THE FLAVOUR STRUCTURE OF THE PROTON AND ITS IMPLICATIONS FOR W AND Z PRODUCTION AT THE LHC

Stefano Forte Università di Milano & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

CHALLENGES FOR

PRECISION PHYSICS AT THE LHC

PARIS, DECEMBER 16, 2010

DATASETS IN A GLOBAL PDF DETERMINATION

- CURRENT GLOBAL PDF FITS INCLUDE
 - DIS: NEUTRAL AND CHARGED CURRENT, CHARGED LEPTON AND NEUTRINO BEAMS, INCLUSIVE AND CHARM-TAGGED
 - Drell-Yan: fixed target and collider, neutral γ^* and Z and charged current W production
 - INCLUSIVE JETS
- WHAT IS THE IMPACT OF INDIVIDUAL DATA?
- WHAT DO WE NEED AND WHAT DO WE EXPECT FOR LHC?

SUMMARY

• METHODOLOGY:

MONTE CARLO PDFS

• THE ROLE OF DRELL-YAN DATA:

FROM THE TEVATRON TO THE LHC

• FLAVOURS:

ONE BY ONE

• TOWARDS THE LHC

METHODOLOGY: MONTE CARLO APPROACH

BASIC IDEA: MONTE CARLO SAMPLING OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

- START FROM MONTE CARLO SAMPLING OF DATA SPACE
- EACH PDF↔ NEURAL NETWORK PARAMETRIZED BY 37 PARAMETERS (NNPDF2.0: 37 ⊗ 7 = 259 PARMS)
 "INFINITE" NUMBER OF PARAMETERS⇒ CAN REPRESENT ANY FUNCTION
- FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

METHODOLOGY: MONTE CARLO APPROACH

BASIC IDEA: MONTE CARLO SAMPLING OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

Can determine both 68C.L.& $1-\sigma$

- START FROM MONTE CARLO SAMPLING OF DATA SPACE
- EACH PDF↔ NEURAL NETWORK PARAMETRIZED BY 37 PARAMETERS (NNPDF2.0: 37 ⊗ 7 = 259 PARMS)
 "INFINITE" NUMBER OF PARAMETERS⇒ CAN REPRESENT ANY FUNCTION
- FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

METHODOLOGY: MONTE CARLO APPROACH

BASIC IDEA: MONTE CARLO SAMPLING OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

Can determine both 68C.L.& $1-\sigma$

- START FROM MONTE CARLO SAMPLING OF DATA SPACE
- EACH PDF↔ NEURAL NETWORK PARAMETRIZED BY 37 PARAMETERS (NNPDF2.0: 37 ⊗ 7 = 259 PARMS)
 "INFINITE" NUMBER OF PARAMETERS⇒ CAN REPRESENT ANY FUNCTION
- FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

MOTIVATION

- VERY REDUNDANT PARAMETRIZATION (ALL PDFS ON SAME FOOTING)
- NON-GAUSSIAN DISTRIBUTION OF RESULT POSSIBLE
- MOMENTS OF DISTRIBUTION OF RESULTS (CORRELATIONS) EASILY DETERMINED
- RESULTS AMENABLE TO BAYESIAN REWEIGHTING
- CAN DETERMINE **DISTANCE** BETWEEN RESULTS OBTAINED FROM DIFFERENT DATA

