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What are Parton Distribution Functions?

@ Consider a process with one hadron in the initial state

p D(x,Q?)

@ According to the Factorization Theorem we can write the cross
section as

do —Z/ % p ) daa(g 5 asu )>+0((;p)
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What are Parton Distribution Functions?

@ The absolute value of PDFs at a given x and Q? cannot be
computed in QCD Perturbation Theory
(Lattice? In principle yes, but ...)

@ ... but their scale dependence is governed by DGLAP evolution
equations

F o0 @) = PY(E a5) 2 g (6, @)

mi?Z(E)“’OZ) = ( i ggj)@,as)@(g)(ao?)

@ ... where the splitting functions can be computed in PT and are
known up to NNLO

(LO - Dokshitzer; Gribov, Lipatov; Altarelli, Parisi; 1977)
(NLO - Floratos, Ross, Sachrajda; Gonzalez-Arroyo, Lopez, Yndurain; Curci, Furmanski, Petronzio, 1981)
(NNLO - Moch, Vermaseren, Vogt; 2004) 5
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Why care about PDFs (and their uncertainties)?

LHC parton kinematics

T
= (M/14 TeV) exp(zy)
M M=10Tev
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Why care about PDFs (and their uncertainties)?

Q@ (Gev)
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Why care about PDFs (and their uncertainties)?

LHC parton kinematics
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Why care about PDFs (and their uncertainties)?

@ Errors on PDFs are in some cases the dominating theoretical error
on precision observables

Ex. U(ZO) at the LHC: 6ppr ~ 3%, dnnio ~ 2%
[J. Campbell, J. Huston and J. Stirling, (2007)]

¢
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Why care about PDFs (and their uncertainties)?

@ Errors on PDFs are in some cases the dominating theoretical error
on precision observables

Ex. U(ZO) at the LHC: 6ppr ~ 3%, dnnio ~ 2%
[J. Campbell, J. Huston and J. Stirling, (2007)]

@ Errors on PDFs might reduce sensitivity to New Physics
Ex. Extra Dimensions discovery in dijet cross section at the LHC:
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[S. Ferrag (ATLAS), hep-ph/0407303]
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Problem

Faithful estimation of errors on PDFs

@ Single observable: 1-o interval
@ Correlated observables: 1-o contours

@ Function: need an "error band" in the space of functions
(i.e. the probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FIFN) = /fo[f(x)]P[f(X)]
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|
Problem

Faithful estimation of errors on PDFs

@ Single observable: 1-o interval
@ Correlated observables: 1-o contours

@ Function: need an "error band" in the space of functions
(i.e. the probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FIFN) = /fo[f(x)]P[f(X)]

Determine a function from a finite set of data points J

¢

A. Guffanti (NBIA & Discovery Center) NNPDF 6/30



Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters

q(x, @) = x*(1 = x)P P(x; M, ..., A\n).

o Fit parameters minimizing 2.
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Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters
q(x, @) = x*(1 = x)P P(x; M, ..., A\n).

o Fit parameters minimizing 2.

Open problems:

@ Error propagation from data to parameters and from parameters to
observables is not trivial.

@ Theoretical bias due to the chosen parametrization is difficult to
assess.
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Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ay? = 1 criterion is too restrictive
to account for large discrepancies among
experiments.

[Collins & Pumplin, 2001]

¢

A. Guffanti (NBIA & Discovery Center) NNPDF 8/30



N
Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ay? = 1 criterion is too restrictive
to account for large discrepancies among

experiments.

[Collins & Pumplin, 2001]

@ Introduce a TOLERANCE criterion, i.e. take
the envelope of uncertainties of experiments
to determine the Ax? to use for the global fit

(CTEQ).

A. Guffanti (NBIA & Discovery Center)

NNPDF

Eigemocir &




N
Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ay? = 1 criterion is too restrictive
to account for large discrepancies among

experiments.

[Collins & Pumplin, 2001]

@ Introduce a TOLERANCE criterion, i.e. take
the envelope of uncertainties of experiments
to determine the Ax? to use for the global fit

(CTEQ).

@ Make it DYNAMICAL, i.e. determine Ax?
separately for each hessian eigenvector

(MSTW).
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NNPDF

Eigemocir &

)

MSTW 2008 NLO PDF it




N
Shortcomings of the standard approach

What determines PDF uncertainties?

@ Uncertainties in standard fits often increase when adding new
data to the fit.

@ Related to the need of extending the parametriztion in order to
accomodate the new data

Smaller high- gluon (and slightly smaller «s) results in larger small-z gluon — now
shown at

Gluon atQ 10* Gev2

—— MSTW 2008 NNLO
—— MRST 2006 NNLO
i
i

"
10 10° 10? 10" 1
X

Larger small-z uncertainty due to extrat free parameter.

