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Exploring the high-energy frontier
at the Large Hadron Collider
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Outsta,ndmg questlons m Pa,rtlole Physms

£1017 GeV (Planck scale)

[ Huge gap, 10V, between Higgs and Plank scales

With radiative corrections,
the natural value of the
Higgs mass is Planck scale

[M Elementary or composite? Additional Higgs
bosons?
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[ Coupling to Dark Matter? Role in cosmological

€125 GeV (Higgs mass
phase transitions? (Higg )

&1 GeV (Proton mass)

[ Is the vacuum state of the Universe stable?
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Outstandmg questlons in Pa,rtlcle Physms

[ Huge gap, 10V, between Higgs and Plank scales
[ Weakly interacting massive particles? Sterile
[ Elementary or composite? Additional Higgs neutrinos? Extremely light particles (axions)?
bosons?
[ Interactions with Standard Model particles?
[ Coupling to Dark Matter? Role in cosmological
phase transitions? [ What is the structure of the Dark Sector? Is

Dark Matter self-interacting?
[ Is the vacuum state of the Universe stable?

Bullet cluster

Mass density
contours
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Outsta,ndmg questions in Pa,rtlcle Physms

" The Hzggs boson ;‘

[ Huge gap, 10V, between Higgs and Plank scales
[ Weakly interacting massive particles? Sterile

[ Elementary or composite? Additional Higgs neutrinos? Extremely light particles (axions)?
bosons?
[ Interactions with Standard Model particles?
[ Coupling to Dark Matter? Role in cosmological
phase transitions? [ What is the structure of the Dark Sector? Is

Dark Matter self-interacting?
[ Is the vacuum state of the Universe stable?

Forces

[ Why three families? Can we explain masses . s ‘
and mixings? . Y
[ Origin of Matter-Antimatter asymmetry in . -

the Universe?

[ Are neutrinos Majorana or Dirac? CP
violation in the lepton sector?

Leptons

Juan Rojo CCP2017, Paris Jussieu, 12/07/2017



Outstanding questions in Particle Physics

High
LHC / HL-LHC Plan Luminosity
LHC
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13-14 TeV energy
injector upgrade 5to7x
splice consolidation cryogenics Point 4 . nominal
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radiation
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luminosity

Many of these crucial questions can be addressed at the Large Hadron Collider

For the next 20 years, LHC will be the forefront of the exploration of the high-energy frontier
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Machine Learning and
Artificial Neural Networks
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Input nodes layer

Hidden nodes layer

Output nodes layer
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Machine Learning at the LHC

¢ By Machine Learning we usually denote those families of computer algorithms that learn how to
excel on a task based on a large sample of examples, rather than on some a priori fixed rules

¢ ML algorithms are nowadays ubiquitous, from driverless cars to Amazon’s purchase suggestions,
to automated medical imaging recognition to beating the words best players at Go and chess

¢ ML tools rely on the efficient exploitation of immense datasets. And the LHC has a lot of datal!

The Big Data Universe, 2016

Amount of data stored in Petabytes
(1 Petabyte =1 000 000 GB)

Human brain
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Ebay
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(estimated)

Facebook
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Machine Learning tools are everywhere!
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For many crucial applications, ML tools not just one option, but the only option




ML cheat sheet

earning Workflow#

| E. Gieseke
Machine L

N
iMag_i G
= Spec. con N Spec. conf. E Spec. conf. mE Spec. con -
ooooo - Al jooo | mmm Al oo | mmm Al 0001 | mmm Al L] =
-
.
00 R
00
000
000
01 015 E T 15 %W 15 w25
modelMag u__,o 00 modelMag mod modeiMag i delMag 2
W Spec. W Spec. conf. 3 B Spec. conf. [ on.
= Al ] ] ]
1
bt

Which problem do you wanna solve?
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MONITOR

Monitor performance over time.

Get relevant data!
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Apply model to new, incoming data!

MERGE & CLEAN

Clean/merge data (multiple sources).
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VALIDATE

What is the best model (training data)?

EXPLORE

Visualize the data. Are there outliers?
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Endless possibilities - but also many non-trivial hurdles to overcome



Machine Learning at the LHC

¢ Several summary talks would be needed to cover the fascinating topic of ML at LHC!

