FLORENCE, APRIL 19, 2010

Istituto Nazionale di Fisica Nucleare

INFN

UNIVERSITÀ DI MILANO & INFN STEFANO FORTE

FIRST LHC MEASUREMENTS

10 L

FROM DIS

	PROLOGUE: THE DI	ISCOVERY OF THE W
	LAST TIME WE LOOKED FOR	"NEW" PHYSICS AT A HADRON
	COLI	LIDER
		AND EXPERIMENTAL DISCOVERY
	INDUKE IICAL FREDICIIUN	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
42	G. Altareli et al. / Vector boson production $T_{ABLE 2}$ Values (in nb) of the total cross sections for W [±] and Z ⁰ production	15-8-275 高工研図書室 11 July 1985
√ <u>S</u> (Ge		W PRODUCTION PROPERTIES AT THE CERN SPS COLLIDER
540 540 1000 1300 1600	40 4.2 4.3 4.1 1.3 1.3 1.2 3.1 3.4 3.5 00 6.2 6.3 6.1 2.0 1.9 1.8 3.1 3.4 3.5 00 6.2 6.3 6.1 2.0 1.9 1.8 3.1 3.3 3.4 00 1.5 9.5 9.6 3.1 3.0 2.9 3.1 3.2 3.3 00 1.55 1.29 4.0 3.9 3.1 3.2 3.3 00 1.55 1.29 4.8 5.0 3.1 3.2 3.3 00 1.55 1.56 16.5 5.0 4.8 5.0 3.1 3.2 3.3	UAI Collaboration, CERN, Geneva, Switzerland Aachen ¹ - Amsterdam (NIKHEF) ² - Annecy (LAPP) ³ - Birmingham ⁴ - CERN ⁵ - Harvard ⁶ - Helsinki ⁷ - Kiel ⁸ - London (Imperial College ⁹ and Queen Mary College ¹⁰ - Padua ¹¹ - Paris (Coll. de France) ¹² - Riverside ¹³ - Rome ¹⁴ - Rutherford Appleton Lab. ¹⁵ -
		Saclay (CEN) ¹⁶ -Victoria ¹⁷ -Vienna ¹⁸ -Wisconsin ¹⁹ Collaboration The corresponding experimental result for the 1984 data at $\sqrt{s} = 630$ GeV is
	ALTARELLI, ELLIS, GRECO, MARTINELLI, 1984	$(\sigma \cdot B)_W = 0.63 \pm 0.05 (\pm 0.09) nb.$
		This is in agreement with the theoretical expectation [14] of 0.47 ± 0.06 nb. We note that the 15%
• A	AGREEMENT AND UNCERTAINTIES AT 20	0% CONSIDERED TO BE SATISFACTORY
Ľ ●	RESULTS FROM DIFFERENT PDF SETS	DIFFER BY AT LEAST 5%
•	NO WAY TO ESTIMATE PDF UNCERTAIN	VINES

- DIS AT NMC AND HERA 1995-2005 \Rightarrow guantitative QCD: Precision Physics
- Hadron colliders circa $2010 \Rightarrow$ precision $QCD \leftrightarrow$ New Physics

SUMMARY

- PDFS: THE STATE OF THE ART
- PDF determination
- the origin of PDF uncertainties
- standard candles now
- PERTURBATIVE CORRECTIONS
- the problem of heavy quarks
- beyond NLO: problems and tools
- the value of α_s
- RESUMMATION
- soft gluons beyond the eikonal: theory and phenomenology
- small x resummation: progress and phenomenological impact
 - beyond fixed order?

APOLOGIES: progress in jet physics not covered & MORE

PDFS

PDFS: THE STATE OF THE ART THE HIGGS CROSS SECTION PDF WITH ERRORS: DO THEY AGREE?

(Djouadi, Ferrag, 2004) CTEQ, MRST (global); Alekhin (DIS) FIRST PDF SETS WITH ERROR (2002 - 2003)

- WIDELY DIFFERENT UNCERTAINTY ESTIMATES
- AGREEMENT WITHIN UNCERTAINTIES UNSATISFACTORY
 - $\Delta \chi^2 = 100$ (CTEQ); 50 (MRST); 1 (ALEKHIN)

- NNPDF2.0: GLOBAL, NLO, VFN WITHOUT HQ MASS, SEVERAL α_s VALUES
- ALEKHIN ABKM: DIS+SOME DY, NLO & NNLO, BMSN (FFN), SINGLE α_s VALUE
- HERAPDF1.0: ONLY HERA DATA, NLO, VFN WITH HQ MASS, SEVERAL α_s VALS.
- SETS BASED ON MODEL ASSUMPTIONS (GRV/GJR, STATISTICAL PDFS,...)

