TORINO, NOVEMBER 23, 2009

HEPTOOLS HIGGS WORKSHOP

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di fisica

STEFANO FORTE Università di Milano

PDF UNCERTAINTIES FOR LHC PHYSICS

PDFS FOR LHC: AN ONGOING EFFORT

		Elle Edit View Higtory Bookmarks Ipols Help		23.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
		👍 🤶 👟 😵 🔝 🏫 🔯 http://indico.cem.ch/categoryDisplay.py?categid=281	쀎 🖒 🖌 Google	6
		📷 Most Visited 🗠 👯 NNPDF wiki 🔯 arXiv 式 SPIRES 👌 Google 👩 UNIMI 谢 ISI 🕱 NNPDF Wiki - Edinbur 🕲 http://pctee	eserver.mi 🚰 Google Maps	
		💲 SPIRES-HEP: FIND A HEI 💈 🔯 Higgs Physics at the Tev 🕱 💿 http://hep.pr09/lhecSAC 🔯 💿 (Untitled)	Indico [HERA/LHC works	>
		Start using Indico's new version! Click here		<
Ā		INDI		Clogin
	A workshop on the implications of	megrates oglas conterence - Home > Conterences, workshops and Events > Workshops > HERALHC workshops	LOCAL: Europe/Zurich	>
	HERA for LHC physics	HERA/LHC workshops	T 0 0 1 S	ories
		~	Events Overview	M
		Events in this category: 🥻 🚺 🥵 🚺	(more options) (2) * Calendar	
	CEKIN - DESY WORKSNOP	* 2009	 Site Map Proom Booking 	
		October 2009	Chaftefire	1
	JE 20 Mov. 2008	23 🛄 PDF4LHC Meeting	Sando Sando	1
	20 - 30 May 2000	August 2009	 Indico News 	
		06 🗐 PDF4LHC meeting	ô^^ + Help	
		May 2009	Add Even	
	CENN	29 🗐 PDF4LHC Meeting	Sala 22 Lecture	
	Address translation (associated and Address)	◆ 2008	<u> 848</u> Meeting	
	Hares update varuary 19, 2006	September 2008	នៃខ្លួនអ្ន Conterenc	8
	Download Workshine poster	04 The PDF4LHC Meeting	000	1
		July 2008		
	HER A - LPC workshop 2004 - 2005	14 🔝 PDF4LHC Meeting	0000	
	HERA - 1. HC workshop 2006	May 2008		
		26 🔟 HERA and the LHC	as.ca	
	HERA – LHC workshop 2007	February 2008		
		22 BPF4LHC Meeting	00 00 00	
	HERA – LHC working group week Oct 2007	2002 -		
		• cout December 2007		
		12 🛅 PDF4LHC discussion (protected)	60 00 00	
		October 2007		>
	List of Participants	Done		

PDF4LHC: 2008 — TO DATE; NEXT MEETING (CERN): JANUARY 29, 2010 INTERIM REPORT ON PDFS @ LHC: FORTHCOMING HERALHC: 2004–2008

SUMMARY

- DETERMINING PDFS
- global fits
- disentangling PDFs
- PDF UNCERTAINTIES: HOW ARE THEY DETERMINED?
- the hessian method: tolerance
- the monte carlo approach
- WHERE DO THEY COME FROM? PDF UNCERTAINTIES:
- benchmarks
- hessian compatibility & parametrization bias
- NNPDF & parametrization independence
- SENSITIVITY TO α_s
- CTEQ, MSTW & NNPDF
- higher order corrections

DETERMINING PDFS

- DIFFERENT DATA CONTROLS DIFFERENT COMBINATIONS OF PDFS
- CROSS-TALK DUE TO SUM RULES, GLOBAL OBSERVABLES (TOTAL XSECTNS) &C

 γ^* DIS only measures $q + \bar{q}$ combination!

CDF (1998)

Lepton Rapidity

1.5

0.5

-0.2

q

DISENTANGLING STRANGENESS

- NNPDF1.1: s, \overline{s} (actually s^{\pm}) indep. parametrized, no dimuon data STRANGENESS ALMOST UNCONSTRAINED BY INCLUSIVE DIS DATA
- IN PARTON FITS UP TO $2009 \rightarrow$ STRANGENESS FIXED BY ASSUMPTION NNPDF1.0: $s(x, Q_0^2) = \bar{s}(x, Q_0^2), \ s + \bar{s} = \frac{1}{2}(\bar{u} + \bar{d})$
- IN CURRENT PARTON FITS \rightarrow STRANGENESS FIXED BY DIS DIMUON PRODUCTION $\nu + s \rightarrow c$ NNPDF1.2: s, \overline{s} (actually s^{\pm}) indep. parametrized, dimuon data

