

Istituto Nazionale di Fisica Nucleare

PARTON DISTRIBUTIONS FUNCTIONS

THE IMPACT OF PDFS: HIGGS DISCOVERY

uncertainty

		PDF+αs		
14.7%	2.9%	3.9%	5.1%	14.4%
19.5 pb	1.56 pb	0.70 pb	0.39 pb	0.13 pb
gg→H	VBF	МН	ZH	ttH
NNLL QCD +NLO EW		NNLO QCD +NLO EW		NLO QCD

(J. Campbell, HCP2012)

PDF UNCERTAINTY EITHER DOMINANT, OR VERY LARGE, OR BOTH

... AND NOT ONLY FOR THE HIGGS!

(W MASS DETERMINATION, NEW PHYSICS SEARCHES FOR HEAVY STATES, \ldots

SUMMARY LECTURE I: THE BASICS

- FACTORIZATION
- RENORMALIZATION AND FACTORIZATION IN QCD
- ELECTROPRODUCTION AND HADROPRODUCTION
 - EVOLUTION EQUATIONS AND SUM RULES
- FROM DATA TO PDFS
- DATA FROM HERA TO THE LHC
- DISENTANGLING QUARK FLAVORS
 DETERMINING THE GLION
- DETERMINING THE GLUON

LECTURE II: PDF DETERMINATION

- STATISTICS AND METHODOLOGY
- HESSIAN VS MONTE CARLO APPROACH
- HESSIAN UNCERTAINTY ESTIMATES AND TOLERANCE
 - PARAMETRIZATION BIAS
- GENERAL PARAMETRIZATIONS AND CROSS-VALIDATION
- NON-GAUSSIAN BEHAVIOUR
- CLOSURE TESTING

LECTURE III: THE STATE OF THE ART

- THEORETICAL ISSUES
- PERTURBATIVE STABILITY AND HIGHER ORDER CORRECTIONS
- RESUMMATION
- HEAVY GUARKS: RESUMMATION AND MATCHING
- PDFS NOW
- GLOBAL AND NONGLOBAL PDF DETERMINATIONS
- RECENT PROGRESS: METHODOLOGY AND LHC DATA
- THE PDF4LHC COMBINED PDF SETS

FACTORIZATION

RENORMALIZATION: EXPRESS A PHYSICAL OBSERVABLE IN TERMS OF OTHER PHYSICAL UV SINGULARITY IS UNIVERSAL \Rightarrow REABSORBED IN DEF. OF THE COUPLING $F(s,t) = \lim_{\Lambda \to \infty} 1 + \frac{g}{32\pi} \left(3 + \int_0^1 \ln \frac{M^2(s)}{\Lambda^2} + s \to t + s \to u \right); \quad M^2(s) = m^2 - x(1-x)s$ $\frac{g_{\rm phys}^2}{128\pi} \frac{1}{m^2}$ $\frac{d\sigma}{d\cos\theta} = \frac{g_{\rm phys}^2}{128\pi} \frac{1}{s} F(s,t); \quad F(s,t) = 1 + \frac{g_{\rm phys}}{32\pi} \left(\int_0^1 \ln \frac{M^2(s)}{M^2(4m^2)} + s \to t + s \to u \right)$ $t = (p_1 - p_3)^2, u = (p_1 - p_4)^2$ $\mathcal{L} = -\frac{g}{24}\phi^4 \quad \phi\phi \rightarrow \phi\phi$ ELASTIC SCATTERING OF MASSIVE SCALAR FIELDS $\left. \frac{d\sigma}{d\cos\theta} \right|_{s=4m^2} =$ $\frac{d\sigma}{d\cos\theta} = \frac{g^2}{128\pi} \frac{1}{s} F(s,t); \text{ DIVERGES!};$ RENORMALIZATION A QUICK REMINDER WHAT IS THE CHARGE g? DEFINE $g_{\rm phys}$ FROM **OBSERVABLES:** $s = (p_1 + p_2)^2$ $\frac{g^2}{128\pi}\frac{1}{s};$ $\frac{d\sigma}{d\cos\theta} = -$ 2 more

DEEP-INELASTIC LEPTON-HADRON SCATTERING IN PERTURBATIVE QCD FACTORIZATION

PROBE THE PROTON WITH A SHORT-WAVELENGTH PHOTON:

 $e = P \rightarrow e + X$: for fixed energy, cross section depends on two variables $(\cos \theta, W^2)$

FACTORIZATION IN PERTURBATIVE QCD DEEP-INELASTIC LEPTON-HADRON SCATTERING	PROBE THE PROTON WITH A SHORT-WAVELENGTH PHOTON:	ASYMPTOTICALLY FREE, USE PERTURBATION THEORY:	$ \begin{array}{c} $	ST PERTURBATIVE ORDER, INCOHERENT SUM OF CONTRIBUTIONS FROM CHARGED TITUENTS (GUARKS), PROPORTIONAL TO THEIR CHARGE	INTUM OF THE CONSTITUENT PROPORTIONAL TO PROTON MOMENTUM $\hat{p}=xp$	ENTUM FRACTION" x ENTIRELY FIXED BY KINEMATICS, BY Q^2 & W^2 (i.e. $\cos \theta$ & W	ROSS-SECTION IS PROPORTIONAL, UP TO KINEMATIC FACTORS, TO THE PROBABILITY OF THE PHOTON STRIKING A GUARK OF THE <i>i</i> -TH FLAVOR OR ANTIFLAVOR WITH ENTUM $\hat{p} = xp$	N MODEL; PARTON= STRUCK CONSTITUENT: PARTON DISTRIBUTION (PDF)
---	--	---	--	--	---	--	---	---

DEEP-INELASTIC LEPTON-HADRON SCATTERING FACTORIZATION IN PERTURBATIVE QCD

WHAT HAPPENS AT HIGHER ORDERS? COLLINEAR SINGULARITIES!

- HIGHER ORDER CORRECTIONS ARE SINGULAR; SINGULARITY REGULATED BY THE PROTON SCALE M
- DEFINE A PHYSICAL PDF WITH SINGULARITY FACTORED IN IT \Rightarrow SCALE DEPENDENT

DEEP-INELASTIC LEPTON-HADRON SCATTERING FACTORIZATION IN PERTURBATIVE QCD

WHAT HAPPENS AT HIGHER ORDERS? COLLINEAR SINGULARITIES!

- EXPRESS THE PROCESS IN TERMS OF THE PROCESS AT ANOTHER SCALE
- UP TO POWER CORRECTIONS, PROCESS FACTORIZES (NO INTERFERENCE): PARTONIC PROCESS \otimes SCALE DEPENDENT PDF
- SCALE DEPENDENCE CAN BE SEEN AS A BRANCHING DRIVEN BY THE SPLITTING FUNCTION KERNEL P(x)

DEEP-INELASTIC SCATTERING

THE STRUCTURE FUNCTIONS

$$+y^2xF_1(x,Q^2)ig] - 2\lambda_p \left[-\lambda_\ell \, y(2-y)xg_1(x,Q^2) - (1-y)g_4(x,Q^2) - y^2xg_5(x,Q^2)
ight]
ight\}$$

 $\begin{array}{ll} \lambda_l & \rightarrow \text{ lepton helicity} \\ \lambda_p & \rightarrow \text{ proton helicity} \end{array}$

	PARITY CONS.	PARITY VIOL.
UNPOL.	F_1, F_2	F_3
POL.	g_1	g_4, g_5

- ONE PARTON PER HADRON: $\hat{p}_1 = x_a p_1$; $\hat{p}_2 = x_2 p_2$
- ⇒ UNIVERSAL (PROCESS-INDEPENDENT) REDEFINITION OF PDFS COLLINEAR EMISSION FROM PARTON LEGS
- SUPPRESSION OF INTERFERENCE \Rightarrow FACTORIZATION

$$\sigma_X(s, M_X^2) = \sum_{a,b} \int_{x_{\min}}^1 dx_1 dx_2 f_{a/h_1}(x_1) f_{b/h_2}(x_2) \hat{\sigma}_{q_a q_b \to X} (x_1 x_2 s, M_X^2)$$
$$\sigma_X(s, M^2) = \sigma_0 \sum_{a,b} \int_{\tau}^1 \frac{dx}{x} \mathcal{L}_{ab} \left(\frac{\tau}{x}\right) C \left(x, \alpha_s(M_H^2)\right)$$

- PARTON LUMINOSITY $\mathcal{L}_{ab}(\tau) = \int_{\tau}^{1} \frac{dx}{x} f_{a/h_1}(x) f_{b/h_2}(\tau/x)$
- COEFFICIENT FUNCTION $\hat{\sigma}_{q_a q_b \to X} \left(x_1 x_2 s, M_X^2 \right) = \sigma_0 C \left(\frac{M_X^2}{x_1 x_2 s}, \alpha_s (M_H^2) \right)$

EXAMPLE: THE DRELL-YAN PROCESS AT LEADING ORDER

- Hadronic c.m. energy: $s = (p_1 + p_2)^2$
- Momentum fractions $x_{1,2} = \sqrt{\frac{\hat{s}}{s}} \exp \pm y;$ Lead. Ord. $\hat{s} = M^2$
 - Partonic c.m. energy: $\hat{s} = x_1 x_2 s$ • Invariant mass of final state X
 - Invariant mass of final state X (dilepton, Higgs,...): $M_W^2 \Rightarrow$ scale of process
- Scaling variable $\tau = \frac{M_X^2}{s}$