DIS VS. DRELL-YAN

DIS

DRELL-YAN

$$\begin{array}{lll} \text{NC} & F_{1}{}^{\gamma} = \sum_{i} e_{i}^{2} \left(q_{i} + \bar{q}_{i} \right) & \gamma & \frac{d\sigma}{dM_{X}^{2} dy} \left(M_{X}^{2}, y \right) = \frac{4\pi\alpha^{2}}{9M_{X}^{2}s} \sum_{i} e_{i}^{2} L^{ii} \left(x_{1}^{0}, x_{2}^{0} \right) \\ \text{NC} & F_{1}{}^{Z, \text{ int.}} = \sum_{i} B_{i} \left(Q^{2}/M_{Z}^{2} \right) \left(q_{i} + \bar{q}_{i} \right) & W & \frac{d\sigma}{dy} = \frac{\pi G_{F} M_{V}^{2} \sqrt{2}}{3s} \sum_{i,j} |V_{ij}^{\text{CKM}}| L^{ij} \left(x_{1}^{0}, x_{2}^{0} \right) \\ \text{CC} & F_{1}^{W^{+}} = \bar{u} + d + s + \bar{c} & Z & \frac{d\sigma}{dy} = \frac{\pi G_{F} M_{V}^{2} \sqrt{2}}{3s} \sum_{i} \left(V_{i}^{2} + A_{i}^{2} \right) L^{ii} \left(x_{1}^{0}, x_{2}^{0} \right) \\ \text{CC} & F_{1}^{W^{+}} = \bar{u} + d + s + \bar{c} & Z & \frac{d\sigma}{dy} = \frac{\pi G_{F} M_{V}^{2} \sqrt{2}}{3s} \sum_{i} \left(V_{i}^{2} + A_{i}^{2} \right) L^{ii} \left(x_{1}^{0}, x_{2}^{0} \right) \\ \text{CC} & -F_{3}^{W^{+}} / 2 = \bar{u} - d - s + \bar{c}, & L^{ij} \left(x_{1}, x_{2} \right) \equiv q_{i} \left(x_{1}, M_{X}^{2} \right) \bar{q}_{j} \left(x_{2}, M_{X}^{2} \right) + q_{i} \left(x_{2}, M_{X}^{2} \right) \bar{q}_{j} \left(x_{1}, M_{X}^{2} \right) \end{array}$$

- FIXED TARGET DIS \Rightarrow SINGLET-TRIPLET SEPARATION $F_2^p F_2^d = \frac{1}{3} [(u^p + \bar{u}^p) (d^p + \bar{d}^p)]$
- HERA THREE INDEPENDENT COMBINATIONS OF PDFs (NC+CC with e^{\pm}), ONE MORE FROM Q^2 OF Z CONTRIBUTION $\Rightarrow u, \bar{u}, d+s, \bar{d}+\bar{s}$
 - $F_2^c \Rightarrow \text{CHARM}$
- NEUTRINO DIS \Rightarrow FOUR COMBINATIONS OF PDFs (NC+CC WITH ν , $\bar{\nu}$)
 - "DIMUON" $F_2^{\nu, c}$, $F_2^{\overline{\nu}, c} \Rightarrow$ STRANGE AND ANTISTRANGE
- FIXED TARGET DRELL-YAN (P AND NUCLEAR TARGETS) \Rightarrow ANTIUP/ANTIDOWN SEPARATION
- W AND Z PRODUCTION \Rightarrow UP/DOWN FLAVOR ASYMMETRIES; STRANGENESS

CORRELATIONS BETWEEN DRELL-YAN DATA AND PDFS LHC

• VALENCE \Rightarrow LARGE CORRELATION AT LARGE $x (\sim 0.1, \text{ SMALLER AT LHC})$

- LIGHT SEA \Rightarrow LARGE CORRELATION AT SMALL $x (\leq 0.01)$
- GLUONS & HEAVY FLAVORS \Rightarrow WEAK CORRELATION, MOSTLY AT MEDIUM-SMALL x

THE IMPACT OF JET DATA (NNPDF2.0)

	DIS	DIS+JET	NNPDF2.0
$\chi^2_{ m tot}$	1.20	1.18	1.21
NMC-pd	0.85	0.86	0.99
NMC	1.69	1.66	1.69
SLAC	1.37	1.31	1.34
BCDMS	1.26	1.27	1.27
HERAI	1.13	1.13	1.14
CHORUS	1.13	1.11	1.18
FLH108	1.51	1.49	1.49
NTVDMN	0.71	0.75	0.67
ZEUS-H2	1.50	1.49	1.51
CDFR2KT	0.91	0.79	0.80
D0R2CON	1.00	0.93	0.93
DYE605	7.32	10.35	0.88
DYE866	2.24	2.59	1.28
CDFWASY	13.06	14.13	1.85
CDFZRAP	3.12	3.31	2.02
D0ZRAP	0.65	0.68	0.47

