

DETERMINING THE CHARM PDF

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

HF PRODUCTION AT THE LHC

DURHAM, APRIL 20, 2016

CHARM IN CURRENT PDF SETS

DYNAMICALLY GENERATED BY RADIATION FROM LIGHT QUARKS AND GLUONS

QUESTIONS

- DOES CHARM REALLY VANISH BELOW ITS PRODUCTION THRESHOLD?
- WHAT IS THE VALUE OF THE PRODUCTION THRESHOLD SCALE?
- DOES THIS VALUE IT DEPEND ON THE PERTURBATIVE ORDER (IN PRACTICE, IF NOT IN PRINCIPLE?)

ANSWER: DETERMINE THE CHARM PDF

- THEORY: FONLL WITH A CHARM PDF
 - THE FONLL SCHEME
 - FONLL with a charm PDF to $O(\alpha_s)$
 - $-\,$ higher orders and ACOT
- PHENOMENOLOGY: DETERMINING THE CHARM PDF
 - THE CHARM $\ensuremath{\text{PDF}}$ and its stability
 - "INTRINSIC" AND "PERTURBATIVE" CHARM
 - IMPACT ON THE OTHER PDFS
- PHENOMENOLOGY: CHARM AT THE LHC
 - FITTING THE CHARM MASS
 - $-\,$ Charm production at the LHC
 - IMPACT ON LHC STANDARD CANDLES

THEORY

THE FONLL METHOD

(Cacciari, Greco, Nason, 1998; DIS: sf, Laenen, Nason, Rojo, 2010; fitted HQ: Ball, Bertone, Bonvini, sf, Groth-Merrild, Rojo, Rottoli, 2016)

BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) \Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITH THEIR MASSIVE COUNTERPARTS

$$F(x,Q^{2}) = F^{(3)}(x,Q^{2}) + F^{(4)}(x,Q^{2}) - F^{(3,0)}(x,Q^{2})$$

$$F^{(3)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{m_h^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y,Q^2)$$

$$F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},h,\bar{h}} C_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)$$

ADVANTAGES

- RELIES ON STANDARD FACTORIZATION & DECOUPLING
- THE RESUMMED AND UNRESUMMED ORDERS CAN BE CHOSEN FREELY & INDEPENDENTLY

COMPLICATIONS

- RESUMMED & FIXED-ORDER CALCULATION ARE PERFORMED IN DIFFERENT RENORMALIZATION & FACTORIZATION SCHEMES: 3F (MASSIVE, DECOUPLING) VS. 4F (MASSLESS)
- MUST MATCH α_s & PDFs

SOLUTION

RE-EXPRESS 3F-SCHEME PDFs & α_s in terms of the 4F-scheme ones

MATCHING CONDITIONS

$$\alpha_s^{(4)}(m_h^2) = \alpha_s^{(3)}(m_h^2) + \mathcal{O}(\alpha_s^3) ,$$

$$f_i^{(4)}(m_h^2) = \sum_j K_{ij}(m_h^2) \otimes f_j^{(3)}(m_h^2) , \qquad i, j = q, \bar{q}, g, h, \bar{h}$$

- MATCHING CAN BE DONE AT ANY SCALE, RESULTS SHOULD NOT DEPEND ON IT
- GIVEN K_{ij} at one scale, results at any scale can be obtained by DGLAP+RGE ON LHS & RHS
- $K_{ij}^{(0)} = \delta_{ij}$, RECEIVE CORRECTIONS AT HIGHER ORDERS:
 - $-i = j \neq h \Rightarrow$ different normalization of operators due to # of quarks IN LOOPS, STARTS AT $O(\alpha_s^2)$
 - $-i = j = h \Rightarrow$ different normalization of operators due to on-shell vs $\overline{\mathrm{MS}}$ SUBTRACTION, STARTS AT $O(\alpha_s)$
 - $-i \neq j$ OPERATOR MIXING
- MAIN DIFFERENCE:
 - DYNAMICAL CHARM:

$$* f_h^{(3)} = ($$

- * $i = h \Rightarrow$ Heavy flavor PDF in terms of light flavor ones * $i, j \neq h$ invert & express 3FS PDFs in terms of 4FS
- FITTED CHARM:
 - * $f_h^{(3)} \neq 0$, SCALE INDEPENDENT
 - * INVERT & EXPRESS 3FS PDFS IN TERMS OF 4FS FOR ALL i, j (INCL. HQ)

