rac{1}{2}\chi_k^2} \quad ext{with} \quad \sum_{k=1}^{N_{rep}} w_k = N_{rep} \, ,$$

Sompute the new expectation value of your favourite observable as:

$$\langle \mathcal{O}
angle_{\textit{new}} = rac{1}{N_{\textit{rep}}} \sum_{k=1}^{N_{\textit{rep}}} w_k \mathcal{O}[f_k] \, .$$

イロン イヨン イヨン イヨン

Unweighting allows to construct a standard PDF set (without weights) statistically equivalent to a given reweighted set.

Idea:

Given a weighted set of N_{rep} replicas, select (eventually more than once) replicas carrying relatively hight weight and discard replicas carrying relatively small weight.

Construction of the unweighted set:

() Decide the number of replicas N'_{rep} of the unweighted set:

• pointless to choose $N'_{rep} > N_{rep}$: no gain of information.

ealculate for the k-th replica of the reweighted set the integer non negative number:

$$w'_{k} = \sum_{j=1}^{N'_{rep}} \theta\left(\frac{j}{N'_{rep}} - w_{k-1}\right) \theta\left(w_{k} - \frac{j}{N'_{rep}}\right) \quad \left(\Rightarrow \sum_{k=1}^{N_{rep}} w'_{k} = N'_{rep}\right) ,$$

(a) construct the unweighted set taking w'_k copies of the k-th replica, for $k = 1, ..., N_{rep}$.

・ロト ・個ト ・ヨト ・ヨト

Reference: [arXiv:0911.0884]

- HERAPDF analysis: computation of parametrization uncertainty on top of the model (initial scale and heavy quark mass effects) and experimental uncertainty.
- In many regions the parametrization uncertainty is dominating.

<ロ> (日) (日) (日) (日) (日)

• Generation of artificial Monte Carlo data according to the distribution:

$$\mathcal{O}_{i}^{(art)(k)} = (1 + r_{norm}^{(k)}\sigma_{norm}) \left[\mathcal{O}_{i}^{(exp)} + r_{stat}^{(k)}\sigma_{stat} + \sum_{p=1}^{N_{sys}} r_{sys,p}^{(k)}\sigma_{sys,p} \right]$$

where $r_i^{(k)}$ are univariate (gaussianly distributed) random numbers.

• Validation of the Monte Carlo replicas against experimental data .

Red points: 10 replicas Green points: 100 replicas Blue points: 1000 replicas

イロト イポト イヨト イヨト

• $\mathcal{O}(1000)$ replicas needed to reproduce correlations to the percent accuracy.

- Unbiased basis of functions parameterized by a very large and redundant set of parameters \Rightarrow Neural Networks.
- Each one of the 7 independent PDFs:

`

į

Gluon	g(x)
Singlet	$\Sigma(x) = \sum_{q} (q(x) + \overline{q}(x))$
Valence	$V(x) = \sum_{q}^{r} (q(x) - \overline{q}(x))$
Triplet	$T_3(x) = (u(x) + \overline{u}(x)) - (u(x) + \overline{u}(x))$
Sea asymmetry	$\Delta_{\mathcal{S}}(x) = \overline{d}(x) - \overline{u}(x)$
Total Strangeness	$s^+(x) = s(x) + \overline{s}(x)$
Strange Valence	$s^{-}(x) = s(x) - \overline{s}(x)$

is parametrized at the initial scale $Q_0^2 = 2 \text{ GeV}^2$ by an individual Neural Network having architecture 2-5-3-1 \Rightarrow 37 parameters.

259 parameters Standard fits have ~ 25 parameters in total

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j + heta_i
ight),$$

1

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

UNDERLYING PHYSICAL LAW

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

UNDERLEARNING

∃ → < ∃ →</p>

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

PROPER LEARNING

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

OVERLEARNING

Need for a suitable stopping criterion!

Cross-validation method:

- Divide data in two sets: training and validation (for each experiment).
- * Random division for each replica (tipically $f_t = f_v = 0.5$).
- * Minimisation performed only on the training set. Meantime, the validation χ^2 is monitored.
- * When the training χ^2 still decreases while the validation χ^2 stops decreasing \rightarrow STOP.

イロン イヨン イヨン イヨン

- Simple functional forms $q(x) = Ax^b(1-x)^c P(x)$ (CT, MSTW, ABKM, HERAPDF) \rightarrow systematic underestimation of uncertainties
- Artificial Neural Networks as universal interpolants (NNPDF)
 → avoid theoretical bias from choice of PDF functional form

<ロト <回ト < 回ト < 回ト

- We use Neural Networks as functions to represent PDFs at the starting scale.
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds:

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - heta_i
ight), \qquad g(x) = rac{1}{1 + e^{-x}}$$

For instance, a (1-2-1) NN is:

$$\xi_{1}^{(3)} = \frac{1}{\substack{\theta_{1}^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{1}} - \frac{\omega_{11}^{(2)}}{1 + e^{2}} - \frac{\omega_{11}^{(2)}}{1 + e^{2}} - \frac{\omega_{12}^{(2)}}{1 + e^{2}}}$$

• They provide a parametrization which is redundant and robust against variations.

イロト イヨト イヨト イヨト