NNPDF3.0 parton distributions for the LHC run II

Christopher S. Deans *University of Edinburgh*

On behalf of the NNPDF collaboration:

R. D. Ball, V. Bertone, S. Carrazza, CD, L. Del Debbio, S. Forte, A. Guffanti,

N. P. Hartland, J. I. Latorre, J. Rojo, M. Ubiali

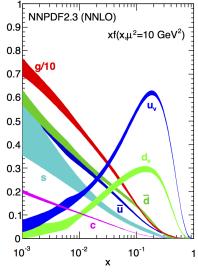
QCD 14, Montpellier 30 June, 2014

OUTLINE

Introduction

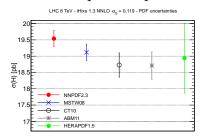
Parton Distribution Functions NNPDF Approach Current PDFs

NNPDF3.0

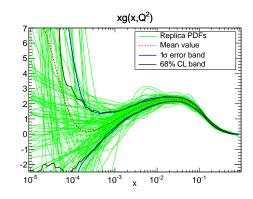

New Data Methodology

CLOSURE TESTS
Implementation
Results

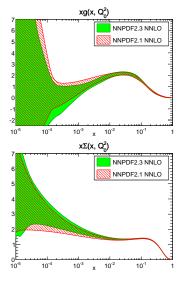
PRELIMINARY RESULTS
Parton Distributions


Conclusions

PARTON DISTRIBUTION FUNCTIONS

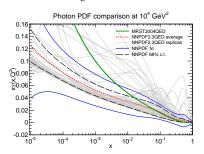

Plot from PDG2013 update

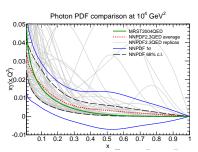
- ► PDF characterize parton content of the proton
- ► Important input into calculations of LHC observables
- ► PDFs are fit from data, and LHC input is important



NNPDF APPROACH

- ► Global Fit, determined using a wide range of observables (DIS, Drell-Yan, Inclusive jets...)
- Monte Carlo Replica PDFs provide uncertainties
- Neural Networks used as unbiased interpolaters
- ► **Genetic Algorthm** to efficiently obtain best fit PDFs


CURRENT PDFS - NNPDF2.3 [ARXIV:1207.1303]



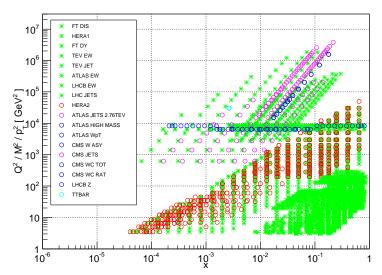
- ► First public PDF set use LHC data in the determination
- ► Includes all relevant LHC sets available with full correlations (at the time)
 - ATLAS W and Z lepton rapidity
 - ► ATLAS 7 TeV inclusive jets
 - ► CMS W electron asymmetry
 - ► LHCb W rapidity
- ► Default PDF set in Madgraph5_aMC@NLO, Pythia 8, used in new Monash 2013 tune
- ► Available in LHAPDF5.9 and 6.0

CURRENT PDFS - NNPDF2.3QED [ARXIV:1308.0598]

- ► PDF set based on NNPDF2.3 with QED corrections and addition of photon PDF with uncertainty
- ► Photon-induced LHC processes included via reweighting
 - ▶ LHCb low-mass Z/γ *
 - ► ATLAS inclusive *W* and *Z* production
 - ► ATLAS high-mass Z/γ *
- ▶ Both sets are available on LHAPDF at NLO and NNLO with α_S variations

NNPDF3.0

New PDF set, due for release this summer


- ► 1000 new datapoints from HERA-II and LHC, for a total of 4000 datapoints
- ► Completely rewritten C++ code, with improved structure
- Extensively upgraded fitting methodology, refined and validated using closure tests
- ► Improved cross-validation to control overfitting
- ► Extended set of positivity constraints

NNPDF3.0 – NEW DATA

- ► HERA-II
 - ► H1 high *Q*² NC and CC data [JHEP 1209 (2012) 061]
 - ► H1 low Q², high y NC data [Eur.Phys.J. C71 (2011) 1579]
 - ➤ ZEUS NC and CC positron beam data [Phys.Rev. D87 (2013) 5, 052014] [Eur.Phys.J. C70 (2010) 945-963]
 - ► HERA combined charm production [Eur.Phys.J. C73 (2013) 2311]
- ► ATLAS
 - ► Inclusive jets $\sqrt{s} = 2.76$ TeV (correlated with ATLAS 7 TeV jets) [Eur.Phys.J. C73 (2013) 2509]
 - ► High Mass Drell-Yan [Eur.Phys.J. C70 (2010) 945-963]
- ► CMS
 - ► Inclusive jets $\sqrt{s} = 7 \text{ TeV}$ [Phys.Rev. D87 (2013) 11, 112002]
 - ► Double differential Drell-Yan [JHEP 1312 (2013) 030]
 - ► Muon charge asymmetry [arXiv:1312.6283]
 - ► W+ charm [JHEP 1402 (2014) 013]
- ► LHCb
 - ► Large rapidity $Z \rightarrow ee$ [JHEP 1302 (2013) 106]
- ► $t\bar{t}$ total σ from ATLAS and CMS 7 TeV & 8 TeV

NNPDF3.0 DATA

NNPDF3.0 NLO dataset

NEW THEORY

Progress in theory are an important part of reducing PDF uncertainties.

