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Parton Distribution Functions

Factorization Theorem (Q2 ≫ Λ2
QCD):

dσH

dX
=
X

a,b

Z

dx1dx2fa(x1, µf )fb(x2, µf )⊗
d σ̂

dX
(αs(µr), µr , µf , x1, x2, Q

2)

DGLAP equations:

d

dt

„

q

g

«

=
αs

2π

„

Pqq Pqg

Pgq Pgg

«

⊗

„

q

g

«

+O(α2
s )

The accurate computation of physical
observables at the LHC requires good
knowledge of PDFs and of their error.
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The name of the game

Given a set of data points we must determine a set of functions with error.

We need an error band in the space of functions, i.e. a probability density
P[f (x)] in the space of PDFs, f(x). For an observable F depending on
PDFs :

〈F [f (x)]〉 =

Z

[Df ]F [f (x)]P[f (x)]

Standard approach

Choose a basis of functions and
project PDFs on it.

Determine best-fit values of
parameters.

Determine error by propagation of
error in the space of parameters
(Hessian method).

Issues

Non trivial propagation of
errors: non-gaussian errors
and incompatible data.

The error associated to the
choice of parametrization is
difficult to assess.

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

What is the problem?

PDF4LHC, February ’08

Benchmark partons on reduced set of experiments do not agree with
global fits within errors: incompatible experiments, not enough flexibility
in the parametrization or both?
Tolerance criterion ∆χ2 > 2.7 means that error on experimental
measurements is blown up by a factor S =

p

∆χ2/2.7 (B. Cousins).
SCTEQ ∼ 6; SMSTW ∼ 4.5: is that factor mandatory?
In Alekhin DIS+DY fit ∆χ2=1

0

0.1

0.2

0.3

0.4

10
-3

10
-2

10
-1

x

xd
V

(x
,Q

2 =
20

)

MRSTbench

MRST2001

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

Outline

1 Introduction

2 NNPDF approach: the main ingredients
Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

3 Results
The NNPDF1.0 partons
Independence on parametrization
Dependence on data sets
Phenomenology

4 Conclusions and outlook

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

NNPDF approach

Monte Carlo errors

Non-gaussian errors and non triv-
ial error propagation.

Neural Networks

Reduce bias from a restrictive
fixed functional form.

Dynamical Stopping

No looking for absolute minimum
but learning from data.

〈F [f (x)]〉 =

Z
[Df ]F [f (x)]P[f (x)]

〈F [f (x)]〉 =
1

Nrep

NrepX

k=1

F [f
(k)(net)

(x)]
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Step 1: Monte Carlo Errors

Monte Carlo errors

Non-gaussian errors and non triv-
ial error propagation.
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Experimental data

F
(exp)
I (xp, Q

2
p) i = 1, ..., Ndata

OBS Data set OBS Data set

F
p
2

NMC σ
−
NC

ZEUS

SLAC H1

BCDMS σ+
CC

ZEUS

Fd
2 SLAC H1

BCDMS σ
−
CC

ZEUS

σ+
NC

ZEUS H1

H1 σν , σν̄ CHORUS

Fd
2 /F

p
2

NMC-pd FL H1

Kinematical cuts:
Q2 >2 GeV2

W 2 = Q2(1 − x)/x >12.5 GeV2

∼ 3000 points.
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Monte Carlo sample

Generate a Nrep Monte Carlo sets of artificial data, or ”pseudo-data” of the
original Ndata data points

F
(art)(k)
i (xp , Q

2
p) ≡ F

(art)(k)
i,p i = 1, ..., Ndata

k = 1, ..., Nrep

Multi-gaussian distribution centered on each data point:

F
(art)(k)
i,p = S

(k)
p,N F

exp

i,p

0

@1 + r
(K )
p σstat

p +

Nsys
X

j=1

r
(k)
p,j σsys

p,j

1

A

If two points have correlated systematic uncertainties

r
(k)
p,j = r

(k)

p′,j

Correlations are properly taken into account.
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Validation of the MC sample

Experiment ZEUS CHORUS Total

〈PE
h
〈F (art)〉rep

i
〉dat 8.5 ·10−4 1.8 ·10−3 7.1 ·10−5

r
h
F (art)

i
1.000 1.000 0.980

〈PE
h
〈σ(art)〉rep

i
〉dat 9.6 ·10−3 1.8 ·10−2 3.0 ·10−3

〈σ(exp)〉dat 0.0607 0.1088 0.0556

〈σ(art)〉dat 0.0603 0.1109 0.0562

r
h
σ(art)

i
1.000 0.998 0.980

〈ρ(exp)〉dat 0.079 0.650 0.145

〈ρ(art)〉dat 0.082 0.657 0.146

r
h
ρ(art)

i
0.982 0.996 0.996

〈cov(exp)〉dat 1.53 ·10−4 2.03 ·10−2 1.07 ·10−3

〈cov(art)〉dat 1.57 ·10−4 2.11 ·10−2 1.01 ·10−3

r
h
cov(art)

i
0.996 0.998 0.997

A MC sample with O(1000)
replicas reproduces mean
values, variances, correlations
of experimental data within
1% accuracy.