PDF UNCERTAINTIES: HOW ARE THEY DETERMINED?

"estimates of PDF uncertainties follow and ad-hoc recipe defined by the fitters" (C. Hays, (60)

STANDARD $\Delta \chi^2 = 1$ BANDS TOO NARROW \Rightarrow LARGE DISCREPANCIES FOR INDIVIDUAL EXPERIMENTS

PDF UNCERTAINTIES: HOW ARE THEY DETERMINED?

"estimates of PDF uncertainties follow and ad-hoc recipe defined by the fitters" (C. Hays, 09) CTEQ TOLERANCE CRITERION &

- STANDARD $\Delta \chi^2 = 1$ BANDS TOO NARROW \Rightarrow LARGE DISCREPANCIES FOR INDIVIDUAL EXPERIMENTS
- TOLERANCE \Rightarrow ENVELOPE OF UNCERTAINTIES OF EXPERIMENTS

PDF UNCERTAINTIES: HOW ARE THEY DETERMINED? THE MONTE CARLO APPROACH (NNPDF)

OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS BASIC IDEA: MONTE CARLO SAMPLING

- START FROM MONTE CARLO SAMPLING OF DATA SPACE
- EACH PDF↔ NEURAL NETWORK PARAMETRIZED BY 37 PARAMETERS (NNPDF2.0: 37 ⊗ 7 = 259 PARMS) "INFINITE" NITMBED OF PAPAMETEDS → CAN DED-

"INFINITE" NUMBER OF PARAMETERS⇒ CAN REP-RESENT ANY FUNCTION

• FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS **BASIC IDEA: MONTE CARLO SAMPLING**

- CAN DETERMINE BOTH 68C.L.& $1-\sigma$
- START FROM MONTE CARLO SAMPLING OF DATA SPACE
- EACH PDF↔ NEURAL NETWORK PARAMETRIZED BY 37 PARAMETERS (NNPDF2.0: 37 ⊗ 7 = 259 PARMS)
 "INFINITE" NUMBER OF PARAMETERS⇒ CAN REPRESENT ANY FUNCTION
- FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

- IN HESSIAN APPROACH CAN VARY THE FUNCTIONAL FORM, ASSUMPTIONS, STARTING SCALE
- OF STRANGENESS FRACTION, LARGE x BEHAVIOUR, HIGHER VARIATION FIT: DONE IN THE HERAPDF1.0 ORDER POLYNOMIAL TERMS
- NO TOLERANCE ($\Delta \chi^2 = 1$), UNCERTAINTY DOUBLED

ORTHOGONAL POLYNOMIALS

- EXPAND PDFS OVER BASIS OF ORTHOGONAL POLYNOMIALS OLD IDEA (PARISI, SOURLAS, 1978; ZOMER 1996):
- GLAZOV, RADESCU, 2009: COUPLED TO MONTE CARLO METHOD
- LENGTH PENALTY TO STABILIZE THE FIT

PARAMETRIZATION UNCERTAINTIES CROSS-VALIDATION

- REPLICAS ARE FITTED TO A DATA SUBSET
- A DIFFERENT SUBSET OF DATA USE FOR EACH REPLICA
- OPTIMAL FIT WHEN FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING

PARAMETRIZATION UNCERTAINTIES CROSS-VALIDATION

- REPLICAS ARE FITTED TO A DATA SUBSET
- A DIFFERENT SUBSET OF DATA USE FOR EACH REPLICA
- OPTIMAL FIT WHEN FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING
- $\bullet\,$ The best fit is not at the minimum of the χ^2

WHERE IS THE HESSIAN UNCERTAINTY COMING FROM? WHY DOES ONE NEED LARGE TOLERANCES?

30 5

ഗ

N

0

0

6

WHERE IS THE HESSIAN UNCERTAINTY COMING FROM? WHY DOES ONE NEED LARGE TOLERANCES?

DATA INCOMPATIBILITY(Pumplin, 2009)

- CAN "REDIAGONALIZE": DIAGONALIZE SIMULTANEOUSLY χ^2 FOR TOTAL AND i-TH EXPT \Rightarrow COMPATIBILITY OF EACH EXPT WITH GLOBAL FIT
- STUDY DISTRIBUTION OF DISCREPANCIES
- 2 APPROX. GAUSSIAN WITH UNCERTAINTIES RESCALED BY $\Delta \chi^2 \sim 10$ For 90%C.L.