WITH MORE DIFFERENTIAL KINEMATICS, MUST IMPOSE EXTRA CONSTRAINTS \Rightarrow MORE RAPIDITY: LONGITUDINAL BOOST OF FINAL STATE WR TO CM OF HADRONIC $\sum_{a,b} \int_{x_{\min}}^{1} dx_1 \, dx_2 \, dy \, f_{a/h_1}(x_1) f_{b/h_2}(x_2) \frac{d\hat{\sigma}_{q_a} q_b \to X}{dy dM_X^2} \left(x_1 x_2 s, M_X^2 \right) \delta \left(Y - \frac{1}{2} \ln \frac{x_1}{x_2} - y \right)$ **EXAMPLE: THE DRELL-YAN RAPIDITY DISTRIBUTION** HADRONIC FACTORIZATION **BEYOND TOTAL CROSS-SECTIONS** $\frac{d\sigma_X(s, M_X^2)}{dY \, dM^2} = \sigma_0 \sum_{ab} f_a(x_1) fb(x_2); \quad x_i = \tau e^{\pm Y}$ LEADING ORDER: $\frac{d\hat{\sigma}_{q_a q_b \to X}}{dy dM_X^2} = \sigma_0 \delta(y) \delta(1 - \frac{\tau}{x_1 x_2})$ **INFORMATION** $d\sigma_{X}(s,M_{X}^{2}) =$ $dY dM^2$ ↑

- COLLISION
 - AT LEADING ORDER, INVARIANT MASS DETERMINES $\tau = x_1 x_2$, HADRONIC RAPIDITY FIXES BOTH x_1 , x_2

OBSERVABLES (INCLUSIVE JETS, HIGGS AND GAUGE BOSON PRODUCTION FACTORIZATION HOLDS FOR A WIDE CLASS OF SUFFICIENTLY INCLUSIVE FAILS FOR EXCLUSIVE OBVSERVABLES (E.G. ELASTIC SCATTERING) CHANNELS, ETC.)

EVOLUTION EQUATIONS

- DEFINE MELLIN MOMENTS OF PARTON DISTRIBUTIONS $f(N,Q^2) \equiv \int_0^1 dx \, x^{N-1} f_2(x,Q^2)$ NOTE LARGE/SMALL $x \Leftrightarrow$ LARGE/SMALL N
- EVOLUTION GIVEN BY ORDINARY DIFFERENTIAL EQUATIONS (NO CONVOLUTION) DEFINE LOGARITHMIC SCALE $t = \ln \frac{Q^2}{\Lambda^2}$:
- ANOMALOUS DIMENSIONS RELATED TO DGLAP SPLITTING FUNCTIONS $\gamma(N, \alpha_s(t)) \equiv \int_0^1 dx \, x^{N-1} P(x, \alpha_s(t))$

$$\frac{d}{dt}\Delta q_{NS}(N,Q^2) = \frac{\alpha_s(t)}{2\pi}\gamma_{qq}^{NS}(N,\alpha_s(t))\Delta q_{NS}(N,Q^2),$$

$$\frac{d}{dt}\left(\Delta \Sigma(N,Q^2)\right) = \frac{\alpha_s(t)}{2\pi}\left(\gamma_{gq}^S(N,\alpha_s(t)) \quad 2n_f\gamma_{qg}^S(N,\alpha_s(t))\right) \\ \approx \left(\Delta S(N,Q^2)\right),$$

- Evolution of singlet $\Sigma(x,Q^2) = \sum_{i=1}^{n_f} (q_i(x,Q^2) + \bar{q}_i(x,Q^2))$ coupled to gluon
- ALL "NONSINGLET" QUARK COMBINATIONS $q^{NS}(x,Q^2) = q_i(x,Q^2) q_j(x,Q^2)$ EVOLVE INDEPENDENTLY
 - ANOMALOUS DIMENSIONS COMPUTED IN PERTURBATION THEORY: $\gamma_i(N,\alpha_s(t)) = \gamma_i^{(0)}(N) + \alpha_s(t)\gamma_i^{(1)}(N) + \dots$

- GLUON SECTOR SINGULAR AT $N = 1 \Rightarrow$ GLUON GROWS MORE AT SMALL x
- $\gamma_{qq}(1) = 0 \Rightarrow$ NUMBER OF GUARKS CONSERVED
- AS Q^2 INCREASES, PDFS DECREASE AT LARGE x & INCREASE AT SMALL x DUE TO RADIATION
- $\gamma_{\rm qg}$ γ_{gg} THE LEADING ORDER ANOMALOUS DIMENSIONS NZ ∾ z **QUALITATIVE FEATURES** 110 9 -10 9 Ŷ ĥ 12 0 $\gamma_{\rm qq}$ $\gamma_{\rm gq}$ NZ αz -10 -10 15 10 ပို 9 ĥ ŝ 0 15 0

PERTURBATIVE EVOLUTION

SUM RULES

CONSTRUCT CONSERVED GUANTUM NUMBERS CARRIED BY PARTON DISTRIBUTIONS:

- **BARYON NUMBER** $\int_0^1 dx \left(u^p \bar{u}^p \right) = 2 = 2 \int_0^1 dx \left(d^p \bar{d}^p \right)$
- MOMENTUM $\int_0^1 dxx \left[\sum_{i=1}^{N_f} \left(q^i(x) + \bar{q}_i(x) \right) + g(x) \right] = 1$

CANNOT DEPEND ON SCALE

- **BARYON NUMBER** $\gamma_{qq}(1) \gamma_{q\bar{q}}(1) = 0$; AT LO $\gamma_{q\bar{q}}(1) = 0$ SO $\gamma_{qq}(1) = 0$
- **MOMENTUM** $\gamma_{qq}(2) + \gamma_{qg}(2) = 0, \ \gamma_{gq}(2) + \gamma_{gg}(2) = 0$

CAN EXTRACT FROM PHYSICAL OBSERVABLES: BARYON NUMBER

GROSS-LLEWELLYN-SMITH SUM RULE $\frac{1}{2} \int_0^1 dx \left(F_3^{\nu p}(x,Q^2) + F_3^{\nu n}(x,Q^2) \right) =$ $= C_{\text{GLS}}(Q^2) \int_0^1 dx \, \left| u(x,Q^2) - \overline{u}(x,Q^2) + d(x,Q^2) - \overline{d}(x,Q^2) \right|$

	FACTORIZATION SUMMARY
•	HYSICAL OBSERVABLES INVOLVING THE STRONG INTERACTION ARE COMPUTABLE IN ERTURBATIVE QCD WHEN THEY INVOLVE A LARGE SCALE (ASYMPTOTIC FREEDOM)
•	NITIAL-STATE (OR FINAL-STATE) HADRONS CAN BE TREATED THANKS TO ACTORIZATION;
	- COLLINEAR SINGULARITIES CAN BE REABSORBED INTO PDFS
	- THEY LEAD TO ENHANCEMENT OF FACTORIZABLE CONTRIBUTIONS (POWER SUPPRESSION OF INTERFERENCE)
	 OBSERVABLE "HADRONIC" CROSS-SECTIONS ARE A CONVOLUTION OF A "PARTONIC" PROCESS WITH INCOMING QUARKS AND GLUONS, TIMES PDFS
	- PDFS ARE UNIVERSAL, I.E. PROCESS-INDEPENDENT
•	REDICTIVITY AT A HADRON COLLIDER INVOLVES THE PERTURBATIVE COMPUTATION OF THE PARTONIC PROCESSES, AND A DETERMINATION OF PDFS
•	DFS ARE
7	WAY OF EXPRESSING A PROCESS IN TERMS OF OTHER PHYSICAL PROCESSES

FROM DATA TO PDFS

- "VALENCE" UP AND DOWN: PEAKED AT $x \sim 0.3$; EXPECT $f_x(x) \underset{x \to 1}{\sim} (1-x)_i^{\beta}$
 - "SEA" ANTIGUARK AND GLUON GROW AT SMALL x

(PDG 2016)

TWO DIFFERENT SCALES (LEFT \Rightarrow LOW SCALE; RIGHT \Rightarrow HIGH SCALE)

• THE MOMENTUM PROBABILITY DENSITY $xf_i(x)$ IS SHOWN AT

⇒ DETERMINED FOR ALL SCALES BY EVOLUTION EQUATIONS

GIVEN PDFS VS x AT ONE SCALE Q_0^2

• AS $x \ge 1$ KINEMATIC CONSTRAINT $f_i(x) = 0$

• AS ENERGY GROWS, DROP OF CROSS-SECTION MAY BE OFFSET BY GROWTH OF SMALL x PDFS

DISENTANGLING PDFS

A SCIENTIFIC ART

- DEEP-INELASTIC SCATTERING DATA ON PROTON ABUNDANT AND PRECISE
- CC F_1 and F_3 in principle provide four combinations, and NC F_1 two more ⇒ ALL LIGHT FLAVORS
- FIXED COMBINATION OF F_1 F_3 , SO NC AND \pm CC WITH e^{\pm} , PLUS SEPARATE NC γ HERA DATA ONLY DETERMINE FOUR COMBINATIONS OF PDFS: AND Z FROM SCALE DEPENDENCE
- W^{\pm} and Z production (including double differential: mass and rapidity) PROVIDE A LARGE AMOUNT OF INFORMATION
- WHEN PRODUCING ELECTROWEAK FINAL STATES, THE GLUON CAN ONLY BE ACCESSED FROM SCALE DEPENDENCE OR HIGHER ORDERS ... EXCEPT IN HIGGS PRODUCTION!
- JET PRODUCTION GIVES A DIRECT HANDLE ON THE GLUON

