

CLOSURE TESTS FOR PARTON DISTRIBUTIONS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

FOR THE COLLABORATION: R. D. BALL, V. BERTONE, S. CARRAZZA, C. DEANS,

L. DEL DEBBIO, S.F., A. GUFFANTI, N. HARTLAND J. I. LATORRE, J. ROJO, M. UBIALI

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

CERN, DECEMBER 13, 2013

TOWARDS NNPDF3.0

OPTMIZATION

- FULL MIGRATION OF THE CODE TO C++
- STREAMLINING, OPTIMIZATION AND DEBUGGING OF THE WHOLE CODE INCLUDING GENETIC ALGORITHM, NUMERICAL METHODS, ETC
- FAST INTERFACES FastKernel + APPLGRID/FASTNLO USED SYSTEMATICALLY
- \Rightarrow MORE DETAILED MINIMIZATION

TYPICAL FIT: ~ 4000 datapoints for 50000 iterations of a GA with 80 mutants: $\sim 10^{10}$ predictions computed for each replica(50h computing per replica on CERN lxplus)

NEW DATA:

ALL LHC DATA WITH INFO ON SYSTEMATICS

- ATLAS: HIGH-MASS DRELL-YAN (2011); JETS 2.76 TEV
- CMS: W μ asym 5 fb⁻¹; CMS W+charm 5 fb⁻¹; double-differential Drell-Yan; inclusive jets 5 fb⁻¹
- LHCB $Z \rightarrow e^+e^-$ rapidity distn. (2011)
- HERA II COMBINED F_2^c
- H1 HERA-II INCLUSIVE F_2
- ZEUS HERA-II INCLUSIVE F_2
- ATLAS $W p_T$ distn; ATLAS prompt photon; LHCB $Z \rightarrow \mu^+ \mu^-$ rapidity dist.; ATLAS+CMS top rapidity distn.: Under consideration (preliminary data, interfaces being developed &c...)

MINIMIZATION STRATEGY BASED ON A CLOSURE TEST

CLOSURE TESTS

WHAT IS A CLOSURE TEST?

- ASSUME UNDERLYING PDFs KNOWN
- GENERATE DATA WITH GIVEN STATISTICAL AND CORRELATED SYSTEMATICS
- PERFORM A FIT & COMPARED TO "TRUTH"
- PREVIOUS STUDIES BY THORNE & WATT (2012) ALONG SIMILAR LINES

LEVELS

- DATA ARE GENERATED FOR THE SAME KINEMATICS OF ALL DATA IN NNPDF2.3 USING UNDERLYING MSTW08 PDFs (CT10 ALSO TRIED)
- LEVEL 0:
 - EACH DATAPOINT EQUAL TO THE MSTW "TRUE VALUE"; UNCERTAINTY ASSUMED TO COINCIDE WITH THE EXPERIMENTAL ONE
 - FIT \rightarrow MUST FIND $\chi^2 = 0$ (GET BACK **MSTW** "TRUTH")

• LEVEL 2:

- EACH DATAPOINT IS OBTAINED AS A RANDOM FLUCTUATION WITH GIVEN COVARIANCE MATRIX ABOUT MSTW "TRUTH"
- GENERATE PSEUDODATA REPLICAS OF THESE "DATA"
- THEN FIT PDF REPLICAS TO PSEUDODATA REPLICAS
- FIT MUST FIND (PER DATAPOINT)

 $\chi^2 = 1$ (best-fit to data); $\langle E \rangle = 2$ (fit of each replica to data replica); $\langle \chi^{2(1)} \rangle = 1$ (fit of each replica to data)

- MUST FIND THAT (PREDICTION)-(THEORY) IS COMPATIBLE WITH ZERO WITHIN ERRORS
- MUST FIND THAT MSTW "TRUE PDFs" is within one σ band in 68% of cases

(LEVEL 1: SAME AS LEVEL 2, BUT WITHOUT PSEUDODATA REPLICAS)

