NNPDF at LHC

Valerio Bertone

Albert-Ludwigs-Universität Freiburg, Physikalisches Institut

Standard and novel QCD phenomena at hadron colliders $$M_{ay}\;30^{\rm th}$$ - June $2^{\rm nd}\;2011,\;ECT^*,\;Trento$

On behalf of the NNPDF Collaboration: R.D.Ball¹, V.B.³, F.Cerutti⁴, L.Del Debbio¹, S.Forte², A.Guffanti³, J.I.Latorre⁴, J. Rojo², M.Ubiali⁵ ¹ PPT Group, School of Physics, University of Edinburgh ² Dipartimento di Fisica, Università di Milano ³ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg ⁴ Departament d'Estructura i Constituents de la Matèria, Universita de Barcelona ⁵ Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University

イロト イポト イヨト イヨト

Outline

Introduction

2 NNPDF Methodology

- Generation of a Monte Carlo Ensemble
- Neural Networks
- Dynamical Stopping Criterion

3 NNPDF2.1

- Impact of the HQ inclusion
- NNPDF2.1 vs. MSTW08 and CT10
- Phenomenology at LHC
- Phenomenology at HERA
- The NuTeV Anomaly
- Determination of α_s
- NNPDF2.1 at NNLO (Preliminary)

Oeviations from NLO DGLAP Evolution

Conclusions and Outlook

(日) (周) (三) (三)

Part I

Introduction

Ξ.

イロト イヨト イヨト イヨト

- Extraction of a set of functions with errors from a set of data points.
- We need an error band, i.e. a probability density $\mathcal{P}[f(x)]$ in the space of PDFs :

$$\langle \mathcal{O} \rangle = \int \mathcal{D}f \, \mathcal{P}[f] \mathcal{O}[f]$$

$$\sigma_{\mathcal{O}}^{2} = \int \mathcal{D}f \mathcal{P}[f] \left(\mathcal{O}[f] - \langle \mathcal{O} \rangle \right)^{2}$$

Standard approach:

Choose a specific functional form:

$$q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+...).$$

- Oetermine best-fit values of parameters which define the functions.
- Errors determined via gaussian error propagation and, in some cases, using a tolerance criterion.

But:

- How can we know if the parametrization is flexible enough?
- What is the error associated to any particular choice?

イロト イヨト イヨト イヨト

Reference: [arXiv:0911.0884]

- HERAPDF analysis: computation of parametrization uncertainty on top of the model (initial scale and heavy quark mass effects) and experimental uncertainty.
- In many regions the parametrization uncertainty is dominating.

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Part II

The NNPDF Methodology

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

- Generate *N* Monte Carlo replicas of the experimental data (sampling of the probability density in the space of data).
- Fit a set of Parton Distribution Functions with a set of Neural Networks on each replica (sampling of the probability density in the space of PDFs).
- Expectation values for observables are Monte Carlo integrals:

$$\langle \mathcal{O}[f] \rangle = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[f_k]$$

... the same is true for errors, correlations, etc.

イロト 不得 トイヨト イヨト

• Generation of artificial Monte Carlo data according to the distribution:

$$\mathcal{O}_{i}^{(art)(k)} = \left(1 + r_{norm}^{(k)}\sigma_{norm}\right) \left[\mathcal{O}_{i}^{(exp)} + r_{stat}^{(k)}\sigma_{stat} + \sum_{p=1}^{N_{sys}} r_{sys,p}^{(k)}\sigma_{sys,p}\right]$$

where $r_i^{(k)}$ are univariate (gaussianly distributed) random numbers.

• Validation of the Monte Carlo replicas against experimental data .

Red points: 10 replicas Green points: 100 replicas Blue points: 1000 replicas

イロト イポト イヨト イヨト

• $\mathcal{O}(1000)$ replicas needed to reproduce correlations to the percent accuracy.