- ONE- σ VARIATION ABOUT FAKE MIN CORRESP. TO LARGE χ^2 VARIATION
- USE OF CHEBYSHEV POLYNOMIALS SUGGESTS "MOST GENERAL" PARM. WITHIN $\Delta\chi^2 = 10$ OF CTEQ6.6 PARM.

↑

WHERE IS THE MONTE CARLO UNCERTAINTY COMING FROM? FIT TO REPLICAS VS RANDOM SUBSET OF CENTRAL VAL.S

- **QUALITY OF FIT &PDFS UNCHANGED**
- REDUCTION OF $\langle \chi^2 \rangle_{
 m rep}$ BY FACTOR $\sim 2 \Rightarrow$ FLUCTUATIONS ABOUT TRUE VALUE HALVED
- UNCERTAINTY ON DATA ONLY REDUCED BY $1.1 \Rightarrow EXPT$. UNCERTAINTIES UNDERESTIMATED OR UNDERLYING INCOMPRESSIBLE UNCERTAINTY

WHERE IS THE MONTE CARLO UNCERTAINTY COMING FROM? CENTRAL VALUES: VARYING PARTITION VS FIXED PARTITION

	REPLICAS	CENTRAL VALUE	FIXED PARTITION
χ^2	1.32	1.32	~ 1.3
$\langle \chi^2 angle_{ m rep}$	2.79 ± 0.24	1.65 ± 0.20	$\sim 1.6\pm 0.2$
$\langle \sigma^{ m dat} angle$	0.039	0.035	~ 0.03
•	• • •	•	

fixed partition results obtained averaging over 5 different choices of partition (100 replicas each); more partitions needed for accurate results

- **QUALITY OF FIT UNCHANGED**
- $\langle \chi^2 \rangle_{\rm rep}$ unchanged \Rightarrow central fit unchanged
- UNCERTAINTY ON PREDICTION (I.E. ON PDFS) REDUCED

FUNCTIONAL UNCERTAINTY

- MORE THAN HALF OF UNCERTAINTY DUE TO "FUNCTIONAL FORM": $\langle \sigma^{dat} \rangle = \sim 0.03$ smaller for HERA data
- REMAINING UNCERTAINTY ROUGHLY SCALES WITH DATA UN-CERTAINTY: $\langle \sigma^{\text{dat}} \rangle = \sim 0.005$ CENT.; $\langle \sigma^{\text{dat}} \rangle = \sim 0.009$ REP.

WHY UNCERTAINTIES ARE IMPORTANT: THE NUTEV ANOMALY...

$$\begin{split} \lambda_{\rm PW} &\equiv \quad \frac{\sigma(\nu\mathcal{N} \to \nu X) - \sigma(\bar{\nu}\mathcal{N} \to \bar{\nu}X)}{\sigma(\nu\mathcal{N} \to \ell X) - \sigma(\bar{\nu}\mathcal{N} \to \bar{\ell}X)} \\ &= \quad \frac{1}{2} - \sin^2 \theta_{\rm W} + \left(\frac{(U^- - D^-) + (C^- - S^-)}{Q^-} \frac{1}{6} \left(3 - 7 \sin^2 \theta_{\rm W} \right) \right) \end{split}$$

- PASCHOS-WOLFENSTEIN RATIO CAN BE MEASURED IN NEUTRINO DIS
- RESULT DEPENDS ON EW MIXING ANGLE, VALENCE ISOSPIN BREAKING (WITH ISOSINGLET TARGET), STRANGENESS VALENCE MOMENTUM ASYMMETRY
- ASSUMED BY NUTEV TO VANISH \Rightarrow THREE σ DISCREPANCY WITH GLOBAL FIT STRANGENESS VALENCE MOMENTUM

WHY UNCERTAINTIES ARE IMPORTANT: THE NUTEV ANOMALY...

$$R_{\rm PW} \equiv \frac{\sigma(\nu \mathcal{N} \to \nu X) - \sigma(\bar{\nu} \mathcal{N} \to \bar{\nu} X)}{\sigma(\nu \mathcal{N} \to \ell X) - \sigma(\bar{\nu} \mathcal{N} \to \bar{\ell} X)}$$
$$= \frac{1}{2} - \sin^2 \theta_{\rm W} + \left(\frac{(U^- - D^-) + (C^- - S^-)}{\mathcal{Q}^-} \frac{1}{6} \left(3 - 7\sin^2 \theta_{\rm W}\right)\right)$$

- PASCHOS-WOLFENSTEIN RATIO CAN BE MEASURED IN NEUTRINO DIS
- RESULT DEPENDS ON EW MIXING ANGLE, VALENCE ISOSPIN BREAKING (WITH ISOSINGLET TARGET), STRANGENESS VALENCE MOMENTUM ASYMMETRY
- ASSUMED BY NUTEV TO VANISH \Rightarrow THREE σ DISCREPANCY WITH GLOBAL FIT STRANGENESS VALENCE MOMENTUM

