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DATASETS IN A GLOBAL PDF DETERMINATION

LHC kinematics

LHC parton kinematics

NNPDF2.1 data set
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e CURRENT GLOBAL PDF FITS INCLUDE

DIS: NEUTRAL AND CHARGED CURRENT, CHARGED LEPTON AND NEUTRINO BEAMS,
INCLUSIVE AND CHARM-TAGGED

DRELL-YAN: FIXED TARGET AND COLLIDER, NEUTRAL ’y* AND Z AND CHARGED CURRENT

W PRODUCTION
INCLUSIVE JETS

e WHAT IS THE IMPACT OF INDIVIDUAL DATA?

e WHAT DO WE NEED AND WHAT DO WE EXPECT FOR LHC?



SUMMARY

METHODOLOGY:

MONTE CARLO PDFSs

THE ROLE OF DRELL-YAN DATA:

FROM THE TEVATRON TO THE LHC

FLAVOURS:

ONE BY ONE

TOWARDS THE LHC



METHODOLOGY: MONTE CARLO APPROACH

BASIC IDEA: MONTE CARLO SAMPLING
OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFs

START FROM MONTE CARLO SAMPLING OF DATA - L - =

SPACE
EACH PDF<+> NEURAL NETWORK PARAMETRIZED { MC generation }{’ ’ ’ ’}

BY 37 PARAMETERS (NNPDF2.0: 37 ® 7 = 259

‘P"ARMS) } TRAINING
INFINITE” NUMBER OF PARAMETERS=> CAN REP- ] ] | ]
RESENT ANY FUNCTION EVOLUTION

FIT STOPS WHEN QUALITY OF FIT TO RAN-
DOMLY SELECTED “VALIDATION” DATA (NOT FIT-
TED) STOPS IMPROVING NN parametrization {




METHODOLOGY: MONTE CARLO APPROACH

BASIC IDEA: MONTE CARLO SAMPLING
OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

CAN DETERMINE BOTH O68C.L.& 1l-o
e START FROM MONTE CARLO SAMPLING OF DATA : :
SPACE —— NNPDF2.0 - 68% CL
—— NNPDF2.0- 1-0
e EACH PDF<++ NEURAL NETWORK PARAMETRIZED Individual Replicas
BY 37 PARAMETERS (NNPDF2.0: 37 ® 7 = 259
PARMS) o
“INFINITE” NUMBER OF PARAMETERS=> CAN REP- 3z
RESENT ANY FUNCTION 2
FIT STOPS WHEN

QUALITY OF FIT TO RAN-
DOMLY SELECTED “VALIDATION” DATA (NOT FIT-
TED) STOPS IMPROVING




METHODOLOGY: MONTE CARLO APPROACH

BASIC IDEA: MONTE CARLO SAMPLING
OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

CAN DETERMINE BOTH O68C.L.& 1-o

e START FROM MONTE CARLO SAMPLING OF DATA
SPACE

e EACH PDF<+ NEURAL NETWORK PARAMETRIZED
BY 37 PARAMETERS (NNPDF2.0: 37 ® 7 = 259

PARMS)
“INFINITE” NUMBER OF PARAMETERS=> CAN REP-
RESENT ANY FUNCTION

e FIT STOPS WHEN QUALITY OF FIT TO RAN-
DOMLY SELECTED “VALIDATION” DATA (NOT FIT-
TED) STOPS IMPROVING

— NNPDF2.0 - 68% CL
—— NNPDF2.0 - 1-0
Individual Replicas

%)

MOTIVATION

e VERY REDUNDANT PARAMETRIZATION (ALL PDFS ON SAME FOOTING)

o NON-GAUSSIAN DISTRIBUTION OF RESULT POSSIBLE

e MOMENTS OF DISTRIBUTION OF RESULTS (CORRELATIONS) EASILY DETERMINED

e RESULTS AMENABLE TO BAYESIAN REWEIGHTING

e CAN DETERMINE DISTANCE BETWEEN RESULTS OBTAINED FROM DIFFERENT DATA
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LY (z1,22) = q4(z1, M5)q; (w2, M )+q;(z2, M%) (x1, M)

FIXED TARGET DIS = SINGLET-TRIPLET SEPARATION r? — rd = L{(uP 4 aP) — (dP + dP]