STRANGE PDFS

PRESENT

- SMALL *x* GLUON & SINGLET \Leftrightarrow PRECISE HERA DATA
- SMALL *x* FLAVOUR SEPARATION \Leftrightarrow TEVATRON *W* ASYMMETRY DATA
- MEDIUM x FLAVOUR SEPARATION \Leftrightarrow FIXED TARGET p/d DIS DATA, DRELL YAN, NEUTRINO INCLUSIVE
- STRANGENESS \Leftrightarrow NEUTRINO DIMUON
- LARGE x GLUON \Leftrightarrow TEVATRON JETS

PRESENT

- SMALL *x* GLUON & SINGLET \Leftrightarrow PRECISE HERA DATA
- SMALL x FLAVOUR SEPARATION \Leftrightarrow TEVATRON W ASYMMETRY DATA
- MEDIUM x FLAVOUR SEPARATION \Leftrightarrow FIXED TARGET p/d DIS DATA, DRELL YAN, NEUTRINO INCLUSIVE
- STRANGENESS \Leftrightarrow NEUTRINO DIMUON
- LARGE x GLUON \Leftrightarrow TEVATRON JETS

FUTURE

- W ASYMMETRY \Leftrightarrow FULL FLAVOUR SEPARATION AT MEDIUM/SMALL x
- HIGH p_T JETS \Leftrightarrow PRECISE GLUON AT INTERMEDIATE x
- HQ PRODUCTION \Leftrightarrow INDIVIDUAL QUARK FLAVOURS & GLUON AT SMALL x
- HIGGS PRODUCTION \Leftrightarrow MEDIUM x GLUON

PDF UNCERTAINTIES:

HOW ARE THEY DETERMINED?

THE "STANDARD" APPROACH (MSTW, CTEQ):

FUNCTIONAL PARTON FITTING

- CHOOSE A FIXED FUNCTIONAL FORM:
- MSTW: 20 PARMS.

$$xq(x, Q_0^2) = A(1-x)^{\eta}(1+\epsilon x^{0.5}+\gamma x)x^{\delta}, (5 \text{ indep. fns.}); x[\bar{u}-\bar{d}](x, Q_0^2) = A(1-x)^{\eta}(1+\gamma x+\delta x^2)x^{\delta};$$

$$v[s-\bar{s}](x,Q_0^2) = A_-(1-x)^{\eta_s} x^{\delta} - (1-x/x_0); xg(x,Q_0^2) = A_g(1-x)^{\eta_g} (1+\epsilon_g x^{0.5} + \gamma_g x) x^{\delta_g} + A_{g'}(1-x)^{\eta_g} (1-x)^{\delta_g} + A_{g'}(1-x)^{\delta_g} + A_{g'}(1-x)^{\delta$$

- CTEG6: 22 PARMS.

$$x f(x, Q_0) = A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1+e^{A_4} x)^{A_5}, \quad (7 \text{ indep. functions})$$

- BASIS FUNCTIONS: $u_v \equiv u \bar{u}, d_v \equiv d \bar{d}, \bar{u} \bar{d}$ (MSTW) or \bar{u}/\bar{d} (CTEQ), $s^{\pm} \equiv s \pm \overline{s}, g.$
- EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES
- DETERMINE BEST-FIT VALUES OF PARAMETERS
- DETERMINE ERROR BY PROPAGATION OF ERROR ON PARMS ('HESSIAN METHOD')

OR BY PARM. SCANS ('LAGRANGE MULTIPLIER METHOD')

WHAT IS A ONE- σ UNCERTAINTY?

STANDARD $\Delta \chi^2 = 1$ BANDS TOO NARROW \Rightarrow LARGE DISCREPANCIES FOR INDIVIDUAL EXPERIMENTS

CTEQ TOLERANCE CRITERION &

- STANDARD $\Delta \chi^2 = 1$ BANDS TOO NARROW \Rightarrow LARGE DISCREPANCIES FOR INDIVIDUAL EXPERIMENTS
- TOLERANCE \Rightarrow ENVELOPE OF UNCERTAINTIES OF EXPERIMENTS

THE NNPDF APPROACH: THE NEURAL MONTE CARLO

OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS **BASIC IDEA: MONTE CARLO SAMPLING**

- START FROM MONTE CARLO SAMPLING OF DATA SPACE
- 5 BINS FOR 10 PTS× 7 FCTNS \rightarrow 5⁷⁰ \sim 10⁴⁹ SPACE OF FUNCTIONS HUGE BINS
- IMPORTANCE SAMPLING: DATA TELL US WHICH replica standard dev. BINS ARE POPULATED replica averages