...IS GONE

- ONCE UNCERTAINTY ON STRANGENESS ASYMMETRY KEPT INTO ACCOUNT (DIS ONLY FIT: NNPDF1.2) THE EFFECT LOSES STATISTICAL SIGNIFICANCE
- IF HADRONIC DATA INCLUDED (NNPDF2.0 GLOBAL FIT), STRANGENESS ASYMMETRY DE-TERMINED QUITE ACCURATELY → CORRECTED RESULT IN IMPRESSIVE AGREEMENT WITH SM GLOBAL FIT

(NNPDF2.0, 2010)

STANDARD CANDLES: WHERE DO WE STAND?

- GLOBAL FITS (MSTW, NNPDF, CTEQ) IN GOOD MUTUAL AGREEMENT (CENTRAL VALUE & UNCERTAINTY
- CHOICE OF α_s VALUE IMPORTANT

PERTURBATIVE CORRECTIONS

HEAVY QUARKS: OLD PROBLEM, OLD SOLUTIONS

- MANY FITS (CTEQ<6, NNPDF, ALEKHIN<09) TREAT CHARM AS MASSLESS ABOVE THRESHOLD \Rightarrow "ZMVFN" SCHEME
- COMBINED MATCHED SCHEMES AVAILABLE SINCE LONG (ACOT94, FONLL98) INCLUDING CHARM MASS ALONG WITH LL RESUMMATION; ALTERNATIVE TR/TR' PROCEDURE IMPLEMENTED SINCE '98 IN MRST

- MANY FITS (CTEQ<6, NNPDF, ALEKHIN<09) TREAT CHARM AS MASSLESS ABOVE THRESHOLD \Rightarrow "ZMVFN" SCHEME
- COMBINED MATCHED SCHEMES AVAILABLE SINCE LONG (ACOT94, FONLL98) INCLUDING CHARM MASS ALONG WITH LL RESUMMATION; ALTERNATIVE TR/TR' PROCEDURE IMPLEMENTED SINCE '98 IN MRST
- WHEN CTEQ IMPLEMENTED ACOT IN 2008, SURPRISING CHANGE CTEQ61 \rightarrow CTEQ6.5 IN σ_W , & AGREEMENT WITH MRST SPOILED (LATER RESTORED) •

HEAVY QUARKS: OLD SOLUTION, NEW PROBLEMS

- IMPACT OF SUBLEADING TERMS SIZABLE CLOSE TO THRESH-OLD
- AS DIFFERENCE BETWEEN DIFFERENT PRESCRIPTIONS (ACOT-LARGE AS DIFFERENCE BETWEEN FFN (NO DGLAP RESUM-MSTW-MATCHING) MATION FOR CHARM) AND ZMVFN (NO CHARM MASS) χ -scaling, FONLL-DAMPING,

NNLO CORRECTIONS

Alekhin, Melnikov, Petriello, 2006

- CURRENT GLOBAL PDF FITS ARE NLO
- MSTW08 NNLO TREATS DIS AT NNLO, JETS AT NLO, DRELL-YAN AT LO+K-FACTORS
- ALEKHIN-SERIES FITS GENUINELY NNLO, BUT ONLY DIS+ TWO FIXED-TARGET DY EXPERIMENTS INCLUDED
- BUT IMPACT NOT NEGLIGIBLE...

WHY NOT INCLUDED?

NNLO CORRECTIONS

Alekhin, Melnikov, Petriello, 2006

- CURRENT GLOBAL PDF FITS ARE NLO
- MSTW08 NNLO TREATS DIS AT NNLO, JETS AT NLO, DRELL-YAN AT LO+K-FACTORS
- ALEKHIN-SERIES FITS GENUINELY NNLO, BUT ONLY DIS+ TWO FIXED-TARGET DY EXPERIMENTS INCLUDED
- BUT IMPACT NOT NEGLIGIBLE...

WHY NOT INCLUDED? CONVOLUTIONS ARE HARD!

