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PARTONS FOR LHC:

THE ACCURATE COMPUTATION OF PHYSICAL PROCESS AT A HADRON COLLIDER

REQUIRES GOOD KNOWLEDGE OF PARTON DISTRIBUTIONS OF THE NUCLEON

FACTORIZATION

⇒

IN ORDER TO EXTRACT THE RELEVANT PHYSICS SIGNAL,

WE NEED TO KNOW THE PARTON DISTRIBUTIONS AND THEIR UNCERTAINTY

IS THIS ASPECT OF LHC PHYSICS UNDER CONTROL?



AN ONGOING EFFORT...



SUMMARY

• PARTON DISTRIBUTIONS: THE STATE OF THE ART

– PARTON FITS IN THE ERA OF LHC

– PARTON DISTRIBUTIONS WITH ERRORS: CAN WE TRUST THEM?

– THE NEED FOR NEW IDEAS

• THE NEURAL NETWORK APPROACH TO PDFS

– THE NEURAL MONTE CARLO

– NEURAL NETWORKS: OVERLEARNING AND STOPPING

– NEURAL PARTONS AND PARAMETRIZATION BIAS



DEEP­INELASTIC SCATTERING

STRUCTURE FUNCTIONS. . .

Lepton fractional energy loss: y = p·q
p·k

;

Bjorken x: x = Q2

2p·q

lepton-nucleon CM energy: s = Q2

xy
;

virtual boson-nucleon CM energy W 2 = Q2 1−x
x
;

d2σλpλℓ (x, y, Q2)

dxdy
=

G2
F

2π(1 + Q2/m2
W

)2
Q2

xy

{

[

−λℓ y

(

1 − y

2

)

xF3(x, Q2) + (1 − y)F2(x, Q2)

+y2xF1(x, Q2)
]

− 2λp

[

−λℓ y(2 − y)xg1(x, Q2) − (1 − y)g4(x, Q2) − y2xg5(x, Q2)
]

}

λl → lepton helicity

λp → proton helicity

PARITY CONS. PARITY VIOL.

UNPOL. F1, F2 F3

POL. g1 g4, g5



...AND PARTON DISTRIBUTIONS

STRUCTURE FUNCTION=HARD COEFF.⊗PARTON DISTN.

FNC
2 (x, Q2) = x

∑

flav. i

e2
i (qi + q̄i)+αs [Ci[αs] ⊗ (qi + q̄i) + Cg[αs] ⊗ g]

qi quark, q̄i antiquark, g gluon

LEADING PARTON CONTENT (up to O[αs] corrections)

qi ≡ q↑↑i + q↑↓i ∆qi ≡ q↑↑i − q↑↓i

NC F1
γ, Z =

∑

i
e2

i (qi + q̄i) g1
γ, Z =

∑

i
e2

i (∆qi + ∆q̄i)

CC F W+

1 = ū + d + s + c̄ gW+

1 = ∆ū + ∆d + ∆s + ∆c̄

CC −F W+

3 /2 = ū − d − s + c̄ gW+

5 = ∆ū − ∆d − ∆s + ∆c̄

F2 = 2xF1 g4 = 2xg5

W+
→ W−

⇒ u ↔ d, c ↔ s; more combinations using Isospin: p → n ⇒ u ↔ d



FROM HERA TO LHC

AT A HADRON COLLIDER

• SCALE Q DETERMINED BY MASS

OF FINAL STATE

• MOMENTUM FRACTIONS x1 x2 DE­

TERMINED BY MASS& RAPIDITY OF

FINAL STATE
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FROM HERA TO LHC ⇒ EVOLUTION

AT A HADRON COLLIDER

• SCALE Q DETERMINED BY MASS

OF FINAL STATE

• MOMENTUM FRACTIONS x1 x2 DE­

TERMINED BY MASS& RAPIDITY OF

FINAL STATE

USE ALTARELLI­PARISI EQNS:

d

dt
∆qNS =

αs(t)