10

10 REPLICAS ENOUGH FOR CENTRAL VALS, 100 FOR

100

10

0.01

0.1

Monte Carlo replicas

Experimental data

UNCERTAINTIES, 1000 FOR CORRELNS

DATA MONTE CARLO \Rightarrow PDF MONTE CARLO NEURAL NETWORK PARM+ CROSS-VALIDATION METHOD

- EACH PDF↔ NEURAL NETWORK PARAMETRIZED BY 37 PARAME-TERS
- NNPDF1.2: $37 \otimes 7 = 259$ parms (recall MSTW, CTEQ $\rightarrow 20$ Free parameters) "Infinite" number of param-Eters can represent any FUNCTION
 - COMPLEX SHAPES (LARGE NO.OF PARAMETERS) REGUIRE LONGER FITTING
- FIT STOPS WHEN QUALITY OF FIT TO RANDOMLY SELECTED "VALIDATION" DATA (NOT FITTED) STOPS IMPROVING
- CAN OBTAIN A FIT WITH χ^2 LOWER THAN BEST FIT ("OVERLEARNING")

DATA MONTE CARLO \Rightarrow PDF MONTE CARLO **CROSS-VALIDATION**

- REPLICAS ARE FITTED TO A DATA SUBSET
- A DIFFERENT SUBSET OF DATA USE FOR EACH REPLICA
- OPTIMAL FIT WHEN FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING

DATA MONTE CARLO \Rightarrow PDF MONTE CARLO **CROSS-VALIDATION**

- REPLICAS ARE FITTED TO A DATA SUBSET
- A DIFFERENT SUBSET OF DATA USE FOR EACH REPLICA
- OPTIMAL FIT WHEN FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING
- $\bullet\,$ THE BEST FIT IS NOT AT THE MINIMUM OF THE χ^2

- ENSEMBLE OF REPLICAS \leftrightarrow PROBABILITY DISTRIBUTION OF PDFS
- EXPECTED CENTRAL VALUE \leftrightarrow MEAN; UNCERTAINTY \leftrightarrow STANDARD DEVIATION
- ANY FEATURES OF DISTRIBUTION CAN BE DETERMINED (C.L. INTERVALS, CORRELATIONS...)

WHERE DO THEY COME FROM?

UNCERTAINTIES IN MSTW/CTEQ FITS OFTEN GO UP WHEN DATA ARE ADDED, BECAUSE OF THE NEED TO ADD PARAMETERS

Smaller high-x gluon (and slightly smaller $lpha_S$) results in larger small-x gluon – now shown at NNLO.

Larger small-x uncertainty due to extrat free parameter.

R. THORNE, HERALHC2008

PDF4LHCMSTW

THE PROBLEM OF BENCHMARK FITS (HERALHC 2005-2008)

PERFORM A MRST (MRSTBENCH) FIT TO A CONSISTENT SUBSET OF DATA, USE $\Delta\chi^2 = 1$ ⇒ RESULTS NOT CONSISTENT, UNCERTAINTY DOES NOT GROW AS DATASET DECREASES

THE PROBLEM OF BENCHMARK FITS (HERALHC 2005-2008)

- PERFORM A MRST (MRSTBENCH) FIT TO A CONSISTENT SUBSET OF DATA, USE $\Delta \chi^2 =$ ⇒ RESULTS NOT CONSISTENT, UNCERTAINTY DOES NOT GROW AS DATASET DECREASES
- ...BUT MRST WAS DONE WITH TOLERANCE 50: REPEAT WITH DYNAMICAL TOLERANCE (MSTW08BENCH)
- ⇒ MUST TUNE PARAMETRIZATION AND STATISTICAL TREATMENT TO DATASET IMPROVEMENT, BUT PROBLEM NOT SOLVED

THE NNPDF SOLUTION (HERALHC 2008)

MRST/MSTW: BENCH VS REF

NNPDF BENCH VS MRST/MSTW

- SINGLE PARAMETRIZATION AND STAT. TREATMENT CAN ACCOMMODATE DIFFERENT DATASETS
- IMPACT OF DATA CAN BE STUDIED INDEPENDENT OF THEORETICAL FRAMEWORK

WHERE IS THE CTEQ/MSTW UNCERTAINTY COMING FROM? WHY DOES ONE NEED LARGE TOLERANCES?

- 20 CAN "REDIAGONALIZE": DIAGONALIZE SIMULTANEOUSLY chi^2 FOR i-TH EXPT \Rightarrow COMPATIBILITY OF EACH EXPT WITH TOTAL AND i GLOBAL FIT
 - STUDY DISTRIBUTION OF DISCREPANCIES
- APPROX. GAUSSIAN WITH UNCERTAINTIES RESCALED BY $\Delta\chi^2=4~(Tpprox10~{
 m FOR}~90\%{
 m c.L.})$

↑

2

WHERE IS THE CTEQ/MSTW UNCERTAINTY COMING FROM? WHY DOES ONE NEED LARGE TOLERANCES?