INCLUDING A CHARM PDF to $O(\alpha_s)$ (FONLL-A)

- 4FS: ONLY THE BOUNDARY CONDITION CHANGES
- **3FS: EXTRA CONTRIBUTION:** $\Delta F_h(x, Q^2) = \sum_{i=h, \bar{h}} \left[C_i^{(3)} \left(\frac{Q^2}{m_h^2}, \alpha_s^{(3)}(Q^2) \right) - C_i^{(3,0)} \left(\frac{Q^2}{m_h^2}, \alpha_s^{(3)}(Q^2) \right) \right] \otimes f_i^{(3)};$ LO NOW $O(\alpha_s^0) \Rightarrow$ SUBLEADING TERMS PROMOTED TO LEADING

THE CHARM PDF: 3FS VS 4FS

- IN THE **3FS**, THE CHARM PDF DOES NOT EVOLVE
- $\bullet\,$ when expressing 3FS in terms of 4FS, scale dependence is expanded & subtracted to finite perturbative order

$$f_{h}^{(3)} = f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2}) \left(K_{hh}^{(1)}(m_{h}^{2}) + P_{qq}^{(0)}L \right) \otimes f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2}) L P_{qg}^{(0)} \otimes g^{(4)}(Q^{2}) + \mathcal{O}(\alpha_{s}^{2}) = 0$$

THE HEAVY STRUCTURE FUNCTION to $O(\alpha_s)$ (Fonll-A)

$$\begin{split} F_h(x,Q^2) &= \sum_{i=h,\,\bar{h}} \left\{ C_i^{(3),\,0} \left(\frac{Q^2}{m_h^2} \right) \right. \\ &+ \alpha_s^{(4)}(Q^2) \left[C_i^{(3),\,1} \left(\frac{Q^2}{m_h^2} \right) - C_i^{(3),\,0} \left(\frac{Q^2}{m_h^2} \right) \otimes \left(K_{hh}^{(1)}(m_h^2) + P_{qq}^{(0)}L \right) \right] \right\} \otimes f_i^{(4)}(Q^2) \\ &+ \alpha_s^{(4)}(Q^2) \left[C_g^{(3),\,1} \left(\frac{Q^2}{m_h^2} \right) - \sum_{i=h,\bar{h}} C_i^{(3),\,0} \left(\frac{Q^2}{m_h^2} \right) \otimes P_{qg}^{(0)}L \right] \otimes f_g^{(4)}(Q^2) + \mathcal{O}(\alpha_s^2) \end{split}$$

- COMBINE 4FS PDFs ($f_i^{(4)}$) WITH 3FS COEFFICIENT FUNCTIONS ($C_i^{(3)}$) WITH COLLINEAR LOGS SUBTRACTED \Rightarrow ACOT
- DIFFERS FROM EXPRESSION IN (SF, LAENEN, NASON ROJO, 2010) BY TERMS WHICH BECOME SUBLEADING WHEN CHARM IS DYNAMICAL \Rightarrow S-ACOT
- NOTE NOW FONLL-A INCLUDES 3FS UP TO NLO

THE HEAVY STRUCTURE FUNCTION TO ALL ORDERS

(Ball, Bonvini, Rottoli, 2015)

$$F(x,Q^{2}) = \sum_{i,j=g,q,\bar{q},h,\bar{h}} \left[C_{i}^{(3)} \left(\frac{Q^{2}}{m_{h}^{2}} \right) - C_{i}^{(3,0)} \left(\frac{Q^{2}}{m_{h}^{2}} \right) \right] \otimes K_{ij}^{-1}(Q^{2}) \otimes f_{j}^{(4)}(Q^{2}) + \sum_{i,j=g,q,\bar{q},h,\bar{h}} C_{i}^{(4)} \otimes f_{i}^{(4)}(Q^{2}) = \sum_{i,j=g,q,\bar{q},h,\bar{h}} C_{i}^{(3)} \left(\frac{Q^{2}}{m_{h}^{2}} \right) \otimes K_{ij}^{-1}(Q^{2}) \otimes f_{j}^{(4)}(Q^{2})$$

$$(1)$$

- SIMPLE ALL-ORDER STRUCTURE: [3FS (MASSIVE) C.F.] \otimes [INVERSE MATCHING] (DIVIDES OUT COLLN. LOGS) \otimes [4FS PDFs]
- THE SUBLEADING "DIFFERENCE" TERM $F^{(d)}(x,Q^2) = F^{(4)}(x,Q^2) F^{(3,0)}(x,Q^2)$ VANISHES; ONLY SUBLEADING TERMS FROM INTERFERENCE OF MASSIVE C.F. WITH H.O. MASSLESS EVOLUTION