LEADING PARTON CONTENT

(up to $O[\alpha_s]$ corrections)

DEEP-INELASTIC SCATTERING

 $B_{q}(Q^{2}) = -2e_{q}V_{\ell}V_{q}P_{Z} + (V_{\ell}^{2} + A_{\ell}^{2})(V_{q}^{2} + A_{q}^{2})P_{Z}^{2}; D_{q}(Q^{2}) = -2e_{q}A_{\ell}A_{q}P_{Z} + 4V_{\ell}A_{\ell}P_{q}P_{Z}^{2}; P_{Z} = Q^{2}/(Q^{2} + M_{Z}^{2})$

 $W^+ \to W^- \Rightarrow u \leftrightarrow d, c \leftrightarrow s; p \to n \Rightarrow u \leftrightarrow d$

 $V_{ij}^{\text{CKM}} \rightarrow \text{CKM}$ MATRIX $(i = u, ct, j = d, sb), V_{ij}^{\text{CKM}} = 1 + O(\lambda); \lambda = \sin \theta_C \approx 0.22$

...BUT IN ORDER TO ACCESS THE NEUTRON ONE MUST ASSUME $F_2^d = \frac{1}{2} \left(F_2^p + F_2^n \right)$

(NNPDF, 2005)

THE ISOTRIPLET STRUCTURE FUNCTION **EXPLOITING ISOSPIN:**

 $u^{p}(x, Q^{2}) = d^{n}(x, Q^{2}); \quad d^{p}(x, Q^{2}) = u^{n}(x, Q^{2})$

THE GLUON

SCALE DEPENDENCE OF FLAVOR SINGLET STRUCTURE FUNCTIONS

$$\frac{d}{dt}F_2^s(N,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[\gamma_{qq}(N)F_2^s + 2n_f \gamma_{qg}(N)g(N,Q^2) \right] + O(\alpha_s^2)$$
ANOMALOUS DIMENSIONS
$$\frac{10}{10} \frac{10}{0} \frac{10}{0$$

LARGE x GLUON DIFFICULT TO DETERMINE FROM DEEP-INELASTIC SCATTERING

PDF DETERMINATION SUMMARY
• DEEP-INELASTIC SCATTERING PROVIDES THE BULK OF INFORMATION ON PDFS:
- HERA COLLIDER $e^{\pm}p$ CC+NC data provide four independent combinations in wide kinematic region \Rightarrow light guarks and antiguarks
- FIXED-TARGET μp & μd GIVES DIRECT HANDLE ON UP-DOWN SEPARATION, ESPECIALLY AT LARGER x
- HERA+FT GLUON FROM SCALE DEPENDENCE ("SCALING VIOLATIONS")
- NEUTRINO (ESPECIALLY DIMUON) \Rightarrow STRANGENESS
• Drell-Yan γ^* on fixed p and d target \Rightarrow UP-Down separation at large x
• W and Z production at the Tevatron \Rightarrow antiup/antidown
• LHC W , Z HIGH AND LOW MASS
- FULL FLAVOR SEPARATION IN WIDE KINEMATIC REGION
– STRANGENESS BOTH FROM TOTAL CROSS-SECTION AND TAGGED $W + c$ FINAL STATE
- GLUON FROM Z TRANSVERSE MOMENTUM DISTRIBUTION
• GLUON FROM COLLIDER PROCESSES:
- LARGE x FROM TEVATRON JETS

- SMALL *x* FROM LHC JETS
 MEDIUM *x* FROM LHC TOP

METHODOLOGY & STATISTICS

ISSUES AND TASKS:

- FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS, CONVOLUTE WITH PARTON-LEVEL CROSS-SECTIONS
- **DISENTANGLING PDFS:** CHOOSE A BASIS OF PDFS ($2N_f$ guarks + 1 gluon) & a set of suitable physical processes to determine them all
- PROBABILITY IN THE SPACE OF FUNCTIONS: CHOOSE A STATISTICAL APPROACH (HESSIAN, MONTE CARLO, ...]
- UNCERTAINTY ON FUNCTIONS: CHOOSE A FUNCTIONAL FORM

CH	
PROA	
N AP	
ESSIA	
E HE	
ΗT	

- CHOOSE A FIXED FUNCTIONAL FORM
- SINCE 1973, PHYSICALLY MOTIVATED ANSATZ $f_i(x, Q_0^2) = x^{\alpha}(1-x)^{\beta} g_i(x)$; $g_i(x)$ polynomial in x or \sqrt{x}
- MMHT 2015:

* BASIS FUNCTIONS
$$g$$
; $u_v = u - \bar{u}$; $d_v = d - \bar{d}$; $S = 2(\bar{u} + \bar{d}) + s + \bar{s}$; $s_+ = s + \bar{s}$; $\Delta = \bar{d} - \bar{u}$;
 $s_- = s - \bar{s}$.

* FOR ALL BUT
$$\Delta s_-$$
, $g \Rightarrow xf_i(x, Q_0^2) = Ax^{\alpha}(1-x)^{\beta} \left(1+\sum_{i=1}^4 a_i T_i(y(x))\right);$
 T_i CHEBYSHEV POLYNOMIALS, $y = 1 - 2\sqrt{x} \Leftrightarrow \text{MUST MAP } x = [0, 1]$ INTO $y = [-1, 1];$
 $T_i(-1) = T_i(1) = 1$

* GLUON
$$xg(x,Q_0^2) = Ax^{\alpha}(1-x)^{\beta} \left(1 + \sum_{i=1}^{2} a_i T_i(y(x))\right) + A'xT\alpha'(1-x)^{\beta'}$$

* SEA ASYMMETRY
$$x\Delta(x,Q_0^z) = Ax^{lpha}(1-x)^{ar{
ho}}(1+\gamma x+\epsilon x^z)$$

* STRANGENESS ASYMMETRY
$$x\Delta(x,Q_0^2) = Ax^{\alpha}(1-x)^{\beta}(1-x/x_0)$$

- * 41 PARAMETERS, 4 FIXED BY SUM RULES * 12 PARMS FIVED AT ATTACT
- 12 PARMS FIXED AT BEST FIT, REMAINING 25 USED FOR (HESSIAN) COVARIANCE MATRIX
- EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES
- DETERMINE BEST-FIT VALUES OF PARAMETERS
- DETERMINE ERROR BY PROPAGATION OF ERROR ON PARMS. ('HESSIAN METHOD'); PARM. SCANS ALSO POSSIBLE ('LAGR. MULTIPLIER METHOD'

HESSIAN ERROR ESTIMATES GENERAL FEATURES

ASSUMING MOST LIKELY VALUE AT $\vec{z} = 0$ OBSERVABLE X DEPENDING ON PARAMETERS \vec{z} : (linear error propagation) $X(\vec{z}) \approx X_0 + z_i \partial_i X(\vec{z})$ VARIANCE: $\sigma_X^2 = \sigma_{ij} \partial_i X \partial_j X$,

 $\sigma_{ij} \Rightarrow \text{COVARIANCE MATRIX IN PARAMETER SPACE}$

Maximum likelihood: covariance \Leftrightarrow Hessian $\sigma_{ij} = \partial_i \partial_j \chi^2$ evaluated at min. of χ^2 DIAGONALIZATION: CHOOSE z_i AS EIGENVECTORS OF σ_{ij} WITH UNIT EIGENVALUES

$$\sigma_X^2 = \left|ec{
abla} X
ight|^2$$
 (length of gradient)

SOME INTERESTING CONSEGUENCES

- THE ONE- σ CONTOUR IN PARAMETER SPACE IS ELLIPSE $\chi^2 = \chi^2_{\min} + 1$
- THE TOTAL UNCERTAINTY IS THE SUM IN GUADRATURE OF UNCERTAINTIES DUE TO EACH PARAMETER (LENGTH OF VECTOR) EVEN WHEN NOT DIAGONALIZING (Lai et al, CTEQ 2010)
- IZE A CHOSEN OBSERVABLE WITHOUT SPOILING RESULT • ANY ROTATION (ORTHOGONAL TRANSF.) IN THE SPACE OF PARMS PRESERVES THE GRADIENT \rightarrow CAN DIAGONAL-(Pumplin 2009)

THE HESSIAN UNCERTAINTY

"PARADOX"

- HYPOTESIS-TESTING RANGE: COMPARE $\Delta \chi^2 = \chi^2 \langle \chi^2 \rangle$ TO $\sigma_{\chi^2}^2$. THE STANDARD DEVIATION OF χ^2 FOR $N_{\rm dat}$ DATA $\sigma_{\chi^2} = \sqrt{2N_{\rm dat}}$ IF TOO LARGE, SOMETHING WRONG WITH THEORY (OR DATA)
- BUT THE ONE- σ RANGE FOR A PARM. OF THE THEORY IS THE CURVE $\chi^2 \chi^2_{\min} = 1$ PARAMETER-FITTING RANGE: UNIT DEVIATION FROM THE PARAMETRIC MINIMUM $\chi^2_{
 m min}$

КНИУ?