GLUON

- HIGH E_T JET DATA WELL REPRODUCED EVEN WHEN NOT FITTED \Rightarrow LARGE x GLUON WELL DETERMINED BY SCALING VIOLATIONS!
- SIGNIFICANT IMPROVEMENT IN LARGE xGLUON ACCURACY

THE IMPACT OF DRELL-YAN+ W-PROD. DATA (NNPDF2.0)

0.45

0.35

0.15

0.05

(°0.3 °0.25 ×0.25 × 0.2

	DIS	DIS+JET	NNPDF2.0
$\chi^2_{ m tot}$	1.20	1.18	1.21
NMC-pd	0.85	0.86	0.99
NMC	1.69	1.66	1.69
SLAC	1.37	1.31	1.34
BCDMS	1.26	1.27	1.27
HERAI	1.13	1.13	1.14
CHORUS	1.13	1.11	1.18
FLH108	1.51	1.49	1.49
NTVDMN	0.71	0.75	0.67
ZEUS-H2	1.50	1.49	1.51
CDFR2KT	0.91	0.79	0.80
D0R2CON	1.00	0.93	0.93
DYE605	7.32	10.35	0.88
DYE866	2.24	2.59	1.28
CDFWASY	13.06	14.13	1.85
CDFZRAP	3.12	3.31	2.02
D0ZRAP	0.65	0.68	0 47

 $s - \overline{s}$

- VERY SUBSTANTIAL IMPROVEMENT IN FIT QUALITY WHEN DATA INCLUDED \Rightarrow SOME PDF COMBINATIONS POORLY DE-TERMINED WITHOUT THESE DATA
- HUGE IMPROVEMENT IN SEA ASYM $\bar{u} - \bar{d}$ & STRANGENESS $s - \bar{s}$
- SIGNIFICANT IMPROVEMENT IN TOTAL VALENCE $\left(\sum_{i} (q_i - \bar{q}_i)\right)$ & ISOTRIPLET $\left(u + \bar{u} - (d + \bar{d})\right)$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

NNPDF2.0 DIS+JET

 $\overline{d} - \overline{u}$

NPDF2.0

- LHC
- LITTLE AMBIGUITY/HARD TO IMPROVE FOR UP
- SIGNIFICANT IMPROVEMENT/SOME AMBIGUITY FOR ANTIUP IN MEDIUM-SMALL $0.01 \lesssim x \lesssim 0.1$ region

TENSION?

- SHAPES OF THE d guark favored by DIS and DY data do not agree
- IS THERE A PROBLEM WITH THE u/d ratio?

THE UP/DOWN RATIO

COMPARISON BETWEEN PDF SETS

THE UP/DOWN RATIO

COMPARISON BETWEEN PDF SETS

FIRST LESSON FOR LHC

- PRECISE W asymmetry data determine the u/d ratio accurately
- EVENTUALLY, IT WOULD BE BETTER TO DO WITHOUT NMC/BCDMS DATA (NO LOW Q^2 DATA, NO NUCLEAR TARGETS)

- STRANGENESS WELL DETERMINED BY NEUTRINO DATA
- MODERATE IMPACT OF DRELL-YAN DATA ON x Shape

- STRANGENESS WELL DETERMINED BY NEUTRINO DATA •
- MODERATE IMPACT OF DRELL-YAN DATA ON x SHAPE

BUT: THE STRANGENESS ASYMMETRY AND THE NUTEV ANOMALY $s - \overline{s}$

- DRELL-YAN OF • IMPACT SIGNIFICANT ON THE $s - \bar{s}$ STRANGENESS ASYMMETRY. ESPECIALLY 2ND MOMENT
- PROVIDES A SOLUTION TO THE PROBLEM OF THE NUTEV ANOMALY
- DEFINITIVE SOLUTION WITH LHC DATA

 $\sin^2 \theta_w$

HEAVY FLAVOURS AND THE GLUON

RECALL CORRELATION PROFILES...