& Here focus on a specific type of ML algorithms: Artificial Neural Networks
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For the ML / Big data aficionados, please check the “"Data Science at LHC” workshops
https://indico.fnal.gov/conferenceDisplay.py?confld=13497

and the recent “"Big Data Tools for Physics and Astronomy” workshop in Amsterdam

https://indico.cern.ch/event/622093/
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Artificial Neural Networks

Inspired by biological brain models, Artificial Neural Networks are mathematical algorithms widely
used in a wide range of applications, from HEP to targeted marketing and finance forecasting

From Biological to Artificial Neural Networks

Hidden nodes layer

Input nodes layer

Output nodes layer

.
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Input x2 Y,
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Input x3

—

Artificial neural networks aim to excel where domains as their evolution-driven counterparts
outperforms traditional algorithms in tasks such as pattern recognition, forecasting, classification, ...
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ANNSs - a marketing example

A bank wants to offer a new credit card to their clients. Two possible strategies:
& Contact all customers: slow and costly

vﬁ Contact 5% of the customers, train a ANN with their input (gender, income, loans) and their
output (yes/no) and use the information to contact only clients likely to accept the product

Cost-effective method to improve marketing performance!

100 7------ PESEEEE pemmmes e

% of positive answers

B e

10 20 3¢ 4 50 60 70 80 30 100

% of customers contacted
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ANNs and pattern recognition

& ANNSss can enable an autonomous vision-control drone to recognize and follow forest trails

& Image classifier operates directly on pixel-level image intensities

¢1If a trail is visible, the software steers the drone in the corresponding direction

Similar algorithms at work in self-driving cars!

Juan Rojo

Deep Neural Network

Control Signal!

|

Tum GO Turn
Left Straight Right

N

Giusti et al, IEEE Robotics and Automation Letters, 2016
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ANNs and pattern recognition

And of course ML tools can be used just for fun!
16
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The inner life of protons:
Parton Distribution Functions

- -
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Anatomy of a proton-proton collision

In high-energy hadron colliders, such as the LHC, the collisions involve composite particles
(protons) with internal structure (quarks and gluons)

v
Parton Distributions
Non-perturbative
From global analysis
_|_
7

Quark/gluon collisions
Perturbative
From SM Lagrangian

Calculations of cross-sections in hadron collisions require the combination of perturbative,
quark/gluon-initiated processes, and non-perturbative, parton distributions, information

18
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Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton

Distribution Functions (PDFs)

L g(z, Qb

g(x,Q): Probability of finding a gluon inside
a proton, carrying a fraction x of the proton

momentum, when probed with energy Q

Juan Rojo

N\

Q: Energy of the quark/gluon collision

Inverse of the resolution length
- -3

x: Fraction of the proton’s momentum
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Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton

Distribution Functions (PDFs)

Q: Energy of the quark/gluon collision
g t/I; 9 > Inverse of the resolution length

g(x,Q): Probability of finding a gluon inside
a proton, carrying a fraction x of the proton

momentum, when probed with energy Q

N\

x: Fraction of the proton’s momentum

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first
principles, and need to be extracted from experimental data with a global analysis

Juan Rojo
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Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton

Distribution Functions (PDFs)

/g

g(x,Q): Probability of finding a gluon inside
a proton, carrying a fraction x of the proton

momentum, when probed with energy Q

N\

Q: Energy of the quark/gluon collision
t/I; 9 > Inverse of the resolution length
M '

.

x: Fraction of the proton’s momentum

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first
principles, and need to be extracted from experimental data with a global analysis

1
¢ Energy conservation / dm(g(w,Q) + E q(a},Q)> =1
0
q

¢ Dependence with quark/gluon collision energy Q determined in perturbation theory

dg(x, Q)
0ln(Q

Juan Rojo

2|

= P, (a;5) ® g(z,Q) + Py (as) ® q(z,Q)
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The Factorization Theorem

The QCD Factorization Theorem guarantees PDF universality: extract them from a subset of process
and use them to provide pure predictions for new processes

Olp = glq (0437 O‘) & q(x, Q>

Lept
Lepton Riath

Scattered
Quark

={q(x)

IDetermine PDFs in lepton-proton collisions ....

N ‘} And use them to compute cross-sections
= lin proton-proton collisions at the LHC

Juan Rojo

~

Opp = Uq(j (&87 Oé) & Q(wla Q) & Q(x27 Q)
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Beyond BSM discovery

PDF uncertainties in the production of New Physics heavy resonances can be al large as 100%!