STOPPING vs. WEIGHT PENALTY

- NNPDF OPTIMAL FIT CURRENTLY DETERMINED BY CROSS-VALIDATION: DATA RANDOMLY DIVIDED IN TWO SETS, χ^2 OF FITTED (TRAINING) DATASET KEEPS DECREASING BUT χ^2 OF NON-FITTED (VALIDATION) DATASET STARTS INCREASING
- MUST INTRODUCE THRESHOLDS FOR INCREASE & DECREASE BASED ON TYPICAL χ^2 FLUCTUATIONS
- ALTERNATIVE IDEA: INTRODUCE A MEASURE OF THE COMPLEXITY OF THE j-th NN: $\Delta_j = \sum_{i=1}^{N_w} (w_i^j)^2$
- THEN ADD TO χ^2 A WEIGHT-PENALTY $f(w_i) = \sum_{j=1}^{N_{pdfs}} \alpha_j \Delta_j$ AND MINIMIZE χ^2
- CONSTANTS α_j DETERMINED BY EXPECTED COMPLEXITY OF THE *j*-th Network BASED on PREVIOUS FIT: $\alpha_i = \left[\frac{\langle \Delta_i \rangle}{N_w}\right]^{-1}$
- ITERATE UNTIL CONVERGENCE
- FITS STOPS WHEN NETWORKS FIT THE DATA BUT ARE NOT TOO COMPLEX

ADVANTAGES

- OPTIMAL WEIGHTS DETERMINED SELF-CONSISTENTLY
- NO OVERLEARNING \rightarrow NO STOPPING CRITERION NEEDED (JUST MAKE FIT LONG ENOUGH)
- NATURALLY SMOOTH PDF SHAPES

LEVEL-0 CLOSURE

- FITS PRODUCED WITH INCREASING (FIXED) TRAINING LENGTH
- ALL FITS WITH SAME DATA AND SAME RANDOM SEED (RANDOM SEED INDEP SEPARATELY TESTED)
- GOODNESS OF FIT TO DATA AND PERCENTAGE UNCERTAINTY ON PREDICTION STUDIED VS. TRAINING LENGTH
- χ^2 MUST GO TO ZERO; σ MUST GO TO ZERO AT DATA LEVEL, NOT AT PDF LEVEL

FIT QUALITY

LEVEL-2 CLOSURE

FIXED-LENGTH FITS TO 100% of data (no cross-validation)

FIT QUALITY

- At 10K GA iterations, $\chi^2 = 0.96$, $\langle E \rangle = 2.0$ (note $\chi^2_{mstw} = 0.96$)
- CHECKED AGAIN AT 20K, 40K, 80K: SAME PERFECT VALUES (TO TWO DECIMAL PLACES)

AGREEMENT WITH THEORY (DATA LEVEL)

	NO WP	WP
10K	0.948 ± 0.854	0.638 ± 0.714
20K	0.966 ± 0.916	0.613 ± 0.732
40K	1.01 ± 1.00	0.622 ± 0.788

• AVERAGE OVER DATAPOINTS, DIFFERENT TL & METHODS: PERFECT

- COMPARE PDF TO THEORY $\begin{bmatrix} q_l^{(k)}(x_i) - \Delta q_l^{(k)}(x_i), q_l^{(k)}(x_i) + \Delta q_l^{(k)}(x_i) \end{bmatrix}$ AT x = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7 FOR ALL PDFS
- FRACTION WHICH FALLS WITHIN ONE σ
- NO WP SHOWN, WP SIMILAR: PERFECT

- IT LOOKS LIKE AT 10k a **PERFECT** fit is reached
- NO OVERLEARNING \rightarrow NO STOPPING CRITERION NEEDED (EVEN W/O WP)
- IS IT POSSIBLE?
- PDFs should stop changing with TL?:

- IT LOOKS LIKE AT 10k a **PERFECT** fit is reached
- NO OVERLEARNING \rightarrow NO STOPPING CRITERION NEEDED (EVEN W/O WP)
- IS IT POSSIBLE?
- PDFs should stop changing with TL?: They do!