- CONSIDER DEVIATIONS Δ_i FROM LINEAR FIT y = x + k; DETERMINE INTERCEPT k AS FREE PARAMETER
- IF STANDARD DEVIATION FOR EACH Δ_i IS σ_{Δ} , THEN AVERAGE SQUARE DEVIATION IN UNITS OF σ_{Δ} FOR $N_{\rm dat}$ DATA: $\sigma_{\chi^2} = N_{\rm dat}$
- BEST-FIT INCTERCEPT: $k = \langle \Delta_i \rangle$
- UNCERTAINTY ON IT: $\sigma_k = \frac{\sigma_{\Delta}}{N_{\text{dat}}}$
- IF $\Delta k = \sigma_k$, THEN $\Delta \chi^2 = 1$

TOLERANCE

- IN GLOBAL HESSIAN FITS, UNCERTAINTITES OBTAINED BY $\Delta\chi^2 =$ UNREALISTICALLY SMALL
- UNCERTAINTIES TUNED TO DISTRIBUTION OF DEVIATIONS FROM BEST-FITS FOR INDIVIDUAL EXPERIMENTS

GLOBAL MSTW TOLERANCE

+V100 (CTEQ) +V50 (MRST) -V50 (MRST) -V100 (CTEQ)

Eigenvector number

RESCALE $\Delta \chi^2 = T$ interval such that correct confidence intervals are

(MSTW/MMHT) FOR EACH EIGENVECTOR IN PARAMETER SPACE DETERMINE CONFIDENCE

FOR THE DISTRIBUTION OF BEST-FITS OF EACH EXPERIMENT

LIMIT

REPRODUCED

THE MONTE CARLO METHOD

OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS **BASIC IDEA: MONTE CARLO SAMPLING**

- GENERATE A SET OF MONTE CARLO REPLICAS $\sigma^{(k)}$ OF THE ORIGINAL DATASET $\sigma^{(\text{data})}$ \Rightarrow REPRESENTATION OF $\mathcal{P}[\sigma]$ AT DISCRETE SET OF POINTS IN DATA SPACE
- FIT A PDF REPLICA TO A DATA REPLICA \Rightarrow EACH PDF REPLICA $f_i^{(k)}$ IS A BEST-FIT PDF SET FOR GIVEN DATA REPLICA
- THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

$$\langle f_i \rangle = rac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} f_i^{(k)}$$

MONTE CARLO ERROR ESTIMATES EXACT ERROR PROPAGATION

 $P(\vec{z}) \Rightarrow$ PROBABILITY DISTRIBUTION OF PARAMETER VALUES OBSERVABLE X DEPENDS ON PARAMETERS \vec{z} VARIANCE: $\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2$ AVERAGES: $\langle X \rangle = \int d^d z \dot{X}(\vec{z}) P(\vec{z})$, WITH

IMPORTANCE SAMPLING

- SPACE OF FUNCTIONS HUGE 5 BINS FOR 10 PTS \times 7 FCTNS \rightarrow 5⁷⁰ \sim 10⁴⁹ BINS
- BUT EACH OBSERVABLE DEPENDS ONLY ON ONE PARAMETER, & OBSERVABLES CORRELATED ⇒ DATA TELL US WHICH BINS ARE POPULATED

10 REPLICAS ENOUGH FOR CENTRAL VALS, 100 FOR UNCERTAINTIES, 1000 FOR CORRELNS

FLEXIBLE PARAMETRIZATION

- ⇒ NEED BEST-FIT, BUT NOT COVARIANCE MATRIX IN PARAMETER SPACE EACH PDF REPLICA FITTED TO A DATA REPLICA
- CAN USE VERY LARGE PARAMETRIZATION

NEURAL NETWORKS

W MULTILAYER FEED-FORWARD NETWORKS

- Each neuron receives input from neurons in preceding layer and feeds output to neurons in subsequent layer
- Activation determined by weights and thresholds

$$\xi_i = g \left(\sum_j \omega_{ij} \xi_j - heta_i
ight)$$

Sigmoid activation function $g(x) = \frac{1}{1+e^{-\beta x}}$

$$f(x) = \frac{\text{EXAMPLE: A 1-2-1 NN}}{\theta_1^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{\theta_1^{(2)} - x\omega_{11}^{(1)}}} - \frac{\omega_{12}^{(2)}}{\omega_{12}^{(2)} - x\omega_{21}^{(1)}}}$$

음

10

ANY FUNCTION CAN BE REPRESENTED BY A SUFFICIENTLY BIG NEURAL THANKS TO NONLINEAR BEHAVIOUR.

NETWORK

LEARNING

- EXAMPLE: NNPDF: 2 5 3 1 NN FOR EACH PDF: $37 \times 7 = 259$ PARAMETERS ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION
- MINIMIZATION ("LEARNING") CAN BE PERFORMED USING GENETIC ALGORITHMS
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

UNDERLEARNING

LEARNING

- EXAMPLE: NNPDF: 2 5 3 1 NN FOR EACH PDF: $37 \times 7 = 259$ PARAMETERS ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION
- MINIMIZATION ("LEARNING") CAN BE PERFORMED USING GENETIC ALGORITHMS
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

LEARNING

- EXAMPLE: NNPDF: 2 5 3 1 NN FOR EACH PDF: $37 \times 7 = 259$ PARAMETERS ONE CAN CHOOSE A HIGHLY REDUNDANT PARAMETRIZATION
- MINIMIZATION ("LEARNING") CAN BE PERFORMED USING GENETIC ALGORITHMS
- COMPLEXITY INCREASES AS THE FITTING PROCEEDS
- \Rightarrow THE BEST FIT IS NOT THE ABSOLUTE MINIMUM: MUST LOOK FOR OPTIMAL LEARNING POINT

OVERLEARNING

\bigcirc
H
4
\square
N
U)
TÓ
\bigcirc
7

AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING GENETIC MINIMIZATION:

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

CROSS-VALIDATION	$\begin{bmatrix} x^2 \\ x^2 \\ y^2 \\ y^$	ENETIC MINIMIZATION: T EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING • DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION • MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
CROSS-VALIDATION		GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHANGED OR DECREASING • DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION • MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET

VALIDATION	ANGED OR DECREASING	INING AND VALIDATION	HE TRAINING SET	χ^2 for the data in the validation set	CREASING, STOP THE FIT	STOP!	F ^{us} (x, Q ²) 0.00		0.06	0.05			0.02	0.01	00 00 [−]
CROSS-1	GENETIC MINIMIZATION: AT EACH GENERATION, χ^2 EITHER UNCHA	• DIVIDE THE DATA IN TWO SETS: TRA	• MINIMIZE THE χ^2 OF THE DATA IN TE	• AT EACH ITERATION, COMPUTE THE (NOT USED FOR FITTING)	• WHEN THE VALIDATION χ^2 STOPS DE		χ^2	2 0 0	2		2 Linut	ų į	2 ¹		0 ^{[1,1,1} ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

.

ALIDATION	GED OR DECREASING	NG AND VALIDATION	TRAINING SET	FOR THE DATA IN THE VALIDATION SET	EASING, STOP THE FIT	LATE!	F ^{us} (x, Q ²)	0.00	0.05	0.03	0.01	0 ^Γ
CROSS-V/	MINIMIZE BY GENETIC ALGORITHM: AT EACH GENERATION, χ^2 EITHER UNCHANC	• DIVIDE THE DATA IN TWO SETS: TRAINI	• MINIMIZE THE χ^2 of the data in the	• AT EACH ITERATION, COMPUTE THE χ^2 (not used for fitting)	• WHEN THE VALIDATION χ^2 STOPS DECR	TOO	χ^2	o o b				0 [[]

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PA-RAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS
 SIMILAR TO THAT WHICH REPRODUCES DATA

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS $f_i(x)$ at a discrete set of points & construct the ensuing covariance matrix
- SIS IN THE VECTOR SPACE SPANNED BY THE REPLICAS EIGENVECTORS OF THE COVARIANCE MATRIX AS A BA-BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS \Rightarrow ACCURATE REPRESENTATION

VERY SMALL NUMBER OF EVECS; CAN COMBINE WITH NUISANCE PARMS

15

(Carrazza, SF, Kassabov, Rojo, 2016)

NONGAUSSIAN BEHAVIOUR

CMS W + c production

- DEVIATION FROM GAUSSIANITY E.G. AT LARGE x DUES TO LARGE UNCERTAINTY + POSITIVITY BOUNS \Rightarrow RELEVANT FOR SEARCHES
- CANNOT BE REPRODUCED IN HESSIAN FRAMEWORK
- WELL REPRODUCED BY COMPRESSED MC
- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\mathrm{KL}} = \int_{-\infty}^{\infty} P(x) \frac{\ln P(x)}{\ln Q(x)} dx$ BETWEEN A PRIOR P AND ITS REPRESEN-TATION Q
- D_{KL} BETWEEN PRIOR AND HESSIAN DE-PENDS ON DEGREE OF GAUSSIANITY
- D_{KL} Between prior and compressed MC does not

CAN GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN!