2π
P

NS
qq ⊗ ∆qNS ,

d

dt

(

∆Σ

∆g

)

=
αs(t)

2π

(

P S
qq 2nf P S

qg

P S
gq P S

gg

)

⊗
(

∆Σ

∆g

)

,

TO EVOLVE PARTONS

FROM DIS TO LHC KINEMATICS
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PARTONS WITH ERRORS

HERA F2
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GIVEN A SET OF DATA POINTS

MUST DETERMINE A SET OF

FUNCTIONS WITH ERRORS

DATA INCLUDED IN CTEQ5 PARTON FIT
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WHAT’S THE PROBLEM? D. Kosower, 1999

• FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE± ERROR

• FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE

• FOR A FUNCTION, WE NEED AN “ERROR BAR” IN A SPACE OF FUNCTIONS

MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) P[fi(x)]

IN THE SPACE OF PARTON DISTRIBUTION FUNCTIONS fi(x) (i=quark, antiquark,

gluon)
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WHAT’S THE PROBLEM? D. Kosower, 1999

• FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE± ERROR

• FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE

• FOR A FUNCTION, WE NEED AN “ERROR BAR” IN A SPACE OF FUNCTIONS

MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) P[fi(x)]

IN THE SPACE OF PARTON DISTRIBUTION FUNCTIONS fi(x) (i=quark, antiquark,

gluon)

EXPECTATION VALUE OF σ [fi(x)] ⇒ FUNCTIONAL INTEGRAL
〈

σ [fi(x)]
〉

=

∫

Dfi σ [fi(x)] P[fi],

MUST DETERMINE AN INFINITE–DIMENSIONAL OBJECT

FROM A FINITE SET OF DATA POINTS



THE STANDARD SOLUTION:
FUNCTIONAL PARTON FITTING

• CHOOSE A FIXED FUNCTIONAL FORM:
– MRST: 24 PARMS., SOME FIXED→ 15 PARMS.

xq(x, Q
2
0) = A(1 − x)

η
(1 + ǫx

0.5
+ γx)x

δ
, x[ū − d̄](x, Q

2
0) = A(1 − x)

η
(1 + γx + δx

2
)x

δ
.

xg(x, Q
2
0) = Ag(1 − x)

ηg (1 + ǫgx
0.5

+ γgx)x
δg − A

−
(1 − x)

η
−x

−δ
− ,

– CTEQ: 20 PARMS.

x f(x, Q0) = A0 x
A1 (1 − x)

A2 e
A3x

(1 + e
A4 x)

A5

with independent params for combinations uv ≡ u − ū, dv ≡ d − d̄, g, and ū + d̄ ,
s = s̄ = 0.2 (ū + d̄) at Q0; NORM. FIXED BY SUM RULES

– ALEKHIN: 17 PARMS.

xuV(x, Q0) =
2

NV
u

x
au (1 − x)

bu (1 + γ
u
2 x); xuS(x, Q0) =

AS

NS

ηux
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1

NV
d

x
ad (1 − x)

bd ; xdS(x, Q0) =
AS

NS
x

as (1 − x)
bsd ,

xsS(x, Q0) =
AS

NS
ηsx

as (1−x)
(bsu+bsd)/2

; xG(x, Q0) = AGx
aG (1−x)

bG (1+γ
G
1

√
x+γ

G
2 x),
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• EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES

• DETERMINE BEST­FIT VALUES OF PARAMETERS

• DETERMINE ERROR BY PROPAGATION OF ERROR ON PARMS (’HESSIAN METHOD’)
OR BY PARM. SCANS (’LAGRANGE MULTIPLIER METHOD’)

PROBLEM PROJECTED ONTO THE FINITE–DIMENSIONAL SPACE OF PARAMETERS



HOW WELL DOES IT WORK? (DIS ONLY)
ALEKHIN 2003 PARTONS

TOTAL ERROR BANDS FOR

LO (DOTS), NLO (DASHES),

NNLO (SOLID)