Crucial i.e. in searches for supersymmetry and any BSM scenario that predicts new heavy particles

within the reach of the LHC

1
Knvo+nLL(pp — g9 + X)
1.80 | /5 — 13 TeV T )

NNPDF3.0NLO

HF = PR =M

2.00
g g
7600000000000} 5666 pP .
kl : 1 .
: 1.40
E 1.20
: 1.00
k2 :a P2
gqﬁﬁmmﬁmmﬁ" 5666 n 5 0.80
0.60
1000

Gluino pair production at the LHC

1500

2000 2500 3000 3000
m(j = mg =m [GGV]

Beenakker, Borchensky, Kramer, Kulesza, Laenen, Marzani, Rojo 13

23
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Unless we improve PDF uncertainties, even if we discover New Physics, it

will be extremely difficult to characterise the underlying BSM scenario
L—
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ANNs as universal unbiased interpolants

ANN’s provide universal unbiased interpolants to parametrize the non-perturbative dynamics that
determines the size and shape of the PDFs from experimental data

Traditional approach

NNPDF approach

, v
M not from QCD!

g(x,Qo) = Ay(1 — )92~ " (14 cgVs+dgx+...)

g(x, Qo) = AJANN,(x)

ANN(2) = €9 = F [¢0), {0}, (60)]

ni—1

) _ (I=1) «(I1-1) (1)
fi — g Z Wi fj — 97;
j=1

Juan Rojo

g(L) & ANNSs eliminate theory bias introduced in PDF fits
from choice of ad-hoc functional forms

@ NNPDF fits used O(400) free parameters, to be
compared with O(10-20) in traditional PDFs. Results
stable it O(4000) parameters used!
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PDF Replica Neural Network Learning

The minimisation of the data vs theory %2 is performed using Genetic Algorithms

Each green curve corresponds to a gluon PDF Monte Carlo replica

2 GeV?)

X g(x, Q?

25
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Artificial Neural Networks vs Polynomials

¢ Compare a benchmark PDF analysis where the same dataset is fitted with Artificial Neural Networks
and with standard polynomials, other settings identical)

& ANNSs avoid biasing the PDFs, faithful extrapolation at small-x (very few data, thus error blow up)

Fit vs HIPDF2000, Q° = 4. GeV?

Q 10j I | lllllll | I ||||||I I | lllllll | I llllll: 10|
I 9 Polynomials - . Neural Networks
s
8| . i\
21 _ L\\PDF error
6! 159
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K ]

-No Data
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One glue to bind them all
NNLO, Q°=100 GeV?, 0g(M )=0.118
1.3 === i T T T T T

;q - CT14 Gluinos, KK gravitons,]
7//;%///% NNPDF3.0 boosted top-quarks.... |

90 ,

()] N

= '\\\\\\\\\'\\\\\ﬁ MMHT14 Higgs production
cxg 1.15 in gluon fusion

X 1.1 \

m :
Al

g

<

~— 0.95

© charm,bottom

0.9 low-mass Drell-Yan
soft QCD, MC tuning
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At the LHC, precise knowledge of the gluon is required from small-x to large-x
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The large-x gluon from differential top quarks

NNLO, global fits, LHC 13 TeV

& Top-quark pair production driven by gluon-gluon lumi

¢ NNLO calculations for stable top quarks available
Czakon, Mitov et al 2015-2017

¢ Data from ATLAS and CMS at 8 TeV available with
breakdown of systematic uncertainties

¢ Included differential top data into NNPDF3.0:
constraints on the large-x gluon comparable to those of
inclusive jet production czakon et al 2017

¢ Improved theory uncertainties in regions crucial for BSM
searches, i.e., mg > 1 TeV (while fitting only y¢ and y)

28 Juan Rojo
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The medium-x gluon from NNLO Z pr

& Dominated by quark-gluon scattering, thus sensitive to

the gluon PDF at intermediate values of x
Malik and Watt 2013, Boughezal et al 2017

& NNLO corrections to the Z pr also available: up to 10%
effects for a measurement that has sub-percent exp errors

Boughezal et al 2015-2017, Gerhmann et al 2015-2017

¢ Complementary information on the gluon as compared

to inclusive jets and differential top pair production

Gluon-Gluon, luminosity

S NN3.Ored
------- NN3.0red + 8 TeV
VS = 1.30e+04 GeV

10° 1, [GeV] 10°
Boughezal et al 2017
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The small-x gluon from forward charm production

¢ D and B meson production from LHCb allow accessing
the gluon down to x=10%, well below the HERA coverage

PROSA 2015, Gauld et al 2015

& Gluon PDF errors reduced by up to a factor 10!

& Allows robust estimate for the prompt neutrino flux, the
main background for astrophysical neutrinos at IceCube

& Precision calculation of the UHE neutrino-nucleus cross-
section, with few-percent TH errors up to E,=10'> GeV

B’ ¢(cm2ssr)

Prompt neutrino flux at IceCube

Prompt Neutrino Flux (BPL)
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One (upgraded) glue to bind them all

NNPDF3.1 NNLO, Q =10

0 GeV

s

1.15

Global

iy
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The gluon used to be the worse known PDF ....