BUT IN DIFFERENT REGIONS

EFFECT ON MATRIX ELEMENT COMPARABLE TO EFFECT ON PDFS,

NNLO CORRECTIONS VISIBLY IMPROVE AGREEMENT WITH DATA

Catani, Ferrera, Grazzini, 2010

	GRID	i
LS:	NLO	į
O TOO	DS AT	ĺ
NNLC	METHO	
RDS]	ASED 1	
TOWA	RID-B	
	NAL, IDI	
	Origi	

EXPANSION OF PDFS ON BASES OF POLYNOMIALS (PASCAUD, ZOMER, 2001

- PRECOMPUTE CONVOLUTION WITH BASIS FUNCTIONS
- EXPAND PDF OVER BASIS
- CONVOLUTIONS REDUCED TO LINEAR COM-BINATIONS → MATRIX MULTIPLICATION

(CARLI, SALAM, SIEGERT 2005)

- REPRESENT PDFS ON INTERPOLATED GRID
- BASIS FCTNS \leftrightarrow INTERPOLATING FCTNS
- DO CONVOLUTIONS OVER BASIS FUNCTIONS (IF MONTE CARLO USED, BASIS FCTNS → WEIGHTS FOR MC INTEGRAL)
- GRID CAN BE OPTIMIZED

SOME IMPLEMENTATIONS:

FASTNLO: FAST INTERFACE FOR JET CROSS SEC-TIONS (Kluge, Rabbertz, Wobisch 2006)

GRID-BASED METHODS AT NLO THE GRID IDEA TOWARDS NNLO TOOLS: **ORIGINAL IDEA**

EXPANSION OF PDFS ON BASES OF POLYNOMIALS (PASCAUD, ZOMER, 2001

- PRECOMPUTE CONVOLUTION WITH BASIS FUNCTIONS
- EXPAND PDF OVER BASIS
- CONVOLUTIONS REDUCED TO LINEAR COM-BINATIONS \rightarrow MATRIX MULTIPLICATION

THE GRID IDEA (CARLI, SALAM, SIEGERT 2005)

- REPRESENT PDFS ON INTERPOLATED GRID
- BASIS FCTNS \leftrightarrow INTERPOLATING FCTNS
- DO CONVOLUTIONS OVER BASIS FUNCTIONS (IF MONTE CARLO USED, BASIS FCTNS → WEIGHTS FOR MC INTEGRAL)
- GRID CAN BE OPTIMIZED

SOME IMPLEMENTATIONS:

- FASTNLO: FAST INTERFACE FOR JET CROSS SEC-TIONS (Kluge, Rabbertz, Wobisch 2006)
- FASTKERNEL: GRID METHOD INTERFACED TO N-SPACE COMPUTATION OF GLAP GREEN FUNCTIONS, INTERFACED TO FASTNLO FOR JETS AND TO SUIT-ABLE FAST-DY (NNPDF, 2010)

GRID-BASED METHODS AT NLO THE GRID IDEA TOWARDS NNLO TOOLS: **ORIGINAL IDEA**

EXPANSION OF PDFS ON BASES OF POLYNOMIALS (PASCAUD, ZOMER, 2001

- PRECOMPUTE CONVOLUTION WITH BASIS FUNCTIONS
- EXPAND PDF OVER BASIS
- CONVOLUTIONS REDUCED TO LINEAR COM-BINATIONS \rightarrow MATRIX MULTIPLICATION

(CARLI, SALAM, SIEGERT 2005)

- REPRESENT PDFS ON INTERPOLATED GRID
- BASIS FCTNS \leftrightarrow INTERPOLATING FCTNS
- DO CONVOLUTIONS OVER BASIS FUNCTIONS (IF MONTE CARLO USED, BASIS FCTNS → WEIGHTS FOR MC INTEGRAL)
- GRID CAN BE OPTIMIZED

SOME IMPLEMENTATIONS:

- FASTNLO: FAST INTERFACE FOR JET CROSS SEC-TIONS (Kluge, Rabbertz, Wobisch 2006)
- FASTKERNEL: GRID METHOD INTERFACED TO N-SPACE COMPUTATION OF GLAP GREEN FUNCTIONS, INTERFACED TO FASTNLO FOR JETS AND TO SUIT-ABLE FAST-DY (NNPDF, 2010)
- APPLGRID: OPTIMIZED GRID, POTENTIALLY UNIVER-SAL INTERFACE, IMPLEMENTED FOR JETS, W AND Z **PRODUCTION** (Carli et al., 2010)

THE SCANDAL OF α_s :

NEW GLOBAL α_s DETERMINATION BY BETHKE (2009): $\alpha_s = 0.1184 \pm 0.0007$

ADOPTED BY PDG WEB UPDATE (2009)

"older measurements not included because [of]...their large ... uncertainties"