PARTON DISTRIBUTIONS

valence uv
≡ u − ū, dv

≡ d − d̄,
sea us = ūs = ds = d̄s



HADRONIC CHANNELS
IN UNPOLARIZED GLOBAL FITS

• DRELL­YAN ⇒ ū/d̄ ASYMME­
TRY

• W± ⇒ u/d ASYMMETRY

• DIRECT γ ⇒ GLUON (impact
negligible w.r. to DIS)

• LARGE ET JETS ⇒ LARGE x
GLUON

DATA IN CTEQ5 PARTON FIT

100 101 102 103 104

1/X

100

101

102

Q
 (

G
eV

)

DIS (fixed target)
HERA (’94)
DY
W-asymmetry
Direct-γ
Jets



HOW WELL DOES IT WORK? (WITH HADRONIC DATA)
DRELL­YAN p/d ASYMMETRY
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σpp
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)
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CAN WE TRUST GLOBAL FITS?
PARTON SETS DO NOT AGREE WITHIN RESPECTIVE ERRORS!

W PRODUCTION CROSS­SECTION

TEVATRON

PDF SET XSEC [NB] PDF UNCERTAINTY

ALEKHIN 2.73 ± 0.05 (TOT)
MRST2002 2.59 ± 0.03 (EXPT)
CTEQ6 2.54 ± 0.10 (EXPT)

THORNE 2003

• ALEKHIN VS. MRST/CTEQ
→ W PRODUCTION XSECT AT

TEVATRON DO NOT AGREE

WITHIN RESPECTIVE ERRORS
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INCOMPATIBLE DATA?

GLOBAL χ2
MINIMUM MAY NOT

CORRESPOND TO LOCAL MINIMA
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E866 DY DATA DISAGREE WITH DIS
DATA:
σDY ∼ q(x1)q(x2) DISAGREES WITH DIS
QUARK AT SAME x AND Q2

ALEKHIN 2005



PARAMETRIZATION BIAS?
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SIMILAR PAR­
TONS

→ SIMILAR

RESULTS

THE W XSECT. AGAIN. . .
PDF SET COMMENT XSEC [NB] PDF UNCERTAINTY

ALEKHIN TEVATRON 2.73 ± 0.05 (TOT)
MRST2002 TEVATRON 2.59 ± 0.03 (EXPT)
CTEQ6 TEVATRON 2.54 ± 0.10 (EXPT)
ALEKHIN LHC 215 ± 6 (TOT)
MRST2002 LHC 204 ± 4 (EXPT)
CTEQ6 LHC 205 ± 8 (EXPT)
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RESULTS
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PDF SET COMMENT XSEC [NB] PDF UNCERTAINTY
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CTEQ6 TEVATRON 2.54 ± 0.10 (EXPT)
ALEKHIN LHC 215 ± 6 (TOT)
MRST2002 LHC 204 ± 4 (EXPT)
CTEQ6 LHC 205 ± 8 (EXPT)

We do not seem to have the optimum parameterization for both finding the best fit and also

investigating fluctuations about this best fit (...) This might then influence our error

analysis...(MRST 2004)



SOLUTIONS: CTEQ TOLERANCE CRITERION
SINGLE OUT INCONSISTENT DATA

• how many parameters are significantly determined by each dataset?

• how consistent are the data from one set with the rest?

STUDY MINIMUM ALLOWED χ2
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INCOMPATIBLE WITH THE REST

OPTIONS

• discard incompatible experiments

• reweight individual contributions

• INCORPORATE IN ERROR,
TOLERATING FIXED MAX DEVIA­
TION FOR EACH EXPERIMENT &
EACH FIT PARAMETER
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SOLUTIONS: ERROR RESCALING
HOW CAN DATA FROM INCONSISTENT SETS BE INCLUDED?
ASSUME INCONSISTENCY DUE TO UNDERESTIMATED (SYST.) ERROR:
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ALTERNATIVE (ALEKHIN 2006): DISCARD INCONSISTENT DATA, RETAIN SUBSET



THE HERA­LHC BENCHMARK: AN IMPASSE

HERA­LHC
BENCHMARK PARTONS

OBTAINED FROM NC DIS

DATA ONLY, Q2 > 9 GeV2

GLUON AND dV : MRST VS. BENCH
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• IT IS UNSURPRIZING THAT CENTRAL VALUES DEPEND STRONGLY ON THE
DATASET

• BUT IT IS VERY WORRISOME THAT THE RESULT WITH THE FULL DATA SET
IS NOT WITHIN THE ERROR BAND OF THE RESULT FROM A DATA SUBSET

A NEW IDEA IS NEEDED!