Now it exhibits a remarkable robustness!
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Does the God Particle talk to Itself?
Unravelling the Higgs Self-Coupling

e S -

Boosted Category, no PU

B Signal
107 22 Background| |
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Probing Electroweak Symmetry breaking

& Current measurements (couplings in single Higgs production) probe Higgs potential close to minimum
¢ Double Higgs production essential to reconstruct the full Higgs potential and clarify EWSB mechanism

¢ Higgs SM potential is ad-hoc: not fixed by the SM symmetries, many other EWSB mechanisms conceivable

single h prod double h prod ?

h “".
Q@ /

\ ',"
jll

Higgs mechanism Coleman-Weinberg mechanism

V(h) =m;hth + %)\(h‘th)2 V() — %)\(hfh)glog [(hfh)]

cm 2

Each possibility associated to completely different EWSB mechanism, with crucial implications for the
hierarchy problem, the structure of quantum field theory, and New Physics at the EW scale

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.0649!
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Probing Electroweak Symmetry breaking

¢ Current measurements (couplings in single Higgs production) probe Higgs potential close to minimum
¢ Double Higgs production essential to reconstruct the full Higgs potential and clarify EWSB mechanism

¢ The Higgs potential is ad-hoc: many other EWSB mechanisms conceivable

Higgs mechanism Coleman-Weinberg mechanism

V(h) =mihh + %)\(h‘th)2 V(h) — %A(h*h)glog [(hfh)]

4m' 2

Each possibility associated to completely different EWSB mechanism, with crucial implications for the
hierarchy problem, the structure of quantum field theory, and New Physics at the EW scale

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.0649!
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hh->bbbb: selection strategy

¢ Exploit 4b final state: highest signal yields, but overwhelming QCD background (by orders of magnitude!)

& Carefully chosen selection strategies ensure that all relevant event topologies can be reconstructed

Resolved " Boosted

Recent progress in jet substructure
techniques important to reduced QCD
background in the boosted regime

A

35 Juan Rojo QCD jet Boosted W jet Boosted top quark jet



di-Higgs kinematic distributions

Resolved category, (ny;) =0
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Resolved category, no PU
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di-Higgs kinematic distributions

Resolved category, no PU

0.035—— l :
Signal — Signal
- 1072 | B ]
: ==+ Background|]
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10.020} 5 - e '
> © 1 il S
® noas DLQ-B - e e -

Resolved category, (ny;) =0

correlations among variables?

Many kinematic variables can be used to disentangle signal and background

How do we select which ones to use? And the optical cuts? And the cross-

We don’t need to! Use ML methods to identify automatically the combination of

kinematical variables with the highest discrimination power!
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Multivariate techniques
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Multivariate techniques

Combining information from all kinematic variables in MVA: excellent signal/background discrimination

Boosted Category, no PU

12 | |
B Signal
10 27 Background ||
o s
_ Background . Signal
z. 6f rejected * accepted
4 -
2
% -
‘47"__ n
8.0 0.2 0.4 0.6 0.8 1.0
ANN Output

39 Juan Rojo CCP2017, Paris Jussieu, 12/07/2017



Discovering Higgs self-interactions

ML techniques allow to substantially improve the signal significance for this process observe Higgs
pair production in the 4b final state at the HL-LHC. Observation (maybe discovery) within reach!
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Opening the Black Box

& ANNSs are sometimes criticised by being black boxes, with little understanding of what happens inside them
& But ANNSs are simply a set of combined kinematical cuts, nothing mysterious in them!

¢ Kin distributions after and before the ANN cut allow determining the effective kinematic cuts being
optimised by the MVA, which would allow a cut-based analysis

Signal events, resolved category, no PU
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The MVA sculpts a Higgs peak
in the QCD background!




ANNs and LHC phenomenology

& Machine Learning algorithms are already transforming our world, from the way we move, shop
and heal ourselves, to our understanding of what makes us unique as humans

& In the context of LHC data analysis and interpretation, ML tools are ubiquitous, from event
selection deep in the detector chain (triggering) to bottom-quark tagging and automated BSM
models classification (and exclusion)

& Artificial Neural Networks can be used as universal unbiased interpolators in global analysis of
the proton structure, with implications from BSM heavy particle production to ultra-high energy
neutrino astrophysics

& ANNSs can also be used as classifiers (discriminators) between signal and background in very
busy collision environments, improving LHC physics prospects i.e. for Higgs pair production
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Fascinating times ahead at the high-energy frontier!

And stay tuned for news from the LHC!
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