MONTE CARLO COMBINATION

(Watt, S.F., 2010-2013)

- MAY COMBINE DIFFERENT PDF SETS, AFTER MC CONVERSION OF HESSIAN SETS
- COMBINE MONTE CARLO REPLICAS INTO SINGLE SET
- USEFUL FOR CONSERVATIVE UNCERTAINTY ESTIMATE
- COMBINED SET APPROXIMATELY GAUSSIAN

HEC C C SSC

UNCERTAINTY	VO UNCERTAINTY UNCERTAINTY	H SAME UNCERTAINTY AS REAL	R AND OVER AGAIN FINITY OF EQUIVALENT MINIMA	JOGY PLICAS	ARABLE IN DATA REGION	1 AND LEVEL 2 Ratios of gluon at different closure test levels	Lvio Closure Fit			0.2 0.4 0.6 0.8 1
NG SOURCES OF	ATA GENERATED WITH N N AND EXTRAPOLATION 1	CORRELATIONS)	TED TO SAME DATA OVER TO SAME DATA OVER INCERTAINTY DUE TO INI	ARD NNPDF METHODOL ED TO PSEUDODATA REI AINTY	OF UNCERTAINTY COMP.	THE GLUON: LEVEL 0, LEVEL int closure test levels	Lvio Closure Fit	1.5	- <u>19</u> 0 1	10^{-2} 10^{-1} 10^{-1} 10^{-1}
TRACI	LEVEL 0: FAKE D. \rightarrow INTERPOLATIOI	LEVEL 1-2: FAKE DATA (INCLUDING	$\begin{array}{l} \text{LEVEL 1: NO PSE} \\ \Rightarrow \text{ REPLICAS FITT} \\ \rightarrow \text{ FUNCTIONAL U} \end{array}$	$\begin{array}{l} \text{LEVEL 2: STANDA} \\ \Rightarrow \text{ REPLICAS FITT} \\ \rightarrow \text{ DATA UNCERT} \end{array}$	THREE SOURCES	Ratios of gluon at differer				10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ X

Level 0 closure test vs. MSTW THE GLUON

- EXPERIMENTAL UNCERTAINTY ASSUME VANISHING
- MUST BE ABLE TO GET $\chi^2 = 0$
- EQUALS FIT UNCERTAINTY/DATA UNCERTAINTY; CHECK $\phi \rightarrow 0$ UNCERTAINTY AT DATA POINTS TENDS TO ZERO (NOT NECESSARILY ON PDF!) DEFINE $\phi \equiv \sqrt{\langle \chi^2_{rep} \rangle - \chi^2}$,

METHODOLOGY SUMMARY

- PDF DETERMINATION: HESSIAN METHOD
- SIMPLE LINEAR ERROR PROPAGATION
- TOLERANCE REQUIRED FOR REALISTIC UNCERTAINTIES
- PARAMETRIZATION BIAS POSSIBLE
- PDF DETERMINATION: MONTE CARLO METHOD
- **TWO-STEP PROCEDURE:** DATA MONTE CARLO \Rightarrow PDF MONTE CARLO
- VERY GENERAL PARAMETRIZATION ALLOWED
- NEED OPTIMAL FIT DETERMINATION METHOD (CROSS-VALIDATION)
- PDF REPRESENTATION: HESSIAN VS MONTE CARLO
- CONVERSION POSSIBLE EITHER WAY
- COMPRESSION METHODS AVAILABLE EITHER WAY
- MONTE CARLO VERY FLEXIBLE, HESSIAN VERY EFFICIENT
- PDF VALIDATION: CLOSURE TEST
- PERFORMED IN THE MONTE CARLO APPROACH
- INTERPOLATION & FUNCTIONAL UNCERTAINTIES SIGNIFICANT

THEORY: ISSUES & PROGRESS

PERTURBATIVE ACCURACY OF PREDICTION LIMITED BY PERTURBATIVE ACCURACY OF PDF 10_1 x 10⁻² 10⁻³ $\alpha_s(M_z) \sim 0.1, \, \alpha_s(M_p) \sim 1/2; \, \alpha_s(Q_1^2) = \alpha_s(Q_2^2)(1 + O(\alpha_s^2))$ 10⁻⁴ 10⁻¹ x 10⁻² 10⁻³ 10⁻⁴ -0.1

- "DATA" PDF UNCERTAINTY INDEP. OF PERTURBATIVE ORDER
- TH. UNCERTAINTY (MHOU) VS DATA UNCERTAINTY \Rightarrow LO: DOMINANT; NLO, COMPARABLE; **NNLO: SUBDDOMINANT**

E VARIATION DIFFICULT: XELATED BETWEEN PROCESSES? HOW DOES IT CORRELATE WITH PROCESSES HICH PDFS ARE USED?): WE KNOW THE SHIFT TO NNLO	O: LOOK AT THE BEHAVIOUR OF THE PERTURBATIVE EXPANSION RI-HOUDEAU)
	OES IT CORRELATE WITH PROCESSES	OES IT CORRELATE WITH PROCESSES

•	Idron	-COUL	ider (calcu	latio	ns v.	tim	a)						as of	mid June	
	L total, H total, H total, Anie H total	Harlander, Kil astasiou, Melni al, Ravindran, WH total, Breir H diff.	lgore ikov n, Djouadi, Ha n, Anastasiou, diff., Anastasiou, WIZ (O	eerven rlander, Pé ou, Melnikov, Pe diff., Melnikov, Pe diff., Catani, '	striello Petriello v. Petriello Grazzini C diff. Catar			VBF to	lal, Bolzoni, M WH diff., V-Y [,] C	Hattoni, Moch, Ferrera, Gra. Zatani et al. ttbartic Z-y	, Zaro izzini, Tramor izzini, Tramor ial, Boughez ial, Cakon, <i>i</i> , Grazzini, K (partial), Cun - ZZ, Cascic - WW , Geh - tubar diff., F - Z-Y, W-Y,	ontano , Fiedler, Mit Kallweit, Rat rrie, Gehrma ioli it et al. Czakon, Fie Czakon, Fie	tov thev, Torre ann-De Riddi zzini, Tramoi edler, Mitov Kallweit, Rai	r, Glover, Pires Itano		
	expl	osiol in	n of pas	calc t 18	ulati mor	ions iths	0				— Hj, Bough ·Wj, Boughe: - Hj, Boughe: - VBF diff.,	hezal et al. ezal, Focke, I ezal et al. Cacciari et e	Liu, Petriello al.			
2002	2004	2006	2008	2010	201	2 201	14 2	016			Zj, Gehrr ZZ, Graz Hj, Caoli Zj, Bou VH diff VY, Câ WY, Gâ WW, Gâ MCFM at N	rmann-De Ri uzzini, Kallwe la, Melnikov, uughezal et a ft., ZH dift., (bampbell, Elli irazzini, Kallw irazzini, Kallw irazzini, Kallw irazzini, Buug nn-De Ridd	idder et al. it, Rathlev , Schulze tl. Campbell, E is, Li, Willian veit, Rathlev veit, Rathlev er et al.	lis, Williams is Wiesemann	2	

• IMPRESSIVE ACCELERATION OF PERTURBATIVE COMPUTATIONS SINCE INCEPTION OF LHC

• \Rightarrow HANDLE ON THEORETICAL UNCERTAINTIES

016)

$$(lpha
ightarrow eta)
ightarrow \sigma(lpha
ightarrow eta) \ln^2 \left(1 - rac{M_eta^2}{s}
ight)$$

		OVER p_t NOT PERFORMED⇒	LARGE LOGS ALSO WHEN SINGLE LOGS $\rightarrow \ln \frac{s}{Q^2} \Rightarrow$		$M^2)$	x 000000 1-x	S V			$+\ln(1- au)^2+\ln au$
RESUMMATION: EXPONENTIATION	• EXPONENTIATION OF LEFTOVER LOGS \Rightarrow THRESHOLD RESUMMATION OF $\alpha_s \ln^2(1-x)$, $x = \frac{M^2}{s}$	• LOGS COME IN PAIRS: SOFT+COLLINEAR $\rightarrow \ln p_t$ when integral C TRANSVERSE MOMENTUM RESUMMATION of $\alpha_s \ln^2 \frac{q_T^2}{M^2}$	• IN GLUON CHANNEL SYMMETRY OF THE TRIPLE GLUON VERTEX \rightarrow 1 THE EXCHANGED GLUON IS SOFT: NO COLLINEAR CONTRIBUTION, S HIGH FNIFPCV RESIMMATION OF $\sim 1^{10} \frac{1}{2}$	$\frac{x}{x}$ III SU UNIVERSITY OF US III $\frac{x}{x}$	$\sigma(\tau, M^2) = \int_y^1 \frac{dy}{y} P\left(\frac{x}{y}\right) \int_{\mu^2}^{(s-M^2)^2/s} \frac{dk_t^2}{k_t^2} \hat{\sigma}(y, \bar{l})$	THE GLUON SPLITTING FUNCTION: $P_{gg}(x) = 2C_A \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right] + \beta_0 \delta(1-x)$	LOGARITHMICALLY ENHANCED TERMS	• INFRARED LOGS: $\int_{\tau}^{1} dy \frac{1}{1-y_{+}} \sim \ln(1-\tau)$	• UV LOGS: $\int_{\tau}^{1} dy \frac{1}{y} \sim \ln(\tau)$	• COLLINEAR LOGS: $\int_{\mu^2}^{(s-M^2)^2/s} \frac{dk_t^2}{k_t^2} \sim \ln\left[\frac{Q^2}{\mu^2} \frac{(1-\tau)^2}{\tau}\right] = \ln\frac{Q^2}{\mu^2}$