- 20 CAN "REDIAGONALIZE": DIAGONALIZE SIMULTANEOUSLY chi^2 FOR i-th expt \Rightarrow compatibility of each expt with TOTAL AND GLOBAL FIT
- STUDY DISTRIBUTION OF DISCREPANCIES
- APPROX. GAUSSIAN WITH UNCERTAINTIES RESCALED BY $\Delta\chi^2=4~(Tpprox10~{
 m FOR}~90\%{
 m c.L.})$

2

FUNCTIONAL BIAS (Pumplin, 2009)

- IF PARM. NOT GENERAL ENOUGH, GLOBAL MIN. IS NOT TRUE MIN.
- ONE- σ VARIATION ABOUT FAKE MIN CORRESP. TO LARGE χ^2 VARI-ATION, GREATER WITH ECCENTRICITY OF ERROR ELLIPSE
- $\Delta \chi^2 = 100$ obtains if fake min. By 4 units above true min. AND ECCENTRICITIES UP TO 0.1 ALLOWED

WHERE IS THE NNPDF UNCERTAINTY COMING FROM? FIT TO REPLICAS VS RANDOM SUBSET OF CENTRAL VAL.S

- QUALITY OF FIT & PDFS UNCHANGED
- REDUCTION OF $\langle \chi^2 \rangle_{
 m rep}$ BY FACTOR $\sim 2 \Rightarrow$ FLUCTUATIONS ABOUT TRUE VALUE HALVED
- UNCERTAINTY ON DATA ONLY REDUCED BY $1.1 \Rightarrow EXPT$. UNCERTAINTIES UNDERESTIMATED OR UNDERLYING INCOMPRESSIBLE UNCERTAINTY

WHERE IS THE NNPDF UNCERTAINTY COMING FROM? CENTRAL VALUES: VARYING PARTITION VS FIXED PARTITION

	REPLICAS	CENTRAL VALUE	FIXED PARTITION
χ^2	1.32	1.32	~ 1.3
$\langle \chi^2 angle_{ m rep}$	2.79 ± 0.24	1.65 ± 0.20	$\sim 1.6\pm0.2$
$\langle \sigma^{ m dat} angle$	0.039	0.035	~ 0.03
•	• • •	•	·

fixed partition results obtained averaging over 5 different choices of partition (100 replicas each); more partitions needed for accurate results

- GUALITY OF FIT UNCHANGED
- $\langle \chi^2 \rangle_{
 m rep}$ unchanged \Rightarrow central fit unchanged
- UNCERTAINTY ON PREDICTION (I.E. ON PDFS) REDUCED

- MORE THAN HALF OF UNCERTAINTY DUE TO "FUNCTIONAL FORM": $\langle \sigma^{dat} \rangle = \sim 0.3$ smaller for HERA data
- REMAINING UNCERTAINTY ROUGHLY SCALES WITH DATA UN-CERTAINTY: $\langle \sigma^{\text{dat}} \rangle = \sim 0.005$ CENT.; $\langle \sigma^{\text{dat}} \rangle = \sim 0.009$ REP.

SENSITIVITY TO α_s

DO PDFS DEPEND ON α_s ?

DO PDFS DEPEND ON α_s ?

NNPDF: NO

 $s = \frac{\sigma}{\sqrt{N_{rep}}}$ FOR EACH $PDF \Rightarrow$ TWO DIFFERENT SUBSETS OF REPLICAS DETERMINE DISTANCE d IN UNITS OF STANDARD DEVIATION OF THE MEAN

OF SAME FIT $\langle d
angle = 1$

- ±0.002 COMPATIBLE WITH STATISTICAL for all PDFs, central values and uncertain-DISTANCE BETWEEN PDFS WITH $\Delta \alpha_s =$ ties, data and extrapolation regions FLUCTUATIONS
- **RECOMMENDED:** TO ESTIMATE UNCER-TAINTY, VARY α_s WITH PDFS FIXED AT STANDARD NNPDF SET

_					_					·	_						
121	33	Extra		0.81	0.95		0.71	0.83		0.96	0.78		1.72	0.65		1.36	0.76
0	1.	Data		0.73	1.22		4.12	0.88		1.55	1.11		1.89	0.67		0.86	0.78
117	35	Extra		1.05	1.03		2.29	0.91		0.71	0.75		0.74	0.71		0.58	0.83
0.1	1.	Data		1.72	1.05		4.68	1.00		0.71	0.93		0.92	0.94		0.74	0.67
$lpha_{s}(M_{Z}^{2})$	χ^2		$\Sigma(x, Q_0^2)$	$\langle d[q] \rangle$	$\langle d[\sigma] \rangle$	$g(x,Q_0^2)$	$\langle d[q] \rangle$	$\langle d[\sigma] \rangle$	$T_{3}(x, Q_{0}^{2})$	$\langle d[q] \rangle$	$\langle d[\sigma] \rangle$	$V(x, Q_0^2)$	$\langle d[q] \rangle$	$\langle d[\sigma] angle$	$\Delta_S(x,Q_0^2)$	$\langle d[q] \rangle$	$\langle d[\sigma] angle$

×

DO PDFS DEPEND ON α_s ?