Convergence
rate increases
with Nrep.
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Monte Carlo Errors

For each replica (k) of the experimen-
tal data we fit a set of independent
PDFs

Ensemble of fitted replicas of PDFs: repre-
sentation of the probability distribution in the
space of PDFs

Uncertainties, central values and any other statistical property
(e. g. correlations) of the PDFs (or any function of them) can be evaluated
using standard statistical methods.

〈F [f (x)]〉 =
1

Nrep

Nrep
X

k=1

F [f (k)(net)(x)]

σF [f (x)] =
q

〈F [f (x)]2〉 − 〈F [f (x)]〉2

ρ[fa(x1,Q
2
1 ), fb(x2,Q

2
2 )] =

〈fa(x1,Q2
1 )fb(x2, Q2

2 )〉 − 〈fa(x1,Q2
1 )〉〈fb(x2, Q2

2 )〉

σa(x1,Q2
1 )σb(x2,Q2

2 )
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Step 2: Neural Network as unbiased and redundant parametrization

Neural Networks

Reduce bias from a restrictive
fixed functional form.
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What are neural networks?

* Each neuron receives input from neurons in
preceding layer.

* Activation determined by weights and
thresholds according to a non linear function:

ξi = g(
X

j

ωijξj − θi ), g(x) =
1

1 + e−x

In a simple case (1-2-1) we have,

ξ
(3)
1 =

1

1 + e
θ

(3)
1 −

ω
(2)
11

1+e
θ
(2)
1

−ξ
(1)
1

ω
(1)
11

−
ω

(2)
12

1+e
θ
(2)
2

−ξ
(1)
1

ω
(1)
21

7 parameters

...Just a convenient functional form
which provides a redundant and flex-
ible parametrization.

We want the best fit to be indepen-
dent of any assumption made on the
parametrization.
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Basis set

Each independent PDF at the initial scale Q2
0 = 2GeV

2 is parameterized
by an individual NN.

Little constraint on strange → Flavor Assumptions:
- Symmetric strange sea s(x) = s̄(x)

- Strange sea proportional to non-strange sea s̄(x) = C
2
(ū(x) + d̄(x)) (C = 0.5)

- Intrinsic heavy quarks contributions neglected.

Parametrization of (4+1) combinations of PDFs at Q2
0 = 2 GeV2:

Singlet : Σ(x) 7−→ NNΣ(x) 2-5-3-1 37 pars

Gluon : g(x) 7−→ NNg (x) 2-5-3-1 37 pars

Total valence : V (x) ≡ uV (x) + dV (x) 7−→ NNV (x) 2-5-3-1 37 pars

Non-singlet triplet : T3(x) 7−→ NNT3(x) 2-5-3-1 37 pars

Sea asymmetry : ∆S(x) ≡ d̄(x) − ū(x) 7−→ NN∆(x) 2-5-3-1 37 pars

185 parameters
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Normalization and sum rules

Σ(x , Q2
0 ) = (1 − x)mΣx

−nΣNNΣ(x) ,

V (x , Q2
0 ) = AV (1 − x)mV x

−nV NNV (x) ,

T3(x , Q2
0 ) = (1 − x)mT3 x

−nT3 NNT3(x) ,

∆S(x , Q2
0 ) = A∆S

(1 − x)m∆S x
−n∆S NN∆S

(x) ,

g(x , Q2
0 ) = Ag (1 − x)mg x

−ng
NNg (x) .

Polynomial Preprocessing → Training Efficiency
Need to verify the independence

Normalization → Fixed by valence and momentum sum rules
Theoretical constraint

Z 1

0

dx x (Σ(x) + g(x)) = 1

Z 1

0

dx (u(x) − ū(x)) = 2

Z 1

0

dx (d(x) − d̄(x)) = 1 .
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From the starting scale to the data: the evolution code

* To train NN we need to evolve from Q2
0 to the experimental scales.

fi (x, Q
2) =

X

j

Γij (x, αs , α
0
s ) ⊗ fj (x, Q

2
0 )

* Observables are a convolution over x of PDFs and Coefficient Functions.