THE FACTORIZED CROSS SECTION	$\sigma(\tau, M^2) = \tau \sum_{ij} \int_{\tau}^1 \frac{dz}{z} \mathcal{L}_{ij} \left(\frac{\tau}{z}, \mu_{\rm F}^2\right) \frac{1}{z} \hat{\sigma}_{ij} \left(z, M^2, \alpha_s(\mu_{\rm R}^2), \frac{M^2}{\mu_{\rm F}^2}, \frac{M^2}{\mu_{\rm R}^2}\right) \qquad \tau = \frac{M^2}{s}$	PARTON LUMINOSITIES	${\cal L}_{ij}(z,\mu^2)=\int_z^1 {dx\over x} f_i\left({z\over x},\mu^2 ight) f_j(x,\mu^2)$	COEFFICIENT FUNCTIONS	$\hat{\sigma}_{ij}\left(z, M^{2}, \alpha_{s}(\mu_{\mathrm{R}}^{2}), \frac{M^{2}}{\mu_{\mathrm{F}}^{2}}, \frac{M^{2}}{\mu_{\mathrm{R}}^{2}}\right) = z \sigma_{0}\left(M^{2}, \alpha_{s}(\mu_{\mathrm{R}}^{2})\right) C_{ij}\left(z, \alpha_{s}(\mu_{\mathrm{R}}^{2}), \frac{M^{2}}{\mu_{\mathrm{F}}^{2}}, \frac{M^{2}}{\mu_{\mathrm{R}}^{2}}\right) \\C_{ii}(z, \alpha_{s}) = \delta(1-z)\delta_{i\alpha}\delta_{i\alpha} + \alpha_{s}C_{ij}^{(1)}(z) + \alpha_{s}^{2}C_{ij}^{(2)}(z) + \alpha_{s}^{3}C_{ij}^{(3)}(z) + \mathcal{O}(\alpha_{s}^{4})$	MELLIN-SPACE FACTORIZATION	$\sigma(N, M^2) \equiv \int_0^1 d\tau \tau^{N-2} \sigma(\tau, M^2); \mathcal{L}(N) \equiv \int_0^1 dz z^{N-1} \mathcal{L}(z) C(N, \alpha_s) \equiv \int_0^1 dz z^{N-1} C(z, \alpha_s)$
------------------------------	--	---------------------	--	-----------------------	--	----------------------------	---

FACTORIZATION REMINDER

SSIONS	$\ln N) + \dots];$ $\sum_{k=1}^{\infty} g_{i,k} \lambda^k$ FOR	g_0 ACCURACY: α_s^i 0 1 2
RESUMMED EXPRED RESUMMATION	COUNTING $\ln N) + g_2(\alpha_s \ln N) + \alpha_s g_3(\alpha_s)$ $g_1(\lambda) = \sum_{k=2}^{\infty} g_{1,k} \lambda^k, \ g_i(\lambda) = i \ge 2$	EXP. ACCURACY: $\alpha_s^n L^k$ k = n + 1 k = n k = n - 1
RUCTURE OF] THRESHOL	$f = g_0(\alpha_s) \exp\left[\frac{1}{\alpha_s} g_1(\alpha_s) g_{0,1} + \alpha_s^2 g_{0,2} + \mathcal{O}(\alpha_s^3);\right]$	XSECT ACCURACY k = 2n $2n - 2 \le k \le 2n$ $2n - 4 \le k \le 2n$
THE ST	$C_{ m res}(N,lpha_s)$ $g_0(lpha_s)=1+lpha_s;$	JOG APPROX. LLL NLL NNLL

THE RESUMMED EXPONENT

$$S\left(M^{2}, \frac{M^{2}}{N^{2}}\right) = \int_{M^{2}}^{M^{2}/N^{2}} \frac{d\mu^{2}}{\mu^{2}} \bar{\gamma}\left(\alpha_{s}(\mu^{2}), \frac{M^{2}}{N^{2}\mu^{2}}\right)$$
$$= \int_{M^{2}}^{M^{2}/N^{2}} \frac{d\mu^{2}}{\mu^{2}} \left[-A(\alpha_{s}(\mu^{2})) \ln\left(\frac{M^{2}/N^{2}}{\mu^{2}}\right) + B[\alpha_{s}(\mu^{2})]\right].$$

- A, B ARE POWER SERIES IN α_s
- A IS UNIVERSAL, COEFFICIENT OF $\ln N$ IN (DIAGONAL GUARK OR GLUON) ANOMALOUS DIMENSION AT EACH ORDER
- B CONTAINS PROCESS-DEPENDENT TERMS, STARTS AT NLL •

THE PHOTON PDF

- THE SAME FACTORIZATION ARGUMENTS APPLY TO QCD AND QED
- THE PROTON ALSO HAS A PHOTON CONTENT \Rightarrow PHOTON PDF
- PHOTONS RADIATED BY GUARKS; $\alpha_s \to \alpha$;
- $\alpha(M_z) \sim \alpha_s(M_z)/10 \Rightarrow$ NLO GED CORRECTIONS~ NNLO GCD CORRECTIONS **GED** INDUCED CONTRIBUTIONS TO HADRON COLLIDER PROCESSES

DATA	
FROM	
N PDF	
IOTOH	
THE P	

NNPDF2.3GED/NNPDF3.0GED DATASET

$\left[M_{ m ll}^{ m min}, M_{ m ll}^{ m max} ight]$	$[5,120] { m GeV}$	[60,120] GeV	[116,1500] GeV
$[\eta_{\min},\eta_{\max}]$	[2, 4.5]	[-2.5, 2.5]	[-2.5, 2.5]
$N_{ m dat}$	6	30	13
Observable	$d\sigma(Z)/dM_{ll}$	$d\sigma(W^{\pm},Z)/d\eta$	$d\hat{\sigma}(Z)/d\hat{M}_{ll}$
Dataset	LHCb γ^*/Z Low Mass	ATLAS W, Z	ATLAS γ^*/Z High Mass

IMPACT

THE PHOTON PDF NNPDF2.3GED-NNPDF3.0GED

NLO RESULTS

NNLO RESULTS

10_

10⁻²

10⁻³

10⁻⁴

10⁻⁵

×

1111

Photon PDF comparison at 10⁴ GeV²

THE PHOTON PDF BREAKTHROUGH	(Manohar, Nason, Salam, Zanderighi, 2016)	• QED IS PERTURBATIVE DOWN TO LOW SCALES \Rightarrow THE PHOTON PDF MUST BE COMPUTABLE IF THE INPUT QUARK SUBSTRUCTURE IS KNOWN	• WRITE THE CROSS-SECTION FOR A CHOSEN PROCESS: SUSY PRODUCTION IN EP COLLISION (Drees, Zeppenfeld, 1989)	• COMPUTE IT DIRECTLY, OR USING THE PHOTON PDF	• \Rightarrow PDF expressed in terms of the structure function integrated over all scales, including elastic form factors	$\begin{split} xf_{\gamma/p}(x,\mu^2) &= \\ xf_{\gamma/p}(x,\mu^2) &= \\ \frac{1}{2\pi^{\alpha}(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_x^{1-\frac{2}{2x}} \frac{dQ^2}{2} \alpha^2(Q^2) \\ \frac{1}{2\pi^{\alpha}(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_x^{1-\frac{2}{2x}} \frac{dQ^2}{1-z} \alpha^2(Q^2) \\ \frac{1}{2} \left[\left(zp_{\gamma q}(z) + \frac{2x^2m_p^2}{Q^2} \right) F_2(x/z,Q^2) - z^2 F_L(\frac{x}{z},Q^2) \right] \right\} \\ \left[\left(zp_{\gamma q}(z) + \frac{2x^2m_p^2}{Q^2} \right) F_2(x/z,Q^2) - z^2 F_L(\frac{x}{z},Q^2) \\ - \alpha^2(\mu^2) z^2 F_2\left(\frac{x}{z},\mu^2\right) \right\}, \end{split} $
-----------------------------	---	---	--	--	---	---

M [GeV]

MASSLESS SCHEME EXAMPLE: HIGGS IN BOTTOM GUARK FUSION HEAVY QUARKS VS. MASSIVE (DECOUPLING) SCHEME

- THE b guark is massive
- THE b GUARK DECOUPLES FROM QCD EVOLUTION AND THE RUNNING OF α_s : $n_f = 4$
- THE DEPENDENCE ON m_b IS FULLY RE-TAINED, INCLUDING $O\left(\frac{m_b^2}{m_H^2}\right)$ TERMS
- THERE ARE NO COLLINEAR SINGULARI-TIES, $\ln \frac{m_b^2}{m_H^2}$ ARE INCLUDED UP TO FI-NITE ORDER
- b INITIATED PROCESSES START BE-YOND LEADING ORDER: $Hb\bar{b}$ STARTS AT $O(\alpha_s^2)$.

- b guark mass effects neglected
- THE b GUARK IS JUST ANOTHER MASS-LESS PARTON, $n_f = 5$
- COLLINEAR LOGS $\lim_{m_b \to 0} \ln \frac{m_b^2}{m_H^2}$ ARE FACTORIZED AND RESUMMED TO ALL ORERS THROUGH QCD EVOLUTION
- *b* initiated processes start at Leading order