HERA THREE INDEPENDENT COMBINATIONS OF PDFs (NC+CC WITH e )
ONE MORE FROM Q° OF Z CONTRIBUTION = u, @, d+ S, d+ 5

— F3 = CHARM
NEUTRINO DIS = FOUR COMBINATIONS OF PDFs (NC+CC WITH v, v)
— “DIMUON” F3'¢, Fi'¢ = STRANGE AND ANTISTRANGE

FIXED TARGET DRELL-YAN (P AND NUCLEAR TARGETS) = ANTIUP/ANTIDOWN
SEPARATION

W AND Z PRODUCTION = UP/DOWN FLAVOR ASYMMETRIES; STRANGENESS



CORRELATIONS BETWEEN DRELL-YAN DATA AND PDFS
LHC

%% W= Z

NNPDF2.1, LHC7, Corr PDFs and o(W") at Q = My, NNPDF2.1, LHC7, Corr PDFs and o(W) at Q* = My, NNPDF2.1, LHC7, Corr PDFs and o(2) at Q° = My,
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e VALENCE = LARGE CORRELATION AT LARGE 2z (~ 0.1, SMALLER AT LHC)
e LIGHT SEA = LARGE CORRELATION AT SMALL z (< 0.01)

e GLUONS & HEAVY FLAVORS = WEAK CORRELATION, MOSTLY AT MEDIUM-SMALL x



THE IMPACT OF JET DATA (NNPDF2.0)

| [ DIS | DISFJET [ NNPDF2.0 |

X2t 1.20 1.18 1.21
NMC-pd 0.85 0.86 0.99
NMC T.69 1.66 1.69
SLAC T.37 T.31 1.34
BCDMS 1.26 1.27 1.27
HERAT T.13 T.13 1.14
CHORUS T.13 T.11 1.18
FLHI08 T.51 1.49 1.49
NTVDMN 0.71 0.75 0.67
ZEUS-H2 T.50 T.49 T.51
CDFR2ZKT 0.91 0.79 0.80
DOR2CON 1.00 0.93 0.93
DYEG05 7.32 10.35 0.88
DYES66 224 2.50 1.28
CDFWASY | 13.06 14.13 1.85
CDFZRAP 3.12 3.31 2.02
DOZRAD 0.65 0.68 0.47

e HIGH E7 JET DATA WELL REPRODUCED
EVEN WHEN NOT FITTED —
LARGE r GLUON WELL DETERMINED BY

SCALING VIOLATIONS!

e SIGNIFICANT IMPROVEMENT IN LARGE x
GLUON ACCURACY

NNPDF2.0 dataset
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THE IMPACT OF DRELL-YAN+ W -PROD. DATA (NNPDF2.0)
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e VERY SUBSTANTIAL IMPROVEMENT IN .. #
FIT QUALITY WHEN DATA INCLUDED = = 4

SOME PDF COMBINATIONS POORLY DE-  «/
TERMINED WITHOUT THESE DATA

e HUGE IMPROVEMENT IN SEA ASYM

2 — d & STRANGENESS s — §

e SIGNIFICANT IMPROVEMENT IN
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THE IMPACT OFU[%)RELL—YAN DATA

SMALL x LARGE @
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THE

SMALL x

| Q2 = 10° GeV?, ratio to NNPDF2.1 |
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AT SMALL x ALL FLA-
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SOME IMPROVEMENTS
IN ACCURACY AT
LARGE x

TENSION BETWEEN
DIS AND DY AT LARGE
T

LARGE

xdbar

| 0% =10° GeV?, ratio to NNPDF2.1 |

18

T T T

16

. NNPDF2.1
N
200 NNPDF2.1 DIS
s

16

T T T

LT
S AAS IS
Iy

£55%;

1.4

T T T T

14

12

. NNPDF2.1

I,

AT
a7

12

ljfﬁf;//////
xdbar

0.8

0.6

TENSION?
SHAPES OF THE d QUARK FAVORED BY DIS AND DY DATA DO NOT AGREE

IS THERE A PROBLEM WITH THE u/d RATIO?




u/d AT Q* = 2 GEV?