FI (x, Q
2) =

X

j

CIj (x, αs ) ⊗ fj (x, Q
2) =

X

j,k

CIj (x, αs) ⊗ Γjk (x, αs , α
0
s ) ⊗ fk (x, Q

2
0 )

We want: Mellin space evolution

KIk(N, αs , α
0
s ) =

X

j

CIj (N, αs) Γjk (N, αs , α
0
s )

We do not want: Complex Neural Networks

KIk(y , αs , α
0
s ) =

1

2πi

Z

C

dN y−N KIk(N, αs , α
0
s )

FI (x ,Q2) =
X

k

Z 1

x

dy

y
KIk(y , αs , α

0
s ) fk(

x

y
,Q2

0 )
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Kernels for a physical observable

F2 proton structure function

F
p
2 = x{

5

18
C s

2,q ⊗ Σ +
1

6
C2,q ⊗ (T3 +

1

3
(T8 − T15) +

1

5
(T24 − T35))

+〈e2
q 〉C2,g ⊗ g}

F
p
2 = x{KF2,Σ ⊗ Σ0 + KF2,g ⊗ g0 + KF2,+ ⊗

„

T3,0 +
1

3
(T8,0 − T15,0)

«

}

In Mellin space

KF2,Σ =
5

18
C

s
2,qΓ

qq
S +

1

30
C2,q(Γ

24,q
S − Γ35,q

S ) + 〈e2
q〉C2,gΓ

gq
S

KF2,g =
5

18
C

s
2,qΓ

qg
S +

1

30
C2,q(Γ

24,g
S − Γ35,g

S ) + 〈e2
q〉C2,gΓgg

S

KF2,+ =
1

6
C2,qΓ

+
NS
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LH evolution benchmark

-3 -2 -1 1

-2

-1

1

2
N fi (x, Q

2
) =

X

j

γij fj (x, Q
2
0 ) +

Z
1

x

dy

y
Γij (y, αs , α

0
s )

»
fj

„
x

y
, Q

2
0

«
− yfj (x, Q

2
0 )

–

γij =

Z

C

dN

2πi

Γij (N, αs , α0
s )

1 − N
−

Z
x

0
dy Γij (y, αs , α

0
s ).

x ǫrel(uv ) ǫrel(dv ) ǫrel(Σ) ǫrel(d̄ + ū) ǫrel(s + s̄) ǫrel(g)

Niter = 6

10−7 2.2 10−5 8.1 10−6 4.9 10−6 1.5 10−5 1.2 10−6 2.2 10−5

10−6 6.3 10−6 3.2 10−6 9.8 10−6 1.1 10−5 5.4 10−6 3.0 10−6

10−5 1.8 10−5 1.4 10−5 8.3 10−6 3.0 10−6 3.6 10−6 1.4 10−6

10−4 3.1 10−5 1.6 10−5 3.6 10−5 4.3 10−5 3.3 10−5 3.2 10−5

10−3 1.8 10−6 1.2 10−5 5.9 10−6 5.8 10−6 8.9 10−6 3.6 10−6

10−2 2.8 10−5 1.5 10−5 4.7 10−5 4.3 10−5 4.6 10−5 8.2 10−5

0.1 3.2 10−6 1.3 10−5 3.0 10−6 9.4 10−6 2.1 10−5 5.1 10−7

0.3 1.9 10−6 2.4 10−5 6.5 10−6 1.0 10−5 3.2 10−6 2.6 10−6

0.5 1.70 10−5 1.3 10−5 1.5 10−5 1.3 10−5 3.0 10−6 3.5 10−6

0.7 7.0 10−5 8.0 10−6 5.9 10−5 8.9 10−6 2.4 10−5 9.9 10−6

0.9 1.4 10−5 6.2 10−6 1.3 10−5 7.4 10−4 1.8 10−3 5.1 10−5

Benchmark
evolution tables
(hep-ph/0204316)
reproduced with
O(10−5)
accuracy.

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

Theoretical errors

* Higher perturbative orders → NLO fit

* Heavy quark treatment → Zero Mass Variable Flavor Number scheme.
Ignore intrinsic heavy quarks contributions, quarks are radiatively generated at

thresholds.(Thorne,Tung, arXiv:0809.0714)

* Target Mass Corrections included and factorized into the hard kernels.

eF2(ξ, Q
2) =

x2

τ 3/2

F2(ξ, Q2)

ξ2
+ 6

M2
N

Q2

x3

τ 2
I2(ξ, Q

2)
τ = 1 +

4M2
N

x2

Q2

ξ =
2x

1 +
√

τ

I2(ξ, Q
2
) =

Z
1

ξ

dz

z2
F2(z, Q

2
).