A
[R. Thorne, PDF4LHCH&2
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NNPDF Methodology

Main Ingredients

@ Monte Carlo determination of errors
@ No need to rely on linear propagation of errors
e Possibility to test for the impact of non gaussianly distributed errors

e Possibility to test for non-gaussian behaviour in fitted PDFs
(1 — o vs. 68% CL)

@ Neural Networks
e Provide an unbiased parametrization

@ Stopping based on Cross-Validation
e Ensures proper fitting avoiding overlearning
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NNPDF Methodology

Monte Carlo replicas generation

@ Generate artificial data according to distribution

Nsys
O,-(art)(k) _ (1 +r/(\[ . )[O(GXP +Zr(k Oip+r ( )
p=1

where r; are univariate gaussian random numbers

@ Validate Monte Carlo replicas against experimental data
(statistical estimators, faithful representation of errors, convergence rate
increasing Niep)

Central values Enoes Corelations

@ (O(1000) replicas needed to reproduce correlations to percent accuracy,%gg
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NNPDF Methodology

Neural Networks ... a suitable basis of functions

@ We use Neural Networks as functions to represent PDFs at the
starting scale

@ We employ Multilayer Feed-Forward Neural Networks trained using
a Genetic Algorithm

@ Activation determined by weights and thresholds

]
&=g (quﬁ/ - 9/) v I =g
)

¢
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NNPDF Methodology

Neural Networks ... a suitable basis of functions
@ We use Neural Networks as functions to represent PDFs at the
starting scale

@ We employ Multilayer Feed-Forward Neural Networks trained using
a Genetic Algorithm

@ Activation determined by weights and thresholds

]
&=g (quﬁ/ - 9/) v I =g
)

Ex.: 1-2-1 NN:
1
553)(551)) = @) (2)

0B _ “11 _ “12
1 9 _ MM 0@ _ M,
1+e 1+e 1 1“1 1+e 2 1 “21
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NNPDF Methodology

Neural Networks ... a suitable basis of functions
@ We use Neural Networks as functions to represent PDFs at the
starting scale

@ We employ Multilayer Feed-Forward Neural Networks trained using
a Genetic Algorithm

@ Activation determined by weights and thresholds

1
=9 (Zwijﬁj - 9/) 9= Trep
)

Ex.: 1-2-1 NN:
553)(551)) = )

3 w (2)
0B _ i1 _ 12

1 9 _ MM ()_5(1) ()
1+e 1+e 1 1“1 1+e 17 %21

1

w

@ They provide a parametrization which is redundant and robust against s
variations ;%Lg
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NNPDF Methodology

Cross-validation ... ensuring an optimal fit

Stopping criterion based on Training-Validation separation

@ Divide the data in two sets: Training and Validation
@ Minimize the x? of the data in the Training set

@ Compute the x? for the data in the Validation set

@ When Validation 2 stops decreasing, STOP the fit
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NNPDF Methodology

Cross-validation ... ensuring an optimal fit

Stopping criterion based on Training-Validation separation

@ Divide the data in two sets: Training and Validation
@ Minimize the x? of the data in the Training set

@ Compute the x? for the data in the Validation set

@ When Validation 2 stops decreasing, STOP the fit
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NNPDF Methodology

... in a Nutshell

@ Generate N, Monte-Carlo replicas of the experimental data
(sampling of the probability density in the space of data)

@ Fit a set of Parton Distribution Functions on each replica
(sampling of the probability density in the space of PDFs)

@ Expectation values for observables are Monte Carlo integrals

Nrep
FlHx ) = g > F (10, )
re k=1

.. the same is true for errors, correlations, etc.
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NNPDF 2.1

Dataset
[R. D. Ball et. al, arXiv:1101.1300] - NLO
[R. D. Ball et. al, arXiv:1107.2652] - LO/NNLO
[ 0BS Data set ]
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NNPDF 2.1

Heavy Flavour treatment - FONLL

@ We adopt the FONLL General Mass-Variable Flavour Number Scheme

[M. Cacciari, M. Greco and P. Nason, (1998)]
[S. Forte, P. Nason E. Laenen and J. Rojo, (2010)]

@ FONLL gives a prescription to combine FFN (Massive) and ZM-VFN
(Massless) computations, at any given order, avoiding double
counting.

@ With results available three implementations of FONLL are possibile:

@ FONLL-A: O(as) Massless + O(as) Massive - (NLO fit)
e FONLL-B: O(as) Massless + O(a3) Massive
o FONLL-C: O(a2) Massless + O(a2) Massive - (NNLO fit)

@ Fixed Flavour Number Scheme (3-, 4-, 5-) fits available.
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NNPDF 2.1

Parametrization

Parton Distributions Combination

NN architechture

Singlet (X(x))

Gluon (g(x))

Total valence (V(x) = uv(x) + dv(x))
Non-singlet triplet (T5(x))

Sea asymmetry (As(x) = d(x) — (x))
Total Strangeness (s*(x) = (s(x) + 5(x))/2)
Strange valence (s (x) = (s(x) — 5(x))/2)

FUEELEl

259 parameters
Standard fits have ~ 25 parameters in total

2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)

)

No change in the parametrization since NNPDF1.2 ... despite substantial

enlargement of the dataset.