RESUMMATION

SOFT GLUONS

IMPORTANT WHENEVER PARTONIC CM ENERGY REL-NEEDED FOR PERCENT ACCURACY IN ATIVELY CLOSE TO FINAL STATE MASS

SOFT GLUONS

IMPORTANT WHENEVER PARTONIC CM ENERGY REL-NEEDED FOR PERCENT ACCURACY IN HIGGS ATIVELY CLOSE TO FINAL STATE MASS

SOFT GLUONS

NEEDED FOR PERCENT ACCURACY IN HIGGS & TOP ³ IMPORTANT WHENEVER PARTONIC CM ENERGY REL-ATIVELY CLOSE TO FINAL STATE MASS PRODUCTION

 $\begin{array}{l} \text{TOP (Cacciari et al, 2008)}\\ \Delta \sigma_{t\bar{t}}^{NLO}(LHC14) = 11.6\%\\ \Delta \sigma_{t\bar{t}}^{NLO+NLL}(LHC14) = 9.3\% \end{array}$

THE ROLE OF SUBLEADING TERMS

EXAMPLE 1 (OLD): TOP

- SUBLEADING TERMS HELP IN IMPROVING THE RESUMMED-FIXED ORDER MATCHING (CAN CHECK WITH KNOWN FIXED **ORDERS**)
- IF $\mu_R = \mu_F$ VARIED TOGETHER, NLL UNCERTAINTY ON σ_t 9% UNCERTAINTY IF SCALES VARIED INDEPENDENTLY (Cacciari, Frixione, Mangano, Nason, Ridolfi, 1998) 7% WITH MATCHING TERMS (A = 2); 2% W/O MATCHING TERMS (A = 0),

(Bonciani, Catani, Mangano, Nason, 1998)

RMS		$10^{0} \begin{bmatrix} \left[\sigma_{\text{NL}}^{\text{ML}}(\mu, \mathbf{A}) - \sigma^{\text{ML}}(\mu) \right] / \sigma^{\text{ML}}(\mu) \end{bmatrix}$ $10^{-1} \begin{bmatrix} p_{\text{P}} q \\ p_{\text{P}}$	$10^{-3} = \frac{A=2}{10^{-2} - A=0}$ $10^{-3} = \frac{A=2}{10^{-2} - A=0}$ $10^{-4} = \frac{A=2}{10^{-2} - A=0}$, (Bonciani, Catani, Mangano, Nason, 1998)			i 2009) bert, Yang 2009) calculators.html	ED TERMS	arisi, 1980, Eynck, Laenen, .9 <i>pb</i> (5.8%)
THE ROLE OF SUBLEADING TEI	EXAMPLE 1 (OLD): TOP	 SUBLEADING TERMS HELP IN IMPROVING THE RESUMMED- FIXED ORDER MATCHING (CAN CHECK WITH KNOWN FIXED ORDERS) 	• IF $\mu_R = \mu_F$ VARIED TOGETHER, NLL UNCERTAINTY ON σ_t 2% w/o MATCHING TERMS $(A = 0)$, 7% WITH MATCHING TERMS $(A = 2)$;	9% UNCERTAINTY IF SCALES VARIED INDEPENDENTLY (Cacciari, Frixione, Mangano, Nason, Ridolfi, 1998)	EXAMPLE 2 (NEW): HIGGS	$m_H = 120 \ GeV$, LHC 14 TEV, MSTW08NNLO PDFS	$\sigma^{NNLO+NNLL} - \sigma^{NNLO} = 3.4pb$ (G.8%) (de Florian, Grazzin $\sigma^{NNLO+NNLL} - \sigma^{NNLO} = .9pb$ (1.8%) (Ahrens, Becher, Neu RESULT FOR DFG OBTAINED USING http://theory.fi.infn.it/grazzini/ho	• ALMOST ALL THE DIFFERENCE DUE TO POWER SUPPRESSI	• RESUMMATION OF π^2 TERMS DONE BY AHRENS ET AL. (P Magnea, 2003) $\Rightarrow \sigma^{NNLO+NNLL+\pi^2} - \sigma^{NNLO+NNLL} = 2$.

(Ridolfi, S.F. et			(Bonvini, s.f., Ridolfi, prelim)	
OREL SUM)	ITY LARGE			- K
E (E.G. B	JT AMBIGU	on. Collider: pp Subprocess: W-		>
S AVAILABI ING	NNLO, BI	DY rapidity distributi		- - -
SCRIPTION ND MATCH	RABLE TO	or o	алариан (расек) 200 200 200 200 200 200 200 20	0
)THER PRE ENT HO AI	ON COMPA	s: W-	L LO CALLER AND CALLER	2 3 4
REGION; C), DIFFER	ESUMMATI	ibution. Collider: pp Subproces		- 0 >
1006-200	PACT OF R	DY rapidity dist		- Ţ
UN al,	• IM	oro O	Quertine (bb/0ev) Carterine (bb/0ev) Carterine (bb/0ev) Carterine (bb/0ev)	4