- Unbiased basis of functions parameterized by a very large and redundant set of parameters ⇒ Neural Networks.
- Each one of the 7 independent PDFs:

Gluon	g(x)
Singlet	$\Sigma(x) = \sum_{a} (q(x) + \overline{q}(x))$
Valence	$V(x) = \sum_{a}^{7} (q(x) - \overline{q}(x))$
Triplet	$T_3(x) = (u(x) + \overline{u}(x)) - (u(x) + \overline{u}(x))$
Sea asymmetry	$\Delta_S(x) = \overline{d}(x) - \overline{u}(x)$
Total Strangeness	$s^+(x) = s(x) + \overline{s}(x)$
Strange Valence	$s^{-}(x) = s(x) - \overline{s}(x)$

is parametrized at the initial scale $Q_0^2 = 2 \text{ GeV}^2$ by an individual Neural Network having architecture 2-5-3-1 \Rightarrow **37** parameters.

 $\begin{array}{c} \textbf{259 parameters} \\ \textbf{Standard fits have} \sim \textbf{25 parameters in total} \end{array}$

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

UNDERLYING PHYSICAL LAW

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

UNDERLEARNING

- ∢ ≣⇒

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

PROPER LEARNING

∃ → < ∃ →</p>

A redundant parametrization might fit not only to physical behavior but also to random statistical fluctuations of data.

OVERLEARNING

∃ → < ∃ →</p>

Need for a suitable stopping criterion!

Cross-validation method:

- Divide data in two sets: training and validation (for each experiment).
- * Random division for each replica (tipically $f_t = f_v = 0.5$).
- * Minimisation performed only on the training set. Meantime, the validation χ^2 is monitored.
- * When the training χ^2 still decreases while the validation χ^2 stops decreasing \rightarrow STOP.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Part III

NNPDF2.1

Valerio Bertone (Albert-Ludwigs-Universität Freiburg,

æ

イロト イヨト イヨト イヨト

Reference: [Nucl. Phys. B849(2011)296]

NNPDF2.1 dataset

For comparison, MSTW08 includes 2699 data points

OBS	Data sets
F_2^p	NMC,SLAC,BDCMS
F_2^d	SLAC, BCDMS
F_2^d/F_2^p	NMC-pd
σNC	HERA-I AV, ZEUS-H2
σcc	HERA-I AV, ZEUS-H2
F ₁	H1
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS
dimuon prod.	NuTeV
$d\sigma^{DY}/dM^2dy$	E605
$d\sigma^{DY}/dM^2dx_F$	E886
W asymmetry	CDF
Z rap. distr.	CDF,D0
incl. $\sigma^{(jet)}$	D0(cone) Run II
incl. $\sigma^{(jet)}$	$CDF(k_T)$ Run II
F ₂ ^c	ZEUS (99,03,08,09)
FS	H1 (01,09,10)

• HQ mass effects implemented.

•
$$W^2 = Q^2(1-x)/x > 12.5 \text{ GeV}^2$$

• $\mathbf{Q}^2 > \mathbf{3} \mathbf{GeV}^2 + \text{further cuts on } F_2^c$:

no data below the charm mass.

Reference: S.Forte, E.Laenen, P.Nason, J. Rojo [ArXiv:1001.2312]

- HQ mass effects: NNPDF2.1 implements the so-called **FONLL method** which is a prescription for combining **FFN** (Massive) and **ZM-VFN** (Massless) computations, at any given order, **avoiding double counting**.
- Definition of FONLL structure function:

 $F^{\text{FONLL}}(x, Q^2) = F^{(n_f+1)}(x, Q^2) + F^{(n_f)}(x, Q^2) - F^{(n_f, 0)}(x, Q^2)$

 $F^{(n_f+1)}(x, Q^2)$: massless-scheme structure function $F^{(n_f)}(x, Q^2)$: massive-scheme structure function \Rightarrow inclusion of the mass suppressed terms $F^{(n_f,0)}(x, Q^2)$: massless limit of $F^{(n_f)}(x, Q^2) \Rightarrow$ subtraction of the double counting terms

- At the moment, three possibilities:
 - FONLL-A: $\mathcal{O}(\alpha_s)$ PDFs + $\mathcal{O}(\alpha_s)$ coefficient functions,
 - FONLL-B: $\mathcal{O}(\alpha_s)$ PDFs + $\mathcal{O}(\alpha_s^2)$ coefficient functions,
 - FONLL-C: $\mathcal{O}(\alpha_s^2)$ PDFs + $\mathcal{O}(\alpha_s^2)$ coefficient functions.

• NNPDF2.1 is a NLO fit obtained using FONLL-A.