A. Guffanti (NBIA & Discovery Center) NNPDF



EEE—————————
NNPDF2.1@NNLO

Partons - Comparison to NLO

[xg (x, @)

,
L R R T S X S & R ] L R T S T T S & X
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NNPDF2.1@NNLO

Partons - Comparison to MSTW08
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NNPDF2.1@NNLO

Partons - A couple of upshots

@ Stability of parton determined when increasing the
perturbative order of the analysis.
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NNPDF2.1@NNLO

Partons - A couple of upshots

@ Stability of parton determined when increasing the
perturbative order of the analysis.

@ Uncertainties on PDFs have size comparable to
those obtained by other groups in kinematic
regions where there are significant contraints
from data ...
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NNPDF2.1@NNLO

Partons - A couple of upshots

@ Stability of parton determined when increasing the
perturbative order of the analysis.

@ Uncertainties on PDFs have size comparable to
those obtained by other groups in kinematic
regions where there are significant contraints
from data ...

@ ... but still retain unbiasedness in kinematic
regions where there are little or no experimental
constraints.
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NNPDF2.1@NNLO

Phenomenology - LHC Standard Candles

@ Predictions for LHC Standard Candles compared to other theory
predictions & LHC data
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Reweighting NNPDFs

Assessing the impact of new data on PDF fits

[R. D. Ball et al., arXiv:1012.0836]
@ Originally inspired by an idea of Giele and Keller [hep-ph/9803393]

@ The N, replicas of a NNPDF fit give the probability density in the
space of PDFs

@ Expectation values for observables are Monte Carlo integrals

FlhOn ) = g S F (10 (x, )

(... the same is true for errors, correlations, etc.)

@ We can assess the impact of including new data in the fit updating
the probability density distribution.

¢
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N
Reweighting NNPDFs

Assessing the impact of new data on PDF fits

@ According to Bayes Theorem we have

g — X2
2

Poen({}) = M PO Pun({13), - POEKE) = DE A1)

@ Monte Carlo integrals are now weighted sums

Nrep

(FI(x, Q) Zwkf( 00 (x, %))

where the weights are

dat 1 z(y,fk)
2

Ay, 0]
SNy, £)] ‘e*

Wx =

x2(y.5)
2

¢
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Reweighting NNPDFs

Proof-of-concept: Inclusive Jet data, reweighting vs. refitting

@ Use DIS+DY-fit as prior probability 0
distribution =
@ Add Tevatron Inclusive Jet data through 7 f

refitting and through reweighting

@ Reweighting and refitting yield e e
statistically equivalent results i I
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Reweighting NNPDFs

Real data: Tevatron/LHC W lepton asymmetry

@ DO and first ATLAS and CMS (36 pb—') W
lepton asymmetry data have the potential to
constrain PDFs.

@ Included on top of NNPDF2.1 NLO using
reweighting techniques.

@ No need of refitting.

@ Main impact on medium-/large-x quark
distributions.

@ Looking forward to 1 fo~" datal!
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R
Conclusions

@ A reliable estimation of PDF uncertainties is crucial in order to exploit
the full physics potential of the LHC experiments.

@ The NNPDF2.1 family fulfills the requirement of an ideal PDF set for
precision phenomenology at the LHC

it is based on a comprehensive, up-to-date, dataset,
it is free of parametrization bias,

it is provided with a reliable, statistically meaningful estimation of
uncertainties,

it includes NLO corrections without resorting to K-factor approximations
(local K-factors are used for NNLO corrections to hadronic observables),

it includes a consistent treatment of heavy quark effects,
it is available for a variety of values of as and quark masses.

@ Reweighting techniques provide an easy way to assess impact
of/incorporate new data in PDF fits without need for refitting.

)
@ NNPDF sets are available within the LHAPDF interface. ﬁ
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PDF Uncertainties and Correlations

A practitioner’s guide to NNPDF predictions

Central Value

Naet

F) = 7 Y Fla®)

Standard Deviation

N\C‘
or = (N1 > (FHa - <f[{q}1>)2>

set peq

1/2

Correlation

SFG > — < F >pp <G >ep

p=cosp(F,G) =
V< F2 >p — < F S2p\/< G2 >1p — < G >2p

5
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Confidence Level Intervals

Testing for non gaussian distribution of fitted PDFs

@ Confidence Level intervals can be computed directly from the
replicas distribution

@ Comparison of 68% C.L. and symmetric 1o especially in extrapolation
regions where theory constraints dominate on experimental information

S

— NNPDF2.0 - 68% CL
—— NNPDF2.0 - 1-¢
3l Individual Replicas

)

xg (x, Q
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NNPDF 2.1

FONLL - The gory details
@ A generic DIS observable in the FONLL scheme is written as:
FFONtE(x, @P) = D(QP)F9(x, Q%) + F"(x, Q)

where the threshold damping factor is given by

2 2 2 m?

D(QF) =6(Q m)<1 02>
and the subtraction term is
F(d) — [F(nr+1)(x7 Q?) — FmO)(x, 02)}

with the massless limit of the massive contributions being

1d 2
Fro @) =x [ 50 B (3. (@) 17y )
-~

with ) )
. ' Q (0) Q B .
am, [B' (X’ n12> —B (o) 70 &
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