EXAMPLE 3 (NEW): DRELL-YAN, W Z

RESUMMED SERIES DIVERGES, PRESCRIPTION NEEDED TO SUM IT

STANDARD (MINIMAL) PRESCRIPTION INVOLVES CANCELLATION WITH CONTRIBUTION FROM

•

Ŋ	
M	
DRELL-YAN,	
(NEW)	
EXAMPLE 3	

- RESUMMED SERIES DIVERGES, PRESCRIPTION NEEDED TO SUM IT
- UNPHYSICAL REGION; OTHER PRESCRIPTIONS AVAILABLE (E.G. BOREL SUM) (Ridolfi, S.F. et STANDARD (MINIMAL) PRESCRIPTION INVOLVES CANCELLATION WITH CONTRIBUTION FROM al, 2006-2009), DIFFERENT HO AND MATCHING
- IMPACT OF RESUMMATION COMPARABLE TO NNLO, BUT AMBIGUITY LARGE DY rapidity distribution. Collider: pp Subprocess: W-

- EXPLORE THE PHENOMENOLOGICAL IMPLICATIONS OF PRESCRIPTIONS, SUBLEADING TERMS, MATCHING
- TEST AND IMPLEMENT SUBLEADING RESUMMATION ASAP
- NEED RESUMMED PDFS!

CAVEAT

6% DIFFERENCE LIKELY DUE TO EW CORRECTIONS (NOT INCLUDED IN ABNY) AT THE PERCENT LEVEL, NOT ONLY QCD CORRECTIONS ARE RELEVANT EXAMPLE: NNLO HIGGS XSECT ($m_H = 120$ GEV, LHC14): $\sigma^{NNLO} = 47.6pb$ (ABNY) OR $\sigma^{NNLO} = 51.1pb$ (DEFG),

SMALL x RESUMMATION WHERE IS IT?	• HERA DATA HAVE TAUGHT US THAT THE EFFECT OF HIGH-ENERGY LOGS IS SMALL	• WE ARE SLOWLY REALIZING THAT THIS MIGHT BE ALWAYS THE CASE	MUELLER-NAVELET JETS	• CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS	AS RAPIDITY GAP GROWS, EXPECT XSECT TO GROW AND AZIMUTHAL CORRELATION TO DECORRELATE DUE TO GLUON RADIATION			$p_1 \begin{pmatrix} & & \\ & & $	$B \xrightarrow{a} \xrightarrow{a} \overbrace{=}^{a} b r0$	$p^2 \uparrow p^2 \uparrow p^2$
---------------------------------------	---	--	----------------------	--	--	--	--	---	--	---------------------------------

SMALL <i>x</i> RESUMMATION WHERE IS IT? • HERA DATA HAVE TAUGHT US THAT THE EFFECT OF HIGH-ENERGY LOGS IS SMALL • WE ARE SLOWLY REALIZING THAT THIS MIGHT BE ALWAYS THE CASE IS SMALL • WE ARE SLOWLY REALIZING THAT THIS MIGHT BE ALWAYS THE CASE • Cassic PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • CLASSIC PROCESS TO SEARCH FOR ENERGY (BFKL) LOGS • DECORRELATE DUE TO GLUON RADIATION • PROCESS COMPUTED RECENTLY TO FULL NLLX • DECORRELATE DUE TO GLUON RADIATION • PROCESS COMPUTED RECENTLY TO FULL NLLX • Colferai, Schwennsen, Szymanowski, Wallon, 2010) • ROCESS COMPUTED RECENTLY TO FULL NLLX • ROCESS COMPUTED RECENTLY TO FULL NLLX <	B B COSS SECTION B P D D D D D D D D D D D D D	DGLAF
--	---	-------

MATCHED CALCULATIONS & WHAT THEY ARE GOOD FOR

- MATCHED NLLQ²+NLLx EVOLUTION EQUATION AVAILABLE SINCE SEVERAL YEARS WITH $n_f=0$ (Ciafaloni, Colferai, Salam, Stasto, 2003; Altarelli, Ball, S.F., 2005)
- FIRST RESUMMED STRUCTURE FUNCTIONS (THORNE, WHITE, 2007)
- GENERAL FORMALISM FOR COEFFICIENT FUNCTION RESUMMATION (Ball 2008)