MSTW: STRONGLY

- α_s DETERMINED USING DYNAMICAL TOLERANCE CRITERION
- STRONG SENSITIVITY, UNCERTAINTY COMPETI-TIVE WITH CURRENT GLOBAL AVERAGE
- TAKE ENVELOPE OF PDF ERROR BANDS WITH RECOMMENDED: TO ESTIMATE UNCERTAINTY FIVE α_s VALUES
 - \Rightarrow CORRELATIONS OF α_s TO BOTH PDF UNCER-

TAINTY & AND CENTRAL VALUE RELEVANT

NNLO PDFS?

- MRST/MSTW NNLO PDFS AVALIABLE
 & SIGNIFICANTLY DIFFERENT FROM NLO
- ONLY DIS TREATED @ NNLO
- (CTEQ ALSO DOES NLO DY WITH K FACTORS) • DRELL-YAN TREATED AT LO+ K-FACTORS
- NNLO FOR GLUON AT SMALL \boldsymbol{x} UNSTABLE BECAUSE OF UNRESUMMED LOGS

MATIC REGIONS, LIKELY TO IMPROVE SIGNIFICANTLY AFTEH	ES CANNOT BE OBTAINED AS ONE-σ PARAMETER JW-DIMENSIONAL SPACE	OF THE PDF UNCERTAINTY DUE TO FUNCTIONAL LY MANY CURVES GO THROUGH A FINITE SET OF DATA)	F THEORETICAL UNCERTAINTIES SUCH AS HIGHER α_s VARIATION ACCORDINGLY LESS IMPORTANT
	ATIC REGIONS, LIKELY TO IMPROVE SIGNIFICANTLY AFTER	TIC REGIONS, LIKELY TO IMPROVE SIGNIFICANTLY AFTER ES CANNOT BE OBTAINED AS ONE-σ PARAMETER W-DIMENSIONAL SPACE	TIC REGIONS, LIKELY TO IMPROVE SIGNIFICANTLY AFTER S CANNOT BE OBTAINED AS ONE-σ PARAMETER W-DIMENSIONAL SPACE OF THE PDF UNCERTAINTY DUE TO FUNCTIONAL <i>X</i> MANY CURVES GO THROUGH A FINITE SET OF DATA)

First Splash Event 2009

• ON TOP OF STAT. ERRORS, 4 SYSTEMATICS + 1 NORMALIZATION (NMC) OR 6 SYSTEMATICS + $(1+r_5^{(k)}\,\sigma_N)\sqrt{1+r_{i,6}^{(k)}\,\sigma_{N_t}}\sqrt{1+r_{i,7}^{(k)}\,\sigma_{N_b}}\left|F_i^{(exp)}+\frac{r_{i,1}^{(k)}\,f_b+r_{i,2}^{(k)}\,f_{i,s}+r_{i,3}^{(k)}\,f_{i,r}}{100}F_i^{(exp)}+r_{i,s}^{(k)}\,\sigma_s^i\right|$ r univariate gaussian random nos., one $r_{i,s}$ for each data, but single $r_{i,j}$ for all correlated data SCATTER PLOT ART. VS. EXP. FOR 10 (RED) 100 (GREEN) AND 1000 (BLUE) • BCDMS+ NMC PROTON & DEUTERON F₂ DATA (FULL CORRELATED SYSTEMATICS 1 ABSOLUTE & 2 RELATIVE NORMALIZATIONS (BCDMS), WITH VARIOUS FORMS OF GENERATE DATA ACCORDING TO A MULTIGAUSSIAN DISTRIBUTION MONTE CARLO DATA GENERATION CORRELATION (FULL, OR FOR EACH TARGET, OR FOR EACH BEAM ENERGY) REPLICAS Correlations AVAILABLE), TAKEN AT 4 BEAM ENERGIES g Proton Errors ŝ Central values $F_{i}^{(art)(k)}$ _ ġ

NEED 1000 REPLICAS TO REPRODUCE CORRELATIONS TO PERCENT ACCURACY

dхэ

dka

DETERMINATION OF WEAKLY CONSTRAINED GUANTITIES WHAT IS THIS GOOD FOR?