Taking Mellin transforms with respect to ξ, define a new target mass
corrected coefficient function

eC2,j (N, αs , τ ) =
(1 + τ 1/2)2

4τ 3/2

0
@1 +

3
“
1 − τ−1/2

”

N + 1

1
A C2,j (N, αs )

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

Step 3: Training and dynamical stopping

Dynamical Stopping

No looking for absolute minimum
but learning from data.
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Fitting Strategy

Our fitting strategy is very different from that of normally used: instead of a
set of basis functions with a small number of parameters, we have an unbiased
basis of functions parameterized by a very large and redundant set of
parameters.

CTEQ,MSTW,AL

O(20) parm

NNPDF

O(200) parm

Not trivial because ...

1 A redundant parametrization might
accommodate also random
fluctuations of statistical data.

2 Very large space of parameters

Ingredients of fitting procedure

1 Flexible and redundant
parametrization

2 Genetic Algortihm minimization

3 Dynamical stopping criterion
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Genetic Algorithm

Set neural network parameters randomly.

Make clones of the parameter vector and mutate them.

Evaluate the figure of merit for each clone:

Error function

E
2(k)[ω] =

Ndat
X

i,j

(F
(art)(k)
i − F

(net)(k)
i )

„

“

cov
(k)
”−1

«

ij

(F
(art)(k)
j − F

(net)(k)
j )

cov
(k) defined from an experimental covariance matrix which does not include

normalization errors. (G. D’Agostini,2003)

cov
(k)
ij = cov

(exp)
ij S

(k)
i,NS

(k)
j,N

Select the best ones and iterate the procedure until a stability is reached.
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Dynamical Stopping Criterion

* GA is monotonically decreasing by construction.

* We do not want to reach the absolute minimum.

* The best fit is given by an optimal training beyond which the figure of
merit improves only because we are fitting statistical noise of the data.

Cross-validation method

* Divide data in two sets: training
and validation.

* Random division for each replica
(ft = fv = 0.5).

* Minimisation is performed only on
the training set. The validation χ2

for the set is computed.

* When the training χ2 still decreases
while the validation χ2 stops
decreasing → STOP. Iterations

500 1000 1500 2000 2500 3000 3500

E

2.2

2.3

2.4

2.5

2.6

2.7

2.8
Training Dataset

Validation Dataset

Stopping point
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Trained neural network weights
-4 -3 -2 -1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

)2

0
(x,Q3T )2

0
(x,Q3T

* Set of neural networks at stopping provides our best-fit.

* No physical interpretation for parameters: most unconstrained or zero.
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Individual replicas vs Average quantities

-2

-1

 0

 1

 2

 3

 4

 1e-05  0.0001  0.001  0.01  0.1  1

xg
(x

,Q
02 )

x

Nrep=25

-2

-1

 0

 1

 2

 3

 4

 1e-05  0.0001  0.001  0.01  0.1  1

xg
(x

,Q
02 )

x

Nrep=100

Even though individual replicas may fluctuate significantly, average quantities
such as central values and error bands are smooth inasmuch as stability is reached
due to the number of replicas increasing.
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How PDFs uncertainties must be evaluated

Monte Carlo prescription (NNPDF)

σF =

„

Nset

Nset − 1

“

〈F [{f }]2〉 − 〈F [{f }]〉2
”

«1/2

HEPDATA prescription (CTEQ and MRST/MSTW)

σF =
1

2C90

0

@

Nset/2
X

k=1

“

F [{f (2k−1)}] − F [{f (2k)}]
”2

1

A

1/2

, C90 = 1.64485

C90 accounts for the fact that the upper and lower parton sets correspond
to 90% confidence levels rather than to one-σ uncertainties.

HEPDATA∗ prescription (Alekhin)

σF =

 

Nset
X

k=1

“

F [{f (k)}] − F [{f (0)}]
”2
!1/2

.
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NNPDF1.0: Statistical features

tr
(k)E

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 distribution for MC replicastrE  distribution for MC replicastrE

Training lenght [GA generations]
0 1000 2000 3000 4000 50000

0.1

0.2

0.3

0.4

0.5

Distribution of training lenghtsDistribution of training lenghts

χ2
tot 1.34
〈E〉 2.71
〈Etr〉 2.68
〈Eval〉 2.72
〈TL〉 824
Nrep 1000

Avg over replicas ∼ 1.

Avg of replicas ∼ 2 for
best fits.

Poissonian distribution
for Training Lenghts.