ACCURACY REQUIRES MATCHING (ACOT, FONLL, SCET-BASED)
$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$	$F^{(3)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_{i}^{(3)} \left(\frac{x}{y}, \frac{Q^{2}}{m_{h}^{2}}, \alpha_{s}^{(3)}(Q^{2})\right) f_{i}^{(3)}(y, Q^{2})$	$F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},h,\bar{h}} C_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)$	ADVANTAGES	• RELIES ON STANDARD FACTORIZATION & DECOUPLING	ullet THE RESUMMED AND UNRESUMMED ORDERS CAN BE CHOSEN FREELY & INDEPENDENTLY	COMPLICATIONS	• RESUMMED & FIXED-ORDER CALCULATION ARE PERFORMED IN DIFFERENT RENORMALIZATION
BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) \Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITH THEIR MASSIVE COUNTERPARTS	BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) \Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITH THEIR MASSIVE COUNTERPARTS $F(x, Q^2) = F^{(3)}(x, Q^2) + F^{(4)}(x, Q^2) - F^{(3,0)}(x, Q^2)$	BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) \Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITH THEIR MASSIVE COUNTERPARTS $F(x, Q^2) = F^{(3)}(x, Q^2) + F^{(4)}(x, Q^2) - F^{(3,0)}(x, Q^2)$ $F^{(3)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}}^{(3)} C_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{w_h^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y, Q^2)$	BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) \Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITH $F(x, Q^2) = F^{(3)}(x, Q^2) + F^{(4)}(x, Q^2) - F^{(3,0)}(x, Q^2)$ $F^{(3)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}}^{(3)} C_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{m_h^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y, Q^2)$ $F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}}^{(3)} C_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)$	BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) \Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITH THEIR MASSIVE COUNTERPARTS $F(x, Q^2) = F^{(3)}(x, Q^2) + F^{(4)}(x, Q^2) - F^{(3,0)}(x, Q^2)$ $F^{(3)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}}^{(3)} C_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{m_{\bar{p}}^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y, Q^2)$ $F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}}^{(3)} C_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)$ ADVANTAGES	BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) $\Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITHTHEIR MASSIVE COUNTERPARTSF(x, Q^2) = F^{(3)}(x, Q^2) + F^{(4)}(x, Q^2) - F^{(3,0)}(x, Q^2)F^{(3)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{m_h^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{m_h^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q}} C_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)ADVANTAGES• RELIES ON STANDARD FACTORIZATION & DECOUPLING$	BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) $\Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITHTHEIR MASSIVE COUNTERPARTSF(x, Q^2) = F^{(3)}(x, Q^2) + F^{(4)}(x, Q^2) - F^{(3,0)}(x, Q^2)F^{(3)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} c_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{w_h^2}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \frac{y}{y}\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \frac{y}{y}\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,\bar{q},\bar{q},\bar{q},h,\bar{h}} c_i^{(4)} \left(\frac{x}{y}\right) f_i^{(4)}(y, Q^2)F^{(4)}(x, Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,\bar{q},\bar{q},$	BASIC IDEA: COMBINE $N^i LL$ MASSLESS RESUMMED & $N^j LO$ MASSIVE FIXED-ORDER (UNRESUMMED) $\Rightarrow EXPAND OUT THE RESUMMED RESULT AND REPLACE THE FIRST j ORDERS WITHTHEIR MASSIVE COUNTERPARTSF(x,Q^2) = F^{(3)}(x,Q^2) + F^{(4)}(x,Q^2) - F^{(3,0)}(x,Q^2)F^{(3)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q}} c_i^{(3)} \left(\frac{x}{y}, \frac{Q^2}{y}, \alpha_s^{(3)}(Q^2)\right) f_i^{(3)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)F^{(4)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},\bar{h},\bar{h}} c_i^{(4)} \left(\frac{x}{y}, \alpha_s^{(4)}(Q^2)\right) f_i^{(4)}(y,Q^2)$
	$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$	$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$ $F^{(3)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q}} c_{i}^{(3)} c_{i}^{(3)} \left(\frac{x}{y}, \frac{Q^{2}}{m_{h}^{2}}, \alpha_{s}^{(3)}(Q^{2})\right) f_{i}^{(3)}(y, Q^{2})$	$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$ $F^{(3)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_{i}^{(3)} \left(\frac{x}{y}, \frac{Q^{2}}{m_{h}^{2}}, \alpha_{s}^{(3)}(Q^{2})\right) f_{i}^{(3)}(y, Q^{2})$ $F^{(4)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} C_{i}^{(4)} \left(\frac{x}{y}, \alpha_{s}^{(4)}(Q^{2})\right) f_{i}^{(4)}(y, Q^{2})$	$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$ $F^{(3)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_{i}^{(3)} \left(\frac{x}{y}, \frac{Q^{2}}{m_{h}^{2}}, \alpha_{s}^{(3)}(Q^{2})\right) f_{i}^{(3)}(y, Q^{2})$ $F^{(4)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} C_{i}^{(4)} \left(\frac{x}{y}, \alpha_{s}^{(4)}(Q^{2})\right) f_{i}^{(4)}(y, Q^{2})$ ADVANTAGEA	$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$ $F^{(3)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q}} c_{i}^{(3)} \left(\frac{x}{y}, \frac{Q^{2}}{m_{h}^{2}}, \alpha_{s}^{(3)}(Q^{2})\right) f_{i}^{(3)}(y, Q^{2})$ $F^{(4)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{h},\bar{h}} c_{i}^{(4)} \left(\frac{x}{y}, \alpha_{s}^{(4)}(Q^{2})\right) f_{i}^{(4)}(y, Q^{2})$ $ADVANTAGES$ • RELIES ON STANDARD FACTORIZATION & DECOUPLING	$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$ $F^{(3)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\tilde{q}} c_{i}^{(3)} \left(\frac{x}{y}, \frac{Q^{2}}{m_{h}^{2}}, \alpha_{s}^{(3)}(Q^{2})\right) f_{i}^{(3)}(y, Q^{2})$ $F^{(4)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\tilde{q},h,\tilde{h}} c_{i}^{(4)} \left(\frac{x}{y}, \alpha_{s}^{(4)}(Q^{2})\right) f_{i}^{(4)}(y, Q^{2})$ $ADVANTAGES$ • RELIES ON STANDARD FACTORIZATION & DECOUPLING • THE RESUMMED AND UNRESUMMED ORDERS CAN BE CHOSEN FREELY & INDEPENDENTLY	$F(x, Q^{2}) = F^{(3)}(x, Q^{2}) + F^{(4)}(x, Q^{2}) - F^{(3,0)}(x, Q^{2})$ $F^{(3)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q}} C_{i}^{(3)} \left(\frac{x}{y}, \frac{Q^{2}}{w_{h}^{2}}, \alpha_{s}^{(3)}(Q^{2})\right) f_{i}^{(3)}(y, Q^{2})$ $F^{(4)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} C_{i}^{(4)} \left(\frac{x}{y}, \alpha_{s}^{(4)}(Q^{2})\right) f_{i}^{(4)}(y, Q^{2})$ $F^{(4)}(x, Q^{2}) = x \int_{x}^{1} \frac{dy}{y} \sum_{i=g,q,\bar{q},\bar{q},h,\bar{h}} C_{i}^{(4)} \left(\frac{x}{y}, \alpha_{s}^{(4)}(Q^{2})\right) f_{i}^{(4)}(y, Q^{2})$ $ADVANTAGES$ $FELIES ON STANDARD FACTORIZATION & DECOUPLING$ $THE RESUMMED AND UNRESUMMED ORDERS CAN BE CHOSEN FREELY & INDEPENDENTLY COMPLICATIONS$

THE FONLL METHOD

- & FACTORIZATION SCHEMES: 3F (MASSIVE, DECOUPLING) VS. 4F (MASSLESS)
- MUST MATCH α_s & PDFS

NOITUUN

Re-express 3F-scheme PDFs & α_s in terms of the 4F-scheme ones

MPACT

10⁻¹

x 10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁵

×

MATCHED COMPUTATIONS \Rightarrow REALISTIC DESCRIPTION OF MEASURABLE QUANTITIES MATCHED FIXED-ORDER & RESUMMATION CURRENTLY INCLUDED ONLY FOR HEAVY MANY LHC PROCESSES NOW KNOWN AT NNLO, FEW INCLUDED IN PDF PDF ACCURACY STARTS BEING LIMITED BY THEORY ACCURACY: NNLO NEEDED FOR PERCENT ACCURACY RESUMMATION NOT INCLUDED IN PDF DETERMINATION THEORY SUMMARY CURRENTLY ONLY DRELL-YAN RAPIDITY DISTRIBUTION PDF THEORY UNCERTAINTIES NOT YET INCLUDED, NEEDED FOR PERCENT ACCURACY **DETERMINATION: GUARKS**

PDFs NOW

CONTEMPORARY PDF TIMELINE

ഹ	4													
201	CT) (06)	>	2	×	×	×	2	2	2	2	2	×	×	×
14	MMHT (12)	2	2	×	×	2	2	2	2	2	2	×	×	×
20	NN3.0 (10)	>	2	2	2	×	2	2	2	2	2	2	2	2
n	ABM12 (10)	>	2	2	×	×	2		×	some	×	2	×	×
201	CT10(NN) (02)	~	2	×	some	×	2	7	7	×	×	×	×	×
5	NN2.3 (07)	~	2	2	×	×	2	2	2	2	2	×	×	×
201	ABM11 (02)	>	2	×	×	×	2	×	2	×	×	×	×	×
2011	NN2.1(NN) (07)	>	2	2	some	×	2	2	×	×	×	×	×	×
0	CT10(N) (07)	~	2	×	×	×	2	2	2	×	×	×	×	×
201	NN2.0 (02)	~	2	2	×	×	2	2	2	×	×	×	×	×
60	ABKM09 (08)	~	2	×	×	×	2	×	×	×	×	×	×	×
20	MSTW (01)	>	2	×	×	2	2	2	2	×	×	×	×	×
08	NN1.0 (08)	2	2	×	×	×	×	×	×	×	×	×	×	×
20(CT6.6 (02)	>	2	×	×	×	2	2	>	×	×	×	×	×
	SET MONTH	F. T. DIS	ZEUS+H1-HI	comb. HI	ZEUS+H1-HII	HERA JETS	F. T. DY	TEV. W+Z	TEV. JETS	LHC W+Z	LHC JETS	TOP	W+C	$^{\sf W} pT$