THE STRANGE PDF

- NNPDF1.0: $s(x, Q_0^2) = \overline{s}(x, Q_0^2), \ s + \overline{s} = \frac{1}{2}(\overline{u} + \overline{d}),$ no dimuon data
- NNPDF1.1: s, \bar{s} (actually s^{\pm}) indep. parametrized, no dimuon data
- NNPDF1.2: s, \bar{s} (actually s^{\pm}) indep. parametrized, dimuon data

STRANGE PDFS

WHAT IS THIS GOOD FOR? COMPATIBILITY CAN BE CHECKED QUANTITATIVELY

THE STRANGE PDF

	_	r	·		<u> </u>	·	. —	,				——————————————————————————————————————		·		
DF1.1	EXTRAPOLATION	$10^{-5} \le x \le 10^{-4}$	1.2	1.8	$10^{-5} \le x \le 10^{-4}$	2.0 1.4	$10^{-3} \le x \le 10^{-2}$	0.9 1.2	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$	1.0 1.4	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$	0.8 1.1	$10^{-5} \le x \le 10^{-4}$	1.6 1.8	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$	1.3 4.6
NNPDF1.2 vs. NNP	DATA	$5 \ 10^{-4} \le x \le 0.1$	2.7	3.1	$5 \ 10^{-4} \le x \le 0.1$	2.4 1.3	$0.05 \le x \le 0.75$	1.5 1.1	$0.1 \le x \le 0.6$	1.1 1.3	$0.1 \le x \le 0.6$	0.8 1.3	$5 \ 10^{-4} \le x \le 0.1$	2.0 4.5	$0.1 \leq x \leq 0.6$	1.1 6.1
		$\Sigma(x,Q_0^2)$	$\langle [d] \rangle$	$\langle a[\sigma] \rangle$	$g(x,Q_0^2)$	$\langle d[q] \rangle \langle d[\sigma] \rangle$	$T_3(x,Q_0^2)$	$\langle d[q] angle \ \langle d[\sigma] angle$	$V(x,Q_0^2)$	$\langle d[q] angle \ \langle d[\sigma] angle$	$\Delta_S(x,Q_0^2)$	$\langle d[q] angle \ \langle d[\sigma] angle$	$s^+(x, Q_0^2)$	$\langle d[q] angle \ \langle d[\sigma] angle$	$s^{-}(x, Q_0^2)$	$\langle q[a] \rangle \langle q[b] \rangle$

DISTANCE OF EXP. VALUES RESCALED BY $\sigma/\sqrt{N_{rep}}$

THE STRANGE MOMENTUM FRACTIONS

AN IMPLICATION: THE "NUTEV ANOMALY" IS GONE

NUTEV07

 0.72 ± 0.05 0.59 ± 0.08

MSTW08 **CTEG66**

AKP08

BPPZ03

1.30.83.8 CAN DISENTANGLE PHYSICAL PARAMETERS FROM PDFS

DETERMINATION OF CKM PARMS FROM DIS

$$F_{2}^{\nu,c} = x \left[C_{2,q} \otimes \left(|V_{cd}|^{2} (u+d) + 2|V_{cs}|^{2} s \right) + C_{2,g} \otimes g \right]$$
$$F_{2}^{\overline{\nu},c} = x \left[C_{2,q} \otimes \left(|V_{cd}|^{2} (\overline{u} + \overline{d}) + 2|V_{cs}|^{2} \overline{s} \right) + C_{2,g} \otimes g \right]$$

 \Rightarrow most precise available direct determination of V_{cs}

UNCERTAINTIES IN FUTURE (GLOBAL) NNPDF FIT CAN ONLY DECREASE

RELATIVE UNCERTAINTY ON FLUX

WHAT IS THIS GOOD FOR?

CAN TRUST RESULTS!

CAN STUDY UNCERTAINTIES AT FUTURE ACCELERATORS WHAT IS THIS GOOD FOR?

GLUON DETERMINATION AT THE LHEC

IMPACT OF LHEC F_2 DATA

CAN DISENTANGLE DIFFERENT SCENARIOS FOR SMALL x GLUON BEHAVIOUR

- THE MONTE CARLO SAMPLE CAN BE USED DIRECTLY FOR SUCH STUDIES WITHOUT JUST REWEIGHT SAMPLE ACCORDING TO PROJECTED DATA REFITTING:
- LHC STUDIES ALONG THESE LINES POSSIBLE/IN PREPARATION (SEE MCNULTY'S TALK)

WHAT NEXT? NNPDF2.0

- $800_{\text{DY}} + 200_{\text{JET}} = \mathcal{O}(1000)$ NEW DATA
- FASTDY ALGORITHM \Rightarrow FIRST TRULY NLO FIT
- DEFECT: STILL ZM-VFN SCHEME FOR HEAVY GUARKS

DATA SET	E605	E886	D0/CDF	D0/CDF	$CDF(k_T)$	D0(CONE)	
OBS	$d\sigma^{\mathrm{DY}}/dM^2 dy$	$d\sigma^{ m DY}/dM^2 dx_F$	W ASYM.	Z RAP. DISTR.	INCL. $\sigma^{\rm jet}$	INCL. $\sigma^{\rm jet}$	