PHENOMENOLOGY

THE NNPDF3IC PDF DETERMINATION

The NNPDF collaboration: Ball, Bertone, Bonvini, Carrazza, sf, Guffanti, Hartland, Rojo, Rottoli

- DATASET: SAME AS NNPDF3.0 (BUT WITH COMBINED INSTEAD OF SEPARATE HERA-II), SUPPLEMENTED BY EMC F_2^c DATA (1983,1987)
- STANDARD NNPDF3 METHODOLOGY, WITH ONE EXTRA PDF: $c = \bar{c}$, PARM. AS ALL OTHER PDFS (NEURAL NET, 37 FREE PARAMETERS)
- FITS PERFORMED WITH $\overline{\text{MS}}$ MASS $m_c = 1.15, 1.275, 1.4 \text{ GeV}$ (PDG $\pm 5\sigma$); & WITH POLE MASS $m_c = 1.33, 1.47, 1.61 \text{ GeV}$ (ONE-LOOP CONVERSION); ALSO POLE $m_c = 1.275 \text{ GeV}$ (CROSS-CHECK)
- FONLL-B, BOTH WITH DYNAMICAL AND FITTED CHARM (DEGRADES TO FONLL-A FOR FITTED CHARM)

FIT QUALITY

NNPDF3 NLO $m_c = 1.47$ GeV (pole mass)			
EXPERIMENT	$N_{\rm dat}$	$\chi^2/N_{ m dat}$	$\chi^2/N_{ m dat}$
		FITTED CHARM	DYNAMICAL CHARM
NMC	325	1.36	1.34
SLAC	67	1.21	1.32
BCDMS	581	1.28	1.29
CHORUS	832	1.07	1.11
NUTEV	76	0.62	0.62
EMC	16	1.09	- (32)
HERA INCLUSIVE	1145	1.17	1.19
HERA F_2^c	47	1.14	1.09
DY E605	104	0.82	0.84
DY E866	85	1.04	1.13
CDF	105	1.07	1.07
DO	28	0.64	0.61
ATLAS	193	1.44	1.41
CMS	253	1.10	1.08
LHCB	19	0.87	0.83
$\sigma(tar{t})$	6	0.96	0.99
TOTAL	3866	1.159	1.176

- WITHOUT FITTED CHARM EMC DATA CANNOT BE FITTED ($\chi^2/dof = 32$); EXCLUDED FROM FINAL FIT
- FIT QUALITY SOMEWHAT BETTER WITH DYNAMICAL CHARM

- DYNAMICAL: DEPENDS SIGNIFICANTLY ON THE MASS WHICH SETS THE PHYSICAL THRESHOLD; DEPENDENCE SEEN BOTH AT LOW AND HIGH SCALE;
- FITTED: EXTREMELY STABLE AT ALL SCALES STRUCTURE APPEARS AT LARGE x

- DYNAMICAL CHARM: LIGHT QUARKS DEPEND (WEAKLY) ON THE MASS WHICH SETS THE PHYSICAL THRESHOLD FOR CHARM, BOTH AT LOW AND HIGH SCALE;
- FITTED CHARM: LIGHT QUARKS BECOME INDEPENDENT OF CHARM MASS AT ALL SCALES
- GLUON LARGELY INSENSITIVE TO CHARM MASS IN ALL CASES

THE CHARM PDF: DYNAMICAL?

SCALE DEPENDENCE

BACKWARD EVOLUTION IN THE 4FS

- LARGE x BUMP: ESSENTIALLY SCALE-INDEPENDENT: "INTRINSIC", ONE- σ SIGNIFICANCE
- SMALL x RISE: GOES AWAY AT LOW SCALE, CHARM VANISHES FOR $Q \sim 1.6$ GeV (INDEPENDENT OF VALUE OF m_c): "DYNAMICAL" FOR ALL $x \leq 0.3$
- AT THE MATCHING SCALE, **3FS PDF REMAINS SCALE-INDEPENDENT** \Rightarrow VANISHING (DYNAMICAL) AT LOW x, POSITIVE BUMP (INTRINSIC) AT LARGE x

THE CHARM PDF: INTRINSIC?