- IT LOOKS LIKE AT 10k a **PERFECT** fit is reached
- NO OVERLEARNING \rightarrow NO STOPPING CRITERION NEEDED (EVEN W/O WP)
- IS IT POSSIBLE?
- PDFs should stop changing with TL?: They do!
- UNCERTAINTIES MUST BE DRIVEN BY DATA FLUCTUATIONS
- TEST: REPEAT FIT WITH RESCALED UNCERTAINTIES \Rightarrow FIT SHOULD BE UNCHANGED

- IT LOOKS LIKE AT 10k a **PERFECT** fit is reached
- NO OVERLEARNING \rightarrow NO STOPPING CRITERION NEEDED (EVEN W/O WP)
- IS IT POSSIBLE?
- PDFs should stop changing with TL?: They do!
- UNCERTAINTIES MUST BE DRIVEN BY DATA FLUCTUATIONS
- TEST: REPEAT FIT WITH RESCALED UNCERTAINTIES \Rightarrow FIT SHOULD BE UNCHANGED
- RESULT: UNRESCALED: $\chi^2 = 0.964$; RESCALED BY ×2: $\chi^2 = 0.245$ (0.964/4 = .241); RESCALED BY ×0.65: $\chi^2 = 2.280$ (0.964/.65² = 2.281): IT IS!

WHEN IS OVERLEARNING POSSIBLE?

- For one datapoint, $\chi^2 = \frac{(t-d)^2}{\sigma^2}$, $\chi^2 = 0$ if t = d
- BUT FOR TWO DATAPOINTS, $\chi^2 = \frac{(t-d_1)^2 + (t-d_2)^2}{\sigma^2}$, minimum $\chi^2_{\min} = \frac{(d_1-d_2)^2}{4\sigma^2}$, IF d_i DRAWN FROM A RANDOM SAMPLE, $\chi^2_{\min} = \frac{1}{2}$
- FOR *N* DATAPOINTS, $\chi^2_{\min} = 1 \frac{1}{N}$ IF THERE ARE INFINITELY MANY MEASUREMENTS AT THE SAME POINT $\chi^2_{\min} = 1$ \Rightarrow NO OVERLEARNING

- TEST: REDUCE FRACTION OF FITTED DATA
- Compute χ^2 of fitted & non-fitted data
- STUDY AS FUNCTION OF TRAINING LENGTH

WHEN IS OVERLEARNING POSSIBLE?

- FOR ONE DATAPOINT, $\chi^2 = \frac{(t-d)^2}{\sigma^2}$, $\chi^2 = 0$ if t = d
- BUT FOR TWO DATAPOINTS, $\chi^2 = \frac{(t-d_1)^2 + (t-d_2)^2}{\sigma^2}$, minimum $\chi^2_{\min} = \frac{(d_1-d_2)^2}{4\sigma^2}$, IF d_i DRAWN FROM A RANDOM SAMPLE, $\chi^2_{\min} = \frac{1}{2}$
- FOR N DATAPOINTS, $\chi^2_{\min} = 1 \frac{1}{N}$ IF THERE ARE INFINITELY MANY MEASUREMENTS AT THE SAME POINT $\chi^2_{\min} = 1$ \Rightarrow NO OVERLEARNING

- TEST: REDUCE FRACTION OF FITTED DATA
- Compute χ^2 of fitted & non-fitted data
- STUDY AS FUNCTION OF TRAINING LENGTH
- OVERLEARNING SETS IN AROUND 5000 GA ITERATIONS
- 'data redundancy' of order ~ 10

MICRO-OVERLEARNING

- EVEN IF NO OVERLEARNING VISIBLE (PDFS DO NOT CHANGE IN STATISTICALLY SIGNIFICANT WAY) CAN EXPLOIT KNOWLEDGE OF "TRUE" UNDERLYING THEORY
- \Rightarrow COMPARE χ^2 OF FIT TO χ^2 OF "TRUTH": $\chi^2 = \chi^2_{mstw}$ (REMEMBER PSEUDODATA FLUCTUATE ABOUT TRUTH, SO $\chi^2_{mstw} \sim 1$)
- WHEN $\chi^2 < \chi^2_{\rm mstw}$ OVERLEARNING SETS IN