THE BAYESIAN MONTE CARLO (GIELE, KOSOWER, KELLER 2001)

• generate a Monte-Carlo sample of fcts. with “reasonable” prior distn.
(e.g. an available parton set) → representation of probability functional P[fi]

• calculate observables with functional integral

• update probability using Bayesian inference on MC sample:
better agreement with data → more functions in sample

• iterate until convergence achieved
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• generate a Monte-Carlo sample of fcts. with “reasonable” prior distn.
(e.g. an available parton set) → representation of probability functional P[fi]

• calculate observables with functional integral

• update probability using Bayesian inference on MC sample:
better agreement with data → more functions in sample

• iterate until convergence achieved

PROBLEM IS MADE FINITE­DIMENSIONAL BY THE CHOICE OF PRIOR, BUT
RESULT DO NOT DEPEND ON THE CHOICE IF SUFFICIENTLY GENERAL

HARD TO HANDLE “FLAT DIRECTIONS”
(Monte Carlo replicas which lead to same agreement with data);
COMPUTATIONALLY VERY INTENSIVE;
DIFFICULT TO ACHIEVE INDEP. FROM PRIOR



RESULT: FERMI PARTONS

F singlet
2 AND GLUON RATIOS FERMI/MRST

ONLY SUBSET OF DATA FITTED (H1, E665,
BCDMS DIS DATA)

GOOD AGREEMENT WITH TEVATRON W XSECT

TROUBLE WITH VALUE OF αs
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THE NNPDF COLLABORATION
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BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS
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THE NNPDF COLLABORATION

(2004: Del Debbio, SF, Latorre, Piccione, Rojo; 2007: +Ball, Guffanti, Ubiali)

BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

• GENERATE A SET OF MONTE CARLO
REPLICAS σ(k)(pi) OF THE ORIGINAL

DATASET σ(data)(pi)
⇒ REPRESENTATION OF P[σ(pi)] AT
DISCRETE SET OF POINTS pi

• TRAIN A NEURAL NET FOR EACH PDF

ON EACH REPLICA, THUS OBTAINING
A NEURAL REPRESENTATION OF THE

PDFS f
(net),(k)
i

• THE SET OF NEURAL NETS IS A REP­
RESENTATION OF THE PROBABILITY

DENSITY:

〈

σ [fi]
〉

=
1

Nrep

Nrep
∑

k=1

σ
[

fi
(net)(k)

]



WHAT ARE NEURAL NETWORKS?

-10 -5 5 10

0.2

0.4

0.6

0.8

1

MULTILAYER FEED­FORWARD NETWORKS

• Each neuron receives input from neurons
in preceding layer and feeds output to neu-
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• Activation determined by weights and
thresholds

ξi = g

(

∑

j
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)

• Sigmoid activation function
g(x) = 1

1+e−βx
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• Each neuron receives input from neurons
in preceding layer and feeds output to neu-
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• Activation determined by weights and
thresholds

ξi = g

(

∑

j
ωijξj − θi

)

• Sigmoid activation function
g(x) = 1

1+e−βx

JUST ANOTHER SET OF BASIS FUNCTIONS!
A 1­2­1 NN: ξ

(3)
1 (ξ

(1)
1 ) = 1

1+e

θ
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THANKS TO NONLINEAR BEHAVIOUR,
ANY FUNCTION CAN BE REPRESENTED BY A SUFFICIENTLY BIG NEURAL

NETWORK
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WHAT ARE NEURAL NETWORKS GOOD FOR?