Ratio to NNPDF2.0
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e u/d RATIO IN DIS DOMINATED BY

BCDMS AND NMC DATA
KNOWN TO HAVE CONSISTENCY

[l = NNPDF2.0
Hl]+++ CT10

MSTWO08

)]

2
0

.
13

Py T T rrrr T

0.

RelErr [d/u (X, Q’
o .

0.05

u/d AT Q? = 2 GEV?

e PRECISE DO RUN II LEPTON-LEVEL
DATA INCLUDED VIA REWEIGHTING
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THE UP/DOWN RATIO

COMPARISON BETWEEN PDF SETS
e u/d RATIO IN DIS DOMINATED BY

u/d AT Q* = 2 GEV* RELATIVE UNCERTAINTY BCDMS AND NMC DATA
KNOWN TO HAVE CONSISTENCY
| eoreo PROBLEMS
i e PERHAPS NUCLEAR CORRECTIONS
FHEN Zois & HIGHER TWISTS PLAY A ROLE IN
D NMC & BCDMS
e DIFFERENT PDF SETS BASED ON
orpyeme THE SAME DATA (BUT WITH DIF-
R vomoEeom R FERENT FIT QUALITY) IN PARTIAL
DISAGREEMENT
THE RUN II W ASYMMETRY DATA
u/d AT Q? = 2 GEV? RELATIVE UNCERTAINTY
e PRECISE DO RUN II LEPTON-LEVEL
DATA INCLUDED VIA REWEIGHTING I I,
e NNPDF: SIZABLE IMPROVEMENT * SO I
IN FIT QUALITY & :
e CTEQ: NO GLOBALLY CONSISTENT :** _ Fon
FIT FOUND: CTIOW WITH W ..
DATA, CT10 WITHOUT " o crow ST |

FIRST LESSON FOR LHC
® PRECISE W ASYMMETRY DATA DETERMINE THE / d RATIO ACCURATELY

e EVENTUALLY, IT WOULD BE BETTER TO DO WITHOUT NMC/BCDMS DATA (NO LOW Q2 DATA,
NO NUCLEAR TARGETS)



S SMALL x

[ Q%= 10" GeV?, ratio to NNPDF2.1 |
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STRANGENESS

S LARGE x

[ Q%= 10" GeV?, ratio to NNPDF2.1 |
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e STRANGENESS WELL DETERMINED BY NEUTRINO DATA

e MODERATE IMPACT OF DRELL-YAN DATA ON x SHAPE
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STRANGENESS

S SMALL x S LARGE x S SMALL x S LARGE x

[ Q%= 10" GeV?, ratio to NNPDF2.1 | [ Q2= 10° GeV? ratio to NNPDF2.1 | [ Q%= 10" GeV? ratio to NNPDF2.1 | [[Q? = 10° GeVZ, ratio to NNPDF2.1 |
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e STRANGENESS WELL DETERMINED BY NEUTRINO DATA

e MODERATE IMPACT OF DRELL-YAN DATA ON x SHAPE

BUT: THE STRANGENESS ASYMMETRY AND THE NUTEV ANOMALY

§—S sin? 0
e IMPACT OF DRELL-YAN o v .
0.08 — SIGNIFICANT ON THE S — § Determinations of the weak mixing angle sin“8y
- STRANGENESZS ASYMMETRY, 0245 '\ revor L Tevel  Nutevol Wi
ESPECIALLY ZND MOMENT 0.24 : .

e PROVIDES A SOLUTION TO 0.2

THE PROBLEM OF THE NUTEV 5 023 ;
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e DEFINITIVE SOLUTION 022
0.215
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Correlation coefficient

HEAVY FLAVOURS AND THE GLUON

RECALL CORRELATION PROFILES...

NNPDF2.1, LHC7, Corr PDFs and o(W") at Q? = My,? NNPDF2.1, LHC7, Corr PDFs and o(W) at Q% = M,? NNPDF2.1, LHC7, Corr PDFs and a(2) at Q? = M,
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HEAVY QUARKS RADIATIVELY GENERATED
POSSIBLE INTRINSIC COMPONENTS SMALL, LOCALIZED AT LARGE x AND WITH MODERATE

IMPACT AT HIGH Q2

BEHAVIOUR OF HEAVY FLAVOURS DETERMINED BY THE BEHAVIOUR OF THE GLUON
<~ SAME CORRELATION PROFILES

W AND Z PRODUCTION HAVE A MINOR IMPACT ON GLUON AND HQ =
ESSENTIALLY UNCHANGED FROM DIS ONLY TO DIS+DY PDF FIT

HOWEVER MOMENTUM SUM RULE CONSTRAINS TOTAL QUARK SINGLET COMPONENT
— MORE CHARM, LESS LIGHT QUARKS ETC.