MICRO-OVERLEARNING

- EVEN IF NO OVERLEARNING VISIBLE (PDFS DO NOT CHANGE IN STATISTICALLY SIGNIFICANT WAY) CAN EXPLOIT KNOWLEDGE OF "TRUE" UNDERLYING THEORY
- \Rightarrow COMPARE χ^2 OF FIT TO χ^2 OF "TRUTH": $\chi^2 = \chi^2_{mstw}$ (REMEMBER PSEUDODATA FLUCTUATE ABOUT TRUTH, SO $\chi^2_{mstw} \sim 1$)
- WHEN $\chi^2 < \chi^2_{\rm mstw}$ OVERLEARNING SETS IN

MORE TESTS

- ANALYSIS OF χ^2 PROFILES (INCLUDING FOR INDIVIDUAL EXPERIMENTS) \Rightarrow NO STATISTICALLY SIGNIFICANT OVERLEARNING SEEN
- DETAILED COMPARISON BETWEEN WP & NON-WP
- DEPENDENCE ON TRAINING LENGTH
- DEPENDENCE ON RANDOM SEED
- DEPENDENCE ON THE UNDERLYING SET I: CTEQ VS MSTW
- DEPENDENCE ON THE UNDERLYING SET II: SINUSOIDAL OSCILLATION ADDED ON TOP OF MSTW
- FITS WITH HUGE NEURAL NETWORK ARCHITECTURE: 2-20-15-1, I.E. 391 PARMS PER NETWORK, 2737 IN TOTAL \Rightarrow RESULTS ARE NOT DRIVEN BY NEURAL NETWORK SIZE

CONCLUSION

- FIXED-LENGTH FIT FULLY ADEQUATE,
- NO OVERLEARNING
- EFFECT OF WP VERY MODERATE

FLUCTUATIONS AND ARC-LENGTH

- DO WE REALLY NEED WEIGHT-PENALTY?
- LOOK AT ARC-LENGTH!: $L = \int_0^1 \sqrt{1 + \left(\frac{df}{dx}\right)^2} dx$
- SUGGESTED BY Moch, Glazov Radescu (2011) AS PENALTY FOR CHEBYSHEV POLY FITS: BUT HOW TO DETERMINE PENALTY? WP SELF-CONSISTENT!
- $\langle L \rangle$ SIMILAR FOR STANDARD AND WP, BUT σ_L RATHER SMALLER FOR WP; (ALSO, MORE STABLE W.R. TO TRAINING LENGTH) \Rightarrow WP FIT MORE STABLE, & WITH SMALLER UNCERTAINTIES

ARC-LENGTH NORMALIZED TO "TRUTH" Arc-Lenght NNPDFclosure/MSTW, TL = 40 K

FUNCTIONAL vs. DATA UNCERTAINTY

- LEVEL 2 UNCERTAINTY IS FAITHFUL REPRESENTATION OF UNDERLYING DATA UNCERTAINTY
- LEVEL 0 FIT UNCERTAINTY IS MINIMAL UNCERTAINTY WHEN DATA HAVE ZERO UNCERTAINTY \rightarrow "FUNCTIONAL" UNCERTAINTY
- "TRUTH" (MSTW) IS CONTAINED WITHIN BOTH BANDS
- IN DATA REGION DATA UNC. \ll FUNCTIONAL UNC. IN EXTRAPOLATION REGION DATA UNC. \sim FUNCTIONAL UNC.

OUTLOOK

- FURTHER STUDIES POSSIBLE/INTERESTING:
 - INTRODUCE "ARTIFICIAL INCONSISTENCIES" IN DATA (MISS OUT SOME SYSTEMATICS) & SEE HOW FIT BEHAVES
 - STUDY IN CONTROLLED SETTINGS IMPACT OF SPECIFIC DATASETS ON PDF KNOWLEDGE
 - Determine $\Delta \chi^2$ criteria \Rightarrow benchmarking
- CURRENT METHODOLOGY FULLY ADEQUATE FOR NNPDF3.0