イロン イロン イヨン イヨン 三日 二

• Small and medium-x gluon and singlet are the most affected due to:

イロン イ団 と イヨン イヨン

- GM scheme,
- new kinematic cuts.
- Effect is within 1σ.
- Other PDFs almost unaffected.

æ

- General agreement of the gluon in the small and medium-x.
- Good agreement in the valence sector.

イロト イヨト イヨト イヨト

3

- General agreement of the gluon in the small and medium-x improved due to:
- Big difference in the strange distribution:
 - less flexible parametrization adopted by CT10 and MSTW08,
 - solution of the NuTeV anomaly (see below).

<ロ> (日) (日) (日) (日) (日)

LHC standard candles:

- The use of a common value for α_s leads to better agreement between collaborations.
- NNPDF2.1 and MSTW08 always in good agreement.
- Slightly worse agreement between NNPDF2.1 and CT10, especially for observables sensitive to the gluon distribution, like tt and Higgs.
- Differences between NNPDF2.1 and NNPDF2.0 mostly due to the heavy quark effects:

(日) (同) (三) (三)

- W^{\pm} and Z predictions within 1- σ ,
- $t\bar{t}$ and Higgs predictions unchanged.

NNPDF2.1 HERA F_2^c and F_2^c Data

Data in the smallest x and Q^2 bins affected by large $\mathcal{O}(\alpha_s^2)$ corrections \Rightarrow further kinematic cuts applied to HERA F_2^c :

- $Q^2 > 4 \, {
 m GeV}^2$,
- $Q^2 > 10~{
 m GeV^2}$ for $x \le 10^{-3}$

Q² [GeV²]

H1 2010 F. measurement INPDF2.1 + FONLL-A NNPDF2.1/2.0 vs. ZEUS and H1: 0.7 PDF2.0 + FONLL-A 0.6 General agreement of **ZEUS 2009 data** 0.5 NNPDF2.0/2.1 with data. (°0,4 (°0,4) 1 0,3 ²_L(x, α²) 0.3 Heavy quark effects larger in 0.2 the low- Q^2 region (larger 0.1 gluon). Q² [GeV²]

Comparison of NNPDF2.1 predictions for F_L with present data

NNPDF2.1 predictions in view of the upcoming combined HERA data

NuTeV anomaly solved!

- Discrepancy at 3-σ level between indirect determination from NuTeV measurement (black point obtained assuming s = s̄ and isospin symmetry) and direct determination (red point: EW fit).
- Uncertainty reduced (with respect of NNPDF1.2) by addition of DY data.
- Striking agreement with the EW fit relaxing $s = \overline{s}$ and isospin symm etry. Catani et al. [hep-ph/0404240]

Determinations of the weak mixing angle $\sin^2 \theta_W$

NNPDF2.1 Determination of α_s

Reference: [arXiv:1103.2369]

- Large dataset ⇒ Small statistical errors
- α_s and PDFs correlated \Rightarrow **Parametrization bias**
- Need to tame statistical fluctuations in $\chi^2 \Rightarrow$ Large replica samples

Parabolic Fit:

	$\alpha_s(M_Z)$	$\chi^2_{ m par}/N_{ m dof}$
NNPDF2.1	$0.1191 \pm 0.0006^{\rm exp} \pm 0.0001^{\rm proc}$	1.6
NNPDF2.1 DIS-only	$0.1177 \pm 0.0009^{\rm exp} \pm 0.0002^{\rm proc}$	0.8
NNPDF2.1 HERA-only	$0.1103 \pm 0.0033^{\rm exp} \pm 0.0003^{\rm proc}$	1.1
NNPDF2.0	$\frac{0.1168 \pm 0.0007^{\rm exp} \pm 0.0001^{\rm proc}}{}$	0.4
NNPDF2.0 DIS-only	$0.1145\pm 0.0010^{\rm exp}\pm 0.0003^{\rm proc}$	1.4

HQ impact rather large ($\Delta \alpha_s^{HQ} \sim 0.002$, much bigger than the experimental uncertainties).

NNPDF NLO determinations of α_s (M_Z)

- Our best-fit in good agreement with the PDG value.
- Surprisingly small experimental uncertainty.
- Theoretical uncertainties likely dominant.