Correlation coefficient

HEAVY FLAVOURS AND THE GLUON

RECALL CORRELATION PROFILES...

NNPDF2.1, LHC7, Corr PDFs and o(W") at Q? = My,? NNPDF2.1, LHC7, Corr PDFs and o(W) at Q% = M,? NNPDF2.1, LHC7, Corr PDFs and a(2) at Q? = M,
15 ‘ 15 ; 15
Down Down Down
Up Up Uup
1r Strange - - - - = 1t Strange - - - - | e 1t Sgﬁnge———-,
Charm ------- 9 Charm ------- 9 P arm -------
Bottom & Bottom b e T~ Bottom
05 Gluon = - - 4 © 05f e os5f / e Gluon - - - |
/ o 8 / T
S ,/ = 5 / _5 ok / ele S
0L~ 8 0F [ A 8 [ Av= RO ¥
= 2 = .Y g =0 e
N o - o -~
-0.5 O -05¢ R O -05¢
-1 L L L L -1 I I I L -1 I . . L
le-05 0.0001 0.001 0.01 0.1 1 le-05 0.0001 0.001 0.01 0.1 1 le-05 0.0001 0.001 0.01 0.1 1
X X X

HEAVY QUARKS RADIATIVELY GENERATED
POSSIBLE INTRINSIC COMPONENTS SMALL, LOCALIZED AT LARGE x AND WITH MODERATE

IMPACT AT HIGH Q2

BEHAVIOUR OF HEAVY FLAVOURS DETERMINED BY THE BEHAVIOUR OF THE GLUON
<~ SAME CORRELATION PROFILES

W AND Z PRODUCTION HAVE A MINOR IMPACT ON GLUON AND HQ =
ESSENTIALLY UNCHANGED FROM DIS ONLY TO DIS+DY PDF FIT

HOWEVER MOMENTUM SUM RULE CONSTRAINS TOTAL QUARK SINGLET COMPONENT
— MORE CHARM, LESS LIGHT QUARKS ETC.

=> UNCERTAINTY IN TOTAL HEAVY COMPONENT CAN LEAD TO UP TO
~ 29 UNCERTAINTY ON W, Z CROSS SECTIONS



CHARM: THE IMPACT OF THRESHOLD BEHAVIOUR

MODERN PDF SETS USE A MATCHED TREATMENT OF HEAVY
QUARKS (GM-VFN SCHEME):

QUARK MASS RETAINED UP TO FINITE N k[, ORDER IN s,
MASSLESS CONTRIBUTIONS RETAINED TO ALL ORDERS IN &g

2
UP TO FINITE N™ L LOG LEVEL (a7 "™ In" %).
h

VARIOUS MATCHING SCHEMES AVAILABLE (ACOT, FONLL,
TR,...): DIFFER IN THE TREATMNENT OF SUBLEADING

TERMS (& IN AVAILABLE ORDERS)

UNCERTAINTIES

MASS UNCERTAINTY POSITION OF THE THRESHOLD = EVOLUTION LENGTH: THE
VALUE OF mj; — DETERMINES THE SIZE OF THE HEAVY COMPONENT (EVOLUTION

LENGTH)



CHARM: THE IMPACT OF THRESHOLD BEHAVIOUR

THE CHARM
STRUCTURE FUNCTION
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Correlation coefficient

CHARM: POSITION OF THE THRESHOLD

CORRELATION m./PDFs
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Correlation coefficient

BOTTOM: POSITION OF THE THRESHOLD

CORRELATION m./PDFs

NNPDF2.1, Correlation PDFs and my, Q2 = 10* Gev?
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Correlation coefficient

BOTTOM: POSITION OF THE THRESHOLD

CORRELATION m./PDFs

NNPDF2.1, Correlation PDFs and my, Q2 = 10* Gev?
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HQ AMBIGUITIES ON DRELL-YAN AT LHC