Experiment χ2
tot

SLAC 1.27
BCDMS 1.59
NMC 1.70

NMC-pd 1.53
ZEUS 1.11
H1 1.03

CHORUS 1.40
FLH108 1.62
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The NNPDF1.0 parton set
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The NNPDF1.0 parton set
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* More reliable estimation of
errors.

* Compatible with other fits.

* Larger error in the
extrapolation region.

* Some regions
unconstrained in DIS fit.
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NNPDF1.0: Relative uncertainties

x
-510 -410 -310 -210 -110

)2 0
(x

,Q
Σ

) 
)/

2 0
(x

,Q
Σ

( σ

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
CTEQ6.5
MRST2001E

Alekhin02

NNPDF1.0

x
-410 -310 -210 -110

)
2 0

) 
)/

g
(x

,Q
2 0

( 
g

(x
,Q

σ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
CTEQ6.5
MRST2001E

Alekhin02

NNPDF1.0

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)2 0
(x

,Q
3

) 
)/

T
2 0

(x
,Q

3
( 

T
σ

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
CTEQ6.5
MRST2001E

Alekhin02

NNPDF1.0

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)2 0
) 

)/
V

(x
,Q

2 0
( 

V
(x

,Q
σ

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
CTEQ6.5
MRST2001E

Alekhin02

NNPDF1.0

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7

)2 0
(x

,Q
S

∆
))

/
2 0

(x
,Q

S
∆

( σ

-1.5

-1

-0.5

0

0.5

1

1.5
CTEQ6.5
MRST2001E

Alekhin02

NNPDF1.0

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

The NNPDF1.0 partons
Independence on parametrization
Dependence on data sets
Phenomenology

PDFs correlations

Correlations between u − u and g − g (Q=85GeV)
P.Nadolsky arXiv:0802.0007

ρ
ˆ

fa(x1,Q
2
1 )fb(x2, Q

2
2 )

˜

=
〈fa(x1,Q2

1 )fb(x2,Q2
2 )〉rep − 〈fa(x1, Q2

1 )〉rep〈fb(x2,Q2
2 )〉rep

σa(x1,Q2
1 )σb(x2,Q2

2 )
.
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Statistical estimator: distance between MC ensembles.

* All features of the NNPDF parton set can be assessed by using standard
statistical tools.

* Distances between two probability distributions:

Quark
n

f
(1)
ik = f

(1)
k (xi , Q

2
0 )
o

〈d [f ]〉 =

v

u

u

u

t

*

“

〈fi 〉(1) − 〈fi 〉(2)

”2

σ2[f
(1)
i ] + σ2[f

(2)
i ]

+

pts

* With:

〈fi 〉(1) ≡
1

N
(1)
rep

N
(1)
rep

X

k=1

f
(1)
ik

,

σ2[f
(1)
i

] ≡
1

N
(1)
rep(N

(1)
rep − 1)

N
(1)
rep

X

k=1

“

f
(1)
ik

− 〈fi 〉(1)

”2

* For statistically equivalent PDF sets: 〈d [f ]〉 ∼ 〈d [σf ]〉 ∼ 1

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

The NNPDF1.0 partons
Independence on parametrization
Dependence on data sets
Phenomenology

Stability under variation of the parametrization
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 Gluon PDF

Data Extrapolation

Σ(x, Q2
0 ) 5 10−4 ≤ x ≤ 0.1 10−5 ≤ x ≤ 10−4

〈d [f ]〉 0.98 1.25
〈d [σ]〉 1.14 1.34

g(x, Q2
0 ) 5 10−4 ≤ x ≤ 0.1 10−5 ≤ x ≤ 10−4

〈d [f ]〉 1.52 1.15
〈d [σ]〉 1.16 1.07

T3(x, Q2
0 ) 0.05 ≤ x ≤ 0.75 10−3 ≤ x ≤ 10−2

〈d [f ]〉 1.00 1.11
〈d [σ]〉 1.76 2.27

V (x, Q2
0 ) 0.1 ≤ x ≤ 0.6 3 10−3 ≤ x ≤ 3 10−2

〈d [f ]〉 1.30 0.90
〈d [σ]〉 1.10 0.98

∆S (x, Q2
0 ) 0.1 ≤ x ≤ 0.6 3 10−3 ≤ x ≤ 3 10−2

〈d [f ]〉 1.04 1.91
〈d [σ]〉 1.44 1.80

* Stability under change of architecture
of the nets: 37 pars → 31 pars

* Independence on the parametrization!
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Stability under variation of the parametrization
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Data Extrapolation