NNPDF3.0 makes use of several recent improvements:

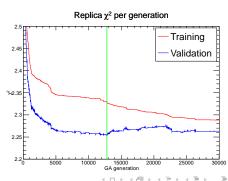
- ► Full NNLO top quark production cross section, differential distribution coming soon. [Czakon, Fiedler, Mitov, Phys.Rev.Lett. 110 (2013) 25, 252004]
- ► NNLO inclusive jet production in the *gg* channel. [Gehrmann-De Ridder, Gehrmann, Glover, Pires, Phys.Rev.Lett. 110 (2013) 16, 162003], which we use to determine valid region for approximate NNLO.
- ► QED and EW corrections provided by FEWZ3.1

NNLO and EW corrections are included in NNPDF3.0 dataset via c-factors

NNPDF3.0 METHODOLOGY

Major upgrade

- ► Streamlined Genetic Algorithm Several obsolete features removed
- ► **Nodal Mutations** Exploit structure of neural networks in genetic algorithm
- Larger number of mutants Explore a larger region of parameter space
- Optimized Fits are significantly faster despite larger dataset
- ► Extended positivity New positivity constraints to ensure positive definite cross-sections


UPDATED CROSS-VALIDATION

Neural network are very flexible – need to control overfitting In NNPDF3.0 this is done using updated Cross-Validation strategy

- ► Split data into two sets: training and validation
- ► Train networks only on training set, but record validation χ^2
- At the end of the fit, rewind to the point with the lowest validation χ^2

This 'optimal' point has the best quality of fit to unseen data

Overfitting is prevented

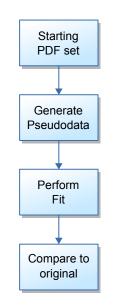
CLOSURE TESTS

Key Question: How do we know whether our methodology works? Or how close is our fit to the 'true' value?

Closure Tests can provide an answer: fit pseudo-data generated using known theory.

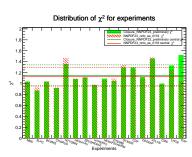
Advantages:

- Can compare result of fit directly to (artificial) underlying law
- ► Clean environment to test different fitting methodologies
- ► Possible to investigate overfitting

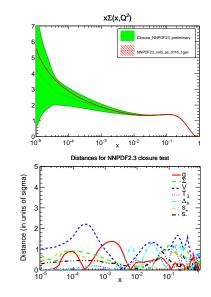

CLOSURE TESTS – IMPLEMENTATION

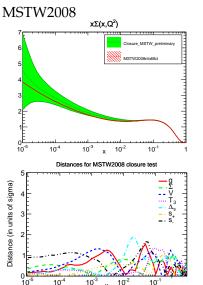
Closure test process:

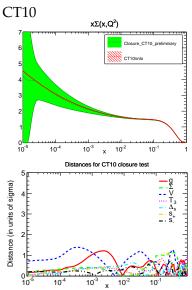
PDFs


INTRODUCTION

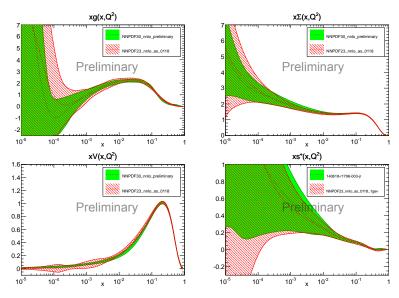
- ► Generate observables using theory and PDF set
 - Makes use of existing tools for observables used in fits (FastKernel tables)
 - ► Can use any PDF set as long as it has an LHgrid
- ► Add statistical noise using experimental uncertainties and replace data values
 - ► Generates perfectly consistent data
 - Also possible create data without noise or to intentionally add inconsistencies
- ► Fit with standard methodology
 - Runs on same code as fit to experimental data
 - Closure test are a good testing ground for methodological improvements
- Compare fit PDFs to original PDF set
 - Since underlying law is know can directly compare how close fit PDFs are
 - close fit PDFs are Can also look at overfitting: smaller χ^2 but further away




CLOSURE TEST RESULTS: NNPDF2.3



- ► Closure test fit to NNPDF2.3 pseudo-data.
- χ^2 of 1.053 compared with 1.058 for NNPDF2.3 itself
- Distances (see right) compatible with PDF uncertainties



CLOSURE TEST RESULTS: OTHER SETS

Preliminary NNPDF3.0 Results

CONCLUSIONS

- ► Current NNPDF releases:
 - ► NNPDF2.3: First public set with LHC data
 - ► NNPDF2.3QED: Determination with QED corrections and photon pdf with uncertainties
 - ► All of our fits are available on LHAPDF and on our webpage nnpdf.hepforge.org
- ► New pdf set, NNPDF3.0
 - ► New data from LHC, HERAII
 - Closure test demonstrate success of updated methodology
 - ► Available soon, followed by NNPDF3.0QED
- ► Additional work within NNPDF collaboration:
 - ► Intrinsic charm
 - ▶ Polarized NNPDFs, see arXiv:1303.7236