CORRELATION m./PDFS DEP. OF CHARM ON mc
LHC 7 TeV - Different HQ schemes
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HQ AMBIGUITIES ON DRELL-YAN AT LHC
DEP. OF CHARM ON m¢

LHC 7 TeV - Different HQ schemes
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HQ AMBIGUITIES ON DRELL-YAN AT LHC

CORRELATION m./PDFs DEP. OF CHARM ON mc
LHC 7 TeV - Different HQ schemes
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SECOND LESSON FOR LHC

e HQ MASS & THRESHOLD BEHAVIOUR AFFECT HIGH ENERGY OBSERVABLES THROUGH THE
SIZE OF THE CHARM AND BOTTOM PDFS

e COMBINED HERA DATA WILL LEAD TO MUCH IMPROVED KNOWLEDGE OF BOTH

e HOWEVER, EVENTUALLY, IT WOULD BE BETTER TO DETERMINE THE ¢ AND b SIZE AT LHC
WITHOUT HAVING TO RELY ON LOW-ENERGY DATA



THE IMPACT OF DRELL-YAN AT LHC

TEST THE IMPACT OF LHC 7TEV W AND Z DATA USING REWEIGHTING IN THE
FOLLOWING “TOY” SCENARIOS:

e W ASYMMETRY MEASURED WITH ~ 5% ACCURACY AT ATLAS (KINEMATICS COURTESY OF
A. GLazov) = SIGNIFICANT IMPROVEMENT FOR ALL FLAVORS AT SMALL x

e IV ASYMMETRY + TOTAL W AND Z CROSS-SECTIONS MEASURED TO 2% ACCURACY
=

— FURTHER IMPROVEMENT AT SMALL x
— NOTE EFFECT SEEN ON ALL FLAVORS AND ANTIFLAVORS
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THE IMPACT OF DRELL-YAN AT LHC

TEST THE IMPACT OF LHC 7TEV W AND Z DATA USING REWEIGHTING IN THE
FOLLOWING “TOY” SCENARIOS:

e W ASYMMETRY MEASURED WITH ~ 5% ACCURACY AT ATLAS (KINEMATICS COURTESY OF
A. GLazov) = SIGNIFICANT IMPROVEMENT FOR ALL FLAVORS AT SMALL x

e W ASYMMETRY + Z RAPIDITY DISTRIBUTION TO 2% ACCURACY =
— YET MORE IMPROVEMENT AT SMALL £ NOW ALSO SOME IMPROVEMENT AT

LARGE x
— NOTE EFFECT SEEN ON ALL FLAVORS AND ANTIFLAVORS
ANTIUP SMALL x ANTIUP LARGE x
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THE IMPACT OF DRELL-YAN AT LHC

TEST THE IMPACT OF LHC 7TEV W AND Z DATA USING REWEIGHTING IN THE
FOLLOWING “TOY” SCENARIOS:

e W ASYMMETRY MEASURED WITH ~ 5% ACCURACY AT ATLAS (KINEMATICS COURTESY OF
A. GLAZOV) = SIGNIFICANT IMPROVEMENT FOR ALL FLAVORS AT SMALL z
e I/ ASYMMETRY + Z RAPIDITY DISTRIBUTION TO 2% ACCURACY =

— YET MORE IMPROVEMENT AT SMALL £ NOW ALSO SOME IMPROVEMENT AT
LARGE x

— NOTE EFFECT SEEN ON ALL FLAVORS AND ANTIFLAVORS
— ACCURATE DETERMINATION OF STRANGENESS
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SUMMARY

e ACCURATE DETERIMINATION OF THE LIGHT FLAVOUR
STRUCTURE POSSIBLE USING HERA+LHC DATA ONLY

— NO LOW ENERGY DATA!

e LHC CAN LEAD TO ACCURATE DETERMINATION OF THE HEAVY
FLAVOUR COMPONENTS

— NO LOW ENERGY DATA!

e HIGH-ENERGY DIS DATA FROM A FUTURE LHEC COLLIDER
WOULD ALLOW A PDF DETERMINATION COMPLETELY FREE OF

LOW-ENERGY UNCERTAINTIES