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ2
WITH GIVEN FINITE PARM.

• IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES

• IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED?

IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

OVERLEARNING

A: STOP THE FIT BEFORE OVERLEARNING SETS IN!



THE STOPPING CRITERION

MINIMIZE BY GENETIC ALGORITHM:
AT EACH GENERATION, THE χ2

EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2
OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2
FOR THE DATA IN THE VALIDATION SET (NOT

USED FOR FITTING)

• WHEN THE VALIDATION χ2
STOPS DECREASING, STOP THE FIT
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THE STOPPING CRITERION

MINIMIZE BY GENETIC ALGORITHM:
AT EACH GENERATION, THE χ2

EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2
OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2
FOR THE DATA IN THE VALIDATION SET (NOT

USED FOR FITTING)

• WHEN THE VALIDATION χ2
STOPS DECREASING, STOP THE FIT

TOO LATE!



A FIT OF THE ISOTRIPLET QUARK DISTRIBUTION
hep-ph/0701127

• FIRST FULL TEST OF

THE METHOD AND ITS

IMPLEMENTATION

• NONTRIVIAL ISSUES

OF CODE DESIGN AND

TASK COORDINATION

• OBJECT­ORIENTED
& MODULAR STRUC­
TURE OF THE CODE

THE CVS TREE STRUCTURE
(now switched to SVN)



THE DATA

• PHYSICAL OBSERVABLE: F p
2 − F d

2

• 229 NMC & 254 BCDMS DATA

WITH Q2 > 3 GeV2

• DETERMINATION OF

qNS(x) = u(x)+ ū(x)−
(

d(x) + d̄(x)
)

AT REF. SCALE Q2
0 = 3 GeV2

AT LO, NLO, NNLO



MONTE CARLO DATA GENERATION
• BCDMS+ NMC PROTON & DEUTERON F2 DATA (FULL CORRELATED SYSTEMATICS
AVAILABLE), TAKEN AT 4 BEAM ENERGIES

• ON TOP OF STAT. ERRORS, 4 SYSTEMATICS + 1 NORMALIZATION (NMC) OR 6 SYSTEMATICS +

1 ABSOLUTE & 2 RELATIVE NORMALIZATIONS (BCDMS), WITH VARIOUS FORMS OF

CORRELATION (FULL, OR FOR EACH TARGET, OR FOR EACH BEAM ENERGY)

GENERATE DATA ACCORDING TO A MULTIGAUSSIAN DISTRIBUTION

F
(art) (k)
i

=

(1 + r
(k)
5 σN )

√

1 + r
(k)
i,6

σNt

√

1 + r
(k)
i,7

σNb

[

F
(exp)
i

+
r
(k)
i,1

fb+r
(k)
i,2

fi,s+r
(k)
i,3

fi,r

100 F
(exp)
i

+ r
(k)
i,s

σi
s

]

r univariate gaussian random nos., one ri,s for each data, but single ri,j for all correlated data

SCATTER PLOT ART. VS. EXP. FOR 10
(RED) 100 (GREEN) AND 1000 (BLUE)
REPLICAS

NEED 1000 REPLICAS TO REPRODUCE CORRELATIONS TO PERCENT ACCURACY



PERTURBATIVE EVOLUTION

• PARAMETRIZE INITIAL PDFS AS A FUNCTION OF x

• DETERMINE GREEN’S FUNCTION FOR ALTARELLI­PARISI EVOLUTION
Γ(x, αs

(

Q2
)

, αs

(

Q2
0

)

) (note it is a distribution)

• DETERMINE EVOLVED PDF AS
q(x, Q2) = Gq(x, Q2

0) +
∫ 1

x
dy
y

Γ(+)(y, αs

(

Q2
)

, αs

(

Q2
0

)

)q
(

x
y
, Q2

0

)

• GREEN FUNCTION CAN BE INTERPOLATED OR COMPUTED ON A GRID AND
STORED

• EVOLUTION AND INTERPOLATION FULLY BENCHMARKED



TRAINING...