Σ(x, Q2
0 ) 5 10−4 ≤ x ≤ 0.1 10−5 ≤ x ≤ 10−4

〈d [f ]〉 0.98 1.25
〈d [σ]〉 1.14 1.34

g(x, Q2
0 ) 5 10−4 ≤ x ≤ 0.1 10−5 ≤ x ≤ 10−4

〈d [f ]〉 1.52 1.15
〈d [σ]〉 1.16 1.07

T3(x, Q2
0 ) 0.05 ≤ x ≤ 0.75 10−3 ≤ x ≤ 10−2

〈d [f ]〉 1.00 1.11
〈d [σ]〉 1.76 2.27

V (x, Q2
0 ) 0.1 ≤ x ≤ 0.6 3 10−3 ≤ x ≤ 3 10−2

〈d [f ]〉 1.30 0.90
〈d [σ]〉 1.10 0.98

∆S (x, Q2
0 ) 0.1 ≤ x ≤ 0.6 3 10−3 ≤ x ≤ 3 10−2

〈d [f ]〉 1.04 1.91
〈d [σ]〉 1.44 1.80

* Stability under change of architecture
of the nets: 37 pars → 31 pars

* Independence on the parametrization!
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Dependence on data sets

HERA-LHC benchmark

Benchmark PDF fit to a reduced consistent set of DIS data.(hep-ph/0511119)
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Dependence on data sets

HERA-LHC benchmark

Benchmark PDF fit to a reduced consistent set of DIS data.(hep-ph/0511119)
Set Ndat xmin xmax Q2

min
Q2
max

SLACp 211 (47) .07000 .85000 0.6 29.

SLACd 211 (47) .07000 .85000 0.6 29.

BCDMSp 351 (333) .07000 .75000 7.5 230.

BCDMSd 254 (248) .07000 .75000 8.8 230.

NMC 288 (245) .00350 .47450 0.8 61.

NMC-pd 260 (153) .00150 .67500 0.2 99.

Z97lowQ2 80 .00006 .03200 2.7 27.

Z97NC 160 .00080 .65000 35.0 20000.

Z97CC 29 .01500 .42000 280.0 17000.

Z02NC 92 .00500 .65000 200.0 30000.

Z02CC 26 .01500 .42000 280.0 30000.

Z03NC 90 .00500 .65000 200.0 30000.

Z03CC 30 .00800 .42000 280.0 17000.

H197mb 67 (55) .00003 .02000 1.5 12.

H197lowQ2 80 .00016 .20000 12.0 150.

H197NC 130 .00320 .65000 150.0 30000.

H197CC 25 .01300 .40000 300.0 15000.

H199NC 126 .00320 .65000 150.0 30000.

H199CC 28 .01300 .40000 300.0 15000.

H199NChy 13 .00130 .01050 100.0 800.

H100NC 147 .00131 .65000 100.0 30000.

H100CC 28 .01300 .40000 300.0 15000.

CHORUSν 607 (471) .02000 .65000 0.3 95.

CHORUSν̄ 607 (471) .02000 .65000 0.3 95.

FLH108 8 .00028 .00360 12.0 95.

Q
2 > 2GeV

2

W
2 > 12.5 GeV

2

Maria Ubiali First set of Neural PDFs for LHC



Introduction
NNPDF approach

Results
Conclusions and outlook

The NNPDF1.0 partons
Independence on parametrization
Dependence on data sets
Phenomenology

Dependence on data sets

HERA-LHC benchmark

Benchmark PDF fit to a reduced consistent set of DIS data.(hep-ph/0511119)

Set Ndat xmin xmax Q2
min Q2

max

BCDMSp 322 7 10−2 0.75 10.3 230
NMC 95 0.028 0.48 9 6

NMC-pd 73 0.035 0.67 11.4 99

Z97NC 206 1.6 10−4 0.65 10 2 104

H197lowQ2 77 3.2 10−4 0.2 12 150

Q
2 > 9GeV

2

W
2 > 15GeV

2

3163 data −→ 773 data
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Dependence on data sets

HERA-LHC benchmark

Comparison between collaborations and between benchmark/global partons.
u(x , Q2 = 2GeV

2): MRST data region
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Dependence on data sets

HERA-LHC benchmark

Comparison between collaborations and between benchmark/global partons.
u(x , Q2 = 2GeV

2): MRST extrapolation region
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Dependence on data sets

HERA-LHC benchmark

Benchmark partons and global partons do not agree within error!

Note that PDFs input parametrization, flavor assumptions and statistical
treatment (∆χ2

global = 50, ∆χ2
bench = 1) are tuned to data.