POSITIVITY

- PDFS CAN GO NEGATIVE, PROVIDED PHYSICAL CROSS SECTIONS REMAIN POSITIVE DEFINITE
- (IN PRINCIPLE) THIS SHOULD BE TRUE FOR ANY OBSERVABLE
- IN PRACTICE, MOSTLY RELEVANT CLOSE TO THE DATA EDGE
- NNPDF1.X: POSITIVITY OF F_L ENFORCED

STRANGE PDF AND DIMUON XSECT

- STRANGENESS GOES NEGATIVE PRETTY SOON...
- BUT THE CROSS-SECTION REMAINS POSITIVE

FEATURES OF THE FIT

THE DATASET

FEATURES OF THE FIT THEORY

- NLO EVOLUTION (N SPACE, EXPANDED)
- ZM-VFN SCHEME FOR THRESHOLDS
- $\alpha_s(M_z) = 0.119$, PDFS GIVEN AT $Q_0^2 = 2 \text{ GEV}^2$
- TARGET-MASS CORRECTIONS INCLUDED UP TO TWIST FOUR

BASIS FUNCTIONS AND PARAMETRIZATION

- FIVE INDEPENDENT PDFS: SINGLET, GLUON, TOTAL VALENCE, TRIPLET, $\bar{d} \bar{u}$.
- SYMMETRIC STRANGE SEA $s(x) = \overline{s}(x)$,
- PROPORTIONAL TO NON-STRANGE SEA, $\overline{s}(x) = \frac{C}{2}(\overline{u}(x) + \overline{d}(x))$, (C = 0.5)
- ALL PDFS PARAMETRIZED BY A 2-5-3-1 NEURAL NETWORK: $37 \times 5 = 185$ Parameters
- MOMENTUM AND VALENCE SUM RULES ENFORCED STRICTLY
- POSITIVITY OF F_L ENFORCED for $x \ge 10^{-7}$, $Q^2 \ge 2 \text{ GeV}^2$

104

]°5 °5

xצ (x' ס⁰)

Gluon PDF

Singlet PDF

104

9°2 97

xd (x' ס⁰)

Triplet PDF

40

30

T₃ (x, Q⁵₀) 5 35 23 66 2

ĥ

W Cross Section at the LHC [MCFM]	9.5	σ .	••••••••••••••••••••••••••••••••••••••	a(M.			7.5	Z ⁰ Cross Section at the LHC [MCFM]	20		[dn]	2.1 2.1	N (7) (7)	1.9 NNPDF08 (prei) CTEQ61 MRST2001E CTEQ65
e LHC [MCFM]		-		-	ARST2000 E CTEO65			$\Delta\sigma/\sigma$	Н	3.0%	2.2%	2.2%	1.1%	
W ⁺ Cross Section at th	13	. 12.5	13	• 🗗 •	11.5 NNPDFOR (nrel) CTFO64 N		11		[dd]	35.79 ± 1.04	37.51 ± 0.80	38.50 ± 0.85	37.52 ± 0.40	
		$\Delta\sigma/\sigma_{\pi}$	- M - M	2.3%	2.5%	2.6%	1.1%	$\Delta\sigma/\sigma$	$t\overline{t}$	2.3%	2.0%	1.9%	1.3%	
		$\sigma_W - \mathcal{B}_{l-\nu}$	[qu]	8.49 ± 0.19	9.29 ± 0.23	8.73 ± 0.23	8.80 ± 0.10	$\sigma_{t\bar{t}}$	[pb]	1014 ± 24	942 ± 19	970 ± 18	1013 ± 13	
		$\Delta\sigma/\sigma$	+M	2.5%	2.3%	2.4%	1.2%	$\Delta\sigma/\sigma$	Ŋ	2.0%	2.2%	2.3%	1.0%	
		$\sigma_{W} + \mathcal{B}_{L+\nu}$	[dn]	11.96 ± 0.30	12.66 ± 0.29	11.85 ± 0.28	11.84 ± 0.14	$\sigma Z \mathcal{B}_{l+l}$	[nb]	2.22 ± 0.04	2.27 ± 0.05	2.12 ± 0.05	1.98 ± 0.02	
			I	NNPDF08	CTEQ6.5	CTEQ6.1	MRST01			NNPDF08	CTEQ6.5	CTEQ6.1	MRST01	

GENERAL STATISTICAL FEATURES

 $1.34 \\ 2.71 \\ 2.68 \\ 2.68 \\ 2.72 \\ 824.23 \\ 1000 \\ 1000 \\$

- POISSONIAN DISTRIBUTION OF TRAINING LENGTHS
- BEST FIT $\chi^2 = 1.34$: MINOR DATA INCOMPATIBILITIES (?)