- HEAVY QUARKS RADIATIVELY GENERATED POSSIBLE INTRINSIC COMPONENTS SMALL, LOCALIZED AT LARGE x AND WITH MODERATE IMPACT AT HIGH Q^2
- BEHAVIOUR OF HEAVY FLAVOURS DETERMINED BY THE BEHAVIOUR OF THE GLUON ⇔ SAME CORRELATION PROFILES
- W and Z production have a minor impact on gluon and HQ \Rightarrow essentially unchanged from DIS only to DIS+DY PDF fit
- HOWEVER MOMENTUM SUM RULE CONSTRAINS TOTAL QUARK SINGLET COMPONENT \Rightarrow MORE CHARM, LESS LIGHT QUARKS ETC.

HEAVY FLAVOURS AND THE GLUON

RECALL CORRELATION PROFILES...

- HEAVY QUARKS RADIATIVELY GENERATED POSSIBLE INTRINSIC COMPONENTS SMALL, LOCALIZED AT LARGE x AND WITH MODERATE IMPACT AT HIGH Q^2
- BEHAVIOUR OF HEAVY FLAVOURS DETERMINED BY THE BEHAVIOUR OF THE GLUON ⇔ SAME CORRELATION PROFILES
- W and Z production have a minor impact on gluon and HQ \Rightarrow essentially unchanged from DIS only to DIS+DY PDF fit
- HOWEVER MOMENTUM SUM RULE CONSTRAINS TOTAL QUARK SINGLET COMPONENT \Rightarrow MORE CHARM, LESS LIGHT QUARKS ETC.
- \Rightarrow Uncertainty in total heavy component can lead to up to $\sim 2\%$ uncertainty on W,~Z cross sections

CHARM: THE IMPACT OF THRESHOLD BEHAVIOUR

- MODERN PDF SETS USE A MATCHED TREATMENT OF HEAVY QUARKS (GM-VFN SCHEME): QUARK MASS RETAINED UP TO FINITE $N^k L$ ORDER IN α_s , MASSLESS CONTRIBUTIONS RETAINED TO ALL ORDERS IN α_s UP TO FINITE $N^n L$ LOG LEVEL ($\alpha_s^{m+n} \ln^n \frac{Q^2}{m_h^2}$).
- VARIOUS MATCHING SCHEMES AVAILABLE (ACOT, FONLL, TR,...): DIFFER IN THE TREATMNENT OF SUBLEADING TERMS (& IN AVAILABLE ORDERS)

UNCERTAINTIES

• MASS UNCERTAINTY POSITION OF THE THRESHOLD \Rightarrow EVOLUTION LENGTH: THE VALUE OF $m_h \rightarrow$ DETERMINES THE SIZE OF THE HEAVY COMPONENT (EVOLUTION LENGTH)

CHARM: THE IMPACT OF THRESHOLD BEHAVIOUR

UNCERTAINTIES

- MASS UNCERTAINTY POSITION OF THE THRESHOLD \Rightarrow EVOLUTION LENGTH: THE VALUE OF $m_h \rightarrow$ DETERMINES THE SIZE OF THE HEAVY COMPONENT (EVOLUTION LENGTH)
- THRESHOLD UNCERTAINTY: IMPACT OF SUBLEADING TERMS SIZABLE AT THRESHOLD \rightarrow CHANGE OF "INITIAL" CONDITION AFFECTS THE SIZE OF THE CHARM COMPONENT AT ALL SCALES

CHARM: POSITION OF THE THRESHOLD

BOTTOM: POSITION OF THE THRESHOLD

- LARGER $m_n \rightarrow$ LESS EVOLUTION \rightarrow LESS BOTTOM (NEGATIVE CORRELATION)
- EFFECT ON LIGHT PDFs VERY SMALL, EFFECT ON σ_W , σ_Z BELOW 1% LEVEL
- LARGE EFFECT ON BOTTOM-DRIVEN OBSERV-ABLES:

BOTTOM: POSITION OF THE THRESHOLD

HQ AMBIGUITIES ON DRELL-YAN AT LHC ELATION m (PDFs DEP. OF CHARM ON m_c

- FURTHER UNCERTAINTY ON CHARM \rightarrow LIGHT PDFS DUE TO SUBLEADING TERMS AT THRESHOLD
- DAMPED SUBLEADING TERMS \Rightarrow LESS CHARM \Rightarrow MORE LIGHT QUARKS (LARGER σ_Z)

TOTAL UNCERTAINTY

- PDF+ m_c +THRESHOLD SUBL TERMS
- $\Delta m_c = 0.1 \text{ GeV}$ (PDG POLE MASS ~ 0.15 GeV, HOW-EVER UNCERTAINTY CAN BE REDUCED BY CLEVER USE OF \overline{MS} MASS (ALEKHIN, MOCH, 2010))+
- PDF UNCERTAINTY INCREASED BY \sim 30% due to HQ at LHC7 (\sim 40% at LHC14)

LHC 7 TEV	$W^+ B_{l\nu}$ [NB]	$W^{-}B_{l\nu}$ [NB]	$Z^0 B_{l \overline{l}}$ [NB]
$m_c = 1.414 \text{ GeV}$	5.99 ± 0.14	4.09 ± 0.09	0.932 ± 0.02
$ \begin{array}{c} m_{c} = 1.5 \; {\rm GeV} \\ m_{c} = 1.6 \; {\rm GeV} \\ m_{c} = 1.7 \; {\rm GeV} \end{array} $	$6.06 \pm 0.17 \ 6.11 \pm 0.14 \ 6.14 \pm 0.14$	$\begin{array}{c} 4.14 \pm 0.12 \\ 4.17 \pm 0.10 \\ 4.19 \pm 0.09 \end{array}$	$\begin{array}{c} 0.943 \pm 0.024 \\ 0.951 \pm 0.020 \\ 0.956 \pm 0.019 \end{array}$
$\delta_{\mathrm{PDF}} \ \delta_{\mathrm{PDF}+\mathrm{m_{c}}} \ \delta_{\mathrm{PDF}+\mathrm{m_{c}}+\mathrm{GM}}$	0.14 0.15 0.19	0.09 0.10 0.12	0.019 0.021 0.025
$\rho \left[\sigma, m_{c}\right]$	0.44	0.41	0.48

HQ AMBIGUITIES ON DRELL-YAN AT LHC ELATION m (PDFs DEP. OF CHARM ON m_c

CORRELATION m_c / PDFs

• FURTHER UNCERTAINTY ON CHARM \rightarrow LIGHT PDFS DUE TO SUBLEADING TERMS AT THRESHOLD

• DAMPED SUBLEADING TERMS \Rightarrow LESS CHARM \Rightarrow MORE LIGHT QUARKS (LARGER σ_Z)

TOTAL UNCERTAINTY

- PDF+ m_c +Threshold subl terms
- $\Delta m_c = 0.1 \text{ GeV}$ (PDG POLE MASS ~ 0.15 GeV, HOW-EVER UNCERTAINTY CAN BE REDUCED BY CLEVER USE OF \overline{MS} MASS (ALEKHIN, MOCH, 2010))+
- PDF UNCERTAINTY INCREASED BY \sim 30% due to HQ at LHC7 (\sim 40% at LHC14)

LHC 7 TEV	$W^+ B_{l \nu}$ [NB]	$W^{-}B_{l u}$ [NB]	$Z^0 B_{l \overline{l}}$ [NB]
$m_c = 1.414 \text{GeV}$	5.99 ± 0.14	4.09 ± 0.09	0.932 ± 0.02
$m_{c} = 1.5 \text{ GeV}$ $m_{c} = 1.6 \text{ GeV}$ $m_{c} = 1.7 \text{ GeV}$	$6.06 \pm 0.17 \\ 6.11 \pm 0.14 \\ 6.14 \pm 0.14$	$\begin{array}{c} 4.14 \pm 0.12 \\ 4.17 \pm 0.10 \\ 4.19 \pm 0.09 \end{array}$	$\begin{array}{c} 0.943 \pm 0.024 \\ 0.951 \pm 0.020 \\ 0.956 \pm 0.019 \end{array}$
$\delta_{\mathrm{PDF}} \ \delta_{\mathrm{PDF}+\mathrm{m_{c}}} \ \delta_{\mathrm{PDF}+\mathrm{m_{c}}+\mathrm{GM}}$	0.14 0.15 0.19	0.09 0.10 0.12	0.019 0.021 0.025
$ ho \left[\sigma, m_{ \mathcal{C}} ight]$	0.44	0.41	0.48