LCULATIONS	RE GOOD FOR
IATCHED CA	K WHAT THEY A

- MATCHED NLLQ²+NLLx EVOLUTION EQUATION AVAILABLE SINCE SEVERAL YEARS WITH $n_f=0~({
 m Ciafaloni},~{
 m Colferai},~{
 m Salam},~{
 m Stasto},~2003;~{
 m Altarelli},~{
 m Ball},~{
 m S.F.},~2005)$
- FIRST RESUMMED STRUCTURE FUNCTIONS (THORNE, WHITE, 2007)
- GENERAL FORMALISM FOR COEFFICIENT FUNCTION RESUMMATION (Ball 2008)
- \mathbf{K}_{2} NLL RESUMMATION EFFECTS ABOUT SAME SIZE AS NNLO, BUT **OPPOSITE SIGN** IN HERA REGION: NNLO \leftrightarrow MORE SCALE DEP. FULLY CONSISTENT RESUMMED NLL DIS STRUCTURE FUNCTIONS THAN NLO, NLL \leftrightarrow LESS SCALE DEP. THAN NLO (ALTARELLI, BALL, S.F. 2008)
- DY res/NLO & NNLO/LO LL RESUMMATION FOR HIGGS C.F. AT FINITE m_t (Marzani, Ball, ACCURATE APPROXIMATE NNLO HIGGS PRODUCTION (Harlander, Mantler, Marzani, Ozeren, 2010) \rightarrow HIGGS-MEDIATED DIS (Soar, Moch, Vermaseren, Vogt, 2010) Del Duca, s.f., Vicini, 2008)
- NLL RESUMMATION FOR DRELL-YAN (Marzani, Ball, 2009) SIZABLE ENHANCEMENT IN COMPARISON TO NNLO
- NLL RESUMMATION FOR PROMPT PHOTON PRODUCTION (Diana, 2009)

(Marzani, Ball, 2009)

Q/GeV

ATIONS	JOD FOR
D CALCUI	HEY ARE G
AATCHEI	X WHAT TI

- MATCHED NLLQ²+NLLx evolution equation available since several years with $n_f=0~({
 m Ciafaloni},~{
 m Colferai},~{
 m Salam},~{
 m Stasto},~2003;~{
 m Altarelli},~{
 m Ball},~{
 m S.F.},~2005)$
- FIRST RESUMMED STRUCTURE FUNCTIONS (THORNE, WHITE, 2007)
- GENERAL FORMALISM FOR COEFFICIENT FUNCTION RESUMMATION (Ball 2008)
- \mathbf{K}_{2} NLL RESUMMATION EFFECTS ABOUT SAME SIZE AS NNLO, BUT **OPPOSITE SIGN** IN HERA REGION: NNLO \leftrightarrow MORE SCALE DEP. FULLY CONSISTENT RESUMMED NLL DIS STRUCTURE FUNCTIONS THAN NLO, NLL \leftrightarrow LESS SCALE DEP. THAN NLO (ALTARELLI, BALL, S.F. 2008)
- DY res/NLO & NNLO/LO LL RESUMMATION FOR HIGGS C.F. AT FINITE m_t (Marzani, Ball, ACCURATE APPROXIMATE NNLO HIGGS PRODUCTION (Harlander, Mantler, Marzani, Ozeren, 2010) \rightarrow HIGGS-MEDIATED DIS (Soar, Moch, Vermaseren, Vogt, 2010) Del Duca, s.f., Vicini, 2008)
- NLL RESUMMATION FOR DRELL-YAN (Marzani, Ball, 2009) SIZABLE ENHANCEMENT IN COMPARISON TO NNLO
- NLL RESUMMATION FOR PROMPT PHOTON PRODUCTION (Diana, 2009)
- RESUMMATION MANDATORY TO STABILIZE NNLO
- RELEVANT AT $\sim 5\%$ LEVEL

BEYOND FIXED ORDER?

IS THERE EVIDENCE FOR DEVIATION FROM FIXED-ORDER EVOLUTION IN THE DATA? CUT PDF FITS, THE IDEA: EVOLVE BACKWARDS INTO LOW x, Q^2 REGION CHECK WHETHER DATA DEVIATE FROM EVOLVED SOLUTION:

• LHEC

WHAT'S BEHIND THE CORNER?

PERTURBATIVE GCD IS READY FOR PRECISION PHYSICS

- PERTURBATIVE GCD IS READY FOR PRECISION PHYSICS
- WHAT LIES BEYOND?
- WE ARE READY TO DISCOVER NEW PHYSICS AT THE LHC
- WE WILL LIKELY NEED AN LHEC TO STRETCH THE LIMITS OF QCD & EXPLOIT FULLY THE DISCOVERY POTENTIAL OF LHC 1

CONCLUSION

THIS IS JUST THE BEGINNING!