- INCREASINGLY WIDE DATASET USED FOR PDF DETERMINATION
- HERAPDF: ONLY HERA STRUCTURE FUNCTION DATA \Rightarrow EXTREME CONSISTENCY
- MANY THEORETICAL AND METHODOLOGICAL IMPROVEMENTS:
- MSTW, ABKM: ALL NNLO; NNPDF NNLO SINCE 07/11 (2.1), CT SINCE 02/13 (CT10)
 - MSTW, CT ALL MATCHED HEAVY GUARK SCHEMES; NNPDF GM-VFN SINCE 01/11 (2.1)

THE DATASET IN DETAIL	NNPDF3.0 MMHT14 CT14	× / / /	<u>></u> >	>	× >	> ×	> > ×	>	×	<i>></i> <i>></i>	>	>	~
: THE DATASE	MM 0.810 MM	>	>	2	~	×	~	2	×	2	>	>	×
LOBAL FITS:		SLAC P,D DIS	BCDMS P,D DIS	NMC P,D DIS	E665 P,D DIS	CDHSW NU-DIS	CCFR NU-DIS	CHORUS NU-DIS	CCFR DIMUON	NUTEV DIMUON	HERA I NC, CC	HERA I CHARM	H1 ZFUS IFTS

UDAL FIIS: 1	ne val	AJEL IN	DETA
	NNPDF3.0	MMH114	CT14
SLAC P,D DIS		~	×
BCDMS P,D DIS	2	7	2
NMC P,D DIS	2	7	7
E665 P,D DIS	×	7	×
CDHSW NU-DIS	×	×	7
CCFR NU-DIS	×	7	7
CHORUS NU-DIS	2	7	×
CCFR DIMUON	×	2.	7.
NUTEV DIMUON	~	~	>
HERA I NC, CC	2.	7.	2.
HEKA I CHARM	2	, ۲	7
H1,ZEUS JETS	×	2	×
H1 HERA II	2	×	×
ZEUS HERA II	2	×	×
E605 & E866 FT DY	>	>	>
CDF & D0 W ASYM	×	>	2
CDF & D0 Z RAP	2	7	2
CDF RUN-II JETS	2	2	2
DO RUN-II JETS	×	2	2
DO RUN-II W ASYM	×	×	2
ATLAS HIGH-MASS DY	>	>	2
CMS 2D DY	2	2	×
ATLAS W,Z RAP	2	7	2
ATLAS W p_T	2	×	×
CMS W ASY	2	2	2
CMS W +c	2	×	×
LHCB W,Z RAP	2	7	2
ATLAS JETS	2	7	2
CMS JETS	2	2	2
TTBAR TOT XSEC	>	7	×
TOTAL NLO	4276	2996	3248
TOTAL NNLO	4078	2663	3045

THE NNPDF3.0 DATASET

NNPDF3.0 NLO dataset

FITS BASED ON REDUCED DATASET HAVE EITHER LARGE UNCERTAINTIES OR SHOW SIZABLE DEVIATIONS

IMPACT ON SEARCHES

UNCERTAINTIES BLOW UP FOR LIGHT (≤ 10 GeV) or heavy (≥ 1 TeV) final states \Rightarrow

PARTON LUMINOSITIES

ALAR SIZE?	(MMHT & CT) or	DBAL FITS			CT14	6 6	$x^{a}(1-x)^{o} imes ext{BERNSTEIN}$ 30-35	HESSIAN	DYNAMICAL X	EIGENVECTORS	
CS ON GLOBAL FITS OF SIN	A THROOUGH TOLERANCE	OVED AGREEMENT OF GLO		ETHODOLOGY	MMHT14		$x^{a}(1-x)^{o} imes$ CHEBYSCHEV 37	HESSIAN	DYNAMICAL X	EIGENVECTORS	
UNCERTAINTIE ETS T PROCEDURE	UNED TO DATA (NNPDF)	AEN THE IMPRO ETS F PROCEDURE	DOLOGY	IM	NNPDF3.0	2	NEURAL NETS 259	REPLICAS	NONE	REPLICAS	
 Q: WHY ARE PDF SIMILAR DATAS BUT DIFFEREN 	• A: UNCERTAINTY T CLOSURE TESTING	 Q: WHAT HAS DRIV SIMILAR DATAS BUT DIFFERENT 	• A: DATA+METH(NO. OF FITTED PDFS	PARAMETRIZATION FREE PARAMETERS	UNCERTAINTIES	TOLERANCE CLOSURE TEST	REWEIGHTING	

PROGRESS

- MMHT, CT10 LARGER # OF PARMS., ORTHOGONAL POLYNOMIALS
- NNPDF CLOSURE TEST

- LONG-STANDING DISCREPANCY IN THE d/u ratio between MSTW and OTHER GLOBAL FITS
- RESOLVED BY W ASYMMETRY DATA
- EXPLAINED BY INSUFFICIENTLY FLEXIBLE PDF PARAMETRIZATION \Rightarrow FIXED IN MSTW08DEUT/MMHT

- PDF4LHC PRESCRIPTION 2012: ENVELOPE, PDF UNCERTAINTY $\sim 6\%$
- PDF4LHC PRESCRIPTION 2015: STATISTICAL COMBINATION, PDF UNCERTAINTY $\sim 2\%$

THE NEW PDF4LHC PRESCRIPTION

- PERFORM MONTE CARLO COMBINATION OF UNDERLYING PDF SETS
- SETS ENTERING THE COMBINATION MUST SATISFY COMMON REQUIREMENTS
- DELIVER A SINGLE COMBINED PDF SET THROUGH SUITABLE TOOLS

MONTE CARLO VS. HESSIAN DELIVERY

- **QUANTITIES COMPUTED FOR EACH REPLICA: CENTRAL VALUE IS THE MEAN,** MONTE CARLO: A SET OF PDF REPLICAS IS DELIVERED; **UNCERTAINTY IS STANDARD DEVIATION**
- CENTRAL SET PROVIDES CENTRAL PREDICTION, UNCERTAINTY IS THE SUM IN HESSIAN: A CENTRAL SET AND ERROR SETS ARE DELIVERED; **GUADRATURE OF ERROR DEVIATIONS**

TREATMENT OF α_s

- PDFS are delivered for each value of α_s
- PDF and α_s uncertainties to be kept separate

CURRENT COMBINED SET

- INCLUDES CT14, MMHT, NNPDF3.0
- 900 REPLICAS (300 FOR EACH SET) ENSURE PRECENTAGE ACCURACY ON ALL QUANTITIES

LUMINOSITY UNCERTAINTIES THE PDF4LHC15 SET

G.P. Salam, 2016

OUTLOOK

- "PDF UNCERTAINTIES" AS PROPAGATED FROM DATA AND METHODOLOGY ARE BY AND LARGE RELIABLE, OF ORDER OF 5% in a wide kinematic RANGE
- LACK OF EXPERIMENTAL INFORMATION CAN BE A LIMITATION IN REGIONS RELEVANT FOR SEARCHES BUT WILL BE REMEDIED BY LHC DATA
- THEORETICAL UNCERTAINTIES MUST BE HANDLED
- LHC DATA ARE LIKELY TO CHALLENGE THE PROPER HANDLING OF THEORETICAL UNCERTAINTIES

PDFs ARE NOT PLUMBING!

Generated with APFEL 2.4.0 Web

- PDFS DEPEND ON HEAVY GUARK MASSES
- NNPDF3.0 $m_c = 1.275$ Gev; MMHT $m_c = 1.4$ Gev; CT14 $m_c = 1.3$ Gev (POLE) [PDG: 1.47 ± 0.03]
- \bullet INDICATIONS THAT DIFFERENCE MAY BE TO m_c value

WHICH SETS THE PHYSICAL THRESHOLD; DEPENDENCE SEEN BOTH AT LOW AND HIGH SCALE;

FITTED: EXTREMELY STABLE AT ALL SCALES STRUCTURE APPEARS AT LARGE x

DYNAMICAL: DEPENDS SIGNIFICANTLY ON THE MASS

GLUON LARGELY INSENSITIVE TO CHARM MASS IN ALL CASES

FITTED CHARM: LIGHT GUARKS BECOME INDEPENDENT OF CHARM MASS AT ALL SCALES

- NNPDF3 NLO Fitted Charm, Q=100 GeV NNPDF3 NLO Fitted Charm, Q=100 GeV 10-1 10 FITTED 10 10 10 ₩ m_c=1.33 GeV -- m_=1.61 GeV m_c=1.47 GeV 뺐 m_c=1.33 GeV -- m_c=1.61 GeV m_c=1.47 GeV 10 4 10-4 0.85 0.85 1.2 1.15 1.2 Q²) ∖ Ū (x, Q²) [ref] 1.15 ,х) и 1.25 d (x, Q²) / d (x, Q²) [ref] 1.25 0.9 0.9 ANTIUP DOWN NNPDF3 NLO Dynamical Charm, Q=100 GeV NNPDF3 NLO Dynamical Charm, Q=100 GeV 101 0 DYNAMICAL 9 10 ē $m_c=1.47$ GeV m_c=1.47 GeV ₩ m_c=1.33 GeV ---- m_c=1.61 GeV ---- m_c=1.61 GeV 10 104 d (x, Q²) / d (x, Q²) [ref] ي ت ت ت ם (x, Q²) / ת (x, Q²) [ref] 0.85 1.25 0.85 1.25 1.2 1 i2 0.9 0.9

THE LIGHT QUARKS

DYNAMICAL CHARM: LIGHT GUARKS DEPEND (WEAKLY) ON THE MASS WHICH SETS THE PHYSICAL THRESHOLD FOR CHARM, BOTH AT LOW AND HIGH SCALE;