This is not satisfactory especially to predict the behaviour of PDFs in the
extrapolation region (LHC)
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Dependence on data sets

HERA-LHC benchmark

Comparison between collaborations and between benchmark/global partons.
u(x , Q2 = 2GeV

2): Data region
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HERA-LHC benchmark

Comparison between collaborations and between benchmark/global partons.
u(x , Q2 = 2GeV

2): Extrapolation Region
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Dependence on data sets

HERA-LHC benchmark

NNPDF1.0 is consistent with MRST global fit.

NNPDFbench is consistent with NNPDF1.0 and MRST.

Same parametrization and flavour assumption.

Same statistical treatment.

Underestimation of the error in the standard approach.
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Comparison with present experimental data
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Prediction on LHC standard candle processes

Gauge boson production at the LHC.

All quantities have been computed at NLO with MCFM (http://mcfm.fnal.gov)

Quoted uncertainties are the one-σ bands due to the PDF uncertainty only.

σW+Bl+νl
∆σW+/σW+ σZBl+l− ∆σZ /σZ

NNPDF1.0 11.83 ± 0.26 2.2% 1.95 ± 0.04 2.1%
CTEQ6.1 11.65 ± 0.34 2.9% 1.93 ± 0.06 3.1%
MRST01 11.71 ± 0.14 1.2% 1.97 ± 0.02 1.0%
CTEQ6.5 12.54 ± 0.29 2.3% 2.07 ± 0.04 1.9%
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2 NNPDF approach: the main ingredients
Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion
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Conclusions

Standard approaches with fixed parametrization tend to underestimate
uncertainties unless experimental errors are inflated by essentially arbitrary
amount.

Monte Carlo ensemble
* Any statistical property of PDFs can be calculated using standard statistical

methods.
* No need of any tolerance criterion.

The Neural Network parametrization
* Small uncertainties come from an underlying physical law, not from

parametrization bias.
* Inconsistent data or underestimated uncertainties do not require a separate

treatment and are automatically signalled by a larger value of the χ2.

The first NNPDF parton set [arXiv:0808.1231] is available on the common
LHAPDF interface (http://projects.hepforge.org/lhapdf).
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Outlook

Inclusion of hadronic data to
* improve the accuracy of gluon at large x (jets)
* determine the light antiquark sea asymmetry (Drell-Yan)
* allow for a direct determination of the strange distribution (Dimuon data)

More accurate treatment of Heavy Quark thresholds by including terms
proportional to the heavy quark mass.

LO parton set in view of its use in Monte Carlo generators.

More sophisticated theoretical treatment: NNLO parton distributions,
large and small x resummation corrections should also be considered.

Study of the impact of PDFs uncertainties on LHC phenomenology
(optimized small set of parton distribution)
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Stability under variation of preprocessing exponents

Polynomial preprocessing functions are introduced in order to speed up the
training but should not affect final results.

Checked the stability of result upon variation of the preprocessing
exponents away from their default values.

Valence sector Singlet sector

χ2 〈TL〉 χ2 〈TL〉

nT3 = nV = 0.1 1.38 771 nΣ = ng = 0.8 1.39 1002
nT3 = nV = 0.5 1.34 1629 nΣ = ng = 1.6 1.52 2287
mT3 = mV = 2 1.55 1186 mΣ = mg − 1 = 2 1.37 647
mT3 = mV = 4 1.28 1311 mΣ = mg − 1 = 4 1.41 1306

An increase of Nmax
gen or a more efficient minimization algorithm would be

required to obtain a satisfactory fit. Thus, in these cases we expect
reduced stability of results: this applies to the case of increase of the small
x preprocessing exponent n for the singlet, and to a lesser extent to the
decrease of the large x preprocessing exponent m for the nonsinglet and
valence.

Randomized preprocessing?
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Statistical Estimators I: observables

Central value of the i-th experimental point
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Statistical Estimators II: replicas vs data

Mean variance and percentage error on central values over the Ndat data points.

fi

V

»

D

F (art)
E

rep

–fl

dat

=
1

Ndat

Ndat
X

i=1

„

D

F
(art)
i

E

rep
− F

(exp)
i

«2

,

fi

PE

»

D

F (art)
E

rep

–fl

dat

=
1

Ndat

Ndat
X

i=1

2

6

4

D

F
(art)
i

E

rep
− F

(exp)
i

F
(exp)
i

3

7

5
.

D

V
h

˙

σ(art)
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iE
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˙

ρ(art)
¸
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iE
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˙
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rep

iE
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D

PE
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˙
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iE

dat
,

D

PE
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˙
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iE
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D

PE
h

˙
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¸
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iE
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relative to errors, correlations and covariances are defined in the same way.