SECOND LESSON FOR LHC

- HQ MASS & THRESHOLD BEHAVIOUR AFFECT HIGH ENERGY OBSERVABLES THROUGH THE SIZE OF THE CHARM AND BOTTOM PDFS
- COMBINED HERA DATA WILL LEAD TO MUCH IMPROVED KNOWLEDGE OF BOTH
- HOWEVER, EVENTUALLY, IT WOULD BE BETTER TO DETERMINE THE c and b size at LHC without having to rely on low-energy data

THE IMPACT OF DRELL-YAN AT LHC

TEST THE IMPACT OF LHC 7TeV W and Z data using reweighting in the following "toy" scenarios:

- W ASYMMETRY MEASURED WITH ~ 5% ACCURACY AT ATLAS (KINEMATICS COURTESY OF A. GLAZOV) \Rightarrow SIGNIFICANT IMPROVEMENT FOR ALL FLAVORS AT SMALL x
- W Asymmetry + total W and Z cross-sections measured to 2% accuracy \Rightarrow
 - FURTHER IMPROVEMENT AT SMALL x
 - NOTE EFFECT SEEN ON ALL FLAVORS AND ANTIFLAVORS

THE IMPACT OF DRELL-YAN AT LHC

TEST THE IMPACT OF LHC 7TeV W and Z data using reweighting in the following "toy" scenarios:

- W ASYMMETRY MEASURED WITH ~ 5% ACCURACY AT ATLAS (KINEMATICS COURTESY OF A. GLAZOV) \Rightarrow SIGNIFICANT IMPROVEMENT FOR ALL FLAVORS AT SMALL x
- W ASYMMETRY + Z RAPIDITY DISTRIBUTION TO 2% ACCURACY \Rightarrow
 - YET MORE IMPROVEMENT AT SMALL \boldsymbol{x} NOW ALSO SOME IMPROVEMENT AT LARGE \boldsymbol{x}
 - NOTE EFFECT SEEN ON ALL FLAVORS AND ANTIFLAVORS

THE IMPACT OF DRELL-YAN AT LHC

TEST THE IMPACT OF LHC 7TeV W and Z data using reweighting in the following "toy" scenarios:

- W ASYMMETRY MEASURED WITH ~ 5% ACCURACY AT ATLAS (KINEMATICS COURTESY OF A. GLAZOV) \Rightarrow SIGNIFICANT IMPROVEMENT FOR ALL FLAVORS AT SMALL x
- W Asymmetry + Z rapidity distribution to 2% accuracy \Rightarrow
 - YET MORE IMPROVEMENT AT SMALL \boldsymbol{x} NOW ALSO SOME IMPROVEMENT AT LARGE \boldsymbol{x}
 - NOTE EFFECT SEEN ON ALL FLAVORS AND ANTIFLAVORS \Rightarrow ACCURATE DETERMINATION OF STRANGENESS

SUMMARY

- ACCURATE DETERIMINATION OF THE LIGHT FLAVOUR STRUCTURE POSSIBLE USING HERA+LHC DATA ONLY \rightarrow NO LOW ENERGY DATA!
- LHC CAN LEAD TO ACCURATE DETERMINATION OF THE HEAVY FLAVOUR COMPONENTS
 - \rightarrow NO LOW ENERGY DATA!
- HIGH-ENERGY DIS DATA FROM A FUTURE LHEC COLLIDER WOULD ALLOW A PDF DETERMINATION COMPLETELY FREE OF LOW-ENERGY UNCERTAINTIES