• EACH NEURAL NET IS FITTED TO A PSEUDODATA REPLICA BY MINIMIZING ITS χ2

• MINIMIZATION THROUGH GENETIC ALGORITHM + REWEIGHTING OF EXPERIMENTS

• QUALITY OF FIT MEASURED BY χ2
OF AVERAGE OF NN COMPARED TO DATA

χ2 OF BEST FIT
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• IF NO STOPPING IMPLEMENTED, χ2
OF THE AVERAGE DECREASES

AS A FUNCTION OF AVERAGE χ2
OF REPLICAS

• AT BEST FIT, AVERAGE χ2
OF REPLICAS ∼ 2; χ2

OF AVERAGE TO DATA ∼ 1



...AND STOPPING

AFTER STOPPING CRITERION IMPLEMENTED

DISTRIBUTION OF χ2 AT STOPPING
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• POISSONIAN DISTRIBUTION OF TRAINING LENGTHS
• BEST FIT χ2 = 0.75 (BCDMS: 0.75, NMC: 0.72):
EXPT. ERRORS SOMEWHAT OVERESTIMATED?



STABILITY

CAN CHECK STABILITY BY COMPARING RESULTS IF THE WHOLE PROCEDURE IS

REPEATED WITH A DIFFERENT SET OF REPLICAS

DEFINE R.M.S. DISTANCE 〈d[q]〉 =

√

√

√

√

〈

(

〈qi〉(1)−〈qi〉(2)

)2

σ2[q
(1)
i

]+σ2[q
(2)
i

]

〉

dat

NOTE σ ⇒ ERROR ON AVERAGE = (ERROR ON qi)/
√

N

⇒ TESTS BOTH ACCURACY OF CENTRAL VALUE & ERRORS

SELF­STABILITY:

DIFFERENT SETS OF 100 REPLICAS

〈d [q]〉dat 0.96

〈d [q]〉extra 0.99

〈d [σq]〉dat 0.88

〈d [σq]〉extra 0.97

CHANGE OF ARCHITECTURE:
2­4­3­1 VS. 2­5­3­1

〈d [q]〉dat 0.9

〈d [q]〉extra 0.9

〈d [σq]〉dat 0.9

〈d [σq]〉extra 1.4

DISTANCE COMPUTED FOR 14 POINTS LINEARLY SPACED IN THE DATA REGION
(0.05 ≤ x ≤ 0.75)
& 14 POINTS LOG SPACED IN THE EXTRAPOLATION REGION (10−3 ≤ x ≤ 10−2)



RESULTS & COMPARISON TO OTHER APPROACHES

NLO RESULTS: THE STRUCTURE FUNCTION FNS
2 (x, Q2)

VS x AT Q2 = 15 GEV2
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• COMPATIBLE WITH EXISTING FITS WITHIN ERROR
(even when they disagee with each other)

• UNCERTAINTY MUCH LARGER IN EXTRAPOLATION BUT ALSO IN DATA REGION
(note no other global fit data constrain qNS)

• CENTRAL FIT DISAGREES WITH EXISTING FITS IN VALENCE REGION
0.1 ≤ x ≤ 0.3



RESULTS:

THE NONSINGLET QUARK PDF qNS(x, Q2)

LO, NLO & NNLO
LO VS. NLO
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• quality of fit (χ2)
same at LO, NLO, NNLO

• NLO & NNLO agree within
one σ
NNLO terms negligible within
errors

• LO & NLO agree within three
σ
NLO terms absorbed in b.c.
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CONCLUSIONS

• STANDARD METHODS OF PDF DETERMINATION ARE
STRETCHED TO THEIR LIMIT BY THE NEEDS OF

PRECISION PHENOMENOLOGY AT THE LHC

• NEURAL PARTON DISTRIBUTIONS ARE



...BEHIND THE CORNER

Higgs decay in e+e−+ 2 jets at CMS