- No evidence that DIS data prefer a significantly lower value of α_s.
- Conversely, HERA data do prefer a lower value of α_s:
 - deviation between HERA data and NLO DGLAP evolution.
 - possible evidence of small-x resummation or saturation effects.

- NNLO global analysis.
- Same dataset as in NNPDF2.1, FONLL-C for DIS structure functions.
- Impact of NNLO: Larger small-x sea quarks ans $2-\sigma$ effect at medium-x

э

イロト イヨト イヨト イヨト

- NNLO global analysis.
- Same dataset as in NNPDF2.1, FONLL-C for DIS structure functions.
- Impact of NNLO: Stable small-x gluons (opposite to MSTW08)

э

イロト イヨト イヨト イヨト

Higgs cross section at NNLO

NNPDF2.5/MSTW08 agree for the NNLO Higgs at $\pm 5\%$

イロト イ団ト イヨト イヨト

Part IV

Deviations from NLO DGLAP Evolution

æ

イロト イヨト イヨト イヨト

Evidence for Deviations from NLO DGLAP Evolution

Deviations from NLO DGLAP Exploiting NNPDF

NNPDF2.0 dataset

NNPDF vs. data:

- the deviation grows bigger as A_{cut} is raised:
 - tension even if no cut is applied,
- clear systematic downward trend of the theoretical prediction ⇒ TOO MUCH EVOLUTION!

The idea (F.Caola et al. [arXiv:1007.5405]):

- **3** global fit only in the large-x and Q^2 region $(Q^2 \ge A_{cut}x^{\lambda})$, where NLO DGLAP is reliable \Rightarrow safe PDFs, free of non-DGLAP effects,
- backward evolution and extrapolation of PDFs to potentially unsafe low-x and Q² region,
- comparison of theoretical predictions with data.

Evidence for Deviations from NLO DGLAP Evolution

Deviations from NLO DGLAP Exploiting NNPDF

Quantification of the deviation:

$$d(x,Q^2) = rac{F_{ ext{data}} - F_{ ext{fit}}}{\sqrt{\sigma_{ ext{data}}^2 + \sigma_{ ext{fit}}^2}}$$

Fit without any cut $(A_{cut} = 0)$:

$$\langle d \rangle = 1.1 \pm 0.7$$

 \Rightarrow systematic tension at 1- σ level.

Fit with $A_{\text{cut}} = 1.5$:

 $\langle d \rangle = 2.0 \pm 0.7$

イロン イロン イヨン イヨン 三日

 \Rightarrow systematic deviation at 3- σ level.

What did we learn?

There are small but significant deviations from NLO DGLAP at small-x and Q^2

Can we understand it?

Evidence: NLO DGLAP systematically overestimates the evolution.

Hypothesis:

- charm mass effects ruled out by preliminary studies with NNPDF2.1 \Rightarrow too small,
- NNLO effects ruled out \Rightarrow even stronger evolution,
- effect compatible with small-x resummation,
- effect compatible with saturation (recombination).

Conclusions:

- need for a fully resummed PDF fit,
- with current PDFs still impossible to disentangle resummation from saturation,
- very small impact on the LHC phenomenology.

33 / 44

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- NNPDF Method: Monte Carlo ensemble + Neural Network parametrization.
 - * Statistical property of PDFs reproduced using standard statistical methods.
 - * Very flexible functional form able to avoid parametrization bias.
- The NNPDF2.1 analysis:
 - * Enlarged data set: F_2^c data from HERA added.
 - * Inclusion of heavy quark mass effects (FONLL)
 - * NuTeV anomaly sorted out.
 - * Precise determination of α_s .
- NLO DGLAP Studies:
 - * Evidence for deviation from NLO DGLAP evolution at small-x and Q^2 ,
 - * Resummation or saturation effects? Hard to disentagle at the moment.
 - * Very small effect on the LHC phenomenology.
- The NNPDF2.1 at NNLO: upcoming.