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

PARAMETRIZATION INDEPENDENCE STATISTICAL STABILITY

COMPARE DISTANCE IN UNITS OF SIGMA OF RESULTS OBTAINED WITH DIFFERENT ASSUMPTIONS

DISTANCE IN UNITS OF SIGMA

$$\langle d[q]
angle = \sqrt{\left\langle rac{\left(\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}
ight)^2}{\sigma^2[q_i^{(1)}] + \sigma^2[q_i^{(2)}]}
ight
angle_{\mathrm{dat}}}$$

- NOTE $\sigma \Rightarrow$ ERROR ON AVERAGE = (ERROR ON q_i)/ \sqrt{N} with 100 replicas,d = 1 \rightarrow fits differ by 1/10 of nominal error
 - TEST PREDICTIONS FOR CENTRAL VALUES & ERRORS

DISTANCE BETWEEN STANDARD & FIT WITH SMALLER NEURAL NETS 2-4-3-1 VS 2-5-3-1 ARCHITECTURE (31 vs. 37 parms per net)

	TTTPA IC SA TO	a put mus
	DATA	EXTRAPOLATION
SINGLET	$0.005 \le x \le 0.1$	$10^{-4} \le x \le 10^{-3}$
$\langle d[q] \rangle$	0.96	1.32
$\langle d[\sigma] \rangle$	1.23	1.32
GLUON	$0.005 \le x \le 0.1$	$10^{-4} \le x \le 10^{-3}$
$\langle q[d] \rangle$	1.40	1.13
$\langle a[\sigma] \rangle$	1.17	1.00
VALENCE	$0.1 \leq x \leq 0.6$	$0.03 \le x \le 0.3$
$\langle q[d] \rangle$	1.40	0.93
$\langle d[\sigma] \rangle$	1.09	0.96
TRIPLET	$0.05 \leq x \leq 0.75$	$0.01 \le x \le 0.1$
$\langle q[d] \rangle$	1.05	1.09
$\langle d[\sigma] \rangle$	1.68	2.5

PARAMETRIZATION INDEPENDENCE: THE "HERALHC BENCHMARK"

 $Q^2 > 9 \text{ GEV}^2$; $W^2 > 15 \text{ GEV}^2$

REDUCED DATASET \Rightarrow **WIDER ERROR BAND** from 3161 to 773 datapoints reduced info on small x sea (no low Q^2 data) & large x valence (no neutrino data)

TARGET	F_q^d/F_p^q	F_{2}^{T}	F_{2}^{H}	F_{2}^{T}	$_{2}^{F}p$	
DATA POINTS	73	95	322	206	77	773
NAME	NMC_PD	NMC	BCDMS	ZEUS97	H1LX97	TOTAL

UP QUARK

RESULTS COMPATIBLE TO WITHIN LESS THAN TWO SIGMA

THE TRUE FUNCTION

UNDERLEARNING

OPTIMAL FIT

OVERLEARNING

WHAT ARE NEURAL NETWORKS?

MULTILAYER FEED-FORWARD NETWORKS

- Each neuron receives input from neurons in preceding layer and feeds output to neurons in subsequent layer
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - heta_i
ight)$$

Sigmoid activation function $g(x) = \frac{1}{1 + e^{-\beta x}}$

JUST ANOTHER SET OF BASIS FUNCTIONS!

A 1-2-1 NN:
$$f(x) = \frac{1}{\substack{\theta_1^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{-1} - x\omega_{11}^{(1)}} - \frac{\omega_{12}^{(2)}}{\omega_{12}^{(2)} - x\omega_{11}^{(1)}}}}$$

ANY FUNCTION CAN BE REPRESENTED BY A SUFFICIENTLY BIG NEURAL NETWORK

LESS PARAMETERS \rightarrow SMOOTHER FUNCTIONS

STABILITY COMPARISON TO PREVIOUS NNPDF SETS

- NNPDF1.0: $s(x, Q_0^2) = \overline{s}(x, Q_0^2), s + \overline{s} = \frac{1}{2}(\overline{u} + \overline{d})$
- NNPDF1.1: s, \overline{s} (actually s^{\pm}) indep. parametrized, no dimuon data
- NNPDF1.2: s, \overline{s} INDEP. PARAMETRIZED, DIMUON DATA

NONSTRANGE PDFS

DETERMINING STRANGENESS COMPARISON TO OTHER NNPDF SETS

- CTEQ6.6: $s = \overline{s}$, s^+ PARM W. TWO FREE PARAMETERS
- MSTW08: s^+ & s^- parm w. two free parameters each
- EVERYBODY ENFORCES STRANGENESS SUM RULE

STRANGE PDFS