These estimators indicate how close are the averages over generated data and
the experimental values.
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Stability estimators III: replicas vs data

Scatter correlation:

r
h

F (art)
i

=

D

F (exp)
˙

F (art)
¸

rep

E

dat
−

˙

F (exp)
¸

dat

D

˙

F (art)
¸

rep

E

dat

σ
(exp)
s σ

(art)
s

,

where the scatter variances are defined as

σ
(exp)
s =

r

D

`

F (exp)
´2

E

dat
−

`˙

F (exp)
¸

dat

´2
,

σ
(art)
s =

s

fi

“

˙

F (art)
¸

rep

”2
fl

dat

−
“D

˙

F (art)
¸

rep

E

dat

”2
.

r
ˆ

σ(art)
˜

r
ˆ

ρ(art)
˜

r
ˆ

cov(art)
˜

are defined in the same way.

The scatter correlation indicates the size of the spread of data around a straight

line. Specifically r
ˆ

σ(art)
˜

= 1 implies that
D

σ
(art)
i

E

is proportional to σ
(exp)
i

.
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Covariance matrix

Once the systematics are known, the experimental covariance matrix for each
experiment can be easily computed

covij =

0

@

Nsys
X

p=1

σi,pσj,p + FiFjσ
2
N

1

A+ δijσ
2
i,s ,

where Fi , Fj are central values, σi,p are the Nsys correlated systematic errors,
σN is the total normalization uncertainty, and σi,s is the statistical uncertainty.
The correlation matrix is given by

ρij =
covij

σi,totσj,tot
,

where the total error σi,tot for the i-th point is given by

σi,tot =
q

σ2
i,s + σ2

i,c + F 2
i σ2

N

and the total correlated uncertainty σi,c is the sum of all correlated systematics

σ2
i,c =

Nsys
X

p=1

σ2
i,p .
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Normalization bias

Normalization errors are not included in the covariance matrix on the same
footing as other sources of systematics since this would bias the fit. Rather,
normalization errors are included by rescaling all errors independently for each
replica by a factor

σ
(k)
i,s = (1 + r

(k)
N σN)σi,s ,

σ
(k)
i,p = (1 + r

(k)
N σN)σi,p p = 1 , . . . , Nsys ,

where r
(k)
N is the random variable associated to the normalization uncertainty.

The covariance matrix is then given by

cov(k)
ij =

0

@

Nsys
X

p=1

σ(k)
i,pσ

(k)
j,p

1

A+ δijσ
(k)2

i,s ,

in terms of the rescaled uncertainties.
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Error function and χ
2

Error function

E
(k) [ω] =

1

Ndat

Ndat
X

i,j=1

“

F
(art)(k)
i − F

(net)(k)
i

”“

(cov)−1
”

ij

“

F
(art)(k)
j − F

(net)(k)
j

”

,

The covariance matrix cov
(k) does not include normalization errors.

E (k) is a property of each individual replica, whereas the quality of the
global fit is given by the χ2 computed from the averages over the sample
of trained neural networks.

χ2

χ2 =
1

Ndat

Ndat
X

i,j=1

“

F
(exp)
i − 〈F

(net)
i 〉rep

”“

(cov)−1
”

ij

“

F
(exp)
j − 〈F

(net)
j 〉rep

”

,

where now the covariance matrix includes normalization uncertainties.
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Proper Fitting avoiding Overlearning: an example

Need a redundant parametrization to avoid excessive constraining

Need a way of stopping the fit before overlearning sets in
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How to avoid Overlearning?

Stopping criterion based on Training-Validation separation

* Divide data in two sets: training and validation.

* Minimisation is performed only on the training set. The validation χ2 for
the set is computed.

* When the training χ2 still decreases while the validation χ2 stops
decreasing → STOP.

# iterations
0 20 40 60 80 100 120 140 160

3

3.5

4

4.5

5

5.5

6

 - rep 0003val and Etr#E

trE

valE

 - rep 0003val and Etr#E

# iterations
158 159 160 161 162 163 164 165 166 1673.1

3.12

3.14

3.16

3.18
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3.24

3.26

3.28

3.3

 - rep 0003val and Etr#E

trE

valE

 - rep 0003val and Etr#E
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Non singlet fit

Determination of

T3(x , Q2
0 ) ≡ (u + ū − d − d̄)(x , Q2

0 )

at Q2
0 = 2GeV2 at LO, NLO, NNLO.

DATA SETS: F
p
2 (x , Q2) − F d

2 (x , Q2) BCDMS and NMC

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

) 02
 (

x,
 Q

N
S

q

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CTEQ6.1
MRST02
ALE02

NNPDF

Large x

See hep-ph/0701127 for all technical details
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