Part VI

Backup Slides

æ

◆□> ◆圖> ◆臣> ◆臣>

- Simple functional forms $q(x) = Ax^b(1-x)^c P(x)$ (CT, MSTW, ABKM, HERAPDF) \rightarrow systematic underestimation of uncertainties
- Artificial Neural Networks as universal interpolants (NNPDF)
 → avoid theoretical bias from choice of PDF functional form

イロン イ団 と イヨン イヨン

- We use Neural Networks as functions to represent PDFs at the starting scale.
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds:

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right), \qquad g(x) = \frac{1}{1 + e^{-x}}$$

For instance, a (1-2-1) NN is:

$$\xi_{1}^{(3)} = \frac{1}{\substack{\theta_{1}^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{1}} - \frac{\omega_{11}^{(2)}}{1 + e^{2}} - \frac{\omega_{11}^{(2)}}{1 + e^{2}} - \frac{\omega_{12}^{(2)}}{1 + e^{2}}}}$$

• They provide a parametrization which is redundant and robust against variations.

・ロン ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

3477 data points For comparison MSTW08 includes 2699 data points

OBS	Data sets
F_2^p	NMC,SLAC,BDCMS
F_2^d	SLAC, BCDMS
F_2^d / F_2^p	NMC-pd
σNC	HERA-I AV, ZEUS-H2
σcc	HERA-I AV, ZEUS-H2
F ₁	H1
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS
dimuon prod.	NuTeV
$d\sigma^{ m DY}/dM^2dy$	E605
$d\sigma^{DY}/dM^2dx_F$	E886
W asymmetry	CDF
Z rap. distr.	CDF,D0
incl. $\sigma^{(jet)}$	D0(cone) Run II
incl. $\sigma^{(jet)}$	$CDF(k_T)$ Run II

- Kinematical cuts on DIS data $Q^2 > 2 \text{ GeV}^2$ $W^2 = Q^2(1-x)/x > 12.5 \text{ GeV}^2$
- No cuts on hadronic data

(a)

- Improved treatment of normalizations (t₀ method)[arXiv:0912.2276]
- FastKernel (exact NLO analysis)

- Differences between NNPDF2.1 and NNPDF2.0 enhanced at hight energy:
 - W^{\pm} and Z predictions at or just above 1- σ ,
 - $t\overline{t}$ and Higgs predictions stay unchanged.
- Comparison of NNPDF2.1 with MSTW08 and CT10 is similar as before but:

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ < ∃ →</p>

- slightly better agreement for the Higgs,
- slightly worse agreement for $t\overline{t}$.

*All observables computed at NLO QCD using MCFM.

...too large uncertainty, dominated by the luminosity uncertaity (O(11%)): they cannot yet provide any constraint on PDFs

æ

イロト イヨト イヨト イヨト

Reweighting How it Works

Reference: R. D. Ball et al., [arXiv:1012.0836]

- The *N* replicas of a NNPDF fit give the probability density in the space of PDFs.
- Expectation values for observables are Monte Carlo integrals:

$$\langle \mathcal{O}[f] \rangle = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[f_k]$$

(... the same is true for errors, correlations, etc.)

- We can assess the impact of including a new dataset {y₁,..., y_n} in the fit, updating the probability density distribution and without refitting.
- According to Bayes Theorem we have:

$$\langle \mathcal{O}[f] \rangle_{new} = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k]$$

with:

$$w_k \propto \left(\chi_k^2\right)^{n/2-1} e^{-\chi_k^2/2}, \quad \sum_k w_k = 1, \quad \chi_k^2 = \sum_{i,j=1}^n (y_i - y_i[f_k]) \sigma_{ij}^{-1}(y_j - y_j[f_k])$$

- In the NNPDF2.0 fit we only included CDF W asymmetry data
- We evaluated W electron asymmetry with NNPDF20 1000 replicas set
- ... and included D0 W electron asymmetry data points through reweighting.
- Main impact on reduction of middle-*x* Valence uncertainty.
- No need of refitting

Analisys of $\langle d^2 \rangle$ in different kinematic slices:

- Data and theory increasingly diverge as one moves towards small-x and Q².
- Deviation already present when all data are fitted, but significantly stronger when the cut is applied.

The "safe" region: No effects for $Q^2\gtrsim 10-15~{\rm GeV^2}$

(a)

Evidence for Deviations from NLO DGLAP Evolution

Impact on the LHC Phenomenology

Should we worry fo the LHC phenomenology? Not Yet!

イロト イ団ト イヨト イヨト