IMPACT OF THE EMC DATA

- UNCERTAINTIES LARGER W/O EMC, BUT QUALITATIVE BEHAVIOUR UNCHANGED
- EMC data should be taken with care, 10% systematics unaccounted for: yet but impact is qualitative: χ^2 down from ~ 30 to ~ 1
- WAITING FOR MORE INFORMATION FROM THE LHC

THE CHARM MOMENTUM FRACTION

SCALE DEPENDENCE

10²

Q (GeV)

10

10³

THE CHARM PDF:

COMPARING TO MODELS

- CT14 PDFs (Dulat, Hou, Gao, Huston, Pumplin, Schmidt, Stump, Yuan, 2013): TWO MODELS "BRODSKY" AND "SEA",
- FOR EACH TWO DIFFERENT NORMALIZATIONS (MOMENTUM FRACTIONS):
 0.57% (BHPS1, SEA1); 1.5% (SEA2); 2% (BHPS2)
- AT LOW SCALE, ALL EXCEED OUR FIT FOR LOW $x \lesssim 0.3$
- AT HIGH SCALE, PERTURBATIVE EVOLUTION TAKES OVER AT SMALL \boldsymbol{x}
- AT LARGE x OUR BEST FIT PEAKS AT LARGER x

$\overline{\mathrm{MS}}$ vs. POLE MASSES:

DOES IT MAKE A DIFFERENCE?

NNPDF3 NLO, Fitted Charm, Q=1.7 GeV

- GOOD CONSISTENCY BETWEEN $\overline{\mathrm{MS}}$ & pole mass fits with one-LOOP CONVERSION
- FIT QUALITY SOMEWHAT BETTER IN lacksquarePOLE SCHEME

THE IMPACT OF LHC DATA I

ASSOCIATE Zc production

- HIGH SENSITIVITY IN LARGE RAPIDITY REGION
- CAN DISCRIMINATE BETWEEN MODELS & CURRENT FIT

THE IMPACT OF LHC DATA II

CHARM PAIR PRODUCTION

- GLUON CHANNEL DOMINATES AT CENTRAL RAPIDITY & LOW $p_T \Rightarrow NO$ DISCRIMINATION
- LARGE RAPIDITY, $p_t \Rightarrow$ CAN DISCRIMINATE

THE IMPACT OF CHARM ON LHC PHENOMENOLOGY

STANDARD CANDLES

- CONSIDERABLE STABILITY OF STANDARD CANDLES: DEPENDENCE ON m_c MUCH SMALLER THAN PDF UNCERTAINTY
- GENERALLY GREATER STABILITY WITH FITTED CHARM
- NO DIFFERENCE IN GLUON-DOMINATED CHANNELS (ALWAYS VERY STABLE)

OUTLOOK

QUESTIONS AND ANSWERS

3FS vs 4FS & charm used for definiteness, apply also to 4FS vs 5FS & bottom

- Q: WHY DOES ONE HAVE TO USE 3F PDFS WITH 3F MES? A: BECAUSE THEY CORRESPOND TO DIFFERENT FACTORIZATION & RENORMALIZATION SCHEMES
- Q: HOW BAD IS IT IF ONE USES 3FS ME WITH 4FS PDFS? A: THE DGLAP LOGS IN THE HQ PDF ARE DOUBLE-COUNTED, RESULT IS OTHERWISE AS IN FONLL/ACOT
- Q: IS THERE A STRONG DEPENDENCE ON THE HQ MASS? A: MOST OF THE DEPENDENCE THROUGH EVOLUTION, REABSORBED IN INITIAL PDF

THE VANISHING SCALE:

POSITIVITY

FITTED VS Q, x = 0.01

DYNAMICAL VS Q, x = 0.01

- DYNAMICAL: VANISHING SCALE DEPENDS STRONGLY ON m_c
- FITTED: VANISHING SCALE ESSENTIALLY INDEPENDENT OF m_c
- "'POSITIVITY" PROBLEM OF DYNAMICAL CHARM \Rightarrow SOLVED FOR FITTED CHARM